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Abstract

In this article we propose a new approach that permits us to simultaneously test unit
and fractional roots at the long-run and the seasonal frequencies. We examine the Industrial
Production Indexes (IPI) in four Latin American countries (Brazil, Argentina, Colombia
and Mexico), using new statistical tools based on seasonal and non-seasonal long-memory
processes. Results show that the root at the long-run or zero frequency plays a much more
important role than the seasonal one. Nevertheless, in the cases of Brazil and Argentina a
component of long memory behaviour is also present at the seasonal structure, indicating
that shocks modify the seasonal structure for a long period. Policy makers should thus pay
attention to this result in choosing the optimal economic policy.
© 2004 Society for Policy Modeling. Published by Elsevier Inc. All rights reserved.
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1. Introduction

The recent economic literature has stressed two major characteristics of macroe-
conomic series which has been used by academics or economic advisers to better
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understand the consequences of economic policies. First, since the seminal paper
of Nelson and Plosser (1982), it appears that almost all series possess a unit root.
The consequences of the presence of a stochastic trend are major for the modelling
and the decision of economic policies, as a shock affecting one of these series will
be persistent and will never die out. The second stylized fact is the presence of
seasonal components. Traditionally, seasonal fluctuations have been considered as
a nuisance that shadows the most important components of the series (namely the
growth and the business cyclical components, e.g.,Burns & Mitchell, 1946). They
are often removed beforehand via seasonal adjustment procedures. Thus, most of
the empirical works considers simply seasonally adjusted data, without paying
attention to the role of seasonality. A lot of papers have stressed on one of these
two features, but only a few have been concerned with the linkages between the
seasonal and the long-run structures.

Hasza and Fuller (1982)have shown that seasonal adjustment biases traditional
unit root tests. Such errors are very difficult to measure and so to correct by system-
atic procedures. Nevertheless, the consequences for political advisors are strong
as the persistence of shocks are not correctly determined, leading to misperception
in the consequences of economic policies. Moreover, seasonal adjustment proce-
dures do not generally take into account the possible fractional roots at seasonal
frequencies, leading thus to erroneous conclusions about its behaviour. For ex-
ample, a structural economic policy (aiming at modifying the long-run behaviour)
may induce a persistent modification of the seasonal structure, ruling out the initial
objectives.

In this article we develop a new framework allowing for unit and fractional
roots simultaneously at zero (long-run) and the seasonal frequencies. It constitutes
an alternative to test for (fractional) unit roots without using any prior seasonal
adjustment. It is based on fractionally integrated techniques. To illustrate our theo-
retical concept, we analyse the monthly structure of several Industrial Production
Indexes (IPI) in some Latin American countries. The results suggest that the series
can be well characterized in terms ofI(d) processes with roots at both at the zero
and the seasonal (monthly) frequencies. The structure of the paper is as follows:
Section 2briefly describes a model that incorporates seasonal and non-seasonal
roots.Section 3presents a version of the tests ofRobinson (1994)that permits us
to test this type of model. InSection 4, the tests are applied to IPI series, while
Section 5contains some concluding comments.

2. A model with seasonal and non-seasonal unit and fractional roots

It is a well-known fact that many time series contain important seasonal com-
ponents and seasonal first differences is the easiest way to remove the seasonal
component.Dickey, Hasza, and Fuller (DHF, 1984); Hylleberg, Engle, Granger,
and Yoo (HEGY, 1990), Beaulieu and Miron (1993)andTam and Reimsel (1997),
amongst others proposed test statistics to eliminate the seasonal unit roots in raw
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time series. Thus, for example, ifxt is the time series we observe, with a seasonal
changing pattern, we can consider the model,

(1 − Ls)xt = ut, t = 1, 2, . . . , (1)

whereLs is the seasonal lag operator (Lsxt = xt−s); s is the number of time periods
in a year, and whereut is anI(0) process, defined as a covariance stationary process
with positive and finite spectral density function at any frequency of the spectrum.
Note that the polynomial in (1) can be decomposed into:

(1 − L)(1 + L + L2 + · · · + Ls−1) = (1 − L)S(L). (2)

That is, the seasonal difference operator can be broken down into the product of
the first difference operator and the moving-average filterS(L), containing further
roots of modulus unity. Therefore, the root at the zero frequency appears as a
component of the seasonal polynomial in (1). However, there are many cases
where this frequency plays a major role, describing not only part of the seasonal
structure but also the trending stochastic behaviour of the series. In fact,Hasza
and Fuller (1982)consider the model:

(1 − L)(1 − Ls)xt = ut, t = 1, 2, . . . , (3)

where the first polynomial in (3) represents a stochastic trend, while the second
indicates a seasonal structure. In their unit-root test, they suggest to estimate the
equations:

xt = �1xt−1 + �2xt−s + �3xt−s−1 + ut,

xt = �1xt−1 + �2(xt−s − �1xt−s−1) + ut,

and then to test the restrictions [�1, �2, �3] = [1, 1, −1] or [�1, �2] = [1, 1]
with a standardF-statistic and using the proper tabulated distributions.Dickey and
Pantula (1987)pointed out, however, the inappropriateness of such tests since they
are two sided in nature whereas the alternative of stationarity is one-sided.

In this article we generalize the model in the above unit-root test to allow for
fractional roots at zero and the seasonal frequencies. Besides, using the LM-based
testing procedure developed byRobinson (1994), the tests are the most power-
ful ones when directed against the appropriate (fractional) alternatives, and due
to the use of the latter alternatives, free of theDickey and Pantula’s (1987)crit-
icism. Robinson’s (1994)tests have also the advantage of being pivotal, and so
finite-sample size distortions can easily be corrected by re-sampling methods such
as bootstrap (see, e.g.,Candelon & Gil-Alana, 2003).

Hence, model (3) can be viewed as a particular case of a much more general
type of long memory processes, allowing fractional roots at zero and the seasonal
frequencies of form:

(1 − L)d1(1 − Ls)d2xt = ut, t = 1, 2, . . . , (4)
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for given real valuesd1 andd2. Here, the first fractional polynomial can be ex-
pressed in terms of its binomial expansion such that for all reald1,

(1 − L)d1 =
∞∑

j=0

(
d1
j

)
(−1)jLj = 1 − d1L + d1(d1 − 1)

2
L2 − · · · ,

and similarly for the seasonal structure,

(1 − Ls)d2 =
∞∑

j=0

(
d2
j

)
(−1)jLsj = 1 − d2L

s + d2(d2 − 1)

2
L2s − · · · .

Clearly, imposingd1 = 0 andd2 = 1, (4) becomes the seasonal unit root model
(1) proposed byHasza and Fuller (1982), and, imposingd1 = d2 = 1, we obtain
(3). Let us consider first the case ofd2 = 0. In this context, ifd1 > 0, xt is said
to be a long memory process (at the long-run frequency), so-called because of the
strong association between observations widely separated in time. In such a case,
the series does not exhibit seasonal movement. The long-run effect of shocks is
then crucial for the global dynamic of the process. Similarly, imposingd1 = 0,
the model in (4) becomes:

(1 − Ls)d2xt = ut, t = 1, 2, . . . , (5)

and if d2 > 0, it is called a seasonally fractionally integrated (or seasonal long
memory) process. In such a case, the seasonal dynamics are of major importance
for the behaviour of the series. Extreme cases appear whend2 > 1. Several studies
have explored this topic (seeGil-Alana & Robinson, 2001; Porter Hudak, 1990
inter alia). However, there are not so far empirical works that simultaneously test
the degrees of integration at zero and the seasonal frequencies and, in that respect,
the present paper considers the general model (4), allowing for simultaneous sea-
sonal and non-seasonal unit and fractional roots, at the same time, trying of being
an alternative credible approach to the traditional models based on (1) or (3). This
approach constitutes a new framework for empirical analyses with seasonal data. It
leads to an unbiased estimation of the degree of the seasonal and the long-run frac-
tional integration. Thus, economics advisers are able to discriminate the optimal
economic policy.

3. The testing procedure

Robinson (1994)proposes a Lagrange Multiplier (LM) test of the null hypoth-
esis:

Ho : d = (d1, d2)
′ = (d1o, d2o)

′ = do, (6)
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in a model given by (4), for any given real numbersd1o andd2o. For the ease of
presentation, we consider monthly data, and then assume in the sequel of the paper
s = 12. Specifically, the test statistic is given by:

R̂ = T

�̂4
â′Â−1â, (7)

whereT is the sample size, and

â=−2�

T

∗∑
j

�(�j)g(�j; �̂)−1I(�j); �̂2=�2(�̂)= 2π

T

T−1∑
j=1

g(�j; �̂)−1I(�j),

Â = 2

T




∗∑
j

�(�j)�(�j)
′ −

∗∑
j

�(�j)ε̂(�j)
′

 ∗∑

j

ε̂(�j)ε̂(�j)
′



−1

×
∗∑
j

ε̂(�j)�(�j)
′



�(�j)
′ = [

�1(�j), �2(�j)
] ; ε̂(�j) = ∂

∂�
logg(�j; �̂);

�1(�j) = log

∣∣∣∣2 sin
λj

2

∣∣∣∣ ;

�2(�j) = log

∣∣∣∣2 sin
�j

2

∣∣∣∣ + log

(
2 cos

�j

2

)
+ log

∣∣2 cos�j

∣∣

+ log
∣∣∣2(

cos�j − cos
�

3

)∣∣∣ + log

∣∣∣∣2
(

cos�j − cos
2�

3

)∣∣∣∣
+ log

∣∣∣2(
cos�j − cos

�

6

)∣∣∣ + log

∣∣∣∣2
(

cos�j − cos
5�

6

)∣∣∣∣ ,
with �j = 2�j/T . I(�j) is the periodogram of̂ut = (1−L)d1o(1−L12)d2oxt, and
�̂ = arg min�∈T ∗�2(�) with T∗ as a compact subset of theRq Euclidean space. The
functiong above is known and comes from the spectral density ofut :

f(�; �) = �2

2�
g(�; �), −� < � ≤ �,

and the summation on (∗) in the above expressions refers to the discrete bounded
frequencies�j.

Based on Ho (6), Robinson (1994)established that, under certain regularity
conditions:

R̂ →d �2
2, as T → ∞. (8)
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Thus, unlike other procedures, we are in a classical large-sample testing situation by
reasons described inRobinson (1994), who also showed that the tests are efficient
in the Pitman sense against local departures from the null. A test of (6) will reject
Ho against the alternative Ha: d �= do if R̂ > �2

2,�, where Prob(�2
2,� > �2

2) = �.

4. An application to industrial production index in Latin American
countries

The time series data used in this section correspond to the log-transformation of
the monthly structure of the Industrial Production Indexes series in Brazil, Mex-
ico, Colombia and Argentina, obtained from the IFS database of the International
Monetary Fund. These series are seasonally unadjusted. The starting date is Jan-
uary 1980 for Brazil and Mexico, January 1985 for Argentina, and January 1986
for Colombia, and all series end in November-2001.

Fig. 1contains plots of the original series with their corresponding correlograms
and periodograms. The series have a non-stationary appearance and the correlo-
grams clearly show a seasonal pattern, especially for Brazil and Colombia, though
a visual inspection at the periodograms also indicates the importance of the root
at the long-run frequency. Similar plots for the first differenced data are given in
Fig. 2, and the seasonal component, revealed by the 11 peaks in the periodogram,
becomes apparent in all cases. Finally, the plots of first and first seasonal (monthly)
differences are displayed inFig. 3, and the correlograms and the periodograms in
this figure suggest that the series might now be overdifferenced with respect to
both, the zero and the seasonal frequencies.

Denoting the time series byxt , we employ throughout model (4), testing Ho (6)
for valuesd1o, d2o = 0, (0.25), 2, including thus tests for a unit root exclusively
at the long-run (zero frequency) (d1o = 1, d2o = 0); tests for seasonal unit roots
(d1o = 0, d2o = 1); unit and seasonal unit roots (d1o = d2o = 1); as well as other
fractionally integrated possibilities. We assume thatut is white noise, and though
not reported in the paper, we also consider the case of autocorrelated disturbances,
in particular, AR(1) and seasonally monthly AR(1) processes.

The test statistic reported acrossTable 1is the one given bŷR in (7). However,
instead of presenting the results for all values of d1o and d2o, we just report across
the tables those cases where we find at least one non-rejection value for each coun-
try. We observe that Ho (6) cannot be rejected for any series when(d1o, d2o) =
(0.00, 1.00), implying that a seasonal unit root with white noiseut may be a
plausible way of modelling the series. However, apart from this case, all the re-
maining non-rejection values take place whend1o = 1, 1.25, 1.50 and 1.75 with
d2o = 0 or 0.25. Thus, we observe higher degrees of integration at the long-run
frequency than at the seasonal ones. Some differences appear across countries.
More non-rejections are observed for Brazil and Argentina than for Colombia and
Mexico. In fact, Ho (6) cannot be rejected whend1o = 1, 1.25, 1.50 and 1.75,
with d2o = 0.25 for Brazil and Argentina, these hypotheses being rejected for the
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Fig. 1. Log of the Industrial Production Indexes (IPI), with their corresponding correlograms and
periodograms. The large-sample standard error under the null hypothesis of no autocorrelation is
1/T1/2 or roughly 0.07 for series of length considered here.

remaining two countries. Thus, it turns out that models with fractional roots at
seasonal frequencies are more rejected for Colombia and Mexico than for Brazil
and Argentina, implying that the seasonal structure appears more important for
these two later countries. Such a result indicates that seasonal shocks are more
persistent in Brazil and Argentina than in Mexico or Colombia.
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Fig. 2. First differences of the IPI, with their corresponding correlograms and periodograms. The
large-sample standard error under the null hypothesis of no autocorrelation is 1/T1/2 or roughly 0.07
for series of length considered here.

In order to have a more precise view about the message contained in this table,
we have performed the same tests, but this time using increments ford1o andd2o of
0.01.Fig. 4displays the non-rejection regions for each country. We see thatd1o is
in all cases higher thand2o, stressing once more the importance of the root at zero
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Fig. 3. First and first seasonal differences of the IPI, with their corresponding correlograms and peri-
odograms. The large-sample standard error under the null hypothesis of no autocorrelation is 1/T1/2 or
roughly 0.07 for series of length considered here.

over the seasonal ones. Also, the fact thatd1 is in all cases higher than 0.5 indicates
that the component corresponding to the zero frequency is clearly non-stationary.
On the other hand, we observe thatd2 is always strictly smaller than 0.5, suggesting
that, if the long-run trend is considered, the seasonal structure is stationary though
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Table 1
Testing Ho (6) in (4) with the tests ofRobinson (1994)and whitenoise disturbances

d1o d2o Brasil Argentina Mexico Colombia

0.00 1.00 1.011 0.646 1.213 3.325
0.75 0.00 0.358 0.444 0.723 1.936
0.75 0.25 4.105 3.330 5.751 5.528
1.00 0.00 0.527 0.656 1.276 2.728
1.00 0.25 4.905 4.026 8.089 8.119
1.25 0.00 0.348 0.653 1.418 2.835
1.25 0.25 4.874 4.232 10.943 9.004
1.50 0.00 0.183 0.555 1.389 2.560
1.50 0.25 4.343 4.052 8.885 13.243
1.75 0.00 0.242 0.438 1.320 2.210
1.75 0.25 3.365 3.655 10.045 5.297
1.75 0.50 7.654 5.964 13.214 11.345

In bold, the non-rejection values at the 95% significance level.

with a component of long memory behaviour. It should also be noted that though
the tests are unable to reject the null whend2o = 0, i.e., with no seasonal fractional
roots, these hypotheses are in all cases “less clearly non-rejected”1 than whend2o
is positive, suggesting that a component of long memory is present in relation with
the seasonal part.

These results have thus strong implications in terms of economic policy and
planning inference. A particular shock will simultaneously affect the seasonal and
the long-run structure of the IPI. Nevertheless, shocks will be mean reverting for
the seasonal structure (i.e., their effects disappear in the long-run), whereas the
effect will persist on the long-run structure. Thus, a structural economic policy,
aiming at modifying the long-run properties of the IPI, can be run out without
paying too much attention on the effects on the seasonal structure, as they will
quickly die out. Nevertheless, this policy advice has to be modulated for Brazil
and Argentina, where the seasonal fractional root is found to lie between 0.3 and
0.6. In these cases, even if shocks are shown to be mean reverting for the seasonal
structure, they posses long memory. It means that an economic policy will have a
long-run effect and will take time before dying out. Hence, if a structural economic
policy is performed in Brazil and Argentina, it will induce a modification of the
seasonal structure of the IPI. These effects will not be permanent (the unit-root
hypothesis at seasonal frequencies is rejected) but very long lasting. Particular
attention should thus be paid to seasonal effects of economic policies in Brazil and
Argentina, which is not the case for Colombia and Mexico.

We also performed the tests for the case of autocorrelated disturbances and the
results were similar in both cases and also similar to those given inTable 1. Thus,

1 By ‘less clearly non-rejected’, we mean that the value of the test statistic is closer to the rejection
values.
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Fig. 4. Regions of values ofd1o andd2o where Ho (6) cannot be rejected at the 95% significance level.

apart from the case of(d1o, d2o) = (0, 1), all the other non-rejection values take
place whend1o is between 0.75 and 1.75 withd2o = 0 or 0.25.

The results presented across this paper present some ambiguous conclusions.
Thus, on the one hand, the seasonal unit root model cannot be rejected for any
series and any type of disturbances. On the other hand, most of the non-rejections
occur whend1o is between 0.75 and 1.75 withd2o = 0 or 0.25. This may
be explained by the fact that the tests ofRobinson (1994), when integer val-
ues of d1o and d2o are entertained, have low power to detect fractional mod-
els. In fact, we made several Monte Carlo experiments, conducting the tests
with (d1o, d2o) = (0, 1) on fractional series withd1 = 1, 1.25, 1.50 and 1.75,
andd2 = 0 and 0.25, and the rejection frequencies of the tests never exceeded
0.400. On the other hand, performing the tests withd1o ∈ [0.75, 1.75] and
d2o ∈ [0, 0.25] on purely seasonal unit-root models, the rejection probabilities
were practically 1 in all cases for series of length considered here. In view of
this, we can conclude by saying that the non-rejections obtained for the sea-
sonal unit-root model are perhaps spurious and due to the low power of this
version of the tests for testing integer differences when fractional models are
entertained.
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5. Concluding comments

In this article we have examined the monthly structure of the log-transformation
of the Industrial Production Indexes in several Latin American countries by means
of a version of the tests ofRobinson (1994)that permits us to simultaneously test
the degrees of integration at zero and the seasonal monthly frequencies. These tests
have standard null and local limit distributions and several experiments conducted
via Monte Carlo show that the tests perform relatively well in finite samples. The
results show that the long-run or zero frequency plays a crucial role when modelling
the time series behaviour of the series, with an order of integration ranging between
0.75 and 1.75, though the seasonal root should also be incorporated in the model,
with an order of integration ranging between 0 and 0.5 for Argentina and Brazil,
and slightly smaller for the other two countries. The presence of the fractional
seasonal roots will affect the conclusions obtained by classical unit-root tests.

Policy advices can be drawn from this model as our new framework helps to
better characterize the mean reverting properties of the series at seasonal and zero
frequencies. Applying it to the IPI in four Latin American countries, it turns out that
long-run effects of shocks might not be mean reverting, indicating the importance
of long-run effect of economic policies. It is also noticeable that seasonal fluctua-
tions have shorter memory in Colombia and Mexico than in Brazil and Argentina.
For these last two countries, policy makers should pay a particular attention at the
seasonal effect of the shocks, as they take time before dying out.
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