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Abstract

An income distribution is a mixture of two given income distributions if the relative frequency it
associates with each income level is a convex combination of the relative frequencies associated with it by
the given two income distributions—e.g., the income distribution of a country is obtained as a mixture of
the income distributions of its regions. In this article, it is established that all inequality measures commonly
considered in the literature—the class of decomposable inequality measures and the class of normative
inequality measures based on a social welfare function of the rank-dependent expected utility form—satisfy
quasi-concavity properties, which imply, loosely speaking, that mixing income distributions increases
inequality. These quasi-concavity properties are then shown to greatly reduce the possible patterns
describing the evolution of inequality in the overall income distribution (a mixture) during a process in
which population gradually shifts from one of its constituent income distributions to another over time.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the analysis of income inequality, it is often useful to view the income distribution of interest
as being composed of several constituent income distributions, e.g., the income distributions
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corresponding to different regions, sectors, or genders. The question of how inequality in the
overall income distribution is affected if the constituent income distributions change, has received
considerable attention in the form of decomposability analysis.1 By contrast, the complementary
question of how overall inequality changes if the population shares corresponding to the
constituent income distributions change, has not been studied much. Nevertheless, the latter
question is interesting both from the empirical and the theoretical perspective.

There are several empirical phenomena that involve a shift of the population from one
constituent income distribution to another. Take as an example the phenomenon of demographic
ageing. In this case, the overall income distribution changes over time because population
gradually shifts from the income distribution of working consumers to the income distribution of
retired consumers. Another (particularly natural) example is that of a country with two regions
that have different population growth rates: here population shifts from the income distribution
corresponding to the region with the lower growth rate to that corresponding to the region with the
higher growth rate. As a final example, consider the development process studied by Kuznets
(1955) which involves a gradual population shift from the income distribution of the agricultural
sector to that of the industrial sector.

Besides being of empirical interest, the gradual population shift process is relevant theoretically.
In order to see this, assume that the overall income distribution is constituted of two perfectly equal
income distributions: one in which everyone has income 10 and another in which everyone has
income 50. Now, suppose that we start off with the entire population in the former income
distribution, and that population gradually shifts to the latter over time. The income distribution will
take, among others, the following three forms at various stages of this simple process:

A ¼ 90% has 10
10% has 50

; B ¼ 50% has 10
50% has 50

; C ¼ 10% has 10
90% has 50

:

���
Thinking about how inequality evolves as the income distribution changes from A to B and from B
to C obviously means thinking about how inequality judgements are influenced by the relative
population sizes of the “rich” and “poor.” For this reason, this simple case of the gradual population
shift process has been considered of importance for the theoretical question of how inequality
comparisons ought to be made in the first place. It has been studied in this way by Fields (1987,
1993), among others.

The key to tackling the question of how inequality evolves during a gradual population shift lies
in the behaviour of inequality measures with respect to mixing income distributions. Let us first
explain what we mean by mixing income distributions. Assuming that income distributions are
defined in terms of relative frequencies, each income distribution can be defined as amixture, i.e., a
convex combination, of its constituent income distributions. As an illustration, consider a country
with two regions: “region P” and “region Q,” representing population shares of α and 1−α,
respectively. Indeed, if px and qx are the proportions of the population with income x in regions P
and Q, respectively, then the proportion of the population with income x in the country is equal to
αpx+(1−α)qx. Now, during a gradual population shift process, the income distribution at each
stage is a mixture of the income distribution at any earlier stage and the income distribution at any
later stage—as an illustration, note that income distribution B in the example above of the simple
case of the process, is a fifty-fifty mixture of income distributions A and C. In order to describe the
evolution of inequality during a gradual population shift process, the important question is whether
income inequality in a mixture is greater than, smaller than, or equal to, income inequality in each
1See, e.g., the overview of the literature on inequality measurement by Cowell (2000).
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of its constituent income distributions. Moreover, can a general answer even be given to this
question, or does the answer depend on the specifics of the constituent income distributions and on
the particular inequality measure that is used?

In this article, we show that a general answer can indeed be given to the question of how
inequality measures behave with respect to mixing income distributions. It is demonstrated that
virtually all inequality measures that are studied in the literature on inequality measurement—
viz., the class of decomposable inequality measures and the class of normative inequality
measures based on the general social welfare function of the rank-dependent expected utility
form—satisfy quasi-concavity properties, which say, loosely speaking, that mixing income
distributions tends to increase inequality. For instance, the properties imply the following for the
case where inequality is equal in the two constituent income distributions that are mixed:
inequality in the mixture is at least as great as that in each of its constituent income distributions,
and if the mean incomes of the constituent income distributions are not equal, then inequality in
the mixture is strictly greater than that in each of its constituent income distributions. We
emphasise that while all well known inequality measures satisfy these quasi-concavity properties,
the properties are not implied by the fundamental Lorenz type axioms on their own. With respect
to the problem of how inequality evolves during a gradual population shift process, the quasi-
concavity properties are shown to reduce the possible patterns describing the evolution of
inequality to only three: (i) an increasing pattern in which inequality increases during the entire
process, (ii) a decreasing pattern in which inequality decreases during the entire process, and (iii)
an inverted-U pattern in which inequality increases in the first stages of the process and decreases
afterwards. This result generalises some results of Kakwani (1988) and Anand and Kanbur (1993)
in the same context.

The article is structured as follows. Section 2 deals with notation and basic concepts. In Section
3, we show axiomatically that the quasi-concavity properties are satisfied by all inequality quasi-
orderings satisfying the transfer principle, a weak invariance axiom, and decomposability. Instead
of focusing exclusively on relative inequality concepts, as is common in the literature, we
consider the weak invariance axiom of Bossert and Pfingsten (1990) that allows for relative and
absolute inequality concepts as well as intermediate ones. While the result of Section 3 applies to,
among others, the inequality measures based on a social welfare function of the expected utility
form, it does not apply to its rank-based alternatives, the generalised Gini indices, as these are not
decomposable. Therefore, we consider in Section 4 the class of inequality measures (absolute,
relative as well as intermediate cases) based on a social welfare function of the rank-dependent
expected utility form, which generalises both the class of expected utility inequality measures and
the class of generalised Gini indices. Benefiting from functional representability of the given
inequality orderings, it is shown that the quasi-concavity properties are also satisfied by all
members of this general class of normative inequality measures. In Section 5 we spell out the
implications of the results of Sections 3 and 4 for the question of how inequality evolves during a
gradual population shift process. Section 6 concludes. All the proofs are contained in an
Appendix A.

2. Preliminaries

2.1. Notation and basic axioms

An income distribution is an ordered pair ( p, x) with p=( p1, p2,…, pn)∈ (0, 1]n a vector (of finite
length) of relative frequencies such that p1+p2+⋯+pn=1, and with x ¼ ðx1; x2; N ; xnÞaℝn

þþ the
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corresponding vector of income levels. So, for all i=1, 2, …, n, the proportion of the population
with income xi is equal to pi, which we sometimes write as pxi. The components of x are arranged
such that 0bx1bx2b⋯bxn. The set P collects all income distributions. For all ðp; xÞaP, the set
{x1, x2, …, xn} is referred to as the support of the income distribution ( p, x), and the mean income
p1x1+p2x2+⋯+pnxn is denoted by μ( p, x). An income distribution ðp; xÞaP is said to be perfectly
equal if there exists an income level e such that pe=1, and is said to be unequal otherwise. Inequality
comparisons of income distributions are captured by a binary relation⪯ (“is at most as unequal as”)
on P. The relation's asymmetric and symmetric factors are denoted by ≺ (“is less unequal than”)
and∼ (“is equally unequal as”), respectively. We assume that the relation⪯ is a quasi-ordering, i.e.,
is reflexive and transitive. A quasi-ordering that is complete is an ordering. An inequality measure is
defined as a function I : PYℝ that represents an inequality ordering.

Throughout this article, we are often required to view the overall income distribution as a
mixture, i.e., a convex combination, of its constituent income distributions. Suppose ðr; zÞaP is
the overall income distribution, constituted of the income distributions ðp; xÞaP and ðq; yÞaP
with population shares α∈ (0, 1) and (1−α)∈ (0, 1), respectively. Then, the support of (r, z) is
the union of the supports of ( p, x) and (q, y), and, for each element zi in the support of (r, z),
we have

ri ¼
apzi if zi occurs in x and not in y;
ð1−aÞqzi if zi occurs in y and not in x;
apzi þ ð1−aÞqzi if zi occurs in x and in y:

8<
:

This mixture (r, z) of ( p, x) and (q, y) is denoted by α( p, x)+ (1−α)(q, y).
We now consider three basic axioms. To define the well known transfer principle, we require the

concept of the mean preserving spread. Consider an arbitrary ðp; xÞaP and let 0bz1bz2≤z3bz4 be
four arbitrary income levels with z2 and z3 belonging to the support of (p, x). The income
distribution (q, y) is said to be obtained from ( p, x) by a mean preserving spread if there exists a
scalar δN0 such that

qz1 ¼ pz1 þ dN0; qz2 ¼ pz2−dz0; qz3 ¼ pz3−dz0; qz4 ¼ pz4 þ dN0;

(if z1, respectively z4, does not belong to the support of (p, x), then we set pz1, respectively pz4,
equal to 0), qxi=pxi for all other elements xi in the support of (p, x), and μ(p, x)=μ(q, y). In
other words, whenever (q, y) is obtained from (p, x) by a mean preserving spread, this means
that (q, y) is obtained from (p, x) by a series of poorer-to-richer transfers. The transfer principle
demands that such transfers increase inequality.

Axiom 1 (TP). For all ðp; xÞaP, we have that if (q, y) is obtained from ( p, x) by a mean
preserving spread, then ( p, x)≺ (q, y).

The second axiom we consider is an invariance condition, i.e., it defines a transformation,
by which all incomes are changed in the same direction, that leaves inequality invariant. For
all transformations f : ℝþþYℝ and all ðp; xÞaP, we denote the transformed vector of income
levels ( f (x1), f (x2), …, f (xn)) by f (x). So, for instance, ( p, τx) denotes the income distribution
obtained from ( p, x) by multiplying each individual's income by τ. The β-invariance axiom is
a general, linear, invariance condition first proposed by Bossert and Pfingsten (1990).
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Axiom 2 (βINV). There exists a scalar β∈ [0, 1] such that the following holds. For all ðp; xÞaP
and all scalars λ such that ðp; xþ kðbxþ 1−bÞÞaP, we have ( p, x)∼ ( p, x+λ( βx+1−β )).

The axiom β INV encompasses both the popular relative ( β=1) case, which says that
multiplication of all incomes by the same scalar leaves inequality invariant, and the absolute
(β=0) case, which says that addition to all incomes of the same scalar leaves inequality invariant.
Inequality relations satisfying β INV for β∈ (0, 1) are referred to as intermediate inequality
relations. In line with the literature, we consider TP and β INV to be the two fundamental axioms.
Accordingly, both axioms are satisfied by all concepts of inequality comparisons considered in
this article.

Decomposability, finally, is a popular axiom, but is usually interpreted as being less compelling
than TP and β INV.2 Roughly speaking, decomposability says that each transformation of the overall
income distribution that changes only one of its constituent income distributions and leaves
population shares and mean income unaffected, should affect inequality in the overall income
distribution in the same direction as it affects inequality in the given constituent income distribution.

Axiom 3 (DEC). For all ðp; xÞ; ðq; yÞ; ðr; zÞaP with μ( p, x)=μ(q, y), we have

ðp; xÞUðq; yÞ ⇔ aðp; xÞ þ ð1−aÞðr; zÞUaðq; yÞ þ ð1−aÞðr; zÞ

for all α∈ (0, 1).

2.2. Properties concerning mixtures

The main focus of this article are properties that describe how inequality relations behave
with respect to mixing income distributions, i.e., how a mixture compares in terms of
inequality to its constituent income distributions. We will not impose these properties as a
priori desirable properties on inequality relations – which is the reason why we do not refer to
them as “axioms” – but are interested, instead, in how broadly they are satisfied and in what
their implications are.

Quasi-concavity and strict quasi-concavity describe a positive inequality attitude to mixing
income distributions. Loosely speaking, the properties say that mixing tends to increase
inequality. To give an example, (strict) quasi-concavity implies that a mixture of two equally
unequal income distributions is at least as unequal as (is more unequal than) the given two income
distributions.

Property 1 (QC). For all ðp; xÞ; ðq; yÞaP, we have

ðp; xÞUðq; yÞ Z ðp; xÞUaðp; xÞ þ ð1−aÞðq; yÞ for all aað0; 1Þ: ð1Þ

Property 2 (SQC). For all ðp; xÞ; ðq; yÞaP with ( p, x)≠ (q, y), we have

ðp; xÞUðq; yÞ Z ðp; xÞ � aðp; xÞ þ ð1−aÞðq; yÞ for all aað0; 1Þ: ð2Þ
2For a critique of decomposability, see Sen and Foster (1997, pp. 149–163). The axiom they refer to as subgroup
consistency is similar to our definition of the concept.
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More relevant than SQC, however, will turn out to be the following conditional strict quasi-
concavity property, which requires Eq. (2) to be satisfied only if the means of the two constituent
income distributions are not equal.

Property 3 (CSQC). For all ðp; xÞ; ðq; yÞaP with μ( p, x)≠μ(q, y), Eq. (2) holds.

Note that SQC implies both QC and CSQC, while the latter two properties are independent.
Quasi-convexity and strict quasi-convexity describe negative inequality attitudes to mixing

income distributions and, thus, are the natural counterparts of QC and SQC. Loosely speaking,
these properties say that mixing tends to decrease inequality. For instance, (strict) quasi-
convexity implies that a mixture of two equally unequal income distributions is at most as
unequal as (is less unequal than) each of the given two income distributions.

Property 4 (QV). For all ðp; xÞ; ðq; yÞaP with neither ( p, x) nor (q, y) perfectly equal, we have

ðp; xÞUðq; yÞ Z aðp; xÞ þ ð1−aÞðq; yÞUðq; yÞ for all aað0; 1Þ: ð3Þ

Property 5 (SQV). For all ðp; xÞ; ðq; yÞaP with ( p, x)≠ (q, y) and neither ( p, x) nor (q, y)
perfectly equal, we have

ðp; xÞUðq; yÞ Z aðp; xÞ þ ð1−aÞðq; yÞ � ðq; yÞ for all aað0; 1Þ: ð4Þ

The reason why the perfectly equal income distributions are excluded from the set of
income distributions over which Eqs. (3) and (4) are required to hold, is that the properties
QV and SQV would otherwise be incompatible with the commonsense requirement that each
unequal income distribution is strictly more unequal than each perfectly equal one.3

Using the minimal framework of inequality quasi-orderings, we demonstrate in Section 3
that the three axioms TP, βINV, and DEC are sufficient for the properties QC and CSQC to be
satisfied. In Section 4, similar results are shown to hold for the members of an important class
of inequality orderings consistent with TP and βINV but not (necessarily) with DEC. We
remark that although QC and CSQC turn out to be satisfied very generally, this does not
necessarily imply that these are desirable properties for inequality relations—indeed, in
Section 5 we discuss a critique of some of the implications of these properties that has been
put forward in the literature.

3. Inequality quasi-orderings

In this section, we examine the implications of the three basic axioms, TP, βINV, and DEC, for
the behaviour of inequality quasi-orderings with respect to mixing income distributions.

The two fundamental axioms TP and βINV are sufficient to rule out the two quasi-convexity
properties, but are not sufficient to imply any of the three quasi-concavity properties. To see this,
consider the following lemma.
3This can be seen by letting ( p, x) and (q, y) in Eqs. (3) and (4) both be perfectly equal income distributions (with ( p,
x)≠ (q, y)). Note, furthermore, that the “commonsense requirement” is implied by TP and βINV jointly.
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Lemma 1. Let ⪯ be an inequality quasi-ordering that satisfies TP and βINV. Then, for all
ðp; xÞaP and all scalars λ such that ðp; xþ kðbxþ 1−bÞÞaP and (p, x)≠ (p, x+λ(βx+1−β)),
we have

ðp; xÞ � aðp; xÞ þ ð1−aÞðp; xþ kðbxþ 1−bÞÞ for all aað0; 1Þ:
Note that βINV requires, moreover, that ( p, x)∼ ( p, x+λ( β x+1−β )) in Lemma 1. By

letting (q, y)= ( p, x+λ( β x+1−β )) in conditions (3) and (4), it thus follows from the lemma
that TP and βINV imply violations of these conditions and, hence, of QV and SQV. In a similar
way, it is established that TP and β INV imply Eqs. (1) and (2) in all cases where (q, y)= ( p, x+
λ(β x+1−β )). Although the latter reveals that TP and βINV imply instances of QC, SQC, and
CSQC, the two axioms are not sufficient for any of these three quasi-concavity properties to be
satisfied in general. The following example provides an illustration of this point.

Example 1. Consider the inequality measure I : PYℝ : ðp; xÞijI10GEðp; xÞ þ I−9GEðp; xÞ where
κN0 is a scalar and where IGE

θ is the generalised entropy inequality measure, given by

IhGE : PYℝ : ðp; xÞi 1

h2−h

Xn
i¼1

pi
xi

lðp; xÞ
� �h

−1

" #
;

with θ a scalar. Since the generalized entropy inequality measure satisfies TP and βINV (for
β=1), I satisfies these axioms as well. By contrast, IGE

θ satisfies DEC, while I does not. Now
consider the following three income distributions: ( p, x)= ((0.4, 0.6), (10, 50)), (q, y)= ((0.9, 0.1),

(10, 50)), and (r, z)= ((0.65, 0.35), (10, 50)). Let, moreover, j ¼ I−9GEð p;xÞ−I−9GEðq;yÞ
I10GEðq;yÞ−I10GEð p;xÞ

c0:719. We have

23:370cIðr; zÞ ¼ I 0:5ðp; xÞ þ 0:5ðq; yÞð ÞbIðp; xÞ ¼ Iðq; yÞc270:061;

which implies that I violates QC, SQC, and CSQC. Furthermore, it can be shown that Eq. (4)
holds for the chosen ( p, x) and (q, y).

On its own, DEC implies a bias neither to quasi-concavity, nor to quasi-convexity: DEC
implies instances of the weak versions of both quasi-concavity and quasi-convexity, and is
(typically) incompatible with the strict versions of both. In order to see this, consider arbitrary
income distributions ðp; xÞ; ðq; yÞaP with μ( p, x)=μ(q, y) and ( p, x)⪯ (q, y). It follows from
DEC that

ðp; xÞUaðp; xÞ þ ð1−aÞðq; yÞUðq; yÞ for all aað0; 1Þ:4 ð5Þ
In other words, DEC implies instances of QC or QV in those cases in which the income
distributions in the mixture have equal means. If ( p, x)∼ (q, y) (still with μ( p, x)=μ(q, y)), then
DEC implies that the inequality relations in Eq. (5) hold with equivalence (∼), thus giving rise to
violations of both Eqs. (2) and (4). Hence, given the weak assumption—which would follow, e.g.,
from completeness and continuity—that at least one pair of income distributions ðp; xÞ; ðq; yÞaP
such that μ( p, x)=μ(q, y) and ( p, x)∼ (q, y) exists, DEC is incompatible with both SQC and
SQV.5
4This is obtained by letting (r, z) in the definition of DEC equal in turn ( p, x) and (q, y).
5In a sense, CSQC is as far as one can go in the direction of SQC while still satisfying DEC. To see this, consider
arbitrary income distributions ðp; xÞ; ðq; yÞaP with μ( p, x)=μ(q, y) and ( p, x)⪯ (q, y), i.e., income distributions for
which SQC implies Eq. (2), while CSQC does not. Now, if ( p, x)∼ (q, y), then DEC is inconsistent with Eq. (2) which
means that SQC goes too far, whereas if ( p, x)≺ (q, y), then DEC already implies Eq. (2) on its own.
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To summarise, we have seen that TP and βINVare not sufficient for QC, SQC, or CSQC to be
satisfied, and also that DEC typically rules out SQC. The following result says that each
inequality quasi-ordering satisfying TP, βINV, and DEC must satisfy QC as well as CSQC.

Proposition 1. Let ⪯ be an inequality quasi-ordering that satisfies TP, βINV, and DEC. Then, ⪯
satisfies QC and CSQC.

Proposition 1 has implications that are relevant in the context of the study of the evolution of
inequality during a process in which population gradually shifts from one constituent income
distribution to another.We postpone the discussion of these implications until Section 5, but consider
here relevant results concerning this context by Kakwani (1988) and Anand and Kanbur (1993) that
are generalised in Proposition 1. Anand and Kanbur present results that imply that the inequality
orderings represented by the following relative inequality measures satisfy CSQC: the first and
second Theil inequality measures, the coefficient of variation, the entire class of Atkinson inequality
measures, and the Gini index in the case of non-overlapping income distributions.6 The same has
been shown by Kakwani for the entire class of generalised entropy inequality measures, thus
generalising the results pertaining to all measures considered by Anand and Kanbur except the Gini
index.7 Proposition 1 demonstrates that neither the demand that inequality be a relative concept, nor
even completeness or continuity are essential in obtaining the result. Examples of absolute inequality
measures covered by Proposition 1 are the variance and the entire class ofKolm inequalitymeasures.
Notable inequality measures that Proposition 1 does not deal with—because they do not satisfy
DEC—are the Gini index in the general, possibly overlapping, case, as well as its rank-based
generalisations. In the next section, we show that a similar result as Proposition 1 holds for a class of
normative inequality measures that encompasses both the well known classes of decomposable
normative inequality measures (the Atkinson and Kolm inequality measures) and the generalised
Gini indices.

4. Normative inequality orderings

Normative inequality measures are based on a conception of social ethics, captured by a social
welfare function W : PYℝ.8 We define the equally distributed equivalent income for an income
distribution ðp; xÞaP as the per capita income, ξ( p, x), which, if distributed equally, yields the same
level of social welfare as ( p, x). That is, for each income distribution ðp; xÞaP, we have ξ( p, x)=e
where eaRþþ is such that there is a ðq; yÞaP for which qe=1 andW( p, x)=W(q, y). It is common to
define relative normative inequality measures using

I : PYℝ : ðp; xÞi1−
nðp; xÞ
lðp; xÞ ; ð6Þ

and absolute normative inequality measures using

I : PYℝ : ðp; xÞilðp; xÞ−nðp; xÞ: ð7Þ
6

8For an overview of the normative approach to inequality measurement, see Gajdos (2001).

The logarithmic variance, also considered by Anand and Kanbur, can be added to the list. Anand and Kanbur borrow the
result concerning this inequality measure from Robinson (1976). We do not consider the logarithmic variance as it does
not satisfy TP.
7Kakwani (1988, pp. 210–213) mistakenly believes to have proven the result only for the generalised entropy inequality
measures for which θ≥1 and θ=0. However, he proves the result also for the entire Atkinson class, which is ordinally
equivalent to the generalised entropy class in the case where θb1. Therefore, the ordinal nature of the property CSQC
implies that the result applies to the entire generalised entropy class.



37K. Bosmans / Mathematical Social Sciences 53 (2007) 29–45
The literature on inequality measurement has focused mainly on two particular social welfare
functions: the social welfare function of the expected utility (EU) form on which among others the
Atkinson and Kolm inequality measures are based, and the social welfare function of the Yaari
(1987) form on which the generalised Gini indices are based. Both are special cases of the social
welfare function of the rank-dependent expected utility (RDEU) form,

W : PYℝ : ðp; xÞi
Xn
i¼1

piðpÞuðxiÞ; ð8Þ

with πi( p)=ϕ( pi+pi+1+⋯+pn)−ϕ( pi+1+pi+2+⋯+pn) for all i=1, 2, …, n−1, and πn( p)=ϕ( pn).
Furthermore, ϕ : [0, 1]→ [0, 1] is a continuous and strictly increasing function with ϕ(0)=0 and
ϕ(1)=1, and u : ℝYℝ is a continuous and strictly increasing function. In the case where ϕ
coincides with the identity function, we have πi( p)=pi for all i=1, 2, …, n, and Eq. (8) reduces to
the EU social welfare function. In the case where u coincides with the identity function, Eq. (8)
reduces to the Yaari social welfare function.

Relative RDEU inequality measures, which we denote by IRDEU
1,ε,ϕ , are given by Eq. (6) with W

as in Eq. (8), with

u : ℝYℝ : ti
1
1−e

t1−e; ez0; ð9Þ

and with ϕ a convex function. In order for TP to be satisfied, we assume, moreover, that either u
is strictly concave (i.e., εN0), ϕ is strictly convex, or both.9 Following Bossert and Pfingsten
(1990), we obtain the relative, intermediate, and part of the absolute RDEU inequality measures
as Ib;e;/RDEUðp; xÞ ¼ 1

b I
1;e;/
RDEU p; xþ 1−b

b

� �
for all ðp; xÞaP. Hence, we have

Ib;e;/RDEU : PYℝ : ðp; xÞi 1
b

1−

Pn
i¼1

piðpÞ xi þ 1−b
b

� �1−e� � 1
1−e

lðp; xÞ þ 1−b
b

8>><
>>:

9>>=
>>;; ð10Þ

where 0bβ≤1 if εN0 and 0≤β≤1 if ε=0, where π is defined as above, and ϕ is strictly
convex whenever ε=0 and convex otherwise. The absolute RDEU inequality measures not given
by IRDEU

β,ε,ϕ are those for which u does not coincide with the identity function. These are obtained as
Eq. (7) with W as in Eq. (8), and with

u : ℝYℝ : ti−expð−gtÞ; gN0; ð11Þ
and are denoted by IRDEU

0,γ,ϕ . Hence, we have

I0;g;/RDEU : PYℝ : ðp; xÞilðp; xÞ þ 1
g
ln
Xn
i¼1

piðpÞexpð−gxiÞ
 !

; ð12Þ

where γN0, π is defined as above, and ϕ is convex.
Several well known inequality measures belong to the class of RDEU inequality measures. For

ϕ coinciding with the identity function, we obtain the class of EU inequality measures, with as
special cases the Atkinson class (by letting, furthermore, β=1 in IRDEU

β,ε,ϕ ) and the Kolm class
(given by IRDEU

0,γ,ϕ ). For u coinciding with the identity function (i.e., ε=0), we obtain the Yaari, or
9See Chew et al. (1987).
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generalised Gini, indices.10 Awell known subclass of the generalised Gini indices is that of the
S-Gini indices, for which ϕ : t↦ tρ with ρN1, which has as a notable special case the Gini index
(ρ=2). RDEU inequality measures for which neither ϕ nor u coincide with the identity function,
and which, consequently, belong to neither the EU class nor the Yaari class, have been studied by
Ebert (1988) and Chateauneuf et al. (2002), among others.

All RDEU inequality measures are consistent with TP and βINV. However, while all RDEU
inequality measures also incorporate a weak decomposability idea as shown by Ebert (1988), only the
inequality orderings corresponding to members of the EU subclass satisfy DEC. By consequence, the
EU inequality measures are the onlymembers of the RDEU class that are covered by Proposition 1. To
prove that the inequality orderings representable by each of the remaining RDEU inequality measures
also all satisfy the quasi-concavity properties of Proposition 1, we require a result that relates the
convexity of the weighting functionϕ to the convexity of the RDEU social welfare function. A social
welfare functionW is said to be convex, for all ðp; xÞ; ðq; yÞaP,

W aðp; xÞ þ ð1−aÞðq; yÞð ÞVaW ðp; xÞ þ ð1−aÞW ðq; yÞ for all aað0; 1Þ: ð13Þ
The following lemma summarises the required relationship.

Lemma 2. Let W be a social welfare function of the RDEU form, given by Eq. (8).

(i) If ϕ is linear, then W is linear, i.e., Eq. (13) holds with equality for all ðp; xÞ; ðq; yÞaP.
(ii) If ϕ is convex, then W is convex, i.e., Eq. (13) holds for all ðp; xÞ; ðq; yÞaP.
(iii) If ϕ is strictly convex, then W is strictly convex, i.e., Eq. (13) holds with strict inequality for

all ðp; xÞ; ðq; yÞaP with (p, x)≠ (q, y).

Note that we have αW( p, x)+(1−α)W(q, y)≤min{W( p, x), W(q, y)} for all ðp; xÞ; ðq; yÞaP
and all α∈ (0, 1). Using this observation together with Eq. (13), it can be seen that Lemma 2 has
implications for the behaviour of RDEU social welfare functions with respect to mixing income
distributions: a linear weighting functionϕ, as that of the EU social welfare function, corresponds to
a neutral social welfare attitude to mixing, whereas a (strictly) convex weighting function ϕ, as that
of the RDEUorYaari social welfare functions, corresponds to a (strictly) negative attitude tomixing.
Now, note that Proposition 1 can be interpreted as revealing that inequality orderings based on a
social welfare function with a neutral attitude to mixing (the EU social welfare function) have a
positive attitude to mixing as expressed by the properties QC and CSQC. Since social welfare and
inequality are negatively related concepts (see Eqs. (6) and (7)), we would expect that if a neutral
social welfare attitude to mixing translates into a positive inequality attitude to mixing, then a
negative social welfare attitude to mixing should definitely translate into a positive inequality
attitude to mixing. In other words, if inequality orderings based on an EU social welfare function
satisfy the properties QC and CSQC, then this should be true a fortiori for inequality orderings based
on an RDEU social welfare function. Proposition 2 confirms this intuition.

Proposition 2. Let⪯ be an RDEU inequality ordering, i.e., an inequality ordering representable
by Eq. (10) or (12). Then, ⪯ satisfies QC and CSQC. If, in addition, the weighting function ϕ
corresponding to ⪯ is strictly convex, then ⪯ satisfies SQC.

Note that, since all generalised Gini indices have strictly convex weighting functions ϕ, the
inequality orderings represented by these inequality measures all satisfy the strongest quasi-
concavity property SQC.
10The absolute subclass of the generalised Gini indices is obtained by furthermore taking the limit β→0 in IRDEU
β,ε,ϕ .
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5. Inequality and gradual population shifts

We now examine the implications of the properties QC and CSQC for the question of how
inequality evolves during an adjustment process in which the population gradually shifts from one
constituent income distribution to another over time. As discussed in Section 1, several empirical
phenomena involve such an adjustment process. Suppose that the constituent income
distributions are ðp; xÞaP and ðq; yÞaP, and that population shifts from (q, y) to ( p, x). Then,
the overall income distribution is α( p, x)+ (1−α)(q, y) and α gradually rises over some interval
(α
¯
, ᾱ)⊆ (0, 1). The question we are interested in is how inequality in the overall income

distribution evolves as α rises over (α
¯
, ᾱ).

In the previous sections, we saw that all well known inequality concepts satisfy the properties
QC and CSQC. As the next proposition shows, these properties reduce the number of allowed
patterns, describing inequality evolution during the considered adjustment process, to only three:
(i) an increasing pattern, (ii) a decreasing pattern, and (iii) an inverted-U pattern. In the case of the
increasing pattern, inequality in the overall income distribution increases as α rises over (α, ᾱ),
whereas, in the case of the decreasing pattern, inequality decreases. The inverted-U pattern
implies that inequality increases in the early stages of the process and decreases afterwards—
formally, there is some α⁎ in (α

¯
, ᾱ) such that inequality increases as long as α stays below α⁎ and

decreases from as soon as α rises above α⁎. The proposition focuses on CSQC, which has
stronger implications than QC (given that μ( p, x)≠μ(q, y)), and, for convenience, restricts
attention to inequality orderings.

Proposition 3. Let ⪯ be an inequality ordering that satisfies CSQC. Consider arbitrary
ðp; xÞ; ðq; yÞaP with μ(p, x)≠μ(q, y). Only the following three patterns, describing the evolution
of inequality in α( p, x)+ (1−α)(q, y) as α rises over the interval (α

¯
, ᾱ)⊆ (0, 1), are possible.

(i) An increasing pattern, i.e., for all α, α′∈ (α
¯
, ᾱ), we have that if αNα′, then

a Vðp; xÞ þ ð1−a VÞðq; yÞ � aðp; xÞ þ ð1−aÞðq; yÞ:
(ii) A decreasing pattern, i.e., for all α, α′∈ (α

¯
, ᾱ), we have that if αNα′, then

aðp; xÞ þ ð1−aÞðq; yÞ � a Vðp; xÞ þ ð1−a VÞðq; yÞ:
(iii) An inverted-U pattern, i.e., there exists an α⁎∈ (α

¯
, ᾱ) such that, for all α, α′∈ (α

¯
, α⁎], we

have that if αNα′, then

a Vðp; xÞ þ ð1−a VÞðq; yÞ � aðp; xÞ þ ð1−aÞðq; yÞ;
and, for all α, α′∈ [α⁎, ᾱ), we have that if αNα′, then

aðp; xÞ þ ð1−aÞðq; yÞ � a Vðp; xÞ þ ð1−a VÞðq; yÞ:
A case of the gradual population shift process that is of theoretical interest is the simple one
in which the two constituent income distributions ( p, x) and (q, y) are both perfectly equal. If in
( p, x) everyone has income x̂ and in (q, y) everyone has income ŷ, then the overall income
distribution can be written as ((α, 1−α), (x̂ , ŷ)). We assume, furthermore, that x̂Nŷ and that α
rises over (0, 1). During this simple process, the relative group sizes of the “rich” and “poor”—
those with incomes x̂ and ŷ, respectively—change continuously. For this reason, this case has
been regarded by Fields (1987, 1993), among others, as interesting for the theoretical question of
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how to define the concept of inequality comparisons. Fields criticises the popular inequality
measures—by which he means those studied by Anand and Kanbur (1993) (see Section 3 of this
article)—because they all imply an inverted-U pattern of inequality in the simple gradual
population shift process, while there are other patterns that would be at least as plausible in his
opinion. The inverted-U pattern implies, loosely speaking, that income distributions with equally
sized poor and rich groups are more unequal than income distributions with a small number of
poor and a large number of rich or with a large number of poor and a small number of rich. In his
own work, Fields defends the opposite view, the U pattern (inequality decreases in the early stages
of the process and increases afterwards), which implies that situations with few poor and many
rich or few rich and many poor are considered particularly unequal.11

It follows from the results of this article that Fields' critique applies not only to the inequality
measures dealt with by Anand and Kanbur, but to all inequality measures commonly considered
in the literature. Propositions 1 and 2 imply that the inequality orderings corresponding to all these
inequality measures satisfy CSQC, and Proposition 3 implies that all continuous inequality
orderings satisfying CSQC imply an inverted-U pattern in the simple gradual population shift
process. The latter follows from the fact that if the two constituent income distributions are
equally unequal, as is the case in the simple gradual population shift process,12 then the patterns
(i) and (ii) in Proposition 3 are only possible for noncontinuous inequality orderings since these
patterns involve a discontinuity at α=0 or at α=1. Note, finally, that, as Example 1 shows, the
fundamental axioms TP and βINV do not in general exclude the occurrence of a U pattern over
part of the gradual shift process.

6. Conclusion

The literature on inequality measurement has focused exclusively on the specific strategy of
supplementing the fundamental axioms, TP and βINV, with decomposability ideas, i.e., ideas
concerning how changes in the inequality of constituent income distributions have to relate to
changes in overall inequality—directly, in the form of the DEC axiom, or, indirectly, by basing
inequality measures on an RDEU social welfare function, which incorporates a weak
decomposability condition. It was demonstrated in this article that all inequality measures
considered in the literature satisfy the quasi-concavity properties QC and CSQC. Moreover, it was
shown that the latter property allows only three patterns describing how inequality evolves during
a process in which population gradually shifts from one constituent income distribution to
another.

On the one hand, the latter result reveals an attractive feature of CSQC: the property facilitates
the study of empirical phenomena in which gradual population shifts occur. On the other hand, it
11Fields (1993) provides a justification for the U pattern on the basis of the notions “elitism of the rich” and “isolation of
the poor.” Loosely speaking, elitism of the rich says that, for relatively low values of α, decreases in α lead to greater
inequality because the “rich” then attain a more elite position. Similarly, isolation of the poor says that, for relatively high
values of α, increases in α cause inequality to increase because the “poor” then become more isolated. The simple case of
the gradual population shift process has also been considered by Temkin (1986) and by Amiel and Cowell (1994). Using
his own framework for inequality measurement, the philosopher Temkin gives justifications for the three patterns dealt
with in Proposition 3 as well as for a pattern of constant inequality during the entire process. Amiel and Cowell provide
questionnaire results showing that respondents support several patterns among which the U pattern proposed by Fields is
quite popular. See also the discussion by Kolm (1999, pp. 36–38).
12At least, this would follow from βINV or from the commonsense assumption that all perfectly equal income
distributions are equally equal.
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may be argued that the three patterns allowed by CSQC are not the only plausible ones. If it is
concluded that the other—non CSQC consistent—inequality views should also be expressible
within a theory of inequality measurement, then our results show that one should focus on
supplementing the fundamental axioms, TP and βINV, in alternative ways, rather than with
decomposability ideas.

Appendix A

In the proofs, we usually abbreviate, for all ðp; xÞ; ðq; yÞaP and all scalars α, the expression
α( p, x)+ (1−α)(q, y) with (α; p, x; q, y).

Proof of Lemma 1. Consider an inequality quasi-ordering ⪯ that satisfies TP and βINV.
Consider, moreover, any ðp; xÞaP, any scalar λ such that ðp; yÞ ¼ ðp; xþ kðbxþ 1−bÞÞaP and
( p, x)≠ ( p, y), and any α∈ (0, 1). Note that we have k ¼ lð p;yÞ−lð p;xÞ

blð p;xÞþ1−b by definition. What has to
be shown is that ( p, x)≺ (α; p, x; p, y).

Consider ( p, z)= ( p, x+λ′(βx+1−β)), where k V¼ lða;p;x;p;yÞ−lð p;xÞ
blð p;xÞþ1−b . The choice of λ′

ensures that μ( p, z)=μ(α; p, x; p, y). Since either 0b xib zib yi for all i=1, 2, …, n, or
xiN ziN yiN0 for all i=1, 2, …, n, we have, furthermore, ðp; zÞaP. We now prove the claim
that TP implies ( p, z)≺ (α; p, x; p, y). Note that the supports of ( p, x), ( p, y), and ( p, z)
have the same number of elements. Now, clearly, to each element in the support of (p, x), say
income level t, there corresponds one element in the support of ( p, y) equal to t+λ(βt+1−β).
The frequency with which t appears in ( p, x), say frequency s, is equal to the frequency with
which t+λ(βt+1−β) appears in ( p, y). By consequence, in (α; p, x; p, y), there is, for each
element in the support of ( p, x), a pair of incomes such that the sum of frequencies is s and
the mean income for the group of individuals with any of these two incomes is αt+(1−α)[t
+λ(βt+1−β)]. Similarly, to each element in the support of ( p, x), say t occurring with
frequency s, there corresponds one income in the support of ( p, z) equal to t+λ′(βt+1−β)
and occurring with frequency s. Now, we have t+λ′(βt+1−β)=αt+(1−α)[t+λ(βt+1−β)].
Therefore, (α; p, x; p, y) can be obtained from ( p, z) by a sequence of mean preserving
spreads and, hence, TP implies ( p, z)≺ (α; p, x; p, y).

Since ( p, z)≺ (α; p, x; p, y) by TP and ( p, x)∼ ( p, z) by βINV, we obtain ( p, x)≺ (α; p, x; p,
y) using transitivity. □

Proof of Proposition 1. Consider an inequality quasi-ordering ⪯ that satisfies TP, βINV, and
DEC. Consider, moreover, any ðp; xÞ; ðq; yÞaP such that ( p, x)⪯ (q, y) and any α∈ (0, 1). In the
case where μ( p, x)=μ(q, y), DEC already implies ( p, x)⪯ (α; p, x; q, y). Therefore, we assume
μ( p, x)≠μ(q, y) in what follows. What has to be shown is that ( p, x)≺ (α; p, x; q, y).

Consider ( p, z)= ( p, x+λ(βx+1−β)), where k ¼ lðq;yÞ−lð p;xÞ
blð p;xÞþ1−b. The choice of λ ensures that

μ(p, z)=μ(q, y). Two cases are possible: either (a) ðp; zÞaP, or (b) ðp; zÞgP.
In case (a), we have ( p, x)∼ ( p, z) by βINV. Using transitivity, we have ( p, z)⪯ (q, y) and,

hence, (α; p, x; p, z)⪯ (α; p, x; q, y) by DEC. Lemma 1 implies ( p, x)≺ (α; p, x; p, z), and we
obtain ( p, x)≺ (α; p, x; q, y) using transitivity.

Case (b) occurs if and only if λ is such that in going from ( p, x) to ( p, z), nonpositive incomes
get nonzero frequency (which is only possible if μ( p, x)Nμ(q, y)). Consider ( p, x′)= ( p, x+λ′(βx
+1−β)) and (q, y′)=(q, y+λ′(βy+1−β)) where λ′ is any scalar such that [x1+λ′(β x1+1−β)]+
λ{β[x1+λ′(β x1+1−β)]+1−β}N0. We can then return to the beginning of this proof and prove the
result for ( p, x′) and (q, y′) without getting case (b). If the result is true for ( p, x′) and (q, y′), then it
must be true for ( p, x) and (q, y) as well by βINVand transitivity. □
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Proof of Lemma 2. First note that Eq. (8) can be rewritten as

W : PYℝ : ðp; xÞiuðx1Þ þ
Xn
i¼2

/
Xn
j¼i

pj

 !
½uðxiÞ−uðxi−1Þ�:

Consider any ðp; xÞ; ðq; yÞaP and any scalar α∈ (0, 1). Define, furthermore, the ordered pairs
( p′, z) and (q′, z) with z=(z1, z2, …, zm) the vector that contains the components of both x and
y arranged such that 0b z1b z2b⋯b zm. Moreover, p′=( p1′, p2′, …, pm′) is a vector where, for all
i=1, 2, …, m, pi′=pzi if zi occurs in x and pi′=0 otherwise, and, similarly, q′=(q1′, q2′, …, qm′) is
a vector where, for all i=1, 2, …, m, qi′=qzi if zi occurs in y and qi′=0 otherwise. We then have

W aðp; xÞ þ ð1−aÞðq; yÞð Þ ¼ uðz1Þ þ
Xm
i¼2

/
Xm
j¼i

apj Vþ ð1−aÞqj V
 !

½uðziÞ−uðzi−1Þ�

V a uðz1Þ þ
Xm
i¼2

/
Xm
j¼i

pjV

 !
½uðziÞ−uðzi−1Þ�

( )

þ ð1−aÞ uðz1Þ þ
Xm
i¼2

/
Xm
j¼i

qjV

 !
½uðziÞ−uðzi−1Þ�

( )

¼ aW ðp; xÞ þ ð1−aÞW ðq; yÞ;
where the inequality follows from the convexity of ϕ. The inequality holds with equality if ϕ is
linear, and holds strictly if ϕ is strictly convex and ( p, x)≠ (q, y) since the latter implies p′≠q′. □

Proof of Proposition 2. Consider any ðp; xÞ; ðq; yÞaP such that ( p, x)⪯ (q, y), and any scalar
α∈ (0, 1). Since the case where ( p, x)= (q, y) is trivial, we assume ( p, x)≠ (q, y) in what follows.

We first consider the case where ⪯ is representable by Eq. (10). Defining the function W β as
W bðp; xÞ ¼ W p; xþ 1−b

b

� �
for all ðp; xÞaP with W as in Eq. (8) and u as in Eq. (9), we have

Ib;e;/RDEUða; p; x; q; yÞ ¼
1
b

1−
½ð1−eÞW bða; p; x; q; yÞ� 1

1−e

lða; p; x; q; yÞ þ 1−b
b

( )
: ð14Þ

We have to show the following: (a) expression (14) is at least as great as (strictly greater than)
IRDEU
β,ε,ϕ ( p, x) whenever ϕ is (strictly) convex, and (b) expression (14) is strictly greater
than IRDEU

β,ε,ϕ ( p, x) whenever μ( p, x)≠μ(q, y).
First, consider

1
b

1−
½ð1−eÞðaW bðp; xÞ þ ð1−aÞW bðq; yÞÞ� 1

1−e

lða; p; x; q; yÞ þ 1−b
b

( )

¼ 1
bf1− 1

lða; p; x; q; yÞ þ 1−b
b
½a lðp; xÞ þ 1−b

b

� �1−e ½ð1−eÞW bðp; xÞ� 1
1−e

lðp; xÞ þ 1−b
b

 !1−e

þð1−aÞ lðq; yÞ þ 1−b
b

� �1−e ½ð1−eÞW bðq; yÞ� 1
1−e

lðq; yÞ þ 1−b
b

 !
1−e� 1

1−eg
¼ 1

1− 1−bIb;e;/RDEUðp; xÞ
h i

A
n o

;

ð15Þ
b
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where

A ¼
a lðp; xÞ þ 1−b

b

� �1−e
þð1−aÞ lðq; yÞ þ 1−b

b

� �1−e 1−bIb;e;/RDEUðq;yÞ
1−bIb;e;/RDEUð p;xÞ

� �1−e
" #

1
1−e

lða; p; x; q; yÞ þ 1−b
b

¼ B� C;

where

B ¼
a lðp; xÞ þ 1−b

b

� �
þ ð1−aÞ lðq; yÞ þ 1−b

b

� �
1−bIb;e;/RDEUðq;yÞ
1−bIb;e;/RDEUð p;xÞ

� �
alðp; xÞ þ ð1−aÞlðq; yÞ þ 1−b

b

and

C ¼
a lðp; xÞ þ 1−b

b

� �1−e
þð1−aÞ lðq; yÞ þ 1−b

b

� �1−e 1−bIb;e;/RDEUðq;yÞ
1−bIb;e;/RDEUð p;xÞ

� �1−e
" #

1
1−e

a lðp; xÞ þ 1−b
b

� �
þ ð1−aÞ lðq; yÞ þ 1−b

b

� �
1−bIb;e;/RDEUðq;yÞ
1−bIb;e;/RDEUð p;xÞ

� � :

It is readily checked that 0bB≤1. Furthermore, if ε=0, then C=1, while if εN0, then

C ¼ 1−I1;e;ιRDEU ða; 1−aÞ; lðp; xÞ þ 1−b
b

; lðq; yÞ þ 1−b
b

� �
1−bIb;e;/RDEUðq; yÞ
1−bIb;e;/RDEUðp; xÞ

 !" # !
;

where ι is the identity function. By consequence, we have 0bC≤1.
Second, notice that 1

b
1− 1−bIb;e;/RDEUðp; xÞ
h i

BC
n o

zIb;e;/RDEUðp; xÞ since 0bB≤1 and 0bC≤1. Because, more-

over, it follows fromLemma2 thatwheneverϕ is (strictly) convex, expression (14) is at least as great as
(is strictly greater than) expression (15), (a) follows. The case in which ϕ is strictly convex has been
dealt with, and since ε=0 is only possible in that case, we assume εN0 in what follows. Notice that

whenever μ(p, x)≠μ(q, y) and IRDEU
β,ε,ϕ (p, x)=IRDEU

β,ε,ϕ (q, y), we have B=1 but Cb1 since εN0, so that
1
b

1− 1−bIb;e;/RDEUðp; xÞ
h i

BC
n o

NIb;e;/RDEUðp; xÞ, and whenever μ(p, x)≠μ(q, y) and IRDEUβ,ε,ϕ (p, x)b IRDEU
β,ε,ϕ (q, y), we have

Bb1, so that, again, 1
b

1− 1−bIb;e;/RDEUðp; xÞ
h i

BC
n o

NIb;e;/RDEUðp; xÞ. Combining this with the fact that convexity of ϕ

implies that expression (14) is at least as great as expression (15), we find that (b) follows.
We now consider the second case where ⪯ is representable by Eq. (12). Using W as in Eq. (8)

and u as in Eq. (11), we have

I0;g;/RDEUða; p; x; q; yÞ ¼ lða; p; x; q; yÞ þ 1
g
lnð−W ða; p; x; q; yÞÞ: ð16Þ

The following has to be shown: (c) expression (16) is at least as great as (strictly greater
than) IRDEU

0,γ,ϕ ( p, x) whenever ϕ is (strictly) convex, and (d) expression (16) is strictly greater
than IRDEU

0,γ,ϕ ( p, x) whenever μ( p, x)≠μ(q, y).
Consider

lða; p; x; q; yÞ þ 1
g
lnð−½aW ðp; xÞ þ ð1−aÞW ðq; yÞ�Þ; ð17Þ
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and

alðp; xÞ þ ð1−aÞlðq; yÞ þ 1
g
alnð−W ðp; xÞÞ þ 1

g
ð1−aÞlnð−W ðq; yÞÞ ð18Þ

¼ aI0;g;/RDEUðp; xÞ þ ð1−aÞI0;g;/RDEUðq; yÞ: ð19Þ
It follows from Lemma 2 that whenever ϕ is (strictly) convex, expression (16) is at least as
great as (is strictly greater than) expression (17). Since, moreover, expression (17) is at least as
great as expression (18) by concavity of the ln function, we have (c). In the case where μ( p,
x)≠μ(q, y) and IRDEU

0,γ,ϕ ( p, x)= IRDEU
0,γ,ϕ (q, y), we have W( p, x)≠W(q, y) and, hence, expression (17)

is strictly greater than expression (18) by strict concavity of the ln function. If μ( p, x)≠μ(q, y)
and IRDEU

0,γ,ϕ ( p, x)≠ IRDEU0,γ,ϕ (q, y), then expression (19) is strictly greater than IRDEU
0,γ,ϕ ( p, x). Hence,

(d) follows. □

Proof of Proposition 3. Consider an inequality ordering ⪯ that satisfies CSQC. Consider,
moreover, any ðp; xÞ ðq; yÞaP with μ( p, x)≠μ(q, y). We have to show that only patterns (i), (ii),
and (iii) are possible, as descriptions of the evolution of inequality in (α; p, x; q, y) as α rises over
the interval (α

¯
, ᾱ)⊆ (0, 1).

Consider the following two subpatterns, both of which describe how inequality evolves in (α;
p, x; q, y) as α rises over some subinterval ðPfa;f̄a ÞpðPa; āÞ:

(a) A constant pattern over ðPfa;f̄a Þ, i.e., for all α, α′∈ ðPfa;f̄a Þ, we have (α; p, x; q, y)∼ (α′; p, x;
q, y).

(b) A U pattern over ðPfa;f̄a Þ, i.e., there exists an α⁎∈ ðPfa;f̄a Þ such that, for all a; a VaðPfa; a*�, if
αNα′, then (α; p, x; q, y)≺ (α′; p, x; q, y), and, for all a; a Va½a*;f̄a Þ, if αNα′, then (α′; p,
x; q, y)≺ (α; p, x; q, y).

We first show by contradiction that neither subpattern (a) nor (b) can be the case for any
subinterval ðPfa;f̄a Þ. Suppose, therefore, that (a) or (b) holds over some subinterval ðPfa;f̄a Þpð

P
a; āÞ.

Both subpatterns imply that there exist some a; a V; aWaðPfa;f̄a Þ where αNα′Nα″ such that (α′; p, x;
q, y)⪯ (α; p, x; q, y) and (α′; p, x; q, y)⪯ (α″; p, x; q, y). This is obvious in the case of (a), while
in the case of (b) this can be seen by letting α′ equal the α⁎ in the definition of (b). Note now that,
for aj ¼ a V−aW

a−aW, we have (α‴; (α; p, x; q, y); (α″; p, x; q, y))= (α′; p, x; q, y). By consequence, we
obtain both (α‴; (α; p, x; q, y); (α″; p, x; q, y))⪯ (α; p, x; q, y) and (α‴; (α; p, x; q, y); (α″; p, x;
q, y))⪯ (α″; p, x; q, y). Since, moreover, α‴∈ (0, 1) and μ(α; p, x; q, y)≠μ(α″; p, x; q, y), we
have a violation of CSQC.

Now, each pattern for which subpattern (a) is not the case for some ðPfa;f̄a Þpð
P
a; ā Þ, is either

pattern (i), (ii), (iii), or a pattern for which pattern (b) is the case for some ðPfa;f̄a Þ. However, as we
have seen, the latter is impossible. □

References

Amiel, Y., Cowell, F.A., 1994. Inequality changes and income growth. In: Eichorn, W. (Ed.), Models and Measurement of
Welfare and Inequality. Springer Verlag, Berlin, pp. 3–27.

Anand, S., Kanbur, S.M.R., 1993. The Kuznets process and the inequality–development relationship. Journal of
Development Economics 40, 25–52.

Bossert, W., Pfingsten, A., 1990. Intermediate inequality: concepts, indices, and welfare implications. Mathematical Social
Sciences 19, 117–134.



45K. Bosmans / Mathematical Social Sciences 53 (2007) 29–45
Chateauneuf, A., Gajdos, T., Wilthien, P.-H., 2002. The principle of strong diminishing transfer. Journal of Economic
Theory 103, 311–333.

Chew, S.H., Karni, E., Safra, Z., 1987. Risk aversion in the theory of expected utility with rank dependent probabilities.
Journal of Economic Theory 42, 370–381.

Cowell, F.A., 2000. Measurement of inequality. In: Atkinson, A.B., Bourguignon, F. (Eds.), Handbook of Income
Distribution, vol. 1. Elsevier, Amsterdam, pp. 87–166.

Ebert, U., 1988. Measurement of inequality: an attempt at unification and generalization. Social Choice and Welfare 5,
147–169.

Fields, G.S., 1987. Measuring inequality change in an economy with income growth. Journal of Development Economics
26, 357–374.

Fields, G.S., 1993. Inequality in dual economy models. Economic Journal 103, 1228–1235.
Gajdos, T., 2001. Les fondements axiomatiques de la mesure des inégalités. Revue d'Economie Politique 5, 683–720.
Kakwani, N., 1988. Income inequality, welfare and poverty in a developing economy with applications to Sri Lanka.

Social Choice and Welfare 5, 199–222.
Kolm, S.-C., 1999. The rational foundations of income inequality measurement. In: Silber, J. (Ed.), Handbook of Income

Inequality Measurement. Kluwer, Dordrecht, pp. 19–94.
Kuznets, S., 1955. Economic growth and income inequality. American Economic Review 45, 1–28.
Robinson, S., 1976. A note on the U hypothesis relating income inequality and economic development. American

Economic Review 66, 437–440.
Sen, A.K., Foster, J.E., 1997. On Economic Inequality, Expanded Edition. Clarendon Press, Oxford.
Temkin, L.S., 1986. Inequality. Philosophy and Public Affairs 15, 99–121.
Yaari, M.E., 1987. The dual theory of choice under risk. Econometrica 55, 95–115.


	Income inequality, quasi-concavity, and gradual population shifts
	Introduction
	Preliminaries
	Notation and basic axioms
	Properties concerning mixtures

	Inequality quasi-orderings
	Normative inequality orderings
	Inequality and gradual population shifts
	Conclusion
	app1
	References


