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ON THE RELATION AMONG SOME DEFINITIONS OF
STRATEGIC STABILITY

JOHN HILLAS, MATHIJS JANSEN, JOS POTTERS, and DRIES VERMEULEN

In this paper we examine a number of different definitions of strategic stability and the relations
among them. In particular, we show that the stability requirement given by Hillas (1990) is weaker
than the requirements involved in the various definitions of stability in Mertens’ reformulation of
stability (Mertens 1989, 1991). To this end, we introduce a new definition of stability and show that
it is equivalent to (a variant of ) the definition given by Hillas (1990). We also use the equivalence
of our new definition with the definition of Hillas to provide correct proofs of some of the results
that were originally claimed (and incorrectly “proved”) in Hillas (1990).

1. Introduction. The theory of strategic stability is an attempt to answer the question:
What are the self-enforcing outcomes of a game? The theory is based on the intuition that
the answer to such a question should (1) involve somewhat more than just the conditions
of Nash equilibrium, and (2) should not depend on “irrelevant” aspects of the game. While
much of the literature on the refinement of equilibrium might be thought of in this way,
the term “strategic stability” was introduced by Kohlberg and Mertens (1986) who gave the
first analysis systematically based on such an approach.
Kohlberg and Mertens gave a list of requirements that a concept of strategic stability

should satisfy. They showed that even quite weak versions of their requirements implied that
the solution concept should assign sets of equilibria as solutions to the game. Thus a stability
concept is a rule that assigns a collection of subsets of the space of (mixed) strategy profiles
to each game in the domain of games under consideration. Since the paper of Kohlberg
and Mertens, the list of requirements that a concept of strategic stability should satisfy has
been modified and expanded, particularly in the work of Mertens (1987, 1989, 1991, 1992).
We shall not be concerned, in this paper, with the justification of these requirements. The
interested reader is referred to Kohlberg and Mertens (1986), Mertens (1987, 1989, 1991,
1992), or Hillas and Kohlberg (1994).
Up until now, several attempts have been made to construct a solution concept that

satisfies all requirements (see, for example, Kohlberg and Mertens 1986, Mertens 1989,
Hillas 1990, McLennan 1989a, and Vermeulen et al. 1997). Of these attempts only Mertens
(1989) succeeded completely. All other known versions of strategic stability fail on at least
one of the requirements.

Aim of the paper. Insight into the relationships between various types of strategic
stability is significant from a conceptual (as well as, occasionally, a computational) point of
view, since these relations can simplify the derivation of the requirements to a great extent.
Some relations between these types are already known. For instance, Govindan (1995)
proved that each strategically stable set in the sense of Mertens (1989) contains a fully
stable set as they are defined in Hillas (1990). A fairly complete overview of how the most
important types hang together is given in Figure 1.
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Figure 1

A connection between the two most commonly used notions of strategic stability (stable
sets in the sense of Mertens 1989 and Hillas 1990, respectively) was not yet established.
This brings us to the main goal of this paper. We will show that the reformulation of
Mertens in fact yields a stronger form of strategic stability than the one in Hillas (1990).
After this fact is established we will elaborate on some results and simplifications of proofs
of known results that arise as by-products from our proofs.

Organization of the paper. First in §2 we will introduce the notational conventions
used in this paper. In §3 we will give the specific versions of the three concepts that are
central in this paper. The first one, homotopy stability, is a simplified (weak) version of
the reformulation in Mertens (1989). The second one, best reply stability or BR-stability
for short, is a slightly simplified version of stability in the sense of Hillas (1990). (We will
explain in §6.2 why we use the simplification instead of the original definition.) The third
one, CKM-stability, can be seen as a continuous version of the definition of stability in
Kohlberg and Mertens (1986). A similar definition can be found in Vermeulen et al. (1997).
In §4 we show that homotopic stability is a stronger requirement than CKM-stability. In

§5 we show that CKM-stability and BR-stability are equivalent notions. In the proof we
need yet another type of stability, called CT-stability. First we will show that CKM-stability
implies CT-stability, and CT-stability implies BR-stability. Since the converse implications
are quite trivial, this yields the equivalence of these notions.
Combining the results from §§4 and 5 we see that homotopy stability implies BR-stability.

Hence, since homotopy stability is weaker than the definition of stability in Mertens (1989)
in terms of homology groups, we get the main result of this paper that stability in the sense
of Mertens (1989) implies stability in the sense of Hillas (1990).
Finally, in §6 we will use the equivalence of BR-stability and CKM-stability to give

correct proofs of two properties of BR-stability that are already mentioned in Hillas (1990)
(in fact the proofs of these properties turn out to be relatively simple for the equivalent
notion of CKM-stability) and to prove that BR-stable sets also satisfy abr-invariance.
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To give the reader an overview of what is basically accomplished in this paper, most
relations between various stability concepts known to us as well as the ones that are proved
here are displayed in Figure 1. The relations marked K&M were proved in Kohlberg and
Mertens (1986); those marked H90 in Hillas (1990); that marked McLennan in McLennan
(1989a); and that marked Mertens in Mertens (1989). The unmarked relations are either
obvious or proved in this paper.
A number of stability concepts used in the diagram do not occur in this paper. The defi-

nitions of full stability (Kohlberg and Mertens) and essential set can be found in Kohlberg
and Mertens (1986). The definitions of fully stable sets and Q-sets (quasi stable sets) can
be found in Hillas (1990). In the diagram “A-set−→B-set” means that every A-set is also
a B-set. If we define an A-stable set (B-stable set) to be a minimal A-set (B-set), then the
arrow implies that every A-stable set contains a B-stable set.

2. Preliminaries. We first specify some notational conventions. Most of our notation is
completely conventional. One exception is that in defining open balls in �n and in defining
the Hausdorff distance between compact subsets of �n we use the maximum norm rather
than the Euclidean norm. For any subset A of �n we denote the convex hull of A by
ch�A� and the affine hull of A by ah�A�. We are only concerned with the boundaries or
interiors of convex sets and we always mean the boundaries or interiors relative to the affine
hulls of these sets. That is, if A is a closed and convex subset of �n, the boundary �A
of A is the collection of those points x in A for which every neighborhood U of x has a
nonempty intersection with ah�A�\A. Further, Å = A\�A is the relative interior of A. For a
correspondence �� X� X we denote by fix��� the set of fixed points of �.
A finite n-person game (in normal form) is a pair � = �A�u�, where A = ×i∈NAi is a

product of finite (nonempty) sets and u= �u1� � � � � un� is an n-tuple of functions ui� A→�.
The set Ai is called the set of pure strategies of player i and ui his payoff function. We
abusively also use ui to denote the multilinear extension of ui to the space 	=×i∈N	�Ai�
of strategy profiles, i.e., to denote player i’s expected payoff function. (The set 	�Ai� is
player i’s set of mixed strategies, i.e., the set of probability vectors on Ai.)
In what follows we use the following simplified notation. We omit prefixes and simply

call � a game. We write 	i instead of 	�Ai�, 	−i =×j �=i	j for the set of strategy profiles of
the opponents of player i, and �x−i � yi� in 	 for the strategy profile in which player i uses
yi ∈ 	i and his opponents use the strategies x−i in 	−i. The correspondence BRi� 	� 	i

associates to a mixed strategy profile x the set of all player i’s mixed best replies to x−i. The
best-reply correspondence BR� 	�	 is the product of the BRis, i.e., BR�x�=×i∈NBRi�x�.
Since BRi�x� depends only on x−i the profile of mixed strategies of the other players, BRi
defines in a natural way a correspondence on 	−i which we also denote by BRi. The set of
equilibria of � is denoted by E���.
We shall abuse notation by identifying a pure strategy a ∈ Ai with the mixed strategy e

a
i

in 	i that puts all weight on a. Pure strategy profiles (i.e., elements of A) will be denoted by
boldface letters to distinguish them from elements of Ai. Typically we will write a= �ai�i∈N
and b = �bi�i∈N for a and b in A. The set of pure best replies to a strategy profile x in
	 is PBi�x� = 
a ∈ Ai � a ∈ BRi�x��. The pure best-reply correspondence PB� 	� A is
the product of the PBi’s, i.e., PB�x�=×i∈NPBi�x�. Again PBi�x� depends only on x−i the
profile of mixed strategies of the other players and defines in a natural way a correspondence
on 	−i which we also denote by PBi. Notice that PB�x�= 
a ∈ A � a ∈ BR�x��.
Following Kohlberg and Mertens (1986) and Selten (1975), we will say that, for a game

� = �A�u�, an n-tuple � = ��1� � � � � �n� (where �i = ��ia�a∈Ai is a vector of nonnegative
real numbers) is a KM-perturbation of � if the set

	i��i�= 
xi ∈ 	i � xia ≥ �ia for all a ∈ Ai�

is nonempty for each player i in N .
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The KM-perturbation whose coordinates are all equal to zero is denoted by 0 and
the space of all KM-perturbations by �. For a KM-perturbation � ∈ �, the set 	��� =
×i∈N	i��i� is called the �-perturbed strategy space.
A KM-perturbation � gives rise to the �-perturbed game ���, whose space of strategy

profiles is the �-perturbed strategy space 	���. The payoff function of player i is simply
the restriction of ui to this space of strategy profiles.
For two strategy profiles x and z in 	 and a KM-perturbation �, the strategy profile z

is called a �-perturbed best reply to x if z is an element of the �-perturbed strategy space
and ui�x−i � zi�≥ ui�x−i � yi� for all players i in N and all strategies yi in 	i��i�. The set of
�-perturbed best replies to x is denoted by BR���x�. A strategy profile x in 	 is called a
�-perturbed equilibrium of � if x ∈ BR���x�. The set of �-perturbed in equilibria of � is
denoted by E�����.
For a game � = �A�u�, a strategy profile x in 	 is called a perfect equilibrium of � if

there exists a sequence ��t�t∈� of completely mixed KM-perturbations converging to zero
and a sequence �xt�t∈� in 	 converging to x such that xt is a �t-perturbed equilibrium of
� for every t in �.

3. Definitions of the central concepts. In this section three types of stability are intro-
duced. The first one, called homotopy-stability was introduced by Mertens (1989). The sec-
ond one, BR-stability, is closely related to the notion of stability introduced in Hillas (1990).
The definition of the third type, CKM-stability, can also be found in Vermeulen (1996). We
will briefly discuss the definitions and prove some of the more obvious relations between
these and other well-known types of stability.
For � > 0� �� = 
� ∈� � ���	 ≤ ��. The real number � is assumed to be small enough

to guarantee that �� is a hypercube in �. To be more precise, let us say that for i ∈ N and
a∈Ai� �i� a� is called a pair and let the set of all such pairs be denoted by P. The boundary
��� is now assumed to be equal to the set 
� ∈�� � �ia ∈ 
0��� for some �i� a� ∈ P�. Then
the vertices of �� are those KM-perturbations whose coordinates are equal to either 0 or �.
Let S be a closed subset of the graph

� = 
���x� ∈�×	 � x is a �-perturbed equilibrium of ��

of the perturbed equilibrium correspondence. For � > 0,

S� = 
���x� ∈ S � � ∈���

is the part of S above ��, and

�vS
� = 
���x� ∈ S� � � ∈ ����

is the part of S above ���. Usually �vS
� is called the vertical boundary of S�.

Definition 1. The restriction p�� S� →�� to S� of the canonical projection p� from
�×	 to � is called relatively null-homotopic if there exist a continuous function F�� S�×
0� 1�→�� such that
(1) F����x�0�= p����x� for all ��� x� ∈ S��
(2) F����x�1� ∈ ��� for all ��� x� ∈ S�; and
(3) F����x� t� ∈ ��� for all t ∈ 0�1� and all ���x� ∈ �vS�.
The function F� is called a homotopy for p�. F� transforms p� in a continuous way into

a function that only takes values in the boundary ��� of ��, while the image of the vertical
boundary �vS

� of S� remains within the boundary ��� of �� during this transformation.
The canonical projection p� to � is called locally null-homotopic on S if there exists a

number �0 > 0 such that p
� is relatively null-homotopic for all � ≤ �0.
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For a closed set S ⊂ �, let vintS� be the set S�\�vS�. This is the set of points ���x� in
S� for which � is completely mixed and �ia < � for all pairs �i� a�. Let � be the collection
of all nonempty, closed sets S ⊂ � such that for all � > 0, the set vintS� is connected and
S� = cl�vintS��.

Definition 2. A closed set T ⊂	 is called homotopy-stable if there exists a set S ∈�
such that
(1) T = 
x ∈ 	 � �0� x� ∈ S�; and
(2) p� is not locally null-homotopic on S.
Remark 1. It follows immediately from the definition of � that homotopy-stable sets

are connected and consist only of perfect equlibria.
The definition of stability by Mertens (1989) is in terms of nonvoid maps between homol-

ogy groups. The sets given by such a definition may depend on the coefficient modules
used. In §(E) of that paper, Mertens shows that the union over all possible coefficient mod-
ules of such solutions is equivalent to a definition in terms of homotopy. However one
needs to require not only that the projection map not be null-homotopic, but also that this
remain true for the restriction of the projection map to some subset of the graph of the
equilibrium correspondence that is of the same dimension as the space of perturbed games.
Thus Definition 2 may be thought of as a weaker approximation of the “right definition.”
In particular, any set that satisfies the definition in terms of homology will be homotopy-
stable. The interested reader may compare the definition of stability by Mertens with the
definition of homotopy-stability and construct a proof of the previous statement using, e.g.,
Theorem 19.3 of Munkres (1984).
Next, we define the notion of BR-stability. This definition is similar to the definition of

stability in Hillas (1990) but differs from the original definition in Hillas’ paper in two
respects. First, we omit the part concerning invariance. Second, we do not require minimality
(with respect to robustness against perturbations), just connectedness and perfection. Both
adjustments are because the requirement of invariance has become better understood during
the last few years. Therefore, we prefer to use a more careful selection of the collection of
BR-sets in the definition of BR-stability similar to the one employed by Mertens (1989).
(Again, a more elaborate discussion of the reasons for these adjustments can be found in
§6.2 and Vermeulen and Jansen 1999.)
Let � = �A�u� be a game. Note that the best-reply correspondence BR of the game

� is an element of the class � of all compact and convex-valued upper-hemicontinuous
correspondences � � 	� 	. For two correspondences ��� ∈ � we define

d�����= sup
dH���x����x�� � x ∈ 	��
Definition 3. A closed set S ⊂ 	 is a BR-set if for any neighborhood V of S there

exists a number �> 0 such that fix���∩V is nonempty for every � ∈� with d�BR��� <�.
A connected BR-set that contains only perfect equilibria of � is called BR-stable.
McLennan (1989a) introduced a related type of stable sets, which he called essential sets.

He used a larger class of correspondences to perturb the best-reply correspondence BR (he
used contractible valuedness instead of convex valuedness) but, more importantly, he used a
coarser topology on the space of perturbations. (That is, there are more perturbations close
to a given game.) He required that all such correspondences whose graph is contained in
a sufficiently small neighborhood of the graph of BR should have fixed points close to S.
This notion of closeness of correspondences to BR is even weaker than the requirement
that the graph of the correspondence is close to the graph of BR in Hausdorff distance. The
condition only requires that the graph of the perturbation be within � of the graph of BR.
In effect this yields a notion of stability that is stronger than BR-stability.
Finally we introduce a form of stability, called CKM-stability, that is at first sight weaker

than BR-stability. A CKM-perturbation of a game � = �A�u� is a continuous function
�� 	→� from the strategy space 	 to the space � of KM-perturbations of � .
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We also write � = ��i�i∈N . The collection � of all CKM-perturbations is endowed with
the norm ��� = maxx∈	 ���x��	. If � takes on only strictly positive values we call it a
completely mixed CKM-perturbation.
For a CKM-perturbation � ∈�, the �-perturbed best-reply correspondence

BR��� 	� 	

is defined by
BR���x�= BR���x�� x��

Definition 4. A closed set S ⊂ 	 is a continuous KM-set—CKM-set for short—if for
any neighborhood V of S there is a number � > 0 such that fix�BR���∩V is nonempty
for every � ∈ � with ���< �. A connected CKM-set that only contains perfect equilibria
of � is called CKM-stable.

Remark 2. The sets defined in Definition 4 would not be changed by requiring only
that fix (BR���∩V is nonempty for every completely mixed � with ���<�. This follows
directly from the upper hemicontinuity of fix� ��	, which in turn follows from the upper
hemicontinuity of the best-reply correspondence.
It is clear that every BR-set of a given � is also a CKM-set of that game. For every CKM-

perturbation � of the � the �-perturbed best-reply correspondence BR�� is an element of � .
Furthermore, by Lemma 7 in Appendix A we know that there exists a constant C > 0 such
that d�BR���BR� < C��� for every CKM-perturbation �. Given these two observations,
it is an elementary exercise to complete the proof.

4. Every homotopy-stable set is CKM-stable. Our main concern in this section is to
prove that every homotopy-stable set is CKM-stable. We first give an intuition as to why
this is true and why it is unlikely that the converse is true.
Consider the graphs shown in Figure 2. This diagram is not to be taken too literally. The

spaces �� and 	 are typically of quite high dimension, even for fairly simple games, but are
represented here as one-dimensional. (One probably gets a better idea by at least thinking
of one additional dimension that is not shown, representing the size of the perturbation. The
set S� and the graph of � are typically of the same dimension as �� and 	, respectively.
Their boundaries are of one less dimension.)
The graph of S�, as drawn, does not have any “holes” in it. If there were holes then it

would be possible to “stretch out” the set S�, without moving �vS
� so that it was completely

above ���. On the other hand, if there are no holes then it is not possible to draw the graph
of a continuous function � from 	 to �� whose graph has an empty intersection with S�.

Figure 2
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Figure 3

And any � whose graph does not have an empty intersection with S� is such that the �-
perturbed best-reply correspondence has fixed points close to the projection of S� onto 	,
and hence—for sufficiently small �—close to the homotopy stable set.
On the other hand, consider the graph in Figure 3. In this case the set S� does have a

“hole” in it and one could clearly stretch it out in a continuous way so that it was completely
above ���. And yet it should also be clear that, even in this case, it is not possible to find a
continuous function � from 	 to �� whose graph has an empty intersection with S�. Thus
the set T = 
x ∈ 	��0� x� ∈ S� would in this case be a BR-set, and indeed even a BR-stable
set, but would not be a homotopy-stable set.
Of course we have not exhibited a game for which the graph of the equilibrium corre-

spondence is like this. However this kind of behavior of the equilibrium correspondence is
not ruled out by anything that we currently know. Indeed, it is sufficiently well behaved that
there is a strong intuition that there would be games for which the graph of the equilibrium
correspondence above the perturbed games would have these general features.
We now turn to proving the theorem.

Theorem 1. Homotopy-stable sets are CKM-stable.

Proof. Suppose that T ⊂ 	 is not a CKM-stable set. If T is not a connected set of
perfect equilibria then it is clearly not homotopy-stable by Remark 1. Suppose that T is
not a CKM-set, then there is a neighborhood V of T such that for any � > 0 there is a
completely mixed CKM-perturbation � such that ���< � and fix�BR���∩V is empty.
Let S ∈ � be such that T = 
x ∈ 	 � �0� x� ∈ S�. If there is no such S then T is clearly

not homotopy-stable and we are done.
Let �0 be small enough that S

�0 ⊂ �× V . Now consider an (arbitrary) value � less
than �0. Since T is not a CKM-set there is a completely mixed CKM-perturbation � with
���< � such that fix(BR���∩V is empty.
For any ���x� ∈ S� it must be that ��x� �= �. For if ��x� = � then x is in E����� =

E����x���. Thus x is in BR���x�� x�= BR���x� and so x is a fixed point of BR��. Thus
since S� ⊂ S�0 ⊂�×V , x is in fix�BR���∩V , which was assumed to be empty.
We shall now construct a homotopy with the properties given in Definition 1. Let the

function ��� S� → ��� be given by defining �����x� to be, for ���x� in S�, the point
obtained by extending the line from ��x� through � until it hits ���. If ���x� is in �vS

�

this is simply the point �= p����x�.
Since �� is convex and ��x� is in the interior of �� and ��x� �= �, this point is uniquely

defined. Moreover, since � takes values in the interior of �� and is continuous it is bounded
away from ���. Thus �� is continuous.
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Then the function F�� S�× 0�1�→�� defined

F����x� t�= t�����x�+ �1− t�p����x�

is also continuous. The only part of Definition 1 that might not be immediately obvi-
ous is Condition 3. However this too is obvious if one observes that �����x� = p����x�
on �vS

�. �

5. The equivalence of BR-stability and CKM-stability. In this section we shall prove
the following:

Theorem 2. Every CKM-set is a BR-set and, conversely, every BR-set is a CKM-set.
The same equivalence holds if we replace “set” with “stable set.”

The part of this theorem stating that every BR-set of a given game � is also a CKM-
set of that game, was already shown in §3. In this section we will show that the converse
statement (every CKM-set is a BR-set) is also true. The second part of the theorem is then
a simple consequence of the first part.
One of the tools in the proof of the converse statement is yet another (at first sight

somewhat awkward) type of stability, called CT-stability. The perturbations involved are
continuous versions of what we shall call T-perturbations. With the help of this notion the
proof is split into two parts. First we show that every CKM-set is a CT-set. After that we
show that every CT-set is a BR-set. These two facts combine to the desired result.

5.1. (C)T-perturbations. The space of CT-perturbations is a subspace of the space of
BR-perturbations and it contains the space of CKM-perturbations. Since it is difficult to
show directly that a CKM-set is a BR-st, CT-perturbations offer a convenient stepping stone
in the proof.
To give the reader an idea of the advantage of the use of CT-perturbations in the proof,

consider the following situation. Suppose that we have a CKM-set S of a game � . If we
want to show that S is also a BR-set we have to show that every sufficiently small BR-
perturbation � has a fixed point close to S. So, if we could construct a (small) CKM-
perturbation � such that every fixed point of BR�� is also a fixed point of �, then the proof
would be easy. However, such a construction requires a solution for two problems. The
first problem is that CKM-perturbations generate perturbed best-reply correspondences that
cannot “jump” from one place to another like BR-perturbations can; they can only move
continuously. The second problem is that for a given strategy profile x the set BR���x�
is necessarily parallel to BR�x� as well as product set with respect to the players, while
the set ��x� does not need to be either of those. So, for our purpose (the approximation
of � by a CKM-perturbation in such a way that the fixed points of the CKM-perturbation
are also fixed points of �), CKM-perturbations seem to be too rigid in two different ways.
CT-perturbations only have the first drawback. The perturbed best-reply correspondence
generated by a CT-perturbation still varies in a continuous way, but it is better suited to
approximate ��x� in a given strategy profile x. Thus, by first proving that every CKM-set is
a CT-set and then that every CT-set is a BR-set, we are able to handle these two problems
one at a time.

Definition 5. A T-perturbation of a game � = �A�u� is a function t � A→	 from the
set of pure strategy profiles A to the space of mixed strategy profiles 	.
For a T-perturbation t ∈ 	A and a strategy profile x ∈ 	,

BR�t� x�= ch
t�a� � a ∈ PB�x��
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Figure 4

is the set of t-perturbed best replies to x. Further, the distance between two T-perturbations
t and t′ in 	A is given by

d�t� t′�=max
�t�a�− t′�a��	 � a ∈ A��
Note that for the T-perturbation id defined by id�a�= a for all a ∈ A, we have BR�id� x�=
BR�x� for all x ∈ 	. So, id can be identified with � . Therefore, a T-perturbation t ∈ 	A is
considered to be small if the distance d�t� id� between t and id is small. Further,

��t�= ch
t�a� � a ∈ A�
Remarks. We shall explain some of the intuitions behind the notions defined above.

Suppose that we have a game � with two players and A1 = A2 = 
1�2�. Then the space
	= 	2×	2 of strategy pairs is the convex hull of the pure strategy pairs id�1�1�= �1�1�,
id�1�2�= �1�2�, id�2�1�= �2�1�, and id�2�2�= �2�2� as indicated in Figure 4. The strategy
space of the first player is depicted on the horizontal axis, the vertical axis represents the
strategy space of player 2.
For a KM-perturbation �= ��1� �2� of the game � , the �-perturbed strategy space 	���

is represented by the smaller rectangle. Notice that this space still has a product structure
with respect to the players since it is the product of the spaces 	1��1� and 	2��2�.
Now take a T-perturbation t ∈ � of the game � . In this two-person example, the

T-perturbation t is a function that assigns a point in 	 to each of the four pure strategy
pairs �1�1�� �2�1�� �2�2�, and �1�2�. The point t�2�1� is indicated in Figure 1. The poly-
tope ��t� ⊂ 	, indicated by the fat lines, is the convex hull of the points t�1�1�, t�2�1�,
t�2�2�, and t�1�2�. Notice that the Hausdorff distance between 	 and ��t� is small when-
ever d�t� id� = max
�t�a� b�− id�a� b��	 � a�b = 1�2� is small. Further, notice that ��t�
does not need to have a product structure with respect to the players.
To give an impression of the structure of the t-perturbed best replies consider Figure 5.

Suppose that we have a strategy pair x = �x1� x2� in 	 and PB�x�= 
�2�1�� �2�2��. BR�x�
is then the convex hull of the strategy pairs id�2�1� = �2�1� and id�2�2� = �2�2� while
BR�t� x� is the convex hull of t�2�1� and t�2�2�.
In this example it can clearly be seen that the set of t-perturbed best replies BR�t� x�

do not need to be parallel to the set of unperturbed best replies BR�x�, in contrast to the
situation for the set BR���x� of �-perturbed best replies for a KM-perturbation �. Also
observe that BR�t� x� is not the collection of points in ��t� in which the payoff vector
induced by x attains its maximum over ��t� (in the example this would be the one point set

t�2�2��), which is a fundamental difference with the definition of full stability by Kohlberg
and Mertens (1986).
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Figure 5

Now we turn to the definition of the continuous version of T-perturbations, CT-
perturbations. For technical reasons it is convenient to allow CT-perturbations only to take
small T-perturbations as values. Formally, we require these values to be in the (compact
and convex) neighborhood

� = 
t ∈ 	A � d�t� id�≤ �A�−3�
of id in 	A. Thus we get

Definition 6. A CT-perturbation is a continuous function � � 	→ � from the space
of strategy profiles 	 to the space � of well-behaved T-perturbations.
For a CT-perturbation � , the �-perturbed best-reply correspondence BR�� � 	� 	 is

defined by, for all x ∈ 	,
BR���x�= BR���x�� x��

Since the T-perturbation id ∈ � can be identified with � , a CT-perturbation � is considered
to be small if ��� =maxx d���x�� id� is small. This naturally leads to

Definition 7. A closed set S ⊂ 	 is a CT-set if for any neighborhood V of S there
exists a number � > 0 such that fix�BR���∩V is not empty for every CT-perturbation �
with ���< �.
First we turn our attention to the proof that every CKM-set is a CT-set. The proof is

designed to solve two technical problems each of which requires some explanation and a fair
number of specific lemmas. These two problems are considered in the next two subsections.
The technical problem that is considered in §5.3 concerns the existence of a continuous

function � that assigns to each pair �t� x� in � ×	 a KM-perturbation ��t� x� in such a
way that x is an element of BR�t� x� (that is, x is an equilibrium of the t-perturbed game)
whenever it is an equilibrium of the ��t� x�-perturbed game. The construction of this func-
tion however requires some knowledge of the structure of the graph of the correspondence
t �→ ���t�. This structure is studied in the next subsection. The lemmas referring to this
graph can be found in Appendix B.

5.2. The boundary of ��t�. Define the graph Z of the correspondence t �→ ���t� by

Z = 
�t� x� ∈ � ×	 � x ∈ ���t��
A basic tool in the analysis of the structure of Z is the supporting hyperplane theorem.

First we briefly discuss this theorem. Let � be a polytope of some �n and let x be a vector
in �. A vector v ∈ �n is said to support � at x if for all y ∈�,

�v� x� ≤ �v� y��
while the inequality is strict for at least one y ∈�.
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Theorem 3: Supporting Hyperplane Theorem. Let � be a polytope in �n. A vector
x ∈� is an element of �� if and only if there exists a vector that supports � at x.

Obviously a vector v that supports some polytope � at a point x can be chosen to be
of unit length. Furthermore, the part of v perpendicular to ah(�) is irrelevant, so we may
assume that v is parallel to ah(�). This standardization has the following special form in
case ah���= ah�	�.
A vector v ∈ ×i∈N�Ai is called standard if
(1) �v�	 = 1 and
(2) for all i ∈ N� ∑

a∈Ai via = 0.
If we take �=��t� for some T-perturbation t ∈ � we know by Lemma 5 in Appendix A
that ��t� is full-dimensional in 	. Hence, ah���t��= ah�	� and the supporting hyperplane
theorem implies

Lemma 1. Let t be a T-perturbation in � and let x be a strategy profile in ���t�. Then
there is a standard vector v that supports ��t� at x.

Using this consequence of the supporting hyperplane theorem we can describe the behav-
ior of those “facets” G−ia of Z where player i is playing his pure strategy a ∈ Ai with
“sufficiently small” probability. Quotation marks are used here because the subset G−ia of
Z is actually the union over a (finite) number of facets of Z and to stress that we work in
the product � ×	 instead of using a “pointwise” approach. Thus, as a formalization of a
“facet,” we define—for each pair �i� a� ∈ P—the subset G−ia of Z by

G−ia = 
�t� x� ∈ Z � there is a standard vector v
with via ≥ �A�−1 that supports ��t� at x��

That we need to define the set G−ia as the union of a number of facets of Z and not
just one facet is because the number of pure strategy profiles a with ai �= a is much higher
than the dimension of the facet of 	 consisting of those strategy profiles x ∈ 	 that satisfy
xia = 0. Thus, if we perturb 	 by a T-perturbation t, this facet will generically break into a
number of simplices that are all facets of ��t�.
The next theorem expresses an essential property of the elements of G−ia. In words, it

states that for any element �t� x� of G−ia, the points t�a� with ai = a cannot be used in
any convex decomposition of x ∈ ��t� into strategy profiles t�a� with a ∈ A. Note that a
completely analogous statement holds for the space 	 of strategy profiles and its facets.
From now on we assume that the game � = �A�u� has at least two players (n ≥ 2) and

that every player has at least two strategies (for all i ∈ N� �Ai� ≥ 2). Games excluded by
these assumptions are either very simple �n = 1� or can easily be reduced to games not
excluded by the assumptions (by elimination of players with only one pure strategy).

Theorem 4. Let �t� x� ∈ G−ia. Suppose for a subset B of A that we can write the
strategy profile x as a positive convex combination of the collection of strategy profiles t�b�
with b ∈ B. Then bi �= a for all b ∈ B.

Proof. Take an a ∈ A with ai = a. The theorem is proved if we can show that a �∈ B.
Since �t� x� ∈G−ia, there is a standard vector v with via ≥ �A�−1 that supports ��t� at x.

In particular, the linear function �v� ·�� y �→ �v� y� attains its minimum over ��t� at x.
(a) First we will argue that �v� ·� attains its minimum over ��t� at t�b� for every b ∈ B.

Since �v� ·� attains its minimum over ��t� at x, it is clear that �v� x� ≤ �v� t�b�� for every
b ∈ B. However, x is a positive convex combination of all strategy profiles t�b� with b ∈ B.
So, if (at least) one of the inequalities �v� x� ≤ �v� t�b�� would be strict, we could deduce
that �v� x� < �v� x�, which is clearly impossible. Hence, all these inequalities must in fact
be equalities.
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(b) On the other hand, we will now show that there is a pure strategy profile c ∈ A with
�v� t�c��< �v� t�a���

To this end, recall that via ≥ �A�−1. Assume that, for all b ∈Ai, vib >−�A�−2. Then we have∑
b∈Ai

vib = via+
∑

b∈Ai\
a�
vib > �A�−1−�Ai��A�−2 ≥ 0�

This contradicts the assumption that v is a standard vector. Hence, there is a pure strategy
c ∈ Ai with vic ≤−�A�−2. Define c ∈ A by

cj =
{
aj if j �= i�
c if j = i�

Then we can write

�v� t�a��−�v� t�c�� = �v� t�a�− t�c�� = ∑
�j� b�∈P

vjb�t�a�jb− t�c�jb��

First, we will derive a lower bound for each of the terms in this summation. The pairs
�i� a� and �i� c� will be treated separately for obvious reasons. Observe that these two pairs
cannot be identical to each other, since vic ≤−�A�−2 < �A�−1 ≤ via. So, take a pair �j� b�.

If �j� b�= �i� c�. First of all, we know that vic ≤−�A�−2. Second, it is easily verified that
t�c�ic ≥ 1−d�t� id� and t�a�ic ≤ d�t� id�. Therefore,

vic�t�a�ic− t�c�ic�≥ �A�−2�1−2d�t� id���(1)

If �j� b� = �i� a�. We know that via ≥ �A�−1. Furthermore, t�c�ia ≤ d�t� id� and t�a�ia ≥
1−d�t� id�. Therefore,

via�t�a�ia− t�c�ia�≥ �A�−1�1−2d�t� id���(2)

If �j� b� �= �i� a�� �i� c�. First of all, we know that �vjb� ≤ 1 since v is a standard vector.
Furthermore, �t�a�jb− t�c�jb� ≤ 2d�t� id� since ajb = cjb. So, we can calculate that

vjb�t�a�jb− t�c�jb�≥−�vjb���t�a�jb− t�a�jb�� ≥ −2d�t� id��(3)

Now, from Inequalities 1, 2, and 3 and because
∑

j∈N �Aj � ≤ �A� (all players have at least
two pure strategies), we can deduce that the above summation is larger than or equal to

�A�−2�1−2d�t� id��+�A�−1�1−2d�t� id��−2�A�d�t� id��
Using the fact that d�t� id� ≤ �A�−3 (since t ∈ � ) and �A� > 2 (since there are at least two
players, each having at least two pure strategies), it is straightforward to calculate that this
expression is larger than zero. Hence, �v� t�c��< �v� t�a��.
Since t�c� is evidently an element of ��t�, the conclusions of (a) and (b) put next to

each other show that a cannot be an element of B. �

Corollary 1. Let �t� x� ∈G−ia. Then xia ≤ d�t� id�.

Proof. Since x ∈��t�, there is a subset B of A such that x can be written as a positive
convex combination of all strategy profiles t�b� with b ∈ B. By Theorem 4 we know that
bi �= a for every b ∈ B. So, id�b�ia = 0 for every b ∈ B, which implies that t�b�ia ≤ d�t� id�
for every b ∈ B. Hence, xia ≤ d�t� id� since x is a convex combination of the strategy
profiles t�b� with b ∈ B. �
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5.3. The construction of �. In this subsection we discuss the second technical problem.
As said before, we shall construct a continuous function � that assigns to each pair (t� x) in
� ×	 a KM-perturbation ��t� x� in such a way that x is an element of BR (t� x) whenever
it is an equilibrium of the ��t� x�-perturbed game. It turns out that � only needs to satisfy
the conditions of the next theorem. (The proofs of the lemmas that are relevant in this
subsection can be found in Appendices B and C.)

Theorem 5. There exists a continuous function � from � ×	 to � that satisfies the
following properties: for all �t� x� ∈ � ×	,
(1) ���t� x��	 ≤ d�t� id�;
(2) if x ∈ 	���t� x��, then x ∈��t�;
(3) if x ∈��t� and ��t� x�ia = xia. then �t� x� ∈G−ia.

We briefly discuss the construction of the function �. First the values of � are specified
on the subspace Z of � ×	 as follows. For a given pair �i� a� Lemma 11 in Appendix
B says that G−ia is a nonempty set. Thus the minimum distance d��t� x��G−ia� from the
point �t� x� to the set G−ia is a well-defined nonnegative real number for every �t� x� ∈ Z.
So we can define the function �∗ � Z→� for every �t� x� ∈ Z and every pair �i� a�, by

�∗�t� x�ia =min
d�t� id�� xia−d��t� x��G−ia��+��

Note that �∗ is continuous since it is the composition of a number of continuous functions.
Next we will extend �∗ to a function � defined on the whole product space � ×	. To get
an impression about how this is done, consider, consider the strategy profile x̊ ∈ 	 defined
by x̊ia = �Ai�−1. To every �t� x� ∈ � × �	\
x̊�� we will assign a point z�t� x� ∈ Z. The value
of �∗ in z�t� x� is then used to define the value of � in �t� x�. Points �t� x̊� are treated
separately. We will first explain the geometrical intuition behind the construction of this
function z.

Remark 3. Consider the perturbed strategy space 	��� of the KM-perturbation � ∈
� defined by �ia = �A�−1. It is straightforward to check that 	��� is full-dimensional.
Furthermore, as indicated in Figure 6, the strategy tuple (pair, in this case) x̊ is an element
of the relative interior of 	��� (represented by the smaller square) since x̊ia = �Ai�−1 >
�A�−1 = �ia.
Now take a point �t� x�∈� �	\ 
 x̊�� Since x �=x̊, we can consider the half line with origin

x̊ through x, indicated by the line segment from x̊ to x in Figure 6. Since x̊ ∈ 	˚���⊂ �̊�t�
by Lemma 5 in Appendix A, this half line intersects the boundary ���t� of ��t� in exactly
one point. This point is defined to be z�t� x�. The unique positive number ��t� x� for which
z�t� x�= x̊+��t� x��x−x̊� will also be used in the definition of �.

Figure 6
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Following this idea, we define the function � � � × �	\
 x̊��→ �+ as follows: For all
�t� x� ∈ � �	\
 x̊��,

��t� x�=max
�≥ 0 � x̊+��x− x̊� ∈��t���
Obviously, ��t� x� is a well-defined nonnegative number since x �= x̊ and ��t� is a closed
and bounded set. The function z � � × �	\
 x̊��→ 	 can now be given by, for all �t� x� ∈
� ×	 with x �= x̊,

z�t� x�= x̊+��t� x��x− x̊��

Note that, since x̊+ ��x− x̊� is an element of ah���t��\��t� for all � > ��t� x�, we
have that z�t� x� is an element of ���t� and �t� z�t� x�� is an element of Z. Using these
observations it is shown in Lemma 13 of Appendix C that both � and z are continuous
functions.
Moreover it is shown in this lemma that 0 < �A�−1 − �A�−3 ≤ ��t� x��x− x̊�	. So,

��t� x� ≥ �A�−1 − �A�−3 since �x − x̊�	 ≤ 1 for all x ∈ 	. Therefore we can define
� � � ×	→� by

��t� x�=
{
min
��t� x�−1�1��∗�t� z�t� x�� ifx �= x̊�
0 ifx = x̊�

In Appendix C it is shown that this function � indeed satisfies the conditions of Theorem 5.

5.4. Every CKM-set is a BR-set. Finally we come to the proof of Theorem 2. As said
before the proof is split into two parts. First we prove Theorem 6:

Theorem 6. Every CKM-set is a CT-set.

Proof. Suppose that S is a CKM-set of � . Let V be a neighborhood of S. Then there is
a number �> 0 such that fix�BR���∩V is not empty for every CKM-perturbation � with
���<�. Since � is a neighborhood of id, we can choose � small enough to guarantee that
��x� ∈ � for every x ∈ 	 and every CT-perturbation with ���<�. Take a CT-perturbation
� with ���< �. We will show that fix�BR���∩V is not empty.
Consider the function � � 	→� defined by, for all x ∈ 	,

��x�= ����x�� x��

Since � is continuous by Theorem 5 and � is also continuous, we know that � is a CKM-
perturbation. Furthermore, by Theorem 5(1) we know that for every x ∈ 	,

���x��	 = �����x�� x��	 ≤ d���x�� id�≤ ���< ��

Hence, ���< � and we can take a strategy profile y ∈ fix�BR���∩V . Clearly, y ∈ V . We
will show that y ∈ fix�BR���.
Since y ∈ fix�BR���, at least we know that y ∈ 	���y�� = 	�����y�� y��. So by

Theorem 5(2) we know that y ∈����y��. So, there is a subset B of A such that y can be
written as a positive convex combination of the collection of strategy profile ��y� (b) with
b ∈ B.
To show that B ⊂ PB�y�, take an arbitrary a �∈ PB�y�. Then there is a player i for whom

ai is not a best reply to y−i. Furthermore, since y ∈ fix�BR���, we know that y is an ��y�-
perturbed best reply to y. This implies that the strategy profile y uses the pure strategy ai ∈Ai

with minimum probability in the ��y�-perturbed strategy space. Hence, yiai = �iai �y� =
����y�� y�iai . So, by Theorem 5(3), ���y�� y� ∈ G−iai . Then Theorem 4 implies that, for
every b ∈ B, bi �= ai and hence, b �= a. So, every b ∈ B must be an element of PB�y�.
This means that y can be written as a convex combination of strategy profiles ��y��b�

with b ∈ B ⊂ PB�y�. Hence, y ∈ BR���y�� y�= BR���y�. �
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Finally we show that every CT-set is a BR-set. The techniques involved in the proof of
this statement are similar to the techniques used in the proof of backward induction for
CKM-sets and for stable sets in the sense of Mertens. To give this proof we first need to
prove three preliminary results. Note that especially Lemma 3 highlights the usefulness of
the (odd) choices of � and BR�t� x�.

Lemma 2. Let x be a strategy profile in 	. Then there exists a number ��x� > 0 such
that BR�t� y�⊂ BR�t� x� for all t ∈ � and y ∈ 	 with �x−y�	 < ��x�.

Proof. Take a strategy profile x ∈ 	. First of all we can take a real number ��x� > 0
such that for all strategy profiles y ∈ B��x��x� we have PB�y�⊂ PB�x�. Second, recall that
for each t ∈� and z∈	, BR�t� z� is the convex hull of the set of points t�a� with a ∈ PB�z�.
Now using these two facts it is elementary to show that BR�t� y�⊂ BR�t� x� for all t ∈ �
and y ∈ B��x��x�. �

Lemma 3. Let x be a strategy profile in 	 and let C be a nonempty compact convex sub-
set of 	. Then there is a T-perturbation t with BR�t� x�⊂ C and d�t� id�≤ dH�C�BR�x��.

Proof. Let x and C be as described. First note that PB�x� is a subset of BR�x�. So, by
the compactness of C, we can choose for each pure strategy profile a ∈ PB�x� a strategy
profile y�a� ∈ C with �a−y�a��	 ≤ dH�BR�x��C�. Define the T-perturbation t by

t�a�=
{
y�a� if a ∈ PB�x��
a if a � PB�x��

Then clearly d�t� id�=max
�t�a�−a�	 � a ∈ A� ≤ dH�BR�x��C�. Finally, using the con-
vexity of C and the fact that y�a� ∈ C for all a ∈ PB�x� we get

BR�t� x�= ch
t�a� � a ∈ PB�x��= ch
y�a� � a ∈ PB�x��⊂ C� �

Further, for two sets X�Y ⊂	 and � ∈ 0�1� we write �X+ �1−��Y = 
�x+ �1−��y �
x ∈ X�y ∈ Y �.

Lemma 4. Let t0 and t1 be elements of � and let x be a strategy in 	. Then for
� ∈ 0�1�� t� = �t1+ �1−��t0 ∈ � and BR�t�� x�⊂ �BR�t1� x�+ �1−��BR�t0� x�.

Proof. Clearly, t� is an element of � . Take a strategy profile y ∈ BR�t�� x�. Then y is
a convex combination of the collection of strategy profiles t��a�, where a ranges through
PB�x�, with weights, say, ���a��a∈PB�x�. Now yj = ∑

a∈PB�x� ��a�tj�m� is an element of
BR�tj� x� for j = 0�1 by definition of BR�tj� x�, and y = �y1+ �1−��y0. �

Theorem 7. Every CT-set is a BR-set.

Proof. Let S be a CT-set of � and let V be a closed neighborhood of S. Then there is
an � with 0< � <� A �−3 such that fix �BR���∩V is nonempty for every CT-perturbation
� with ��� < �. Take a correspondence � ∈ � with d���BR� < �. We will show that
fix���∩V is nonempty.
(a) Take an arbitrary number � > 0. Construct the CT-perturbation � as follows. Choose

for each x ∈	 a number ��x� < � as in Lemma 2. Then 
B��x��x� � x ∈	� is an open cover
of the compact space 	. So we can choose x1� � � � � xs , such that B��x1��x

1�� � � � �B��xs��x
s�

still covers 	. Then by Lemma 9 in Appendix A there is a partition of unity �1� � � � ��s

subordinate to this finite cover of 	. Furthermore, note that each ��xk� is a nonempty
compact and convex set. So, by Lemma 3 there is a T-perturbation tk with BR�tk� xk� ⊂
��xk� and

d�tk� id�≤ dH���x
k��BR�xk��≤ d���BR� < ��
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Since this last inequality particularly implies that d�tk� id�<�<�A �−3 we know that tk ∈� .
So we can define � � 	→ � by

��y�=
s∑

k=1
�k�y�tk�

Since each �k is continuous, � is a CT-perturbation. Furthermore, using the triangle inequal-
ity and the fact that �1� � � � ��s is a partition of unity we get for each y ∈ 	,

d���y�� id�≤
s∑

k=1
�k�y�d�tk� id�≤max

k

d�tk� id�� < ��

Therefore, since ��� equals the maximum over the numbers d���y�� id� where y ranges
through 	, we get that ���< �.
(b) Now repeat this procedure for each element �l of a sequence ��l�l∈� of positive real

numbers converging to zero. This yields a sequence ��l�l∈� of CT-perturbations with

�l�y�=
s�l�∑
k=1

�lk�y�tlk

and ��l� < �. So, for each l we can take a strategy profile yl ∈ fix�BR�l��∩V by the
choice of �. We may assume without loss of generality that yl → y as l→ 	 for some
y ∈ 	. Then y ∈ V , since V is closed. We will show that y ∈ ��y�.
Take an arbitrary real number � > 0. Since � is upper hemicontinuous in y, we can

choose a real number � > 0, such that

��z�⊂ B����y�� for all z ∈ B��y��

Take a natural number L with yl ∈ B 1
2 �
�y� and �l ≤ 1

2� whenever l ≥ L. Take a fixed
l ≥ L and an index k, 1≤ k ≤ s�l� with �lk�yl� > 0. Then by the choice of �lk,

�xlk−y�	 ≤ �xlk−yl�	+�yl−y�	 < ��xlk�+ 1
2� < �l+ 1

2�≤ 1
2�+ 1

2�= ��

Hence, for every l ≥ L and k ∈ 
1� � � � � s�l�� with �lk�yl� > 0,
BR�tlk� yl�⊂ BR�tlk� xlk�⊂ ��xlk�⊂ B����y���(4)

The first inclusion follows from the definition of the function �lk and the fact that
�xlk−yl�	 < ��xlk�. The second one follows by the construction of tlk. The third one fol-
lows from the inequality �xlk− y�	 < � and the choice of �. Now, since yl ∈ BR�l��yl�,
we can derive for l ≥ L that yl is an element of

BR��l� �yl�� yl�= BR
( s�l�∑
k=1

�lk�yl�tlk� yl
)
⊂ ∑

k��lk�yl�>0

�lk�yl�BR�tlk� yl�⊂ B����y���

The first inclusion follows from Lemma 4. The second one follows from (1) and the fact
that B����y�� is a convex set. So, y ∈ cl�B����y���. Now recall that � > 0 was arbitrary.
Therefore, y ∈ cl���y��. Hence, y ∈ ��y�, since ��y� is closed. �

This concludes the last step in the proof that every CKM-set is a BR-set. In §4 we have
shown that any stable set in the sense of Mertens is a CKM-stable set. In this section we have
shown that it is therefore also a BR-set. Hence, since a stable set in the sense of Mertens
is certainly a connected subset of the set of perfect equilibria, it is even a BR-stable set.
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6. Properties of BR-stable sets. In this section we will use the results from the previ-
ous sections to derive some properties of BR-stable sets.
As is already stated in the introduction, the original motivation in the search for sta-

bility concepts is a list of requirements composed by Kohlberg and Mertens (1986) and
Mertens (1989). The list presented here is a somewhat modified and expanded version of
the original one.
(1) Existence.

Every game possesses at least one stable set.
(2) Connectedness.

Stable sets are connected.
(3) Admissibility.

Every stable set consists of perfect equilibria.
(4) Backward induction.

Every stable set contains a proper equilibrium.
(5) Independence of inadmissible strategies.

A stable set S contains a stable set of the game obtained by deleting a strategy that
is not an admissible best reply anywhere in S.

(6) Ordinality.
A stability concept is ordinal.

(7) The small worlds axiom
For a game in which there is a set I (the “insiders”) of players whose payoff does not
depend on the strategies of the players outside I (the “outsiders”) each stable set of
the game played by the insiders can be extended to a stable set of the original game.

We shall briefly comment on some of the requirements. For a more profound argumen-
tation we refer to the above-mentioned papers.
The domain of games we consider here is that of all finite games. Of course, even for

single-agent decision problems one would not expect solutions if the strategy sets were
not compact or the utility function not continuous. The restriction to finite games gives us
a domain in which requirement (1) seems reasonable. See Mertens (1989, p. 582) for a
discussion of why one wants a solution defined on all games rather than simply on a generic
subset of games.
The restriction to perfect equilibria is a rather strong form of admissibility. The form

of the backward induction requirement is justified by the result of Kohlberg and Mertens
(1986) and van Damme (1984) that any proper equilibrium “is” a sequential equilibrium.
Mailath et al. (1997) and Hillas (1997) prove a partial converse.
The independence of inadmissible strategies is a strengthening of both the requirements

of iterated dominance and forward induction occurring in the original list of requirements
of Kohlberg and Mertens. This strengthening is used in the “reformulation” papers of
Mertens. It is also used in van Damme (1994) under the name of “independence of irrelevant
alternatives.”
The ordinality condition is a strengthening of the requirement, known as invariance, that

the solution should only depend on the reduced normal form. It was first introduced by
Mertens (1987). There Mertens shows that ordinality is implied by invariance and admissible
best-reply invariance (abr-invariance). The requirement of abr-invariance means that games
that have the same strategy spaces have the same solutions if their admissible best-reply
correspondences are the same.
Using the results of Hillas (1990) we can easily prove that BR-stable sets satisfy require-

ments (1) to (4). It should be noted that although Hillas used an additional condition con-
cerning invariance, his proofs of (1)–(4) are also valid without any alteration for minimal
BR-sets. Thus, given a game � , there exists a minimal BR-set of � , and this minimal BR-set
is both connected and contained in the set of perfect equilibria of � . Hence, this minimal
BR-set is a BR-stable set in the sense of this paper and we have verified (1). Concerning (2)



628 J. HILLAS, M. JANSEN, J. POTTERS, AND D. VERMEULEN

and (3), BR-stable sets of a game � are connected and contained in the collection of perfect
equilibria of � by definition. As for the backward induction requirement, note that every
BR-stable set of a game � is also a BR-set of this game. Then the proof of Hillas shows
that such a set must contain a proper equilibrium of the game � .
Concerning the independence of inadmissible strategies, it might be expected that the

proof would be similar to the proofs of iterated dominance (Proposition 8) and forward
induction (Proposition 9) by Hillas (1990). However, the correspondence F constructed in
the proof of Proposition 8 is not close to BR in Hausdorff distance, which is one of the
assumptions in the proof. This effect is caused by the use of the orthogonal projection in the
definition of F . This projection does not respect the values of the best-reply correspondence,
and therefore certain strategies may be used in the construction of F��� that are not a best
reply to � . It is possible to directly construct extensions of a correspondence F ′ that satisfy
the three conditions mentioned in the proof of Proposition 8. However, both methods known
to us that do this are very intricate, and it is an arduous task to check that they work. The
same remarks can be made concerning Proposition 9. The result of the previous section
provides a much shorter proof.

6.1. Independence of inadmissible strategies. Originally Kohlberg and Mertens
required that a stability concept should satisfy two other conditions, namely iterated domi-
nance and forward induction. However, both these conditions are implied by independence
of inadmissible strategies and the techniques introduced in this section can also be used to
prove the latter requirement. Therefore we will work with the independence of inadmissible
strategies in this paper.
A strategy yi of player i is an admissible best reply against an element x ∈ 	—denoted

as yi ∈ BRai �x�—if there is a sequence �xk�k∈� of completely mixed strategy profiles in 	
converging to x such that yi ∈ BRi�xk−i� for all k. The set BRa�x� is defined in the obvious
way. For a subset S of 	. BRai �S� =

⋃
x∈S BR

a
i �x� is the set of admissible best replies (of

Player i) against S. A pure strategy b of Player j is called an inadmissible reply against S
if b � Baj �S�.
Loosely speaking, independence of inadmissible strategies means that a stable set S of a

game � remains stable if a pure inadmissible reply against S is deleted from � . To get a
formal definition of this property, we need to describe how a pure strategy b of a player j
can be deleted.
Let � = �A�u� be a game. Fix a pure strategy b ∈ Aj of a player j, who has at least two

pure strategies. The game � ′ induced by the deletion of b is by definition �A′� u′�, wherein

A′
i =

{
Ai if i �= j�
Aj\
b� if i = j�

and u′i is the restriction of ui to A
′. The strategy spaces of � and � ′ are denoted by 	 and 	′,

respectively. From y ∈ 	’ the lift ỹ in 	 is obtained by adding zero as the bth coordinate
to yj . Further, let � = ��i�i∈N be any continuous function such that (1) for all i �= j��i is
the identity from 	i, to itself, and (2) �j � 	�Aj�→ 	�A′

j� is such that ��ỹ�= y.
Now let S be a CKM-stable set of the game � . Let b be an inadmissible reply against S.

Let S ′ ⊂ 	′ be defined by S ′ = 
y ∈ 	′ � ỹ ∈ S�.
Theorem 8: Independence of Inadmissible Strategies. The set S ′ contains a

CKM-stable set of the game � ′ induced by the deletion of b.

Proof. It is sufficient to show that S ′ is a CKM-set of � ′. To this end, note that S ′ is
closed. Moreover, since S is included in the set of perfect equilibria of � , it is easy to see
that S is a subset of 
ỹ�y ∈ S ′�. Hence, S ′ is not empty. Take a neighborhood V ′ of S ′. Then
�−1�V ′� is a neighborhood of S. Since b is not an element of BRaj �S�⊃ BRaj �T ���−1�V ′�
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contains a neighborhood V of S with b � BRaj �V �. Furthermore, since S is a CKM-set of
the game � , there is a number � > 0 such that the intersection of V and fix(BR��) is not
empty whenever ���<�. Now take a completely mixed perturbation �′ of � ′ with ��′�<�.
Define the extension � of �′ by, for all x ∈ 	,

�ia�x�=
{
�′ia���x�� if i �= j or a �= b�
0 if i = j and a= b�

It is evident that � indeed is a CKM-perturbation and that ��� = ��′�. So there is a fixed
point z of BR�� contained in V . Obviously, ��z� ∈ V ′. We will show that ��z� is a fixed
point of BR�′�.
(a) First we will prove that zjb = 0. Since b �∈ BRaj �V � and z ∈ V we know that b �∈

BRaj �z−j�. Furthermore, z−j is completely mixed since �
′ is completely mixed. So, b �∈

BRaj �z−j�= BRj�z−j�. Hence, since zj ∈ BRj�z−j�, we have that zjb = 0.
(b) Now we will prove that ��z�∈BR�′����z��. Because of Lemma 8(1) in Appendix A

we know that ��z� ∈ 	��′���z���. Take a strategy profile x ∈ 	��′���z���. We will prove
that �i�zi� is at least as good a reply as xi to ��z�−i in 	i��

′���z���.
First note that z = ��z�, since zjb = 0. Furthermore, x̃ ∈ 	���z�� by Lemma 8(2) in

Appendix A. So, since z ∈ BR���z�, we get

u′i���z�−i � �i�zi�� = ui��̃�z�−i � �̃i�zi��= ui�z−i � zi�
≥ ui�z−i � x̃i�= u′i���z�−i � �i�x̃i��= ui���z�−i � xi��

Hence, ��z� ∈ BR�′����z�� and we have shown that S ′ is a CKM-set of � ′ by Remark 2.
�

6.2. Ordinality. As said before, in this section we will first give an account of the
reasons why we chose to use a slightly simplified version of the original definition of BR-
stability in Hillas (1990).
The ordinality requirement is a modern version of the requirement that the solution of

a game should be robust against both duplication of strategies and deletion of duplicate
strategies. This informal requirement was originally referred to as “invariance,” and by now
has several formalizations apart from the strongest one known as ordinality.
The definition of BR-stable sets in Hillas (1990) was specifically designed to satisfy one

of the earlier, and weaker, invariance requirements. As it turned out, the robustness require-
ment by itself against sufficiently small perturbations of the game did not automatically
imply this weaker requirement. Therefore, an additional condition was included in the def-
inition stating that the robustness requirement should also be valid for any “equivalent”
game. Because of this extra condition the resulting solution concept automatically satisfied
the above-mentioned weaker variety of invariance.
However, the example given in Vermeulen and Jansen (1999) shows that the solution

concept generated by this definition does not satisfy the stronger invariance requirements.
In particular it does not satisfy ordinality. Therefore, since it does not give any additional
virtue, we decided to leave out the complicating extra condition referring to equivalent
games, and only use the robustness requirement with respect to the game itself.
Secondly, the example in Vermeulen and Jansen (1999) points out that the minimality

condition—stable sets were usually defined as sets that were minimal with respect to the
robustness requirement—upsets ordinality as well. For this reason we choose to leave out
the minimality condition too, and only insist on perfection and connectedness. This way we
get a version of BR-stability that satisfies at least some of the invariance requirements, as
we will readily show.
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As it was already noted in the introduction of this section, Mertens has proven that a
solution concept is ordinal if it is both invariant and abr-invariant. Although Vermeulen
and Jansen (1999) provides an ordinal selection from the collection of BR-sets, the invari-
ance of BR-stable sets sec is still an open problem. (One of the referees conjectures that
CKM-stability, and therefore also BR-stability, might fail invariance for basically the same
reason—pointed out in Mertens (1991)—why homotopy stability might fail to do so.) Nev-
ertheless, using the result of the previous section we can construct a relatively simple proof
of the abr-invariance of BR-stable sets. In order to define abr-invariance, take two games
� = �A�u� and � ∗ = �A�u∗� with the same set of strategy profiles 	= 	A. The distinction
between notions like (admissible) best replies for the game � and the game � ∗ is made by
adding a ∗ as superscript to the notions that refer to � ∗.

Definition 8. The games � and � ∗ are said to be admissible best-reply equivalent
(abr-equivalent) if BRa�x�= BR∗a�x� holds for each strategy profile x ∈ 	

Theorem 9: Abr-invariance. Let � and � ∗ be two abr-equivalent games. Then a sub-
set of 	 is a CKM-stable set of � if and only if it is a CKM-stable set of � ∗.

Proof. (a) First we will prove that BR���x� = BR∗���x� for any KM-perturbation
� and completely mixed strategy profile x ∈ 	. Since x is completely mixed, we have
BRa�x� = BR�x� and BR∗a�x� = BR∗�x�. Then, using the assumption that � and � ∗ are
abr-equivalent, it follows that

BR�x�= BRa�x�= BR∗a�x�= BR∗�x��

From the equality BR�x�= BR∗�x� we can deduce that PB�x�= PB∗�x�. Finally, from this
last equality and Lemma 6 from Appendix A it follows that BR���x�= BR∗���x�.
(b) Now let S be a CKM-stable set of � . By symmetry we know it is sufficient to prove

that S is a CKM-stable set of � ∗. First of all, note that S is connected. Furthermore, since
S is contained in the set of perfect equilibria � and perfect equilibria are abr-invariant, we
know that S is contained in the set of perfect equilibria of � ∗. So we only need to prove
that S is a CKM-set of � ∗. Take a neighborhood V of S. Since S is a CKM-set of � there
exists a number � > 0 such that fix�BR���∩V is not empty for every completely mixed
CKM-perturbation � with ��� < �. Take such a completely mixed CKM-perturbation �
with ��� < �. We will show that fix�BR∗���∩V is not empty. By the choice of � we
can choose a strategy profile z in fix�BR���∩V . Obviously, z ∈ V . We will show that z ∈
fix�BR∗���. To this end, observe that

z ∈ BR���z�= BR���z�� z��
Furthermore, the KM-perturbation ��z� is completely mixed, since � is completely
mixed. Therefore, since clearly z ∈ 	���z��, z is also completely mixed. So by (a),
z ∈ BR���z�� z�= BR∗���z�� z�. So, z ∈ BR∗���z� and z is a fixed point of BR∗��. Hence,
S is a CKM-set of � ∗ by Remark 2. �

Appendix A. Define the fixed KM-perturbation � ∈� by �ia = �A�−1. It is straightfor-
ward to check that 	��� is full-dimensional. Furthermore,

Lemma 5. For any t in � the set 	��� is a subset of ��t�.

Proof. Suppose that 	��� �⊂��t�. Then we can take a strategy profile y ∈ 	���\��t�.
Since ��t� is compact and not empty we can take a strategy profile x in ��t� whose
distance in maximum norm to y is minimal over ��t�. Since x ∈��t� and y ���t�� x �= y.
So we can define z ∈ 	 by

z= y+�0�y−x� with �0 =max
�≥ 0 � y+��y−x� ∈ 	��
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Then �z−y�	 ≥ �A�−1 since at least one of the coordinates of z must be equal to zero, while
the fact that y ∈ 	��� implies that yia ≥ �ia = �A�−1 for all i ∈ N and a ∈ Ai. Now it is also
clear that �0> 0 and we can deduce that �z−x�	 = �1+�−1

0 ��z−y�	> �A�−1. Furthermore,
by the construction of z and the convexity of ��t�� x is a strategy profile in ��t� whose
distance in maximum norm to z over ��t� is also minimal. So, for all x′ ∈��t���z−x′�	 ≥
�z− x�	 > �A�−1. This implies that dH���t��	� > �A�−1 since z ∈ 	. On the other hand,
dH���t��	�= dH���t����id��≤ d�t� id�≤ �A�−3 since t ∈ � . Contradiction. �

For a KM-perturbation � ∈� and a pure strategy profile a ∈A, define the strategy profile
da��� ∈ 	 by

da
ia���=

{
�ia if a �= ai,
1−∑

a�=ai
�ia if a= ai.

Using this notation we have the following.

Lemma 6. For every � ∈� and x ∈ 	, BR���x�= ch
da��� � a ∈ PB�x��.
It is straightforward to show this once we note that 	��� equals the convex hull of the

collection of points da with a ∈ A.
Lemma 7. There exists a constant C > 0 such that for all ��� ∈� and x ∈ 	,

dH�BR���x��BR���x��≤ C��−��	�

Proof. Take two KM-perturbations ��� ∈� and a strategy profile x ∈ 	. Then using
the previous lemma we can calculate that

dH�BR���x��BR���x�� = dH�ch
d
a��� � a ∈ PB�x��� ch
da��� � a ∈ PB�x���

≤ dH�
d
a��� � a ∈ PB�x��� 
da��� � a ∈ PB�x���

≤ �A� · ��−��	�

So we can take C = �A�> 0. �

Lemma 8. Let � be a game and let z ∈ 	. Then for the extension � of a CKM-
perturbation �′ of the game � ′ the following holds:
(1) if y ∈ 	���z�� and yjb = 0, then ��y� ∈ 	��′���z���;
(2) if y ∈ 	��′���z���, then ỹ is an element of 	���z��.
Proof. (1) Let y ∈ 	���z�� and yjb = 0. Then for a ∈ A′

i���y�ia = yia ≥ �ia�z� =
�′ia���z��.
(2) Let y ∈ 	��′���z���. For �i� a� ∈ P with i �= j, or i = j and a �= b, ỹia = yia ≥

�′ia���z��= �ia�z�. Otherwise, ỹjb = 0= �jb�z�. �

Lemma 9: Partition of Unity. Let x1� � � � � xs ∈ 	 and �1 > 0� � � � � �s > 0 be such
that B�1�x

1�� � � � �B�s �x
s� covers 	. Then there are continuous functions �1� � � � ��s from 	

to [0, 1] such that
∑s

k=1�
k�y�= 1 for all y ∈ 	 and for each k � �k�y� > 0⇔ y ∈ B�k�xk�.

Proof. Define for k ∈ 
1� � � � � s� the function  k � 	→� by  k�y�= �1−�xk−y�	×
��k�

−1�+. Define for k ∈ 
1� � � � � s� the function �t � 	 → 0�1� by �k�y� =
 k�y��

∑s
k=1 

k�y��−1. It is straightforward to show that �1� � � � ��s have the properties
mentioned. �
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Appendix B. This section of the Appendix contains the (proofs of the) lemmas needed
in §5.3 and Appendix C.

Lemma 10. Z is a closed subset of � ×	.

Proof. Take a sequence �tk� xk�k∈� in Z that converges to �t� x� ∈	A×	. Observe that
�t� x� ∈ � ×	, since � is a closed subset of 	A and tk ∈ � for all k.
So we only have to prove that x ∈ ���t�. First observe that x ∈ ��t� since xk ∈ ��tk�

for all k and tk → t. Now take an arbitrary number � > 0. The proof is complete if we can
show that there is a vector y ∈ ah���t�� = ah�	� with �x− y�	 ≤ � that is not contained
in ��t�.
For each k ∈ � there is a standard vector vk that supports ��tk� at xk by Lemma 1.

Since vk is standard, it is parallel to ah�	�, so we can define the vector yk ∈ ah�	� by
yk = xk− 1

2�v
k. We will show that (a) �x−yk�	 ≤ � and (b) yk ���t� for large k.

(a) Since vk is standard we know that �xk − yk�	 = 1
2��vk�	 = 1

2�. Furthermore,�x−xk�	 ≤ 1
2� for large k because x

k → x. Hence, �x− yk�	 ≤ � for large k by the tri-
angle inequality.
(b) Take a fixed k ∈ � and an arbitrary strategy profile z ∈ ��tk�. Then �vk� z− xk� ≥

0 since vk supports ��tk� at xk. Furthermore, �vk�2 ≥ 1 since vk is a standard vector.
Therefore,

�z−yk�22 = �z−xk+ 1
2�v

k�22 = �z−xk�22+��vk� z−xk�+ 1
4�

2�vk�22
≥ 1

4�
2�vk�22 ≥ 1

4�
2�

Thus �z−yk�2 ≥ 1
2�. Let D =∑

i∈N �Ai�. The last inequality then implies that
�z−yk�	 ≥ D−1/2�z−yk�2 ≥ 1

2D
−1/2��

Thus dH�y
k���tk��≥ 1

2D
−1/2� since z was an arbitrary strategy profile in ��tk�. Now the

triangle inequality for the Hausdorff distance yields

dH�y
k���t�� ≥ dH�y

k���tk��−dH���t����t
k��≥ 1

2D
−1/2�−dH���t����t

k���

And this is true for any k in �. Thus, since ��tk�→dH ��t�, for any sufficiently large k
we have dH�y

k���t�� > 0. �

Lemma 11. For every pair �i� a��G−ia is a closed set. Further, �t� x� ∈G−ia for every
strategy profile x ∈ 	 with xia = 0 and T-perturbation t ∈ � with x ∈��t�.

Proof. To prove that G−ia is closed, take a sequence �tk� xk�k∈� in G−ia with �tk� xk�→
�t� x�. We will prove that �t� x� ∈G−ia.
Clearly, �t� x� ∈ Z since �tk� xk� ∈G−ia ⊂ Z for all k ∈�, and Z is closed by Lemma 10.

To show that there is a standard vector v with via ≥ �A�−1 that supports ��t� at x, take
standard vectors �vk�k∈� such that vk supports ��tk� at xk and vkia ≥ �A�−1. Assume, without
loss of generality, that vk → v. Obviously v is a standard vector with via ≥ �A�−1. To prove
that v supports ��t� at x, take a y ∈��t�. Since ��tk� dH→��t�, there is a sequence �yk�k∈�
that converges to y with yk ∈��tk� for all k. Since nk supports ��tk� at xk, we know that
�vk� yk� ≥ �vk� xk�. Then the continuity of the inner product yields �v� y� ≥ �v� x�. Finally,
observe that the linear function �v� ·� is not constant on 	 since v is standard. Then the
fact that ��t� is full-dimensional in 	 by Lemma 5 implies that there is a strategy profile
in ��t� for which the inequality is strict.
To prove that G−ia, take a strategy profile x ∈ 	 with xia = 0 and a T-perturbation t ∈ �

with x ∈��t�. We will show that �t� x� ∈G−ia. To this end, define the standard vector v by

vjb =


−��Ai�−1�−1 if j = i and b �= a�
1 if j = i and b = a�
0 if j �= i�
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Then x−�v ∈ ah�	�\	 for � > 0, since v is standard, xia = 0 and via = 1. However,
ah�	�\	 is a subset of ah���t��\��t� by Lemma 5. So, since x ∈ ��t�, we get that
�t� x� ∈ Z. Further it is easily checked that v supports 	⊃��t� at x, and via = 1 ≥ �A�−1.
Hence. �t� x� ∈G−ia. �

In analogy to the idea that the sets G−ia are the “facets” of the space of points �t� x� with
x ∈��t� we will show that the boundary Z of this space is the union of these “facets.”

Lemma 12. 
G−ia � i ∈ N�a ∈ Ai� covers Z.

Proof. Take �t� x� ∈ Z. Then x ∈ ���t� by the definition of Z. So, by Lemma 1, there
is a standard vector v that supports ��t� at x.
We only have to prove that there is a pair �i� a� with via ≥ �A�−1. Since v is a standard

vector, we know that �v�	 = 1. So, there is a pair �j� b� with �vjb� = 1. If vjb = 1, we
choose �i� a�= �j� b�. If vjb =−1, the assumption that vjb < �A�−1 for all a ∈ Aj leads to∑

a∈Aj
vja = vjb+

∑
a∈Aj\
b�

vja <−1+�A��A�−1 = 0�

contradicting the fact that v is a standard vector. Hence, also in this case, there is a pair
�j� a� with Vja ≥ �A�−1. �

Appendix C. In this section of the Appendix it is shown that the functions � and z are
continuous and that the function k defined §5.3 indeed satisfies the condition in Theorem 5.

Lemma 13. Both � and z are continuous. Furthermore, for any �t� x� ∈ � ×	 with
x �=x̊� �A�−1−�A�−3 ≤ ��t� x��x−x̊�	.

Proof. Since z�t� x�=x̊+��t� x��x−x̊�, the continuity of z is a direct consequence of
the continuity of �. To prove the continuity of �, take a sequence �tk� xk�k∈� in � ×�	\
x̊��
converging to a point �t� x� with x �=x̊. Then �xk−x̊�	 ≥ 1

2�x−x̊�	 for large k. So,

1≥ �z�tk� xk�−x̊�	 = ��tk� xk��xk−x̊�	 ≥ 1
2��t

k� xk��x−x̊�	
for large k. Hence the sequence ��tk� xk�k∈� is bounded since �x−x̊�	 is larger than
zero. This implies that ��tk� xk�k∈� converges to ��t� x� if and only if every convergent
subsequence of ��tk� xk�k∈� converges to ��t� x�.
To prove the latter statement, take an arbitrary subsequence ��tl� xl�l∈� that converges

to some number �. We will show that �= ��t� x�. To this end, note that x̊ ∈ 	��̊�⊂ �̊�t�
since x̊ia = �Ai�−1 > �A�−1 = �ia for all pairs �i� a�. This implies that the halfline emanating
form x̊ through x intersects ���t� only once. Now, on one hand we know that z�t� x� is
an element of this intersection. On the other hand, recall that �tl� z�tl� xl�� ∈ Z for all l.
Then also �t� x̊+��x−x̊�� ∈ Z since �tl� z�tl� xl��l∈� converges to �t�x̊+��x−x̊�� and Z is
closed by Lemma 10. Therefore, x̊+��x−x̊� is also an element of this intersection. Hence,
z�t� x�=x̊+��x−x̊� and then ��t� x�= � since x �=x̊
Take a point �t� x� ∈ � ×	 with x = x̊. Since �t� z�t� x�� ∈ Z we know by Lemma 12

that there is a pair �i� a� such that �t� z�t� x�� ∈G−ia. Then, using Corollary 1 and the fact
that t ∈ � , we get z�t� x�ia ≤ d�t� id� ≤ �A�−3. Then we can deduce that �A�−1− �A�−3 ≤
x̊ia− z�t� x�ia ≤ �z�t� x�−x̊�	 = ��t� x��x−x̊�	. �

Finally in this Appendix we show that the function � defined in §5.3 satisfies the condi-
tions of Theorem 5.

Proof. Of Theorem 5(0) Continuity. Take a sequence �tk� xk�k∈� in � ×	 converging
to a point �t� x�. Assume that x �=x̊. Then xk �=x̊ for large k. So, in this case, the continuity
of � in �t� x� follows from the continuity of ���∗ and z in the point �t� x�. If on the other
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hand x =x̊, we may assume that xk �=x̊ for all k. So, ��tk� xk�→	 by Lemma 13. Now
the fact that �∗ is bounded implies that

��tk� xk�=min
��tk� xk�−1�1��∗�tk� z�tk� xk��→ 0= ��t�x̊�= ��t� x��

To prove the Properties (1) to (3), take a fixed point �t� x� ∈ � ×	.
(1) ���t� x��	 ≤ d�t� id�.
If x =x̊ then ��t� x�= 0, so clearly ���t�= x��	 ≤ d�t� id�. If x �=x̊ then the definitions

of � and �∗ show that ���t� x��	 ≤ ��∗�t� z�t� x���	 ≤ d�t� id�.
(2) If x ∈ 	���t� x��, then x ∈��t�.
Assume that x ���t�. We will show that x � 	���t�x��.
(a) Since x � ��t�, we know that x �= x̊ by Lemma 5. So, z�t� x� is defined and

�t� z�t� x�� ∈ Z. Then by Lemma 12 we can take a pair �i� a� such that �t� z�t� x�� ∈G−ia.
We will first show that ��t� x�ia = z�t� x�ia. To this end, note that ��t� x� < 1 since, by
assumption, x ���t�. So,

��t� x�ia =min
��t� x�−1�1��∗�t� z�t� x��ia = �∗�t� z�t� x��ia�

Next, since �t� z�t� x�� ∈G−ia, we know that d��t� z�t� x���G−ia�= 0. So,
�∗�t� z�t� x��ia = min
d�t� id�� z� �t� x�ia−d��t� z�t� x���G−ia��+�

= min
d�t� id�� z�t� x�ia��

Now by Corollary 1 we know that z�t� x�ia ≤ d�t� id�. Hence, together with the displayed
equalities this yields ��t� x�ia = z�t� x�ia.
(b) To complete the proof, note that z�t� x�ia ≤ d�t� id� ≤ �A�−3 < �A�−1 ≤ x̊ia. So,

x̊ia−z�t� x�ia > 0. Therefore, since x̊−x = ��t� x�−1�x̊ia−z�t� x��, we get that x̊ia−xia > 0.
Secondly, since x ���t�. we know that 1−��t� x� > 0. Hence, using these last two inequal-
ities and (a), we get that

��t� x�ia = z�t� x�ia = xia+ �1−��t� x���x̊ia−xia� > xia�

Hence, x � 	���t� x��.
(3) If x ∈��t� and ��t� x�ia = xia, then �t� x� ∈G−ia.
Suppose that x ∈ ��t� and ��t� x�ia = xia, for some pair �i� a�. We will prove that

�t� x� ∈G−ia.
(a) We will first show that ��t� x�= 1 and z�t� x�= x. Since ��t� x�ia = xia, it can easily

be seen that xia <x̊ia. This implies that x �=x̊. So, ��t� x� is defined and ��t� x� ≥ 1 since
x ∈��t�. Assume that ��t� x� > 1. Then on one hand, since z�t� x�=x̊+��t� x��x−x̊� and
xia <x̊ia it implies that z�t� x�ia < xia. On the other hand it implies that

xia = ��t� x�ia = ��t� x�−1�∗�t� z�t� x��ia ≤ �∗�t� z�t� x��ia ≤ z�t� x�ia

where the last inequality easily follows from the definition of �∗. Contradiction. Hence,
��t� x�= 1, and z�t� x�=x̊+��t� x��x−x̊�=x̊+ �x−x̊�= x.
(b) If xia = 0, then we know that �t� x� ∈ G−ia by Lemma 11. So we may assume that

xia > 0. Since x �=x̊� ��t� x�= 1 and x = z�t� x� by �a�, our assumption that ��t� x�ia = xia
implies that

xia = ��t� x�ia =min
��t� x�−1�1��∗�t� z�t� x��ia

= �∗�t� x�ia =min
d�t� id�� xia−d��t� x��G−ia��+��

So, xia ≤ xia−dH��t� x��G
−ia��+. Since xia > 0, this implies that dH��t� x��G−ia� equals

zero. Hence, �t� x� ∈G−ia, since G−ia is closed by Lemma 11. �
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