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We compare the forecast accuracy of autoregressive integrated moving average (ARIMA) models
based on data observed with high and low frequency, respectively. We discuss how, for instance,
a quarterly model can be used 1o predict one quarter ahead even if only annual data are available,
and we compare the variance of the prediction error in this case with the variance if quarterly
observations were indeed available. Results on the expected information gain are presented
for a number of ARIMA models including models that describe the seasonally adjusted gross
national product (GNP) series in the Netherlands. Disaggregation from annual to quarterly GNP
data has reduced the variance of short-run forecast errors considerably, but further disaggre-
gation from quarterly to monthly data is found to hardly improve the accuracy of monthiy fore-

casts.
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1. INTRODUCTION

In recent years, there has been an increased tendency
toward collecting and analyzing disaggregate data. In
the Netherlands, for instance, the Central Bureau of
Statistics publishes quarterly National Accounts, which
were until a few years ago only available on an annual
basis. In the United States, many series are currently
available on a monthly basis. Assuming that the dis-
aggregate data are generated by an autoregressive in-
tegrated moving average (ARIMA) model, we show
how much additional information is contained in the
temporally disaggregate data that can be used to im-
prove the forecast performance at the disaggregate level.
Knowledge about the expected gain of information is
required to decide on whether it is worthwhile to collect
data at the disaggregate level. Moreover, our resuits
can contribute to solving the choice problem of using
infrequently sampled data with negligible measurement
errors or data at a disaggregate level that generally
1nclude larger errors because they are often partly con-
structed or estimated. Note, however, that we assume
that the observations are measured without error.

Palm and Nijman (1984) and Nijman and Palm (in
press) considered conditions for identification of a dis-
aggregate model from aggregate data. If the parameters
of the forecast function for the disaggregate series are
iclentifiable, the aggregate data can be used to construct
disaggregate forecasts, which we compare with forecasts
from disaggregate data. We show how analytical expres-
sions for the predictors can be obtained and discuss the
use of Kalman filtering techniques for cases that are
not analytically tractable. Numerical examples give an

indication of the order of magnitude of the improve-
ment of forecast performance resulting from the addi-
tional information in the disaggregate data. We restrict
ourselves to the comparison of the forecast accuracy of
correctly specified univariate ARIMA models based on
data observed with a low frequency and a high fre-
quency, respectively.

The implication of temporal aggregation for the model
specification and parameter estimation were studied by
Brewer (1973) and Weiss (1984) for an autoregressive
moving average (ARMA) model and an ARMA model
with (lagged) exogenous terms and by Engle and Liu
(1972), Geweke (1978), Mundlak (1961), Wei (1978),
and Zellner and Montmarquette (1971), among others,
for regression models. Palm and Nijman (1984) and
Nijman and Palm (1990) considered the identification
and estimation of ARIMA models for variables that are
sampled with a longer interval than that of the realiza-
tions. The estimation of the unobserved realizations has
been considered in the literature on interpolation and
distribution of time series (e.g., see Chow and Lin 1971;
Fernandez 1981; Harvey and Pierse 1984; Litterman
1983; Nijman 1985; Nijman and Palm 1986). The loss
of information due to contemporaneous aggregation was
analyzed by Kohn (1982), Liitkepohl (1984a,b; 1987),
Rose (1977), and Tiao and Guttman (1980). Most closely
related to our work are the attempts by, for example,
Abraham and Ledolter (1982), Ahsanullah and Wei
(1984}, Amemiya and Wu (1972), and Liitkepohl (1986,
1987) to quantify the effect of temporal aggregation on
the forecast-error variance for the aggregate time series.
We are concerned, however, with predicting disaggre-
gate time series given that the realizations are sampled

405



406 Journal of Business & Economic Statistics, October 1990

with a lower frequency. We show how, for instance, a
quarterly model can be used to predict one quarter
ahead even if only annual data are available.

The plan of the article is as follows. In Section 2, we
derive analytical expressions for the minimum mean
squared error (MMSE) predictor of the disaggregate
series from aggregate data. In Section 3, results on the
reduction in the variance of the prediction error due to
increasing the frequency of sampling to become iden-
tical to that of the realization of the variables are pre-
sented. The impact of sampling variation of parameter
estimates on the precision of the forecasts is also in-
vestigated. In Section 4, we analyze quarterly data on
the seasonally adjusted gross national product (GNP)
series in the Netherlands that has been recently con-
structed at The Netherlands Central Bank (see De Ned-
erlandsche Bank 1986). Using resuits of the previous
sections, we show by how much the prediction-error
variance of quarterly GNP is reduced through the avail-
ability of past quarterly observations on this series,
and we examine whether a further disaggregation to
monthly data is desirable. Finally, Section 5 contains
concluding remarks.

2. MMSE PREDICTION OF HIGH-FREQUENCY
SERIES FROM LOW-FREQUENCY DATA

Consider a time series y, (t = 1, ..., T), which is
generated by the univariate ARMA(1, 1) model

(l = pL)y, = (1 — al)s, &~ NID(O’ O'g)’ (1)

where L is the lag operator defined by Ly, = y,_. If
¥, is a stock variable observed every mth period (m >
1), the sample will consist of the values of y, for ¢ &
{m, 2m, ..., [T/m]m}, where [T/m] is the largest
integer smaller than or equal to T/m. If y, is a flow
variable, 3, = 23! y,_; (¢t € T,) will be observed.
Throughout, we will assume that T is sufficiently large
to neglect the dependence of the MMSE predictors on
presample data. Moreover, we assume that the param-
eters of the forecast function for the disaggregate data
are identified.

2.1 Stock Variables

If y,is a stock variable generated by an AR(1) process
(a = 0), the MMSE predictor of yp,, (k > 0) is simply

Elyrex |y t € T,] = p**ryr,, (2)

where T,, = {jm:j = ..., =1,0,1...[T/mlm}, ris
the number of periods between T and the last low-
frequency observation, and r = T — [T/m]m. If y, is
a flow variable or if y, is a stock variable generated by
a more general ARMA model, however, it is at first
sight less straightforward to derive MMSE predictors
of the disaggregate series. Later we will show how the
structure of the forecasts for the low-frequency data can
be used to obtain expressions for the MMSE predictor

of the high-frequency series if (1) holds. This approach
is no longer attractive for higher-order ARMA models,
and we discuss in Appendix A how results from filtering
theory (e.g., see Priestley 1981) can be used to obtain
analytical expressions for the predictors in these cases.
Since the analytical expressions can get cumbersome
for high-order models, we also show in this appendix
how the required conditional expectations and the as-
sociated variances of the prediction errors can be nu-
merically evaluated using the recursive Kalman filter
(e.g., see Harvey 1981 or Anderson and Moore 1979).

To derive the MMSE predictors if y, is a stock variable
generated by the ARMA(1, 1) model in (1), first mul-
tiply (1) by (1 + pL + == + p™~'L™"1), which yields

(1 — mem)yt — (1 + ﬂL e 4 pmfle—l)

m

X (1 = al)e = 2, nig=y. (3)

i=0
The second equality in (3) defines the #;. As shown by
Amemiya and Wu (1972) and Palm and Nijman (1984),
among others, it results from (3) that the low-frequency
series y, (¢t € T,,) is generated by the ARMAC(1, 1) model

1 = pmL™y, = (1 — AL™)y,,
v, ~ NID(, 63) ift€ T,, (4)

where 4 and ¢2 can be derived from the equality of the
mth-order autocorrelation and the variance of the right
sides of (3) and (4),

—MA+ 2 =,/ 20 (A<D, ()

i=(
and

o= a2y (1 + B). ©)
i=0

Equation (5) is quadratic in 4 but yields a unique so-
lution for A within the unit circle. It is important to
notice that if &« = 0 and m is even, the sign of p is not
identified [p is locally identified; e.g., see Palm and
Nijman (1984)]. Moreover, if m = 2 and p = 0, ais
not identified. If k + ris odd, the forecast function in
(2) can then only be computed if p is known or if the
sign of p is known a priori so that its value can be
estimated.

The ARMA(1, 1) model (4) for the low-frequency
data can be used to obtain the MMSE predictor of the
high-frequency data in the following way. Equation (4)
implies that

E[yT+1n | Y5 te Tm]
=(p" = A) D Myrow ifr=0, (7
i=0

a result that will be used to derive E{yr.x | vi, t € T,
(Vk > 0). Define the coefficients a; by E[yr:, | yi, t €



T,] = 270 ayr_m if r = 0. From (1), one obtains
E[yT+k l Yis te Tm] = pk_lE[yTH lyl’ t& Tm] as Iong
as k > 1. Substitution of £ = m and comparison with
(7) yields

a = p(l = Ap ™), (8)

and we get the MMSE predictor of the high-frequency
variable given the low-frequency observations

E[yT+k 1 Yis r e Tm]
= pk+,(1 - )'p—m) E li}"l'-—i/n—r- (9)
i=0
2.2 Flow Variables

Expressions for the MMSE predictor when y, is a flow
yariable can be obtained in a similar way. Premultiply-
ing(3)by (1 + L + -+ + L") yields

(L = p"L™)y,
=@+ L+ LY
X (1 + pL + = + pn i Lm=Y(1 — aL)g,

2m~1
= 2:0 ﬁl'sl—i'l (3’)

which can be used to show that 7, (¢ € T,,) is generated
by the ARMAC(1, 1) model
(1 — mem)y" o (1 — ILM)V,,

v, ~ NID(0, 62) ifte T,, (4')
where 7 and o2 can be obtained using the analog of (5)
and (§). Notice that when m = 2, p is identified in (4')
even if @ = 0. Subsequently, define the coefficients
a; by E[yT-H ( yu e Tm] = Eiz=0 ZZ—'in—-im lf r = O
Along the lines adopted for stock variables, two expres-

sions for the m-period-ahead forecast can be used to
solve for the weights in the high-frequency forecast:

E[?Tﬂn I yn e Tm]

= (pm - I) Z 7“i?T—im
i=0

= (]’ + /) + + pm-—l) 2 ZZ-in'*im (lf r= 0)7

i=0
(10

which yields the following MMSE predictor when flow
variables are observed:

Elyro| ot € T, = p (L + p + - + po)
X (pm - I) 2( Iijy'f—-irn--r' (ll)
i=0

In the derivations of (7) and (11), we did not exclude
the case p = 1, so results for IMA(1, 1) models are
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obtained as a special case. For more general ARIMA
models, comparison of low-frequency forecasts no longer
yields direct expressions for the high-frequency predic-
tors. In Appendix A, we discuss how predictors in these
models can be obtained using classical Wiener—Kol-
mogorov or recursive Kalman filtering procedures.

3. PREDICTIVE ACCURACY GAIN FROM
DISAGGREGATE SAMPLING

In Section 2, we have shown that high-frequency se-
ries can be predicted using low-frequency data. Evi-
dently the MMSE of these predictors will be larger than
that of MMSE predictors based on high-frequency se-
ries. An important point, of course, is how much ad-
ditional information temporally disaggregate observa-
tions contain. This topic is addressed in this section.

A first measure of the accuracy gain of predictors
based on disaggregate sampling is the reduction in the
variance of the prediction error y defined for stock vari-
ables by

p = 100(1 — EMyrsk — Elyre | Yt € TI]}2
+ E{yra — Elyrae |y t € TR (12)

A similar expression in which the conditioning is on ¥,
(t € T,) defines the measure of the information gain
in case of flow variables. The reduction in the predic-
tion-error variance depends on k, m, r, and the param-
eters of the model generating y,.

3.1 Stock Variables

If y, is a stock variable generated by the AR(1) model
that is obtained if @ = 0 in (1), the reduction in the
prediction-error variance can be expressed as

p = 0001 = (1 = P4 (13)

irrespective of the value of m. This is because, for the
AR(1) model, the optimal forecast only depends on the
most recent observation. In this model, the potential
gain of information is caused purely by the fact that y,
might have been observed after period [T/m]m. An
upper bound on the information gain is obtained here
by putting » at its maximum value, r = m — 1. Nu-
merical resuits are presented in Table 1. We assume
that p is identifiable; that is, at least the sign of p is a
priori known. For this model the information gain ap-
pears to be substantial only in short-term forecasting
when the autoregressive parameter is large in absolute
value,

One could argue that (13) underestimates the true
efficiency gain because it ignores the fact that in ap-
plications parameters have to be estimated and can be
estimated more accurately if the sampling frequency is
increased, Therefore, we also present results for the
case in which the assumption of known parameters has
been replaced by approximations up to order T~ for
the unconditional prediction-error variances when the
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Table 1. Upper Bounds in Percentage Points for the Reduction of the Prediction-Error Variance

When a Stock Variable Is Generated by an AR(1) Model

p=+/—.8 p= +/— 4
k m=2 m = m=4 m=2 m=3 m=4
1 39 (43) 51 (56) 57 (62) 14 (19) 16 (32) 16 (69)
2 20 (26) 29 (36) 34 (42) 2(7) 3 (21) 3 (55)
3 12 (19) 17 (25) 21 (29) 0(2) 0( 8) 0 (30)
12 0{ 0) 0{ 0 0(0) 0(0 0(0 0(0

NOTE: Results in parentheses refer to the cases in which the parameters have been estimated (T = 100).

parameters have been estimated. Evidently, the result
in (13) is valid if T is sufficiently large. The effects of
parameter estimation on unconditional prediction-error
variances if m = 1 have been analyzed, for example,
by Yamamoto {1976) and Baillie (1979), who assumed,
however, that the parameters are estimated from sam-
ples independent of the values to be predicted. Effects
on conditional variances, which are outside the scope
of this article, were considered by Phillips (1979), Ans-
ley and Kohn (1986), and Hamilton (1986).

If the parameter p is unknown, an estimate p will
typically be substituted for p in (2), which yields the
operational predictor

E[y'l'-l-k | yl: te T;u] = ﬁk+r.))T—r~ (14)

The corresponding prediction error can be written as
the sum of two components of which only the second
one depends on the estimation error in the parameter
because

Yrsre — E[yT+k ’yh e T;n]
k+r—1

= D, Peruci = (P = pHyr,. (15)
=0
The mean squared error (MSE) of the second term can
be approximated up to order 7' by

E{(p** = p**7)yr_ P
~ Tk + PP OENVT (D ~ p)yr . (16)

In the literature, the (unrealistic) assumption is often
made that parameters are estimated from samples in-
dependent of the sample to be predicted. In that case,
we get

kt+r-1 2
E{yrer — P**yro P ~ E{ > pi£T+k—i}
i=0

+ AT~k + P VENVT(D ~ p)PEyE-, (17)

when d = 1. If the independence assumption is not
made, one can bound the covariance between VT (p
— p) and yr_, using the Cauchy-Schwarz inequality,
which implies that the right side of (17) yields an upper
bound for the MSE for d = 3 and a lower bound for
d = 0 if one sample is used both for estimation and
prediction.

To evaluate the expectations in (17), it is easily ver-

ified that

k+r-1 2
E{zwmw}=u—ﬂ%a—mw%a&

i=0
and that
Ey}y_, = (1 — p?)~'ol. (19)

To evaluate E{VT(p — p)}* note that if the high-fre-
quency data are generated by the AR(1) model—that
is, if @ = 0 in (1)—the model for the low-frequency
data (4) specializes to become

v, ~ NID(0, 02) ift€ T,
(20)

when y = pm™and 62 = (1 — p*)(1 — p?)~'o2. The
parameter p is identified from y, (¢t € T,,) if m is odd
or if its sign is known a priori. The asymptotic distri-
bution of the maximum likelihood (ML) estimator i of
y from data on y, (t € T,,) is easily shown to be

VITIm)(p - w) ~ NO, 1 - 3,  (2)

Vo= WYiem T U

from which one obtains the asymptotic variance of p
ENVT(h = p)P ~ pX(L = p)H{mp*},  (22)

where we used p = @,

Substitution of (18), (19), and (22) into (17) yields
upper bounds on the relative efficiency of predictors
based on high-frequency data in case of estimated pa-
rameters. For given values of m and k, these upper
bounds are the maximum over r of the quotient of the
right side of (17) evaluated at m, k, r, and d = 3 and
the same expression evaluated at m = 1, k, r, and d
= 0. The numerical results are presented in Table 1 for
the case in which 7' = 100. The information loss caused
by temporal aggregation increases if the parameters have
to be estimated, but the effect is not very substantial
unless p is small in absolute value and m is large. Note
that in that case p is almost unidentified (see Palm and
Nijman 1984, table 1).

3.2 Flow Variables

Empirical results on the prediction-accuracy gain from
disaggregate sampling if a flow variable is generated by
an AR(1) model can be obtained along the same lines.
The derivation of analytical expressions for the accuracy



gain as in (13) is intricate for flow variables and results
in complicated formulas that do not give much insight.
Therefore, the results were obtained numerically along
the lines described in Appendix A, where we derive the
forecast function and prediction-error variance [see
(A.11)]. Rewriting (11) as

E[yT+k ‘ yz» re Tm] = E akin—im—rs (23)

i=0

upper and lower bounds up to order 7! can be derived
along lines similar to (17) using

* z
E {yT-rk - E dkin—iln—r}

i=0

® 2
~E {)’nk - z akin—im-r}

i=0

+ dTENVT( — p)P

X 2 aakilapaakj/apEyT—imy’l'-—jm . (24)

ij=0

As before, upper and lower bounds of the MSE for the
case in which estimation and prediction are based on
the same sample are obtained for d = 3 and d = 0,
respectively, whereas d = 1 and d = 0 yield results for
the case in which the parameters are estimated from
samples independent of the sample to be predicted and
for the case of known parameters, respectively. Again
the determination of the asymptotic variance of the
estimator of the unknown parameter is the most difficult
part of the evaluation of (24). An expression for
E{VT(p — p)}*is derived in Appendix B. This expres-
sion has been used to determine the upper bounds on
the predictive-accuracy gain for flow variables gener-
ated by an AR(1) model in Table 2. Results similar to
Table 1 for T = » and for T = 100 are provided. In
the worst possible case considered in Table 2, the vari-
ance of the prediction error approximately doubles if
low-frequency data are analyzed, but in many cases the
loss of information is much smaller. Note also that the
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variance of the prediction error can be smaller if the
data are aggregated over three periods than if they are
aggregated over two periods. The estimation of the pa-
rameter p affects the conclusions only if p is highly
negative and m is even, in which case it is very difficult
to estimate p, as becomes evident from table 1 of Palm
and Nijman (1984). The effects of parameter estimation
on the predictive accuracy gain from disaggregate sam-
pling are different between stock and flow variables, as
shown in Tables 1 and 2. For stock variables, the results
indicate that for any given values of p and k the gain
increases with m. For flow variables, this is no longer
true when p is negative. This is because with m being
odd and p < 0 the observations contain much infor-
mation about the (alternating) pattern of the series at
the disaggregate level and about p, which therefore can
be estimated with reasonable accuracy from the aggre-
gate data.

Before we turn to the empirical application in Section
4, we present results on the predictive accuracy gain
from disaggregate sampling in IMA(1, 1) models and
ARI(1, 1) models in Table 3. The predictors for the
IMA(L, 1) model (Ay, = & — ag._;) are special cases
of (9) and (11). The predictors for the ARI(1, 1) model
(Ay, = pAy,_, + &) have been derived using the ap-
proaches presented in Appendix A. Only results on the
impact of parameter estimation on the predictive ac-
curacy gain have been presented for the ARI(1, 1) model
for stock variables. For a special IMA(1, 1) model for
a flow variable, results will be given in Section 4.

For the nonstationary models in Table 3, the infor-
mation gain caused by the use of high-frequency data
is usually much larger than that for the stationary models
in Tables 1 and 2 except for the IMA(1, 1) models with
positive coefficient «. For these models, the variance
of the error of predictions based on the incomplete data
is no longer a nondecreasing function of the number of
periods to be predicted ahead. Therefore, the upper
bounds are not simply obtained by putting r = m — 1.
Notice that from the results in the table it appears that
the upper bounds (overall values of r) are decreasing
in k, not the variances,

Table 2. Upper Bounds in Percentage Points for the Reduction of the Prediction-Error Variance
When a Flow Variable Is Generated by an AR(1) Model

k m=2 m=3 m =4 m=2 m=23 m=4
p=.8 p =4

1 43 (44) 54 (55} 53 (60) 15 (16) 16 (17) 16 (17)

2 22 (25) 32 (33) 36 (40) 2(3) 3(3) 3(3)

3 13 (16) 19 (21) 22 (24) o(1) a(t) o(1

12 0(0 0( 0) 0( 0 0(0) 0(0) 0(0)
p= -8 p=—4

1 61 (99) 57 (61) 63 (98) 15 (69) 16 (27) 16 (50)

2 38 (98) 34 (40) 40 (97) 3 (44) 3(11) 3 (25)

3 24 (97) 21 (28) 25 (95) 0(19) 0{ 3) 0(19)

12 0(0) 0(0) 0(0) 0(0) 0( Q) 0( 0)

NOTE: Results in parentheses refer to the case in which the parameters have been estimated (T = 100).
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Table 3. Upper Bounds in Percentage Points for the Reduction of the Prediction-Error Variance
When Stock of Flow Variables Are Generated by IMA(1, 1) or ARI(1, 1) Models

k m =2 m =3 m=4 m=2 m=3 m=4
ARI(1, 1); stock variables
p=28 p=.4
1 79 (80) 92 (92) 96 (96) 67 (68) 82 (83) 88 (88)
2 62 (64) 81 (81) 88 (89) 47 (48) 64 (65) 73 (74)
3 50 (52) 70 (71) 80 (81) 34 (36) 51 (52) 61 (62)
12 14 (17) 25 (25) 33 (33) g9(9) 16 (16) 22 (22)
p=-.8 p= -4
1 58 (67) 54 (53) 64 (63) 29 (98} 50 (59) 60 (98)
2 62 (54) 52 (47) 67 (59) 32 (98) 45 (58) 55 (97)
3 36 {35) 36 (38) 45 (49) 22 (97) 35 (41) 45 (96)
12 15 ( 8) 15 (15) 24 (20) 8 (15) 15 (15) 20 (25)
ARI(1, 1); flow variables
p=.8 p =4
1 84 94 97 73 86 N
2 69 85 92 53 70 78
3 57 76 85 39 57 67
12 17 30 39 11 20 27
p=~.8 p=—4
1 26 50 53 31 52 63
2 43 48 59 32 47 58
3 13 32 37 22 38 48
12 7 14 19 1 15 22
IMA(1, 1); stock variables
a=.8 a = .4
1 9 15 20 29 44 54
2 8 15 19 23 37 46
3 7 11 15 19 32 40
12 7 11 15 7 14 19
a= —.8 a= -4
1 79 88 91 67 80 86
2 47 62 71 41 58 67
3 33 48 58 30 45 55
12 9 16 22 8 15 21
IMA(1, 1); flow variables
a=.8 a =4
1 4 7 12 29 45 55
2 4 7 11 22 38 48
3 4 7 11 19 32 42
12 3 6 8 7 14 20
a= —.8 o= —.4
1 82 90 a3 72 84 88
2 53 68 76 47 64 72
3 39 55 64 35 51 61
12 12 19 26 11 43 25

NOTE: Results in parentheses refer to the case in which the paramelers have been estimated.

4. PREDICTION ACCURACY GAIN FROM
DISAGGREGATING THE GNP SERIES
FOR THE NETHERLANDS

In this section, we illustrate how in practice one can
determine whether it is worthwhile to increase the fre-
quency of collecting observations on a variable. We
consider the quarterly GNP series for the Netherlands
that has recently been provided by the Dutch Central
Bank (see De Nederlandsche Bank 1986). Using the

results of the previous sections, we show how much the
availability of quarterly observations reduces the pre-
diction-error variance of quarterly GNP and whether
further disaggregation into monthly data is desirable.

4.1 From Annual to Quarterly Observations

First, we consider seasonally adjusted GNP in mil-
lions of guilders in prices of 1980. For the period 1957:1~
1984:4, a Box-Jenkins analysis leads us to select two



Table 4. Reduction in Percentage Points of the Prediction-Error
Variance of Quarterly Seasonally Adjusted GNP in the
Netherlands due to the Use of Quarterly Instead of
Annual Observations (r is the number of
periods since the last observation)

Number of quarters to be predicted ahead

)
True

model r 1 2 3 4 8 12
ARI(1, 1) 0 21 19 13 11 7 5
in (25) 1 44 39 30 25 15 11

2 58 50 41 36 23 17

3 66 59 49 44 29 22

IMA(1, 1) 0 17 13 10 8 5 4
in (26) 1 39 31 25 22 14 10
2 51 43 36 32 21 16

3 60 51 44 38 27 21

quarterly models that are both fairly well in agreement
with the information in the data. If a month is chosen
as the appropriate time unit, the two models are

A3)7, = 543 - .33 A3y,_3 + f’,

(113)  (.09) (25)

and

Ay, = 408 + B, — .35 s,
(70) (.09)

respectively. The parameters have been estimated by
ML. Standard errors are given in parentheses. Since
p is approximately —.4 and & is approximately .4, it is
now obvious from Tables 3~5 that the increase in fore-
cast accuracy due to the availability of quarterly instead
of annual data can be more than 50%. The details are
given in Table 4. Note that here the efficiency strictly
increases with r, the number of periods since the last
observation. Moreover, even if one is interested in an-
nual forecasts only, quarterly data can be substantially
more informative than annual observations.

(26)

4.2 From Quarterly to Monthly Observations

The quarterly data can also be used to forecast monthly
GNP and to estimate the reduction in the variance of
monthly prediction errors if monthly data were indeed
collected. The first step is to estimate a monthly model
from the quarterly data. As discussed in Section 2, the
monthly IMA(1, 1) model

Ay, = ¢ + & — ag.,,
& ~ NID(0, o2), te T, (27)

implies that A;¥, = (1 + L + L%?Ay, is generated by
the quarterly IMA(1, 1) model

MY, = 9¢ + v, — Av,_s,

v~ NID(,¢?), (€T, (28)
where 71 can be determined using
5
Ay, = 9¢ + Z 7i€sai (29)
i=0
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Table 5. The Reduction in Percentage Paints of the Predictior-
Error Variance of Quarterly Seasonally Adjusted GNP in the
Netherlands due to the Use of Monthly Instead of
Quarterly Series

Number of periods to be predicted ahead (k)

Mode! r 1 2 3 6 9 12
[ 0 .8 8 7 6 .5 4
known 1 8.0 7.4 6.9 5.8 5.0 4.5
2 14.2 13.3 12.5 10.1 8.8 8.2
C, o 0 5.6 6.6 7.8 11.5 154 19.2
estimated 1 134 141 148 174 204 235
2 20.3 206 209 228 251 27.8

Whenﬁ() = 1,771 = — a,ﬁz =3 - Za,ﬁzg =2 -
3,y = 1 ~ 2a, s = —a, and the equality of the
first-order autocorrelation of (28) and (29) is

5 5
M@+ = 3 A0 20 (30)
i=3 =0
Substituting the ML estimate 2 = .35 for 1 in (30), one
gets the ML estimate & = .72. No other plausible time
series model appears to explain the empirical findings
in (26), which are almost equivalent to (25).

In Section 2, we have derived the MMSE predictor
(11) of a monthly series from quarterly data assuming
that the data are generated by (27) when ¢ = 0. Along
the same lines (the derivations will be made available
by the authors on request), one can show that if ¢ # 0
the MMSE predictor can be written as

Elyra|Fot€ET] = [k +r+ 1+ 301 — Dlc

+ (1 =22 Ayr,_5/3. (31)
i=0
The variance of the prediction error of (31) can be
compared with that of the optimal predictor from
monthly data

Elyrie |y, t €T

=lk+al(l - a)c+ 1 —aadyr. (32
i=0

The empirical results on the predictive accuracy gain
are presented in the first part of Table 5, in which it is
assumed that « and ¢ are known a priori to coincide
with the ML estimates. This table suggests that monthly
data on GNP in the Netherlands would hardly contain

more information than the existing quarterly series.
Now we examine whether as a result of the assump-
tion of known parameters the true predictive accuracy
gain from increasing the frequency of data collection is
substantially underestimated in the first part of Table
5. The relative efficiency of the ML estimator of « in
(27) from monthly data compared with that from quar-
terly data can be found in Palm and Nijman (1984) for
various values of @, When the true value of « is .6, the
relative efficiency is only 2.7, which suggests that the
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results in Table 5, in which a = .72, should not be too
sensitive to the assumption of known parameters. Nu-
merical results on upper bounds for the reduction of
the prediction-error variance are given in the second
part of Table 5. For the derivation, we refer to Ap-
pendix C. From Table 5, it becomes clear that the im-
pact of parameter estimation is not sufficiently large to
alter the main conclusion that the prediction-accuracy
gain expected from monthly sampling instead of quar-
terly sampling is low compared to the gain from quar-
terly observations relative to annual ones. Nevertheless,
the change in the predictive accuracy for longer forecast
horizons is probably larger than suggested by the results
for known parameters.

5. CONCLUDING REMARKS

In this article, we analyzed the predictive accuracy
gain of k-step-ahead forecasts from univariate ARIMA
models resulting from increasing the frequency of sam-
pling. Results on the expected information gain have
been presented for a number of ARIMA models. Sub-
sequently, we evaluated the additional information con-
tent of recently collected quarterly GNP data for the
Netherlands and considered whether it is worthwhile to
construct monthly data.

The main conclusions are as follows:

1. For variables generated by a first-order autore-
gressive model with known parameters, the information
gain is substantial only in short-run forecasting when
subsequent realizations are strongly correlated. We
conjecture that this result can be extended to more
general stationary processes. Note, however, that the
information gain can substantially increase if the pa-
rameters in the model have to be estimated as suggested
in Table 1. Once again, we would like to emphasize
that the forecast function of the components that are
aggregated over time has to be identified from the ag-
gregate data only. We limited ourselves to the case in
which these components are generated by a homoge-
neous ARMA structure.

2. For variables generated by nonstationary models,
the efficiency gain of more frequent sampling can be
very large in short-run forecasting but will often be
negligible when the forecast horizon becomes large.

3. The results for the GNP series in the Netherlands
suggest that the construction of quarterly GNP data has
reduced the variance of prediction errors considerably
but that further disaggregation into monthly data would
hardly yield extra information to forecast that specific
series.

Although we limited ourselves to univariate time se-
ries models, the results are likely to contain relevant
indications for multivariate models, since the variances
of the prediction errors for univariate and multivariate
models often have similar properties. Finally, since many
macroeconomic variables can be adequately described

by an IMA(1, 1) process with positive parameter «, the
results in this article are expected to be useful when
deciding whether more frequent sampling will be worth-
while.
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APPENDIX A: MMSE PREDICTORS OF HIGH-
FREQUENCY SERIES FROM LOW-
FREQUENCY DATA FOR GENERAL

ARIMA MODELS

In this appendix, we show how classical filtering the-
ory and recursive Kalman filtering can be used to derive
the predictors for higher-order ARMA models. For
simplicity, we restrict the discussion to ARMA models
and to flow variables. Extensions to ARIMA models
and/or stock variables are straightforward.

To derive an analytical expression for the MMSE
predictor of the high-frequency data if only low-fre-
quency data are available, we start with the high-fre-
quency MA(=) representation of the data-generating
process, which we express in terms of polynomials in
L™ operating on ¢,.; as

He—1

yo= > e = >, w(LMe, (A.D)
i=0 i=
where w;(L™) is a polynomial in the lag operator for
the low-frequency data; w,(L") = 2, w,;L™. The cor-
responding MA(w) expression for y,._, is

For = (L L+ -+ L" YD e,

i={)

m—1
2“ @(L")e,s. (A.2)
For instance, for the ARMA(1, 1) model (1) when
m = 2and r = 1, one has wy(L?) = (1 + apL?)/
(1 = p2L% and (LY = (a + p)/(1 — pL?), which
imply @o(L*) = {(1 + a + p)L? + apL}y/(1 - PPLY
and @, (LY = {1 + (& + p + ap)L}/(1 — p*LY).
From (A.l) and (A.2), the covariance generating
function of (y,, ¥,-,) can easily be shown to be

il

m—1 m=-1

Z wi(z)wi(z™") 2 wi(z)@;(z7")
2| i=0 i=0
Flm-1 m—1

> BDwz™h D wiz)@i(zY)

i=0 i=0

_ {&u(2) gn(z)
= (gz»(Z) gﬂz))' a3

Subsequently, factorize g»(z) = d(z)d(z™!), where
d(z) = 27, d.z'. A well-known result in classical fil-
tering theory (e.g., see Priestley 1981, chap. 10) now



states that

E[yT+k } 71, t e T;n] = hk(Lm)yT—r (A4)
with

h(z) = [2*d (27 Dgu(2)].d"'(z),  (A.5)

where [ ], indicates that only positive powers of z are
to be taken into account.

For the case of a variable y, generated by the AR(1)
model obtained if « = 0in (1), observations on y, (t €
T,) and r = 0, one can easily check that

g1(z) = ol + p + p* + pz~H(1 — p22)(1 - p*z7")
(A.6)

and

82(z)

il

oL + p + p) + plz + 27

£ (- g0 = g2

ou(l — 2z = A2)

+ (1 = p27H(1 = p2) (AT)

whend = —pY1 + p + p* — (1 + p)V(1 + p)}and
M = —plAso that

il

QA +p+pPAz+p 1 —p2
h(z) = p! = =
2 ((1 ~p2) (1 - Az Y, 1 -2z
2 x
wheny = —(L+p+ p* + p)1 — p2)" 0 = (1L +

p)~(p* — 7). Of course, the predlctor obtained in this
way coincides with (11) if & = =0,andm = 2,
as can be easily verified.

The covariance-generating function of the prediction
error of the preceding example form = 2 and r = 0
is

g52) = [1 = n(1 = 22)"g(2)(1 —n(1 — Zz7H)7Y).
(A.9)

The variance of the prediction error of y; in this case,
denoted by v, is the constant term in g*(z), which after
some manipulation can be expressed as

V=L + )" — ol + p). (A.10)

For the variance of the prediction error of yr,, if r #
0, we get
Ve = [L = p* 01 = p? (A.11)
from which 77, can be determined. The magnitudes
Vi, and y7, are defined as 7}, and 77, except that the
observations are on flow variables. Equation (A.11) is
also valid for m = 2, although no simple expression for
v has been obtained.
Although (A.4) yields an explicit expression for the
required MMSE predictor, this expression requires fac-
torization of g,,(z) and will not be analytically tractable

1 + pZ(k+r)v,
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for higher-order models. In such cases, the recursive
Kalman filter is an attractive instrument to compute
forecasts of the high-frequency series from low-fre-
quency data. To use the filter in the present context,
the ARIMA model has to be written in state-space form
with transition equation

& = T¢ -, + Re, ~ NID(0, 62), (A.12)
and measurement equation
yo=Z& fLET,
=0 ift& T, (A.13)

Harvey (1981, p. 103) discussed suitable choices of the
vector &, and the matrices T, R, and Z. We assume that

one of the elements of & coincides with y,. Harvey
{1981) showed that, if

al\s = E[éll?r’ re T;nv r= S] (A14)

and

1): [(ét - atls‘)(f! - a.lls)’ iyr’ re T;,,, r= S]=

(A.15)

the following recursive prediction equations of the Kal-
man filter hold true:

-y = Ta:—llr—l

Py, = TP_y.\T" + o;RR’. (A.16)

Moreover, if 7, is observed, the updating equations of
the Kalman filter imply that

Ay = Qe + P,[,AI_Z-'{7P,|,_17'}_1(57, - Zﬂ:lz—l)
Prlr = Pt|:~1 - lll—l—Z—’{_Z—Ptllﬁlzl}_‘—Z—Plll—l‘ (A-17)

If ¥, is not observed, a4, = ay-, and Py = Py_,. The
recursions can be started up by setting a,, and Py, equal
to the unconditional mean and variance, respectively.

APPENDIX B: DERIVATION OF THE LARGE-
SAMPLE VARIANCE OF THE ML ESTIMATOR
OF THE PARAMETERS IN AN AR(1) MODEL
FROM LOW-FREQUENCY FLOW VARIABLES

In this appendix, we will consider the derivation of
the large-sample variance of the ML estimator of the
parameter p in (1) if @ = 0 a priori from data on y, (¢
€ T,). Similar to the derivation given in (20)—-(22) for
the case of stock variables, the derivation starts with
the derivation of an expression for the large-sample
variance of the unrestricted ML estimator of the pa-
rameters in the low- frequency model. If the ML esti-
mator of § = (, 7, ¢2)’ in (4') is denoted to 3, it is
well known (e. g, see Harvey 1981, p. 132) that
V(TIm)(@ — §) ~ N(O, V), where

L-y)™" Q=g 0\
1 -wi)t (1 - 0 :
0 0 (2af)~t

(B.1)
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The parameters in  depend on the parameters in the
AR(1) model in (1). Denoting # = (p, o2) by ML es-
timator #, it is easily shown that

VTG — 1) < N, m{as'lanV-'0%/0n'})).  (B.2)

Some straightforward algebra finally yields the required
result—

ENVT(p = p)f = mimp™~*/(1 — p)
~ [2mpm=tailop)/(1 — p™A) + (84lap/(1 — AB}.
(B.3)

APPENDIX C: APPROXIMATION OF THE
ESTIMATION ERROR WHEN SEVERAL
PARAMETERS ARE ESTIMATED

To correct the comparison of the forecast accuracy
from aggregate and disaggregate data for the effects of
parameter estimation, we have to generalize (24) be-
cause, for the IMA(1, 1) model in (27), the MMSE
predictor depends on a vector of parameters § = (c,
A)'. The variance of the prediction error can be ap-
proximated up to order T~ by

2
E[yT+k - ﬁT+k(‘9)]2 + T z
ij=1
X E(097.1l 39)(09r il VTS, ~ $)VT(Y — ).

(C.1)

When VT(3 ~— 9) £ N(0, V), the Cauchy-Schwarz
inequality can be used to obtain an upper bound for
(C.1)

E(yrik — Y1+ k(lg)]2

+ T D E(097:4/ 09)(8Y 744/ 33)V;;

ij=1
2
+ 2T Y (E(@Prenl 092 E(8F 141l 3%)ViV)'2,
ij=1
(C.2)

where V; denotes the (i, j)th element of V. In the pres-
ent case, V,, = 62/27, V5, = 3(1 — A?), and V, = 0.
Using

ayr+k/81_ = Z II.UT..:{,-/S, (C3)
i=0

the results in Table 5 can be computed.

[Received May 1988. Revised March 1990.]
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