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Abstract

Social environments constitute a frameworkin which it is possible to study how groups
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to apply extensive-form rationalizability to the framework of social environments. For us
social environment is a primitive. On this social environment is defined a multistage gam
outcome of the social environment is socially rationalizable if and only if it is rationalizable i
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1. Introduction

Many social, economic and political activities are conducted by groups or coalitio
of individuals. For example, consumption takes place within households or familie
production is carried out by firms which arelarge coalitions of owners of differen
factors of production; workers are organized in trade unions or professional associ
public goods are produced within a complex coalition structure of federal, state, and loc
jurisdictions; political life is conducted through political parties and interest groups; a
individuals belong to networks of formal and informal social clubs.

The framework of social environments as introduced by Chwe (1994) specifies
each coalition can do if and when it forms. It is general enough to integrate t
representation of a cooperative game, an extensive-form game with perfect informatio
and a normal-form game played in such a fashion that there are coalitional move
countermoves. An example is the coalitional contingent threat situation due to Greenb
(1990). Moreover, this framework allows us to study economic and social activities w
the rules of the game are rather amorphous or the procedures are rarely pinned do
in sequential bargaining or coalition formation without a rigid protocol), and for whic
classical game theory could lead to a solution which relies heavily on an arbitrarily chose
procedure or rule (see Greenberg, 1990; Greenberg et al., 1996). For social enviro
where coalitions can form through binding ornon-binding agreements and actions
public, Chwe (1994) and Xue (1998) have proposed the solution concepts of the
consistent set and the optimistic or conservative stable standards of behavior, respe
The solution concepts predict which coalitions structures are possibly stable and
emerge.1

Both approaches have a number of nice features. Firstly, they do not rely
very detailed description of the coalition formation process as noncooperative sequen
games do, see e.g. Bloch (1996).2 No commitment assumption is imposed. Secondl
incorporates the farsightedness of the coalitions.3 A coalition considers the possibility tha
once it acts, another coalition might react, a third coalition might in turn react, and
without limit. The main difference between Chwe (1994) and Xue (1998) is that X
approach strengthens the farsightedness notion. A farsighted individual considers o
final outcomes that might result when making choices. But, an individual with pe
foresight considers also how final outcomescan be reached. That is, possible deviati
along the way to the final outcomes should be considered.4

1 For a very specific social environment, namely the coalitional contingent threat situation, Mariotti (1997
has defined an equilibrium concept: thecoalitional equilibrium. Central to his concept is the notion of coalition
strategies and the similarity with subgame perfection (except that coalitions are formally treated as players).

2 Sequential coalition formation games are quite sensitive to the exact coalition formation process and r
on the commitment assumption. Once some individuals have agreed to form a coalition, they are comm
remain in that coalition. They can neither leave the coalition nor propose to change it later on.

3 Other literature on endogenous coalition or network formation has examined farsightedness issues; see
Aumann and Myerson (1988) who have developed an extensive-form game of links formation, and Ray and Voh
(1999) who have defined on a partition function an extensive-form bargaining game.

4 In Chwe (1994), the specification of how individuals view and use their alternatives is formalized by
indirect dominance relation which captures some farsightedness of the individuals. In Xue (1998), it is formaliz
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Both approaches suffer from a number of drawbacks as well, some of them point
by the authors themselves. For instance, as indicated by Chwe (1994), the largest co
set may fail to satisfy the requirement of individual rationality. An individual that is g
the choice between two moves, where one yields with certainty a higher payoff tha
other, might choose the move leading to the lower payoff according to the largest consiste
set. This is perhaps somewhat less disturbing than it seems at first sight, since the
consistent set aims to be a weak concept, a concept that rules out with confidenc
therefore more surprising, as we show in this paper, that in certain social environ
the largest consistent set may rule out too much. One drawback of both the optimis
the conservative stable standards of behavior by Xue (1998) is that both solution se
be empty. This is worrisome as the idea of farsightedness suggests that since coaliti
do take into account the far reaching consequences of their moves, they should be
settle on some stable outcomes at least. We also present a number of examples w
stable standards of behavior lead to undesirable outcomes, for instance that both OS
even CSSB may rule out too little, or even worse, too much.

In order to remedy the problems mentioned above and to identify the consequ
of common knowledge of rationality and farsightedness within the framework of s
environments, we propose to apply extensive-form rationalizability to the framework o
social environments. Extensive-form rationalizability, which has been first introduced
Pearce (1984), is a solution concept relying on the following assumptions:

(i) each player always maximizes her expected payoff and she updates her expectati
using Bayes’ rule whenever possible;

(ii) each player believes that her opponents are rational unless this is contradicted by their
observed behaviors;

(iii) assumptions (i) and (ii) are common knowledge at the beginning of the game.

Since social environments deal with the behavior of coalitions, whereas rationalizab
about the implications of rationality of individuals, we have to convert coalitional behav
into individual behavior. This is achieved by defining on a social environment a m
stage game with observed actions5 and by recognizing that individual participation in
coalition is basically characterized by two possibilities. An individual may either agr
a coalitional move, or object to it and block it. Unlike in noncooperative game theory
social environment several coalitions may and could be willing to move at the same
Conflicts of interest may arise, which can take the form of one coalition trying to pre
the move of another coalition, but also of coordination problems in and between coal
Individuals should therefore also have beliefs on how such conflicts of interest are s

by means of the theory of social situations developed by Greenberg (1990). A social situation allows for capturi
perfect foresight (which strengthens farsightedness) by extending the Von Neumann and Morgenstern (194
notion of stability to accommodate different behavior on the part of the individuals in terms of their Knightia
(pessimism or optimism) attitude towards uncertainty.

5 In this respect, our paper is related to the literatureon non-cooperative foundationsof cooperative solution
concepts. For instance, Perry and Reny (1994) have developed a dynamic bargaining game of coalition format
which implements the core.
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Two equivalent definitions of extensive-form rationalizability have been proposed
literature.6 The first one is Pearce’s (1984) original extensive-form rationalizability and i
based on a reduction procedure. The secondone is due to Battigalli (1997). Battigalli’
extensive-form rationalizability is based on two assumptions:

(1) the individuals are rational and endowed with a hierarchy of hypotheses, and
(2) this is common knowledge at the original status quo.

Although normal-form rationalizability is known to be a weak concept, extensive-fo
rationalizability incorporateselements of forward induction and has therefore quite s
cutting power.7 We will use a cautious version of extensive-form rationalizabili8

Cautious rationalizability in the extensive form is appropriate if individuals are kn
to be not merely rational but also cautious (i.e. individuals will exercise prudence when
is costless to do so). Cautiousness is needed to eliminate the taking of risks that see
to be costly when there are no offsetting advantages for an individual to consider.

We take the social environment as a primitive. Associated to each social environme
we define a multistage game. An individual strategy describes, for each histor
coalitional moves the individual agrees to join and those she decides to block. I
happen that the individuals agree on more than one move. In this case it is the choice o
dummy player that will determine which move among the ones the individuals have a
upon will be implemented. Central to our new concept is that individuals hold cau
conjectures about their opponents’ strategies as well as about the choice of the d
player, which reverts to hold beliefs about which agreement is realized within the
agreements. An outcome of the social environment is said to be socially rationaliz
and only if it is supported by extensive-formrationalizability in the multi-stage game.

Our main results are the following. We show how to apply rationalizability
the extensive form to social environments, which is not straightforward since soci
environments are outside the realm of noncooperative games. By doing so, we
first to provide a solution concept for social environments that leads to a non-emp
of stable outcomes that is consistent with individual rationality. Since social environm

6 Among the papers related to extensive-form rationalizability are Bernheim (1984), who introduced subgam
perfect rationalizability, and Shimoji and Watson (1998), who studied the equivalence between conditio
dominance and extensive-form rationalizability. See Bernheim (1984), Pearce (1984), Herings and Vannetelbo
(1999) for the definitions of rationalizability fornormal-form games and of its refinements.

7 Forward induction is the principle that a player, when trying to predict the future behavior of another play
should take into account the observed past behavior of this player, and, if possible, should base her predicti
on strategies of the other player that are rational, and that prescribe the observed past choices of this pl
Battigalli (1996) for more details.

8 in the definition of cautious rationalizability, a strategy of a player is said to be a cautious response
is a best response against a completely mixed strategycombination. our version of cautious rationalizabili
in the extensive form is different from the one proposed by Pearce (1984). In Pearce’s definition, caut
rationalizable strategies are obtained by eliminating strategies that are not best responses first, next those
are not cautious responses, then the ones that are not best responses, and so on. If one carries the logic be
cautious rationalizability one step further, one would like to consider a solution concept where players elimin
responses that are not cautious in each round, which leads to the concept of extensive-form rationalizability w
use in this paper.



P.J.J. Herings et al. / Games and Economic Behavior 49 (2004) 135–156 139

tees
that
al

ns and
e give
ection
e-form
ed. An
able
and

e
pty,

on
ns

resting
ards of
could

tent set
nsider

may
n

t at
deal with coalitional moves, it is important that social rationalizability not only guaran
individual rationality, but also coalitional rationality. Coalitional rationality specifies
among a set of alternatives a coalition should be able to coordinate on the Pareto optim
one. Social rationalizability is shown to satisfy coalitional rationality.

The paper has been organized as follows. In Section 2 we introduce some notatio
primitives. We present the solution concepts of Chwe (1994) and Xue (1998), and w
the motivation for introducing a new concept by means of a number of examples. In S
3 we define on the social environment a multi-stage game and we apply extensiv
rationalizability to this multi-stage game. The examples are reconsidered and solv
outcome of the social environment is socially rationalizable if and only if it is rationaliz
in the multi-stage game. In Section 4 we study the property of coalitional rationality
show it is satisfied by social rationalizability. Finally, Section 5 concludes.

2. Social environments

2.1. Notations and primitives

As in Chwe (1994) and Xue (1998), we define byΓ = 〈I,Z, (ui)i∈I , {→S}S⊆I,S �=∅〉
a social environment, whereI = {1,2, . . . ,#I } is the set of individuals,Z is the finite
set of outcomes,{→S}S⊆I,S �=∅ are effectiveness relations defined onZ, andui :Z → R

specifies the utility function of individuali ∈ I . We denote by #I the cardinality ofI .
The relation→S represents what coalitionS can do:x0 →S x1 means that ifx0 is the
status quo, coalitionS can makex1 the new status quo. It doesnot mean that coalition
S can enforcex1 no matter what anyone else does; afterS moves tox1 from x0, another
coalitionS′ might move tox2, wherex1 →S ′ x2. A priori no restrictions are imposed on th
effectiveness relations{→S}S⊆I,S �=∅. For example, the effectiveness relation can be em
x0 →S x0 might be possible, andx0 →S x1 does not implyx1 →S x0. All actions or moves
are public and the individuals care only aboutthe end outcome, not how it is reached, or
the time it takes to reach a particular end outcome. Conventional game theoretic situatio
can be modeled as a social environment (see for instance Chwe, 1994).

For social environments where coalitions can form through binding or non-binding
agreements and actions are public, Chwe (1994) and Xue (1998) have proposed inte
concepts, the largest consistent set and the optimistic or conservative stable stand
behavior, respectively, to predict which coalition structures are possibly stable or
emerge.

2.2. The largest consistent set

Based on the indirect dominance relation, Chwe (1994) defined the largest consis
(LCS). The indirect dominance relation captures the fact that farsighted coalitions co
the end outcome that their move(s) eventually may lead to. Moreover, a coalition
deviate from a status quo only if each of its members can be made strictly better off. A
outcomey indirectly dominatesx if y can replacex in a sequence of moves, such tha
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each move all deviators are better off at the end outcomey compared to the status quo th
face. Formally, indirect dominance is defined as follows.

An outcomex is indirectly dominatedby y, or x 
 y, if there exists a sequenc
x0, x1, . . . , xm, wherex0 = x and xm = y, and a sequenceS0, S1, . . . , Sm−1 such that
xj →Sj xj+1 andui(xj ) < ui(y) ∀i ∈ Sj , for j = 0,1, . . . ,m − 1. Direct strict dominance
is obtained by settingm = 1. An outcomex is directly dominatedby y, or x < y, if there
exists a coalitionS such thatx →S y andui (x) < ui(y) ∀ i ∈ S. Obviously, ifx < y, then
x 
 y. The largest consistent set,LCS(Γ ), is defined as follows.

Definition 1 (Chwe, 1994). A setY ⊆ Z is consistent ifx ∈ Y if and only if ∀ y,S such
that x →S y, ∃ z ∈ Y , wherey = z or y 
 z, such that we do not haveui(x) < ui(z)

for all i ∈ S. The largest consistent setLCS(Γ ) is the consistent set such that ifY ⊆ Z is
consistent, thenY ⊆ LCS(Γ ).

By considering indirect dominance, the largest consistent set captures the not
farsightedness. An outcome is stable, that is an outcome is in the largest consist
if and only if deviations from it do not occur because the deviation itself or potent
further deviations are not unanimously preferred to the original outcome by the coa
considering the deviation. Although there can be many consistent sets, Chwe (199
shown that there uniquely exists a largest consistent set,LCS(Γ ), and that the larges
consistent set is non-empty. One simple way to findLCS(Γ ) is to apply the following
iterative procedure. LetY 0 ≡ Z. Then,Y k (k = 1,2, . . .) is inductively obtained as follows
x ∈ Z belongs toY k if and only if ∀ y,S such thatx →S y, ∃ z ∈ Y k−1, wherey = z or
y 
 z, such that we do not haveui(x) < ui(z) for all i ∈ S. Then,LCS(Γ ) is

⋂
k�1 Y k .

2.3. Stable standards of behavior

We give the definitions of Optimistic Stable Standard of Behavior (OSSB)
Conservative Stable Standard of Behavior (CSSB) due to Xue (1998). Some no
and definitions have to be introduced. A path is a sequence(x0, x1, . . . , xm) where for
all j = 0,1, . . . ,m − 1, there exists a coalitionSj ⊆ I such thatxj →Sj xj+1 and
xj , xj+1 ∈ Z. Let Π be the set of paths inZ, andΠx the set of paths inZ originating
from x. Xue (1998) defined a standard of behavior as a functionσ :Z → 2Π such that
σ(x) ⊆ Πx for all x ∈ Z. A standard of behaviorσ is said to beinternally stableif for all
outcomesx ∈ Z and for allα ∈ σ(x), there do not existy ∈ α, S ⊆ I , andz ∈ Z such that
y →S z andS “prefers”σ(z) to α. A standard of behaviorσ is said to beexternally stable
if for all outcomesx ∈ Z and for allα ∈ Πx \ σ(x), there existy ∈ α, S ⊆ I andz ∈ Z

such thaty →S z andS “prefers”σ(z) to α. A standard of behaviorσ is stable if it is both
internally and externally stable.

As in Greenberg (1990), Xue (1998) distinguished an optimistic and a conser
approach to define “prefers.” In the optimistic approach a coalitionS prefersσ(z) to α if
∃β ∈ σ(z), ui(α) < ui(β) ∀i ∈ S.9 In the conservative approach a coalitionS prefersσ(z)

to α if ∀β ∈ σ(z), ui(α) < ui(β) ∀i ∈ S. An OSSB is a stable standard of behavior, wh

9 We define the utility of a pathα as the utility of the end outcome ofα.
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“prefers” is defined by the optimistic approach. A CSSB is a stable standard of beh
where “prefers” is defined bythe conservative approach.

Definition 2 (Xue, 1998). Let σ be a standard of behavior. Then,

(i) σ is an OSSB if∀x ∈ Z, α ∈ Πx\σ(x) ⇐⇒ ∃S ⊆ I , y ∈ α, and z ∈ Z such that
y →S z and∃β ∈ σ(z): ui(α) < ui(β) ∀i ∈ S.

(ii) σ is a CSSB if∀x ∈ Z, α ∈ Πx\σ(x) ⇐⇒ ∃S ⊆ I , y ∈ α, andz ∈ Z such thaty →S z

and∀β ∈ σ(z) �= ∅: ui(α) < ui(β) ∀i ∈ S.

2.4. Motivation and examples

As has already been mentioned by Chwe (1994) himself, the LCS is blurring or avo
important issues, and hence, suffers substantial drawbacks. One drawback is that t
does not incorporate any idea of best response. Therefore, it is not very surprising t
LCS does not always rule out all unreasonable moves. Figure 1 shows a social enviro
with one individual that is currently at the status quox0 where she gets 1 unit of utility. Sh
has the possibility to move to outcomex1 and obtain 2 units of utility, or to go to outcom
x2 and receive 3 units of utility. In the social environment of Fig. 1,LCS(Γ ) = {x1, x2}.
This is unreasonable as a simple optimization dictates individual 1 to move tox2, in order
to get a utility equal to 3 instead of 2. So, the LCS does not satisfy individual rationa10

It is more surprising that we have found social environments where LCS rules o
much. This problem is more serious as LCS is developed to be a weak concept tha
out with confidence. In the social environment of Fig. 2, there are three individual
have the opportunity to move in a sequential manner. The status quo isx0. The utility
tuples achievable at the four outcomes are indicated in parentheses, with the ut

�

�

� �

�

x0 (1) x1 (2)

x2 (3)

{1}

{1}

Fig. 1. Individual rationality.

10 Two other problems have also been mentioned by Chwe (1994). First, the LCS does not incorporate
decision of subcoalitions to veto coalitional moves. second, a coalition considers what further moves ot
coalitions will make once it moves, but does not consider what other coalitions will do if it does not mov
Hence, the LCS does not allow for the possibility of coalitions moving to preempt the moves of other coa
social rationalizability (as well as Xue’s (1998) concepts) overcomes these problems.
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x0 (1,1,0) x1 (2,0,0) x2 (0,0,0) x3 (0,1,0)

{1} {2} {3}

Fig. 2. LCS may rule out too much.

individual i in position i. The direct dominance relation is given byx0 < x1 and the
indirect one byx0 
 x1. It follows that LCS(Γ ) = {x1, x2, x3}, so outcomex0 is ruled
out. However, individual 1 only wants to move from outcomex0 to outcomex1 if she is
sure that individual 2 will not move fromx1 to x2. Individual 2 does have incentives
move fromx1 to x2 as the move tox2 enables individual 3 to move tox3. It is only when
individual 2 is sure that 3 does not move that he is indifferent between moving an
moving. Even under such extreme beliefs individual 2 would not loose from moving tx2.
It is therefore certainly reasonable for individual 1 not to move from outcomex0 to x1.
A concept that aims to rule out with confidence should not rule out outcomex0.

The OSSB seems to perform better than LCSfor the social environment of Fig. 2
It holds that the unique OSSB is defined byσ(x0) = {(x0)}, σ(x1) = {(x1, x2, x3)},
σ(x2) = {(x2), (x2, x3)} and σ(x3) = {(x3)}. The uniqueness of OSSB follows fro
Claim 3.11 in Xue (1998). So individual 1 will not make the move fromx0 to x1, because
she fears the move of individual 2 fromx1 to x2. Less convincing is that(x1, x2) /∈ σ(x1).
Individual 2 hopes for the best, so he is convinced that individual 3 moves fromx2 to x3.
This is not consistent with the fact thatσ(x2) contains both(x2) and(x2, x3).

The CSSB is a truly weak concept. It doesn’t rule out anything in the social environ
of Fig. 2. But even though a CSSB is typically a very weak concept, it may also
out too much. In the social environment of Fig. 3 there is a unique CSSB, give
σ(x0) = ∅, σ(x1) = {(x1)} and σ(x2) = {(x2)}. The uniqueness of CSSB follows fro
Claim 3.11 in Xue (1998). Although a unique CSSB exists, it is empty-valued for s
status quos. A standard of behavior that prescribesσ(x0) = {(x0, x1), (x0, x2)}, violates
internal stability when one also assigns the obviousσ(x1) = {(x1)} andσ(x2) = {(x2)},
since(x0, x2) ∈ σ(x0), x0 →{1} x1, andσ(x1) is preferred to(x0, x2).

The unique OSSB coincides with the CSSB for the social environment of Fig. 3
may therefore also be empty-valued and rule out too much, a feature that is less sur
for OSSB. The example becomes even more striking when we add a movex0 →{1,2} x3
with payoffs−1 for both individuals. Then the unique CSSB and the unique OSSB
given by σ(x0) = ∅, σ(x1) = {(x1)}, σ(x2) = {(x2)} and σ(x3) = {(x3)}. The solution
concepts CSSB and OSSB do not distinguish the moves tox1 andx2 on the one hand, an
the move tox3 on the other. Another possibility is to add a movex3 →{1} x0 and to put the
utility of both individuals to−1 atx3. The standard of behaviorσ(x3) = {(x3)}, σ(x0) = ∅,
σ(x1) = {(x1)}, andσ(x2) = {(x2)} is both an OSSB and a CSSB. The worst outcom
stable.

CSSB and OSSB may also rule out too little. In the social environment of Fi
the only sensible standard of behavior isσ(x0) = {(x0)}. Nevertheless, the stan
dard of behaviorσ(x0) = {(x0), (x0, x1), (x0, x2)}, σ(x1) = {(x1)} and σ(x2) = {(x2)}
is both the unique CSSB and the unique OSSB. It may look like this phe
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{2}
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Fig. 3. CSSB and OSSB may rule out too much.

�

�

� �

�

x0 (3,3) x2 (2,1)

x1 (1,2)

{2}

{1}

Fig. 4. OSSB and CSSB may rule out too little.

enon is caused by the absence of the no-move. But even if we add movesx0 →{1}
x0, x0 →{2} x0, x0 →{1,2} x0, then the standard of behavior defined byσ(x0) =
{(x0), (x0, x1), (x0, x2), (x0, x0), (x0, x0, x1), (x0, x0, x2), (x0, x0, x0), . . .}, σ(x1) = {(x1)}
andσ(x2) = {(x2)} is a CSSB. OSSB seems to do better now, as the unique OSSB is
by σ(x0) = {(x0), (x0, x0), (x0, x0, x0), . . .}, σ(x1) = {(x1)}, andσ(x2) = {(x2)}.

In order to remedy these drawbacks, we propose a notion of rationalizability for soci
environments, which identifies the coalitions that are likely to form and the outcome
might occur when:

(1) the individuals are rational and endowed with a hierarchy of hypotheses, and
(2) this is common knowledge at the original status quo.

3. Social rationalizability

We denote by(x →S y) the move fromx to y by coalitionS. The no-move at statu
quox is denoted by(x →∅ x). One has to distinguish between(x →∅ x) and(x →{i} x).



144 P.J.J. Herings et al. / Games and Economic Behavior 49 (2004) 135–156

s
nment

ide
at an
also

the
s the
en the
mented.
eeds to
l players

to
e move

l
th

t

he

realize

l
f

r

Indeed,(x →{i} x) means that individuali can move fromx to x. The set of all possible
moves and no-move is given byM = {(x →S y) | x, y ∈ Z,x →S y}∪{(x →∅ x) | x ∈ Z}.
An original status quo is given, and it is denotedx0. To determine which coalitional move
are going to be implemented and which outcomes are rationalizable in a social enviro
Γ , we define onΓ a multistage game with finite horizon and with observed actions,G(Γ ).

The multistage game starts at status quox0. In the first stage all playersi ∈ I choose
simultaneously the coalitional moves fromx0 they agree to join and those they dec
to block. Observe that the framework of social environments does not exclude th
individual might agree to join more than one coalitional move (if possible). It may
happen that the individuals agree on more than one move. In such a circumstance it is
action chosen by a dummy player that will determine which move among the one
individuals have agreed upon will be implemented. In case all moves are blocked, th
game ends at the current status quo. Otherwise, a move to a new status quo is imple
In case coalitional moves are possible from the new status quo then the game proc
the second stage. Otherwise, it ends at the new status quo. In the second stage al
again choose simultaneously the coalitional moves from the new status quo they agree
join and those they decide to block; and so on. The game ends when each possibl
after a certain stage is blocked, or when the game has reached its final stage.

We give now a precise definition of the multi-stage gameG(Γ ) defined on the socia
environmentΓ . We denote byI+ = {0,1, . . . , n} the original set of players together wi
a dummy player, denoted by player 0. Individuali ’s opponents are denoted by−i. We
let h0 = ∅ be the history at the start of the play andx0 ∈ Z the original status quo. A
the end of each stage, all players observe the stage’s action profile. Fork = 0,1, . . . , we
denote byhk the history at the beginning of stagek. It consists of the actions taken by t
players at all the previous stages. At stagek, k = 0,1, . . . , of G(Γ ), all playersi ∈ I+
simultaneously choose actions. LetM(hk) = {(x →S y) ∈ M | z(hk) = x} be the set of
feasible moves after historyhk , wherez(hk) is the current status quo after historyhk .
Let Mi(h

k) = {(x →S y) ∈ M(hk) | i ∈ S} be the set of feasible moves after historyhk

involving individual i. An action of playeri ∈ I is a mappingak
i :Mi(h

k) → {0,1}. If
ak
i ((x →S y)) = 1 theni ∈ S agrees to join in the potential move of coalitionS from x to

y. If ak
i ((x →S y)) = 0 theni ∈ S blocks the move of coalitionS from x to y. An action

ak
0 of the dummy player 0 is a permutation ofM(hk) that indicates the order according to

which moves are implemented. More precisely, letf (ak
−0) = {(x →S y) ∈ M(hk) | ∀i ∈ S,

ak
i ((x →S y)) = 1} be the set of moves on which all players agree. Iff (ak

−0) is non-empty
then the first element ofak

0 contained inf (ak
−0) is implemented. LetAi(h

k) be the set
of actions fori ∈ I+ after historyhk , and letak ≡ (ak

0, ak
1, . . . , ak

n) be the stage-k action
profile, whereak

i ∈ Ai(h
k), i ∈ I+. Then the history at the beginning of stagek +1 is given

by hk+1 = (a0, a1, . . . , ak).
In social environments, negotiations on outcomes have to stop once in order to

payoffs. We model this by assuming that the game has to stop for sure afterK periods, and
consider all outcomes that could be an end outcome whenK approaches infinity. The tota
number of stages in the game is therefore given byK + 1. The setHk denotes the set o
all stage-k histories,H the set of all possible non-terminal histories,H = ⋃K−1

k=0 Hk, and
H ∗ = ⋃K

k=0 Hk the set of all possible histories. Letz :H ∗ → Z be a function that gives fo
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each possible history the current status quo;z(hk) is the status quo after historyhk . If the
game ends atz(hk), then the payoff of playeri ∈ I is ui(z(h

k)). The payoff of the dummy
player is defined to be always equal to zero, irrespective of the outcome of the game.

We denote byHi the set of histories after which playeri ∈ I has a move,Hi =
{h ∈ H | Mi(h) �= ∅}. A pure strategy of playeri ∈ I is a mappingsi :Hi → Ai , where
Ai = ⋃

h∈Hi
Ai(h). A pure strategy of player 0 is a mappings0 :H → A0, whereA0 =⋃

h∈H A0(h). Let Si be the set of pure strategies of playeri. Let S = ∏
i∈I+ Si be the set

of strategy profiles.
As general notation, we denote by�(X) the set of all probability measures onX.

For finite X, we denote by�0(X) the set of all probability measures giving positi
probability to each member ofX. The basis for rationalizability is that individuals for
conjectures about each others behavior and then optimize subject to these conjectu
We restrict the individuals to hold uncorrelated conjectures11 on the behaviors of thei
opponents,ci :Hi → ∏

j∈I+\{i} �(Sj ), with ci(h
′)(s−i ) being the probability individua

i ∈ I+ conjectures at historyh′ that her opponents strategies ares−i . We denote by
Ui(si , ci) the expected payoff given(si , ci). A conjectureci allows for a historyh ∈ Hi

if there are a strategysi and a profiles−i in the support ofci such that the path induced b
(si , s−i ) generatesh. A strategy combination(si)i∈Î ,Î⊆I+ allows forh if there is a profile
(sj )j /∈Î such that the path induced by(si )i∈I+ generatesh. A set Ŝ−i ⊆ S−i allows forh

if there is a profiles−i ∈ Ŝ−i which allows forh. At each historyh′ after which individual
i is involved in a move, she uses her conjecture ath′ to determine the likelihood of futur
histories by means of Bayesian updating. Given conjectures and strategies, indi
can compute their expected utility. Notice that a conjecture may change as the co
the social environment unfolds, and that there is only a need for an individual to
conjectures when an individual is potentially involved in a move.

Two alternative definitions of extensive-form rationalizability, which are equiva
(see Theorem 1 in Battigalli, 1997), have beenproposed in the literature. The first o
is Pearce’s (1984) original extensive-formrationalizability and is based on a reducti
procedure. The second one is Battigalli’s (1997)extensive-form rationalizability and i
based on the notion of a hierarchy of nested hypotheses.12 The definitions we present ne
deviate from the original ones because we assume that players holdcautiousconjectures
Battigalli’s definition of extensive-form rationalizability is based on two assumptions

(1) the individuals are rational and endowed with a hierarchy of hypotheses, and
(2) this is common knowledge at the original status quo.

11 The analysis where individuals hold correlated conjectures about the behaviors of their opponents is full
parallel and does not create any difficulties.

12 Pearce’s (1984) extensive-form rationalizability, like most extensive-form theories, does not adequately d
with counterfactuals and strategic manipulations of conjectures. Battigalli (1997) overcomes such drawbacks
providing an alternative characterization of extensive-form rationalizability which is not a reduction proc
Only individuals’ updating systems of conjectures are restricted. Such restrictions are modeled as a hierarch
nested hypotheses, ruling out strategic manipulation. Thishierarchy corresponds to the sequence of strategy
given by Pearce’s (1984) iterative deletion procedure.
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A rational individuali maximizes her expected payoff at each historyh reached by the play
subject to herconsistentupdating system of conjecturesci . Given two historiesg,h ∈ H ,
we writeg < h if g is a strict subhistory ofh.

Definition 3. A consistent updating system for individuali ∈ I+ is a mappingci :Hi →∏
j∈I+\{i} �(Sj ) such that for allg,h ∈ Hi :

(i) ci(h) allows forh,
(ii) if g < h andci(g) allows forh, thenci(g) = ci(h).

The consistency of the updating system requires that the conjecture at historh is
consistent withh being reached and that no conjecture is changed unless falsified.13

That is, individuals update according to Bayes rule whenever possible. A strategysi is
individually rational if it is a best response to some cautious consistent updating systemci .
In Definition 4,R1

i is the set of strategies ofi that are individually rational. Higher degre
of rationality are constructed recursively.

Definition 4. Let R0 = ∏
i∈I+ Si . For n � 1, Rn = ∏

i∈I+ Rn
i is inductively defined as

follows: for all i ∈ I+, si ∈ Rn
i if there exists a consistent updating systemci such that

(i) for all h′ ∈ Hi , ci(h
′) ∈ ∏

j∈I+\{i} �0(Rk∗
j ) where k∗ is the maximal element in

{0,1, . . . , n − 1} such thatRk∗
−i allows forh′,

(ii) for all h′ ∈ Hi , if si allows for h′, thensi is a best response toci(h
′) at h′, that is,

for all ŝi ∈ Si , Ui(h
′)(si , ci) � Ui(h

′)(si/ŝh′
i , ci), wheresi/ŝ

h′
i is the strategy which

results fromsi when behavior ath′ and its followersg > h′ is specified bŷsi .

The setR∞(K) = limn→∞ Rn is the set of rationalizable strategy profiles where the g
G(Γ ) consists of at mostK + 1 stages.

Definition 4 can be interpreted as follows. The sequenceR1
j , R2

j , R3
j , . . . , represents

for individual i a hierarchy of increasingly strong hypotheses about the beh
of individual j . When individual i implements a strategysi ∈ R∞

i (K), she always
holds the strongest hypothesis which is consistent with the historyreached (part (i) in
Definition 4) and optimizes accordingly. The important distinction to original exten
form rationalizability is that conjectures are cautious.

Notice that since the payoffs of the dummy player are trivial, it is never possib
eliminate any of her actions. For anyn it holds thatRn

0 = S0. From the perspective of th
players inI , the dummy player randomly implements a move on which there is agree

13 Battigalli (1996) has shown that the structural consistency condition incorporated into extensive-for
rationalizability does not appropriately model strategicindependence. Indeed, according to extensive-fo
rationalizability, playeri is allowed to change her conjecture about opponentj , just because she observed
subjectively unexpected behavior by another opponentk, while intuition suggests that in such casei ’s conjecture
aboutj should not change if strategic independence holds.
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The conjectured probability by which a particular move is implemented is not restr
however, apart from being positive because of cautiousness.

The cautious version of the extensive-form rationalizability concept due to P
(1984) is a reduction procedure and is defined as follows.

Definition 5. Let P 0 = ∏
i∈I+ Si . For n � 1, Pn = ∏

i∈I+ Pn
i is inductively defined as

follows: for all i ∈ I+, si ∈ Pn
i if:

(i) si ∈ Pn−1
i ,

(ii) there exists a consistent updating systemci such that for allh′ ∈ Hi that are allowed
by si andPn−1

−i it holds:

(a) ci(h
′) ∈ ∏

j∈I+\{i} �0(P n−1
j ),

(b) for all ŝi ∈ Pn−1
i , Ui(h

′)(si, ci ) � Ui(h
′)(si/ŝh′

i , ci ).

The setP∞(K) = limn→∞ Pn is the set of rationalizable strategy profiles where the g
G(Γ ) consists of at mostK + 1 stages.

Again, since the payoffs of the dummy player are trivial, it is never possible to elim
any of her actions. For anyn it holds thatPn

0 = S0.

Theorem 1 claims that the two definitions of extensive-form rationalizability
equivalent. Throughout the rest of the paper we focus on extensive-form rationalizabili
à la Pearce.

Theorem 1. For all n � 0, Rn = Pn.

The proof of this theorem is similar to theproof of Theorem 1 in Battigalli (1997), an
is therefore omitted. The interested reader is referred to Herings et al. (2000) for detai
the proof.

It follows as a corollary to Theorem 1,R∞(K) = P∞(K).
Given a social environmentΓ , we define an outcomex ∈ Z to be socially rationalizabl

if it is supported by extensive-form rationalizability inG(Γ ). We denote byZ∞
K the set of

rationalizable outcomes. It is given by

Z∞
K = {

x ∈ Z | ∃(
a0, a1, . . . , ak

) ∈ z−1({x}),
∃s ∈ P∞(K) such that∀j = 1, . . . , k, s

(
a0, a1, . . . , aj−1) = aj

}
,

wherez−1({x}) are histories leading to the outcomex. The set of socially rationalizabl
outcomes,Z∞, is obtained by lettingK go to infinity,Z∞ = lim supK→∞ Z∞

K . It captures
the set of outcomes that are stable if the game could go on infinitely long, but sto
finite time with probability one. That is, we consider that the game has to stop for sure
K periods, and consider all outcomes that could be an end outcome whenK approaches
infinity. This corresponds well to the idea of social environments, where negotiatio
outcomes have to stop once, but at an indefinite time period, and there is no discoun
payoffs.

The set of socially rationalizable outcomes is never empty.
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Theorem 2. Z∞ �= ∅.

The proof of this theorem, as well as the other proofs not in the main text, may be
in the appendix.

We reconsider the four examples and we show that social rationalizability remedi
problems of the largest consistent set, the optimistic stable standard of behavior, a
conservative stable standard of behavior. Even though the definitions so far may se
rather complicated, the examples are easily solved for by the reduction procedure
Definition 5.

Example 1. Consider again the social environment whereI = {1}, Z = {x0, x1, x2}, and
the effectiveness relations as well as the payoffs are depicted in Fig. 1. The exte
form game defined on this social environment is depicted in Fig. 5. It is a one-
game where individual 1 and the dummy player 0 simultaneously choose an actio
haveM1(h

0) = M(h0) = {(x0 →{1} x1), (x0 →{1} x2)}. Any strategy of player 1 is suc
that a0

1((x0 →{1} x1)) equals 1 or 0 anda0
1((x0 →{1} x2)) equals 1 or 0. For simplicity

we denote the set of strategies of individual 1 asS1 = {(0,0), (0,1), (1,0), (1,1)} = A1
where(0,1) means thata0

1((x0 →{1} x1)) = 0 anda0
1((x0 →{1} x2)) = 1. Any strategy of

the dummy player is a permutation ofM(h0) = M. For simplicity, the set of strategie
of player 0 is denotedS0 = {(x1, x2), (x2, x1)} where(x1, x2) means that the first eleme
ranked is the move fromx0 to x1 and the second element ranked is the move fromx0 to
x2. So, the strategy(x1, x2) means that the first element of(x1, x2) contained inf (a0

1)

will be the outcome of the game. For example, ifa0
0 = (x2, x1) and a0

1 = (1,1), then
f (a0

1) = {(x0 →{1} x1), (x0 →{1} x2)} and the outcome of the game will be the move
x2 leading to a payoff of 3 for player 1. By Definition 5,P 0 = S. Obviously, the unique
best response for individual 1 is her action(0,1). Against any cautious conjecture on t
behavior of the dummy player, her action(0,1) will give her a payoff of 3, while any othe
action will give her an expected payoff strictly less than 3. Hence,(0,1) is the unique
rationalizable action for individual 1 andZ∞ = {x2} is the unique rationalizable outcom
Contrary to the largest consistent set, social rationalizability satisfies individual ration

Example 2. Consider again the social environment withI = {1,2,3}, Z = {x0, x1, x2, x3},
and the effectiveness relations, as well as the payoffs, being depicted as in Fig. 2. T

����������������

���������������

1

(0,0) (1,1)

�

�
�

�
�

�

�
�
�
�
�

1

(0,1) (1,0)

�

�
�

��

�
�
��

0

(x1) (x2)

�

1
�

1

�

�
�

��

�
�
��

0

(x1) (x2)

�

3
�

3

�

�
�

��

�
�
��

0

(x1) (x2)

�

2
�

2

�

�
�

��

�
�
��

0

(x1) (x2)

�

2
�

3

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0

Fig. 5. The extensive-form game for the social environment of Example 1.
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extensive-form game defined on this socialenvironment is a three-stage game. At e
stage of the game only one individual belonging toI has a non-empty set of action
That is, any strategysi ∈ Si is such thatai−1

i ((xi−1 →{i} xi)) equals 1 or 0. The set o
strategies of an individuali ∈ I is denoted for simplicity bySi = {0,1}. At each stage
of the game, the dummy player has a trivial action sinceM(h) is always a singleton
By Definition 5, it holds thatP 0 = S. When individual 3 gets the choice, she is rea
indifferent between moving and not moving, soP 1

3 = S3. When individual 2 contemplate
the move fromx1 to x2, he conjectures a positive probability to individual 3 mov
to x3. Indeed, anyc2(h

1) ∈ ∏
i∈I+\{2} �0(Si) puts positive probability weight on bot

a2
3((x2 →{3} x3)) = 1 and a2

3((x2 →{3} x3)) = 0. Hence, the unique optimal behav
for individual 2 is a1

2((x1 →{2} x2)) = 1, andP 1
2 is a proper subset ofS2, P 1

2 = {1}.
Initially, individual 1 puts positive probabilityweight on all strategies of her opponen
and depending on her cautious conjectures she decides to stay atx0 or to move tox1,
so P 1

1 = S1. However, in the second iteration she knows that individual 2 will mov
x2 for sure when given the move: anyc1(h

0) ∈ ∏
i∈I+\{1} �0(P 1

i ) gives probability one

to a1
2((x1 →{2} x2)) = 1. Therefore, the unique optimal behavior for individual 1 is

stay atx0: a0
1((x0 →{1} x1)) = 0. So,P∞

1 = {0}, P∞
2 = {1}, andP∞

3 = S3. The unique
rationalizable (or stable) outcome is the original status quo,Z∞ = {x0}.

Example 3. Consider again the social environment whereI = {1,2}, Z = {x0, x1, x2}, and
the effectiveness relations as well as the payoffs are depicted in Fig. 3. The exte
form representation of this social environment is depicted in Fig. 6. Fori ∈ I, we have
Hi = {h0} and Mi(h

0) = {(x0 →{i} xi)}. Any strategy of individuali ∈ I is such that
a0
i ((x0 →{i} xi)) equals 1 or 0. The set of strategies of individuali ∈ I is Si = {0,1}. Any

strategy of the dummy player is a permutation ofM(h0) = {(x0 →{1} x1), (x0 →{2} x2)}.
The set of strategies of the dummy player isS0 = {(x1, x2), (x2, x1)} where (x1, x2)

means that the first element of(x1, x2) contained inf (a0
−0) will be the outcome of the

game wheneverf (a0
−0) �= ∅. By Definition 5, P 0 = S. Given any cautious conjectu

ci(h
0) ∈ ∏

j∈I+\{i} �0(Sj ), individual i has a unique best response which is to mov

xi . So,a0
i ((x0 →{i} xi)) = 1, P 1

i = P∞
i = {1}, i ∈ I , andZ∞ = {x1, x2}.
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Fig. 6. The extensive-form game for the social environment of Example 3.
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Example 4. Consider again the social environment whereI = {1,2}, Z = {x0, x1, x2}, and
the effectiveness relations as well as the payoffs are depicted in Fig. 4. The extensive-fo
representation of this social environment is a one-stage game. We haveHi = {h0} and
Mi(h

0) = {(x0 →{i} xi)}, i ∈ I . Any strategy of individuali is such thata0
i ((x0 →{i} xi))

equals 1 or 0. The set of strategies of individuali ∈ I is Si = {0,1}. Any strategy of
the dummy player is a permutation ofM(h0) = {(x0 →{1} x1), (x0 →{2} x2)}. The set of
strategies of the dummy player isS0 = {(x1, x2), (x2, x1)}. By Definition 5,P 0 = S. Given
any cautious conjectureci(h

0) ∈ ∏
j∈I+\{i} �0(Sj ), individuali has a unique best respon

which is not to move. So, fori ∈ I, a0
i ((x0 →{i} xi)) = 0,P 1

i = P∞
i = {0}, andZ∞ = {x0}.

4. Coalitional rationality

Social rationalizability is based on common knowledge of individual rationality.
interesting theory of social behavior should also be expected to satisfy at least
rudimentary forms of coalitional rationality. It is conceivable that coalitions fail to choo
between a set of outcomes because of internal disputes on the outcome on which
coordinate. If, on the other hand, the outcomes are Pareto ranked, then a sensible concep
coalitional rationality should prescribe coordination on the outcome that Pareto domina
all the others. In general, what can be said about social environments in which a s
Pareto-dominant outcome exists, but not all outcomes are Pareto-ranked? Does
rationalizability satisfy the condition that it always selects a Pareto-dominant outco
when one exists? We can formalize this within the theory of social environments.

Consider the social environmentΓ ∗ whereI = {1,2, . . . ,#I }, Z = {x0, x1, . . . , xN } and
there is one outcome which strictly dominates all other outcomes, fori ∈ I, for k �= 0,N,

ui(xN) > ui(xk) > ui(x0) = 0. Onlyx0 →I xk, k = 1, . . . ,N , are possible moves. A two
individual case withN = 3 is depicted in Fig. 7. We say that social rationalizability satis
coalitional rationality if it selects the Pareto-dominant outcome,xN .

In the extensive-form gameG(Γ ∗), we have, fori ∈ I, Hi = {h0} and M(h0) =
Mi(h

0) = {(x0 →I x1), (x0 →I x2), . . . , (x0 →I xN)}. G(Γ ∗) is a one-stage game whe

	 �

�

� � �

�

x1 (1,2) x0 (0,0) x2 (2,1)

x3 (3,3)

{1,2} {1,2}

{1,2}

Fig. 7. Coalitional rationality.
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all players simultaneously choose an action. A strategy or action of individuali is denoted
by si = ai = (ai1, . . . , aik, . . . , aiN) whereaik = ai((x0 →I xk)). A strategy or action o
the dummy player is a permutation ofM(h0).

Example 5. Consider the two-individual and three-move case, soI = {1,2}, Z =
{x0, x1, x2, x3}, andx0 →I xk, k = 1,2,3, are the only possible moves. Moreover, cons
the special case whereu1(x0) = u2(x0) = 0, u1(x1) = u2(x2) = 1, u1(x2) = u2(x1) = 2,
u1(x3) = u2(x3) = 3. This social environment is depicted in Fig. 7. The strategie
individual i ∈ I are such thata0

i ((x0 →{1,2} xk)) = 1 or a0
i ((x0 →{1,2} xk)) = 0. The set

of strategies of individuali ∈ I is Si = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),
(1,0,1), (0,1,1), (1,1,1)} = Ai , where(1,0,1) simply meansa0

i ((x0 →{1,2} x1)) = 1,
a0
i ((x0 →{1,2} x2)) = 0, a0

i ((x0 →{1,2} x3)) = 1. The strategies of the dummy player a
permutations ofM(h0), whereM(h0) = {(x0 →{1,2} x1), (x0 →{1,2} x2), (x0 →{1,2} x3)}.
The set of strategies of the dummy player isS0 = {(x1, x2, x3), (x2, x1, x3), (x2, x3, x1),
(x1, x3, x2), (x3, x1, x2), (x3, x2, x1)} = A0. Which outcomes are socially rationalizabl
Is the Pareto-dominant outcome the unique socially rationalizable one?

By Definition 5,P 0
i = Si . We show first that(0,0,0), (1,0,0), (0,1,0), (1,1,0) do

not belong toP 1
i . Take anysi ∈ Si such thatai3 = 0 and takes′

i ∈ Si such thata′
i1 = ai1,

a′
i2 = ai2 anda′

i3 = 1. It is quite straightforward that, for any cautious conjectureci(h
0) ∈∏

j∈I+\{i} �0(Sj ), Ui(h
0)(si , ci) < Ui(h

0)(s′
i , ci). Indeed, the strategiessi ands′

i give the
same payoffs to individuali against the opponent’s strategiessj with aj3 = 0. But if indi-
vidual j ’s strategy is such thataj3 = 1 we have that eithera0

0 ∈ {(x3, x1, x2), (x3, x2, x1)}
ands′

i does strictly better thansi , or a0
0 /∈ {(x3, x1, x2), (x3, x2, x1)} ands′

i does at least a
well assi .

Next it is shown that allsi ∈ Si with ai3 = 1 belong toP 1
i by proving that for any

si with ai3 = 1, there existsci(h
0) ∈ ∏

j∈I+\{i} �(Sj ) such thatsi is the unique bes
response amongSi . For instance,(1,0,1) is the unique best response against the conjec
ci(h

0) ∈ ∏
j∈I+\{i} �(Sj ), where, forj �= {0, i},

c
j
i

(
h0)(sj ) =

{
1/3 if sj = (1,0,0) or sj = (0,0,1) or sj = (1,1,1),

0 otherwise,

and

c0
i

(
h0)(s0) =

{
1 if s0 = (x2, x3, x1),

0 otherwise.

In Table 1 we give the conjectures against which each strategysi with ai3 = 1 is the unique
best response. By a continuity argument, see also Lemma 3 below,si is also the unique
best response against a cautious conjecture that puts weight on all strategiessj ∈ Sj . So,
P 1

i = {(0,0,1), (1,0,1), (0,1,1), (1,1,1)}.
In the second iteration, individuali knows that individualj will play a strategy in

P 1
j . Hence, for allci(h

0) ∈ �0(P 1
j ) × �0(S0), the unique best response of individuai

is si = (0,0,1) which gives her a payoff of 3. Indeed, for allci(h
0) ∈ �0(P 1

j ) × �0(S0),

anys′ �= si belonging toP 1 will give her a payoff less than 3, becauseci(h
0) puts positive
i i
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Table 1
Unique best response and conjectures

si

sj (0,0,1) (1,0,1) (0,1,1) (1,1,1)

(0,0,0) 0 0 0 0
(0,0,1) 1/2 1/3 1/3 1/3
(1,0,0) 0 1/3 0 1/3
(0,1,0) 0 0 1/3 1/3
(1,1,0) 0 0 0 0
(0,1,1) 0 0 0 0
(1,0,1) 0 0 0 0
(1,1,1) 1/2 1/3 1/3 0

s0 (x1, x2, x3), (x2, x1, x3) 1 0 0 0
(x3, x1, x2), (x3, x2, x1) 0 0 0 1

(x2, x3, x1) 0 1 0 0
(x1, x3, x2) 0 0 1 0

probability ons′
j = s′

i andc0
i (h

0) has full support. So,P 2
i = {(0,0,1)} = P∞

i , i = 1,2, and
Z∞ = {x3}. In Example 5, the case with two individuals and a Pareto-dominant outc
the property of coalitional rationality is satisfied. There is a unique socially rationaliz
outcome and it is the Pareto-dominant one.

We show that the coalitional rationality property holds in general in the so
environmentΓ ∗. In order to do so, some lemmata are used. Lemma 3, whose pr
obvious and left to the reader, tells us that if a strategy of individuali is the unique
best response against a conjectureci (possibly degenerate), then it is also the unique
response against some cautious conjecturec∗

i .

Lemma 3. Take anysi ∈ Si . If there existsci such that(i) ci(h
0) ∈ ∏

j∈I+\{i} �(Sj ) and

(ii) for all s′
i ∈ Si , s′

i �= si , Ui(h
0)(si , ci) > Ui(h

0)(s′
i , ci ), then there existsc∗

i such that(iii)
c∗
i (h

0) ∈ ∏
j∈I+\{i} �0(Sj ) and(iv) for all s′

i ∈ Si \ {si}, Ui(h
0)(si , c

∗
i ) > Ui(h

0)(s′
i , c

∗
i ).

Lemma 4 tells us that any strategysi such that individuali blocks the move toxN (i.e.
a0
i ((x0 →I xN)) = 0 oraiN = 0) is never a best response whatever the cautious conje

ci . Indeed, the strategys′
i , wheres′

i is the same assi except that individuali joins the move
to xN , is always a strictly better response.

Lemma 4. For i ∈ I, take anysi ∈ Si with aiN = 0. Takes′
i ∈ Si such thata′

ik = aik

for k = 1, . . . ,N − 1 and a′
iN = 1. Then,Ui(h

0)(s′
i , ci) > Ui(h

0)(si , ci) for all ci ∈∏
j∈I+\{i} �0(Sj ).

We introduce some additional notations. Fori ∈ I, given si ∈ Si , we defineKi(si) =
#{k | aik = 1}. Moreover, we denoted bye(k) the strategy such that thekth component is
1 and the other components are 0, and1 is the unit vector, that is, the strategy where
individual agrees to join every move. Lemma 5 establishes that there exists a con
ci such that any strategysi where individuali agrees to move toxN is her unique bes
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response. This conjecture is such that it puts weight onsj = e(k) wheneveraik = 1 and on
sj = 1. The former part of the conjecture guarantees thatsi gives higher utility thans′

i �= si
whenevers′

i blocks moves that are not blocked bysi . The latter part, together with a beli
on the choice of the dummy player, implies thatsi outperforms anys′

i that agrees to strictly
more moves thansi .

Lemma 5. For i ∈ I, take anysi ∈ Si such thataiN = 1. Then, for alls′
i ∈ Si \{si}, we have

Ui(h
0)(si , ci) > Ui(h

0)(s′
i , ci), whereci(h

0) ∈ ∏
j∈I+\{i} �(Sj ) is such that, forj �= 0,

c
j
i

(
h0)(sj ) =

{
1

Ki+1 if sj = e(k) andaik = 1, or sj = 1,

0 otherwise,

and

c0
i

(
h0)(s0) =

{
1 if s0 = (

(xk)aik �=1, xN, (xk)aik=1
)
,

0 otherwise.

Putting these results together, we are able to show the following main result.

Theorem 6. Consider the social environmentΓ ∗. There is a unique strategy of individu
i ∈ I that is socially rationalizable,P∞

i = {e(N)}.

Proof. By Definition 5,P 0
i = Si andP 0 = ∏

i∈I+ Si . In the first iteration, by Lemma 4
all si ∈ P 0

i such thataiN = 0 do not belong toP 1
i . By Lemma 3 and Lemma 5, allsi such

thataiN = 1 do belong toP 1
i . So,P 1

i = {si | aiN = 1}. As always,P 1
0 = S0.

In the second iteration, for allci(h
0) ∈ ∏

j∈I+\{i} �0(P 1
j ), the strategysi such that

aiN = 1 andaik = 0 if k �= N gives to individuali ∈ I a utility Ui(h
0)(si, ci) = ui(xN).

However, for alls′
i ∈ P 1

i \ {si}, Ui(h
0)(s′

i , ci) < ui(xN) for all ci , because for somek < N ,
a′
ik = 1, and the cautiousness ofci implies that with positiveprobability the opponents o

i agree on{(x0 →I xk)} andxk is the first element of the permutation chosen by playe.
This would lead to utilityui(xk) < ui(xN). So,P 2

i = {e(N)} = P∞
i , i ∈ I . �

The above result implies that social rationalizability satisfies the property of coalit
rationality. When there is a Pareto-dominant outcome it is selected by a coalition.
individual only agrees to move to the Pareto dominating outcome, and blocks all
moves.

Corollary 7. Consider the social environmentΓ ∗. We haveZ∞ = {xN }.

Finally, notice thatLCS(Γ ∗) = Z \ {x0}; the unique OSSB isσ(x0) = {(x0, xN)};
and the unique CSSB isσ(x0) = {(x0, xk) | xk is not Pareto-dominated by all oth
x ∈ Z \ {x0, xk}}. In case the outcomes are Pareto ranked:ui(xN) > ui(xN−1) > · · · >

ui(x1) > ui(x0) = 0, then the unique CSSB isσ(x0) = {(x0, xk) | xk ∈ Z \{x0, x1}}.
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5. Conclusion

Social environments constitute a framework in which it is possible to study how g
of agents interact in a society. We have argued for the need of a new solution conc
social environments that is based on individual rationality, called social rationaliza
One of the basic steps in our construction is to associate a particular multistage gam
a social environment. This enables us to model individual behavior in a social environ
Moreover, it makes a social environment apt to an analysis based on individual ratio
Individual behavior within a coalition is modeled as the decision to agree to a coali
move or to block it. Since a coalition may have several moves available, and mor
one coalition may have the option to move at the same time, there can be many mo
which there is agreement. Individuals therefore also form conjectures on actions ta
a dummy player which will determine which move in the set of moves on which the
agreement will be carried out.

We have shown that for all social environments the set of socially rationaliz
outcomes is non-empty. The non-emptiness of social rationalizability makes it applicabl
to cases where traditional solution concepts fail to make predictions. It is also n
weak in the sense that it satisfies individual rationality and incorporates forward inductio
elements. As a theory of social behavior, social rationalizability should also be consiste
with elementary notions of coalitional rationality. For instance, when a coalition h
choose between a number of moves, it should select a Pareto dominating one for su
shown that social rationalizability is consistent with coalitional rationality.

Finally, we would like to mention a recent related contribution. Ambrus (2002) ha
investigated the implications of groups or coalitions of players acting in their collectiv
interest in noncooperative normal-form games.It is assumed that players are unable
make binding agreements, and pre-play communication is neither precluded nor as
The main idea is that each member of a coalition will confine play to a subset of
strategies if it is in their mutual interest to do so. This leads to an iterative proced
restricting players’ beliefs and actions in the game. The iterative procedure defines
of coalitionally rationalizable strategies. One similarity between our paper and Am
paper is that both deal with coalitional reasoning within a non-equilibrium framework. Th
main difference is that Ambrus’ coalitional rationalizability concept is defined for nor
form games, while we look at extensive-form games defined on social environm
Another difference is that coalitional moves are publicly observed in social environm
but in Ambrus’ paper it is assumed that a player moves secretly.
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Appendix A

Proof of Theorem 2. Consider the iterative procedure provided by Definition 5. For e
iterationn, choose a consistent updating systemci such thatci(h

′) ∈ ∏
j∈I+\{i} �0(P n−1

j )

for all h′ ∈ Hi allowed by Pn−1. Consider anysi ∈ Pn−1
i such thatUi(h

0)(si , ci) �
Ui(h

0)(ŝi , ci) for all ŝi ∈ Pn−1
i . If h′ is allowed bysi and Pn−1

−i then it follows that

Ui(h
′)(si, ci) � Ui(h

′)(si/ŝh′
i , ci) for all ŝi ∈ Pn−1

i . It follows that si ∈ Pn
i , so Pn �= ∅.

SinceP 0 is finite andPn ⊇ Pn+1, there isN such thatPn = Pn′
for all n,n′ � N .

It follows thatP∞(K) = PN �= ∅. Any (si )i∈I ∈ P∞(K) yields an outcome; soZ∞
K �= ∅.

As a subset of the finite setZ it holds thatZ∞
K is finite. Now it follows from the definition

of the limit superior thatZ∞ �= ∅. �
Proof of Lemma 4. Consider any profiles−i ∈ ∏

j∈I+\{i} Sj . We denote byf (s−0,i) the
moves on which the opponents of individuali agree when their strategies are given
s−0,i .

(i) For all s−i ∈ ∏
j∈I+\{i} Sj , if (x0 →I xN) /∈ f (s−0,i ) then Ui(h

0)(s′
i , s−i ) =

Ui(h
0)(si , s−i ).

(ii) For all s−i ∈ ∏
j∈I+\{i} Sj , if (x0 →I xN) ∈ f (s−0,i) andxN is the first element ofs0,

thenUi(h
0)(s′

i , s−i ) > Ui(h
0)(si, s−i ).

(iii) For all s−i ∈ ∏
j∈I+\{i} Sj , if (x0 →I xN) ∈ f (s−0,i) andxN is not the first elemen

of s0, thenUi(h
0)(s′

i , s−i ) � Ui(h
0)(si, s−i ).

Hence,Ui(h
0)(s′

i , ci) > Ui(h
0)(si , ci) for all ci ∈ ∏

j∈I+\{i} �0(Sj ). �

Proof of Lemma 5. Let M be the set of moves on which the opponents ofi could
potentially agree. Then, eitherM = M, or M = {(x0 →I xk) ∈ M | for somek such that
aik = 1}, or M = ∅. Two cases have to be considered.

Case 1. Considers′
i such that, for somek, aik = 1 anda′

ik = 0. Then, againstM =
{(x0 →I xk)}, s′

i gives a payoff of 0 toi andsi gives a strictly positive payoff toi. It is
straightforward thatsi performs at least as good ass′

i against any other potentialM . Hence,
Ui(h

0)(si , ci) > Ui(h
0)(s′

i , ci).

Case 2. Considers′
i �= si such thataik = 1 impliesa′

ik = 1. Then, againstM = M, s′
i gives

a payoff ofui(xk) for k the highest ranked element ins0 such thataik = 0 anda′
ik = 1,

which is strictly less thanui(xN), the payoff ofsi againstM. It is straightforward tha
si performs at least as good ass′

i against any other potentialM. Hence,Ui(h
0)(si , ci) >

Ui(h
0)(s′

i , ci). �
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