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Abstract. In this paper, we investigate the use of partial
correlation analysis for the identification of functional
neural connectivity from simultaneously recorded neural
spike trains. Partial correlation analysis allows one to
distinguish between direct and indirect connectivities by
removing the portion of the relationship between two
neural spike trains that can be attributed to linear
relationships with recorded spike trains from other
neurons. As an alternative to the common frequency
domain approach based on the partial spectral coher-
ence we propose a new statistic in the time domain. The
new scaled partial covariance density provides addi-
tional information on the direction and the type,
excitatory or inhibitory, of the connectivities. In simu-
lation studies, we investigated the power and limitations
of the new statistic. The simulations show that the
detectability of various connectivity patterns depends on
various parameters such as connectivity strength and
background activity. In particular, the detectability
decreases with the number of neurons included in the
analysis and increases with the recording time. Further,
we show that the method can also be used to detect
multiple direct connectivities between two neurons.
Finally, the methods of this paper are illustrated by an
application to neurophysiological data from spinal
dorsal horn neurons.

1 Introduction

Major progress has been made in understanding the
functions of the nervous system on molecular, cellular,
and systemic levels. In contrast, the organization and
function of local neuronal networks are largely un-
known. With the exception of the retina, the goal of
relating network connectivity to function has not been
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achieved in any area of the vertebrate nervous system.
Thus, a major challenge of future neuroscience will be to
approach the complex interplay of functionally con-
nected ensembles of neurons.

Functionally relevant neuronal connections can be
defined and identified by changes in discharge proba-
bility in a postsynaptic neuron by activity in excitatory
or inhibitory presynaptic neurons. While direct, i.e.,
monosynaptic, connections are devoid of interneurons,
polysynaptic pathways involve one or more intercalated
neurons. A number of experimental methods are now
available to simultaneously record action potential dis-
charges of large numbers of neurons. These include
multiple single-neuron recordings with an array of mi-
croelectrodes (Kriiger 1983) or tetrodes (Gray et al.
1995), confocal calcium imaging (Fetcho and O’Malley
1995), multisite recordings from cultured neurons with
planar electrode arrays (Maeda et al. 1995), or multiple
single-neuron recordings with voltage sensitive dyes
(Grinvald et al. 1988).

Any reliable description of neuronal network func-
tion needs to identify excitatory vs. inhibitory and
monosynaptic vs. polysynaptic connections. The neu-
rophysiological identification of synaptic connections is
typically based on the recorded times of discharges of
the neurons under study. The association between such
neural spike trains is commonly measured by the cross-
correlation histogram (Perkel et al. 1967), which is the
histogram of the times of occurrence of all output spikes
relative to the times of occurrence of all input spikes.
The peaks and troughs in such histograms indicate the
change of probability for the occurrence of an output
spike due to the presence of an input spike, thus
revealing the type and the time delay of the synaptic
connection. However, when analyzing the structure of a
larger neural ensemble we cannot infer from the cross-
correlation histogram to what extent these changes are
due to a direct connection between the two neurons, to
indirect connections via other recorded neurons, or to
common inputs.

A frequency domain approach based on the method
of linear partialization has been discussed by Brillinger
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et al. (1976), Rosenberg et al. (1989), and Dahlhaus
(2000) for neurophysiological data. Although the
method allows one to distinguish direct from indirect
connections, no distinction is made between excitatory
and inhibitory connections.

In this paper, we present a partialization analysis in
the time domain. The method is based on a scaled ver-
sion of the partial covariance density, which can be
estimated by frequency domain methods. The scaled
partial covariance density combines the advantages of
the crosscorrelation histograms and the partialization
analysis in the frequency domain. In particular, it can be
interpreted in the same way as the crosscorrelation his-
tograms with peaks and troughs indicating excitatory
and inhibitory connections, while on the other hand it
allows for the discrimination of direct and indirect
connections and common inputs. The theoretical back-
ground is presented in Sect. 2. In Sect. 3, the results
from a simulation study are given. Furthermore, the
method is applied to a data set consisting of ten spike
trains from spinal dorsal horn neurons.

2 Methods
2.1 Multivariate point processes

The method discussed in this section is entirely based on
the relation between the sequences of times of occur-
rence of discharges recorded from different neurons.
Therefore, these neural spike trains can be represented
by stochastic point processes. A point process in general
refers to an ordered sequence of isolated events {7;},.;
occurring randomly in time. Such a point process
associated with the spike train of neuron a can be
represented by the counting process N,(¢), where N, () is
the total number of action potentials of neuron a from
time 0 up to time ¢. For the details about point processes
we refer to the monographs of Cox and Isham (1990)
and Daley and Vere-Jones (1988).

Subsequently, it will be assumed that the multivari-
ate point process N is stationary, that is, its properties
are independent of the time at which the process is
observed. We further assume that increments of the
process N well separated in time are independent and,
finally, that the points of the process do not occur
simultaneously.

The connectivities between neurons are commonly
studied by pairwise second-order statistics. In the time
domain, the conditional intensity function myg,(u) de-
scribes the probability of occurrence of a spike of type a
at time u > 0 given that a spike of type b has occurred at
time 0

= Prob{dN,(u) = 1|N,(0) = 1}/du

where dN,(f) = N,(¢t + df) — N,(¢). Alternatively, one
might consider the cross-covariance density at lag u
between processes N, and Np:

Gas (1) = cov{dN, (1), dNy (¢ + u)} /(dt du) (1)

Map (1)

which is related to the conditional intensity function
by qas(u) = may(u)py — paps, Where p, = Prob{dN,(t) =
1}/d¢ is the mean intensity of process N,. Since the
increments dN,(¢) of a point process are discrete with val-
ues of only 0 or 1, it follows that var{dN,(¢)} = p,dt and,
consequently, the right-hand side of Eq. 1 does not
converge for dt,du — 0 if a=5b and u=0. In this
situation, the autocovariance density q,, is defined such
that it is continuous also at u = 0. Because of this
behavior of the variance the correlation

cort{dN, (1), dNy (¢ + )} = vdrdu 228

\/PaPb

for u# 0 or a# b converges to 0 as d¢,du — 0. The
expression, however, suggests that the following scaled
covariance density (SCD)

ab\U
Sab(u) = qp(pz);
a

be used as a measure for the linear dependence of the
two processes N, and N,. This statistic is not bounded
like an ordinary correlation but still has a number of
useful properties. For example, in the case of Hawkes’
self-exciting processes (Hawkes 1971a,b), which have
linear relationships, the scaled covariance densities stay
constant if the mean intensities of all component
processes are increased by a common factor. We note
that van den Boogaard et al. (1986) used a different
scaling for the covariance density that, however, has
been motivated only by giving particularly simple
expressions for the second-order dependencies in the
discussed neuron model.

In the frequency domain, the corresponding second-
order parameters are the cross spectrum between pro-
cesses N, and N:

[e¢]

/ Gap(u) exp(—idu) du

—0oQ

1
Jap(4) = e

and for a = b the autospectrum f,,(1)

1 (o)
Pa 1
27‘E+2TC

—0o0

Jaa(2) = Qaa(u) exp(—iiu) du
The association between two processes N, and N, is
measured by the spectral coherence |[Rq ()| where

fab(;“)
faa(l)fbb(i)
The spectral coherence is bounded and takes values

between 0 and 1. Let d\7) denote the finite Fourier
transform of process N,:

Rab<)‘) =

T

/h t/T)exp(—idt) AN, (¢)

0



where 4 is a data taper (cf. Brillinger 1981). Then the
spectral coherence satisfies

Ry (A = ?

Tlim |corr{dér>(i),d£n(i)}|

If the spectral coherence vanishes for all frequencies, the
two spike trains are linearly independent, whereas a
value of one indicates a perfect linear relationship
between the two processes.

If the process has been observed on the interval [0, 77,
the estimates for the second-order parameters in the time
domain are typically based on the crosscorrelation his-
togram:

#{U,k)u—h<o;—t <u+hyo; # 14}

ap (1) = 21N, (T)

where “#” stands for “the number of” and {¢;} and
{7} denote the observed spike times for neuron a and b,
respectively, up to time 7. In the frequency domain, the
finite Fourier transform déT ) can be computed efficiently
at the Fourier frequencies 4; = 27j/T by a fast Fourier
algorithm based on a discrete approximation of the
process N, (Rigas 1992). The spectral density matrix

f(4) = (fws(4)),,_, , can then be estimated compo-
nentwise by v

fas () 27IH2TZW (2= 2,)dD (2))dy" (~ 1)
where Hy = [} h(t)*ds, wT)(2) = Myw(My2) for some

sequence My — oo, and w is some kernel function with
bounded support (Brillinger 1981). A more detailed
discussion of frequency methods may be found in
Brillinger et al. (1976) and Rosenberg et al. (1989).

2.2 Partial correlation analysis

When analyzing the structure of a larger neural net, the
question arises as to what extent the association between
two processes N, and N, is due to a direct connection
between the two neurons or whether the observed
correlation can be attributed to an indirect connection
involving other neurons, say, ¢y, ..., c,, or is only due to
a common input from these neurons. This question can
be addressed by second-order statistics using the method
of partialization. The basic idea is to measure the
association between the two processes N, and N, after
the linear effects of the multivariate process
Nc¢ = (Ng,,...,N.) have been subtracted. It is clear
that in this approach the meaning of direct and indirect
connections depends on the measured network and that
the inclusion of any additional neurons may lead to the
identification of a formerly direct connection as being
indirect.

Brillinger et al. (1976), Rosenberg at al. (1989), and
Dahlhaus et al. (1997) have discussed the partializa-
tion analysis in the frequency domain and recom-
mended the use of the partial spectral coherence
|Rab|C(;°)| where

291

fab|C(;L)
Ruypic(A) =
1) = e )
with the partial spectral densities
Fablc(2) = fan(2) = fac (D) fee(2) ™ fen(2) (2)

Let Na|c(t) be the best predictor of N,(¢) based on the
process N¢, which is given by

Nyc(t) = 1 +/ /0C ¢(s — u) dNe(u) ds
.

where ¢ has Fourier transform P (2) = fuc(W)fee(X)™!
and p=p, — $(0)pc. We can then define the partial
residual process

80|C(t) Na|C(t)

The association between N, and N, after removing the
linear effects of Nc can now be described by the
corresponding second-order parameters of the partial
residual processes &,c and & c. For example, the partial
spectral coherence can be seen to be the correlation
between the Fourier transforms d aIC and d( of the
partial residual processes ¢, and gc:

|Rab\C(/l)|

= Na(t) -

. 2
= lim [corr{d\2(2), dyy (1)}

In the time domain, we can similarly define the partial
covariance density of N, and N, by

u)v dgb\C(t)}

which is related to the partial cross-spectral density by

qapjc(u) = cov{deyc(t +

/ Sapjc(4) exp(—idu) di

qab\C

Similarly, the partial autocovariance density g, c is the
Fourier transform of f,qc(4) — pa/2m, where the second
term corresponds to the variation of the increments of
the partial residual process ¢, c. Since the best predictor
Nyjc is continuous in time, the variation of de,c(2) is
dominated by the variation of the predicted process N,,
whereas the variation due to the best predictor is
negligible, that is

var{ds,c(t)} = var{dN,(¢)} + terms of order d*
= p,dt + terms of order d¢*

This leads to the following definition of the scaled partial
covariance density (SPCD)

_ qablC(”)
\/papb

Like the conditional intensity, the scaled partial covari-
ance density gives information not only on the strength
of a connection between two neurons but also on the
type and the direction of the connection. For an

Sab\c(”)
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excitatory connection from neuron b to neuron a the
time delay uy due to the propagation of the action
potential along the axon and the synaptic delay results in
a peak of sgc(u) at u = ug. Similarly, for an inhibitory
connection we obtain a trough at u = uy.

The partial spectra and partial spectral coherences
can be estimated by replacing %he spectral densities fj;(4)
in Eq. 2 by their estimates f;;'(4). For a multivariate
point process N with components N,y a=1,...,d, all
partial spectral coherences \Rabw\{a’b}(i)f w1th V=
{1,...,d} can be computed efficiently by inversion of
the spectral matrix (Dahlhaus 2000). Let g¢g(1) =

(9ab(4))4 p=1,..q denote the inverse spectral matrix. Then
we have
i () = —
JaalV\{a}\* gaa()b)
gabUL)
Rapjany(A) = ——F——=
gaa(i)gbb(i)
faa|V\{a}( A)
faa\V\{ab} ())
1~ [Rapjn fany (A
ab V\{ab (})
Sab\fapy (A) = AL

1= [Rappp gy (2]
X \/faa\V\{a}(;“)fbb|V\{b}(;“)

The first two equations have been proved by Dahlhaus
(2000), while the other two equations follow from these
and the inverse variance lemma (e.g. Whittaker 1990,
Prop. 5.7.3). Replacing the spectral matrix by its
estimate we obtain estimates for all partial second-order
statistics in the frequency domain. Further, we can
estimate the partial covariance density g (u) for a # b
by the Fourier transform of the partial spectral density
estimate:

ﬂ/br

qc(zb|C / fab|c ) exp(—iul) di 3)

—ﬂ/br

where by converges to zero as T — oo. The properties of
the estimate can be further improved by the introduction
of a convergence factor y7(4), which is monotonically
decreasing in A and increasing in 7. Finally, the scaled
partial covariance densities can be estimated by substi-
tuting the empirical means p\’) = N,(T)/T for the mean
intensities p,.

2.3 Partial correlation graphs

Partial second-order statistics can be used for the
definition of undirected graphs that visualize the corre-
lation structure of a multivariate point process. Such
partial correlation graphs have been used by Dahlhaus
et al. (1997) for the identification of synaptic connec-
tions from neural spike train data. A detailed discussion
of partial correlation graphs and their properties in the
context of multivariate time series can be found in

Dahlhaus (2000). The same results also hold for point
processes.

Suppose that we observe a multivariate point process
N = (MN,...,Ny)". We identify the components N, with
the vertices of a graph, i.e., we have the set of vertices
V={l,...,d}. An edge between vertices a and b is
defined to be missing if the corresponding processes N,
and N, are uncorrelated at all lags after the linear effects
of all other components have been subtracted. With the
definitions of the last section this is the case if and only if
the partial residual processes &, (ap) and e (qpy are
uncorrelated at all lags and consequently the scaled
partial covariance density su\ (4,5} (1) is zero for all u.

In practice, the partial correlation graph must be
estimated from the empirical scaled partial covariance
densities

A(T)
@)= Gaby\fap) )
ab|V\{a,b} (T) ~(T)

Pa "Pp

which in the case of a missing edge are only approxi-
mately zero. Therefore, statistical tests must be
employed to decide whether an edge is missing. This
can be done by constructing a threshold for the
empirical scaled partial covariance density. If this
threshold is exceeded for some lag u, we decide that
there is an edge between vertices a and b.

An approximate threshold can be obtained from the
asymptotic distribution of sf}bw\ fa, b}( u). In the appendix,
we show that under the hypothesis of 5.\ a5} (1) = 0
and under the further assumption that by — 0 and
Thy — 00 as T — oo the empirical scaled partial
covariance density is asymptotically normal with mean
zero and variance

lim Ybfvar{s (u)} = Ha/H;

ab|V\{a,b}
We note that the asymptotic variance does not depend
on the process N, which is a consequence of the chosen
scaling. As a measure of the detectability of an
interaction between two processes we use the detectabil-
ity index D (Aertsen and Gerstein 1985), which is defined
by D =d/a, where d is the absolute amplitude of the
maximum peak or trough of s<€|V\{a b}(u) and ¢ is the
above asymptotic variance.

For a neural network the partial correlation graph
derived from the spike trains does not directly reflect the
physiological connectivity structure of the network. The
connectivity of the network can be described by a
directed graph in which a directed edge from a to b is
present if and only if there is a neural pathway from
neuron a to neuron b that does not involve any of the
remaining neurons in V. In this case, we say that a is a
parent of b and b is a child of a. The edges in the partial
correlation that indicate linear relationships between the
spike trains now do not necessarily coincide with the
edges in the directed graph since for converging con-
nections the input processes become correlated after
partialization. Thus, in the directed graph all parents of
a joint child must be connected by an edge in order to



get the partial correlation graph. This so-called morali-
zation of the directed graph is well known in the theory
of graphical models (Whittaker 1990).

Dahlhaus et al. (1997) have shown that partial cor-
relation graphs nevertheless can be used for the identi-
fication of the synaptic connectivities by application of a
recursive procedure. This procedure is based on the
observation that for a directed graph without cycles all
terminal vertices, i.e., vertices without children, and their
adjacent edges can be correctly identified from the scaled
partial covariance density. After these vertices have been
removed from the vertex set, the partial correlation
graph for the remaining vertices is estimated and the
terminal vertices in the new graph are determined. By
recursion of this scheme all directed edges can eventually
be identified.

2.4 Simulation

A network of simulated neurons has been used to
investigate the properties of the proposed partial
correlation analysis. The spike trains of the model
neurons are described by a stochastic point process N
generated from a nonlinear integrate-and-fire model
with refractory period. An extensive discussion of the
model, in terms of stochastic equations, is given in
Johannesma and van den Boogaard (1985).

Let 7,(¢) denote the last time neuron «a has fired before
time ¢. Then the intracellular potential of neuron a is
given by

d t
ua(t) = / Wap (t — 1) AN () (4)
=1
The weight functions w,,(u) determine the size and
shape of the postsynaptic potential for the connection
from neuron b to neuron a. In the simulations, an
exponential shape has been chosen for the weight
functions

Wap (1) = wapexp (— (u — ua)/0a)

for u > u,, and zero elsewhere. The amplitude factor wy,
measures the strength of the connection and also
indicates whether the link is excitatory or inhibitory.
Furthermore, u,, is the time delay of the connection and
o, determines the duration of the postsynaptic poten-
tial. In the case a = b, the integral in Eq. 4 becomes
waa(t—ra(t)) and models the refractoriness of the
neuron.

The probability that an output spike of type a is
generated can be written as

Prob{dnN,(¢) = |u,(¢) = u} = g,(u) dt

where the pulse generator function g,(u) is of exponen-
tial shape:

ga(u) = pz exp(u)

The constant u, determines the spontaneous firing rate.
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2.5 Local neuronal connectivity in spinal cord

The proposed method has been used to analyze neuronal
spike trains from ten simultaneously recorded neurons.
Methods have been described in detail elsewhere (Sand-
kiihler and Eblen-Zajjur 1994). In brief, multiple single
neuron recordings were made with tungsten microelec-
trodes (impedance 4-5 MQ) in deep layers of lumbar
spinal cord of adult, pentobarbital anaesthetized Spra-
gue-Dawley rats. Spinal cord was transected rostral to
the recording sites to remove any descending inhibition
and facilitation from supraspinal sites. Recordings were
digitized at 32 kHz by an A/D converter card (Data-
Translation DT2821). Discrimination of action poten-
tials from individual neurons was made with the
principal component method based on the shape of the
waveform using the Discovery software package version
3.1 (BrainWave Sytems). Background activity in the
absence of intentional stimulation was recorded for 10—
30 min to collect 2000-5000 action potential discharges
of each neuron under study.

3 Results
3.1 Comparison of SPCD and SCD

In order to illustrate the effect of partialization on the
association of neural spike trains, we have simulated
various networks of three neurons using the integrate-
and-fire-model described in Sect. 2.4. The scaled partial
covariance densities sy3(u) and the scaled covariance
densities sy;(u) estimated from the simulated data are
given in Fig. 1.

In the first two networks (a) and (b), neurons 1 and 2
are directly connected. In this case, partialization has no
effect on the linear relationship of N; and N, and the
diagrams for the SPCD and the SCD are virtually the
same. The results are different if the two neurons are
connected indirectly via a third neuron as in networks (c)
and (d). For these networks the peak (trough) in the
SCD indicating an excitatory (inhibitory) connection
vanishes after the linear effects of the intermediate pro-
cess have been removed. The same effect can be observed
for networks (e) and (f) with diverging connectivities
after partialization on the common input. Altogether the
SPCD correctly distinguishes direct connections from
indirect connections and common inputs.

The next two examples (g) and (h) show that for
networks with converging connections the behavior of
the SCD and the SPCD is contrary to the case of
diverging connections. In this case, the SCD between the
input processes does not show any significant deviation
from zero, whereas after partialization on the output
process the input processes become correlated. This so-
called marrying-parents effect (Dahlhaus et al. 1997)
leads to a central trough in the SPCD if the two inputs
are of the same type, while for inputs of opposite types
the SPCD has a central peak.

In practice, the activity of only a small part of the
neural network can be measured simultaneously. In
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Fig. 1. SCD (left) and SPCD (right) for three different neuron
networks. The horizontal dashed lines signify pointwise 95% thresh-
olds for the hypothesis that the scaled (partial) covariance density is
Zero

general, we cannot infer by partial correlation analysis
to what extent an association between two spike trains is
due to a direct connection between the corresponding
neurons or only the result of an incomplete monitoring
of the network since it is not possible to remove the
linear effects of neurons whose activity has not been
recorded. Therefore, the partial correlation analysis only
reveals the connectivity relative to the set of monitored
neurons. However, if the SPCD has a central peak or
trough, the SCD can be used to distinguish between the

two possible causes: if the peak or trough vanishes in the
SCD, it has been due to a marrying-parents effect. On
the other hand, if the peak is also visible in the SCD, this
signifies a common input from outside the measured
network, as depicted in (i) and (j).

3.2 Detectability of SPCD

The next two sets of simulations have been performed to
evaluate the limitations of the partial correlation
analysis for the discrimination of the connectivity
patterns discussed in the previous section. In the first
set of simulations, we studied the sensitivity of the SPCD
and the SCD on the strength of connectivity and the
neural activity. The simulation with recording time
T =60 s is based on 100 replications for each configu-
ration. The results for three neuron networks with
direct, indirect, and converging connectivities are sum-
marized in Fig. 2.

For direct connections (first two rows) the detect-
ability curves have approximately the same shape for the
SPCD and the SCD, although in the case of inhibition
the detectability is slightly deteriorated by partialization.
If the connectivity strength is increased, both types of
connectivities become better detectable but the maxi-
mum of detectability shifts to lower intensities. This shift
can be explained by superposition of postsynaptic
potentials (see, e.g., Melssen and Epping 1987). Com-
paring the detectability of excitatory and inhibitory
connectivities, the former were always better detectable
than the latter ones. This observation is in accordance
with previous findings for the crosscorrelation histogram
by Aertsen and Gerstein (1985) and Melssen and Epping
(1987).

The third row shows that in the case of excitation, the
SPCD can discriminate direct and indirect connectivities
over a large range of intensities. While for weak con-
nectivities (Jw,s| = 1) the association due to indirect
connectivities can be completely eliminated by partial-
ization, significant peaks appear in the SPCD for
intensities p, > 64 Hz and y, > 128 Hz, respectively, if
the strength of connectivity is increased. For these
parameters the impulse transmission becomes more
deterministic, which prevents the discrimination of di-
rect and indirect connections. In fact, in a purely
deterministic system, the firing pattern of an indirect
connection from « to ¢ via b would be the same as that of
a common input of @ on b and ¢, thus making an indirect
and a direct connection between a and ¢ indistinguish-
able. Still, partialization causes a substantial reduction
of the detectability and thus reveals that the timing
relation between the two spike trains is dominated by an
indirect connectivity. In the case of inhibition, direct and
indirect connections are correctly discriminated by the
SPCD irrespective of the firing rate and the connectivity
strength. However, it should be noted that Melssen and
Epping (1987) observed situations in which inhibitory
connectivities have a much improved detectability,
which may lead to a similar behavior as in the case of
excitation.
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Detectability index

=

Fig. 2. Detectability of synaptic
connections: detectability index
(mean £ SD) of SPCD (solid
lines) and SCD (dashed lines) at
maximal peak or trough for
direct connections, indirect con-
nections, and converging con-
nections. Horizontal axis:

16 32 64 128 2562 4 8
Spontaneous firing rate (Hz)

In the case of converging connectivities (last three
rows), the shape of the detectability curves of the
SPCD is similar to the shape for direct connectivities,
but the detectability index is significantly smaller at all
intensities and for all connectivity strengths. In par-
ticular, if both converging connections are inhibitory,
the resulting trough in the SPCD is hardly discernible
for any intensity. The different detectability for direct
and converging connectivities is important as it allows

1 | 1 | |
16 32 64 128 256

| 1 1 1 |
16 32 64 128 256

2 4 8

spontaneous activity of the
neurons

the complete identification of the converging structure
in the network whenever a marrying-parents effect
leads to a significant peak or trough in the SPCD.
Since the SCD does not show any significant deviation
from zero irrespective of intensity or connectivity
strength, the converging connectivity can finally be
distinguished from a common input from outside the
monitored network by an appropriate reduction of the
network.
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Fig. 3. Detectability of synaptic connections: detectability index
(mean + SD) of SPCD for different recording times [7 = 50 s
(dotted), T =100 s (solid), T =200 s (dashed)] estimated from
different number of neurons for excitatory connection (a) and
inhibitory connection (b)

In the second set of simulations we investigated the
effect of the number of recorded neurons on the
detectability of direct connectivities by partialized sta-
tistics. For this we considered networks that consisted of
two directly connected neurons and a varying number of
totally disconnected neurons. Figure 3 depicts the
detectability of excitatory and inhibitory connectivities
as a function of the number of neurons included in the
study for three different recording times (7' = 50 5,100 s,
and 200 s). For both types of connections the detect-
ability curve exhibits a strong dependence on the num-
ber of neurons and the recording time. The detectability
is diminished by an increase of the size of the networks
up to some breakpoint at which connectivities become
totally undetectable. For sampling length 7 = 50 s this
breakpoint occurs at a network size of 11 and 10 neu-
rons for excitatory and inhibitory connectivities,
respectively. If the recording time is increased, the
detectability improves and the breakpoint shifts to
higher numbers of neurons. This deterioration of the

35.0

SPCD/SCD

50 100 150

time [msec]

Fig. 4. SPCD (bold) and SCD (shaded) for the direct connection
between model neurons 1 and 2 in a four-neuron network for
T =500 s

detectability in large networks is caused by the finite
length of the spike train recordings. This allows for the
features in the realization to be reproduced arbitrarily
well by a linear combination of a sufficiently large
number of, e.g., Poisson processes. Therefore, if the
number of neurons increases, partialization eventually
leads to the total elimination of any information on a
direct connectivity between two neurons.

If the number of connectivities in the measured net-
work increases, the detectability can be further dimin-
ished by partialization even for very long recordings of
the spike trains. This effect is due to partialization on
succeeding neurons and thus related to the marrying-
parents effect described in the previous section. To
illustrate the effect, we simulated a network of four
connected neurons (Fig. 4) with sample period
T =500 s. The SCD and the SPCD for the direct con-
nection from neuron 1 to neuron 2 are displayed in
Fig. 4. The area between the curves signifies the decrease
in detectability if the SPCD is used instead of the SCD.
Despite the long recording, we observe a reduction in
height of about 25% over the full width of the peak.
This reduction can be explained as follows: the spike
trains of neurons 3 and 4 improve the prediction of the
firing times of neuron 2 since both neurons are excited
by neuron 2. Therefore, partialization on neurons 3 and
4 decreases the probability for a discharge of neuron 2 if
this is followed by a discharge in neuron 3 or 4. More
precisely, the partial residual process é34(f) has a
smaller mean intensity than the spike train N,(z). The
same holds if we consider instead the conditional mean
intensity of &3 4(¢) given that neuron 1 has fired, which
is equivalent to the SPCD. Just as for the marrying-
parents effect, the reduction is approximately symmetric
and therefore causes a small trough, which precedes the
asymmetric peak on its steep side.

3.3 SPCD for multiple connections

We examined the ability of partialization analysis in the
time domain to detect multiple direct connections



between two neurons. For this we analyzed data from a
simulated network of six neurons with an excitatory
feedback loop (Fig. 5a). Such circuits have been used as
a model for the short time memory. The same data have
been analyzed by Dahlhaus et al. (1997) with frequency
domain methods in the case where only neurons 1, 2, 4,
and 6 are monitored. In this reduced network, neurons 2
and 4 are joined by two direct connections of opposite
directions.

Figure 5c and d presents the results of the frequency
domain analysis. The partial spectral coherence
|R421,6(4) |2 (Fig. 5c) correctly detects that neurons 2 and
4 are directly connected. The slope of the corresponding
partial phase spectrum (Fig. 5d) now indicates that im-
pulses are transmitted in the direction of neuron 4,
which corresponds to the main pathway in the network.
Neither the partial coherence nor the partial phase
provide any information about the presence of an
excitatory feedback connection.

The corresponding partialized time domain statistic
$2.4/1,6(u) is depicted in Fig. 5b. We observe two distinct
peaks at lag u = 36 ms and at lag u = —36 ms, which
correctly indicates that impulses between the two neu-
rons are transmitted in both directions. Both connec-
tions are excitatory and have approximately the same
time delay. Thus the SPCD leads to a complete identi-
fication of the connectivity structure. Comparing the
height of the peaks we further find that the signal
transmission in the direction of neuron 4 is slightly
stronger. Therefore, the averaged time delay of the linear
relationship between the two spike trains is positive,
which explains the negative slope of the partial phase
spectrum.

3.4 Temporal variation of neuronal interactions

The SCD and SPCD are average measurements for the
effective connectivity over the entire length of the
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recorded data. Their validity therefore depends on the
stationarity of the recorded spike trains. However, in
many experimental situations, the network shows
dynamic activity due to, for example, behavior or
sensory stimulation. In such situations, the firing rates
and correlations between neurons may vary dramatically
even in sign (e.g., Aertsen and Gerstein 1985; Vaadia
et al. 1991). Such modifications of neuronal interactions
can be exposed by segmenting the data into shorter
sections and computing the estimates from the data in
each section. Plotting the results as a function of time we
can assess the temporal variation of the neuronal
interactions.

For illustration purposes we have simulated a net-
work of three neurons in which the spontaneous firing
rates u, and the amplitude factors wy, varied randomly
over time. For each component the firing rate and the
amplitude factor were obtained from a Markov process
with two states: high or low for the firing rate and po-
sitive or negative for the amplitude factor. The connec-
tivity of the network is depicted in Fig. 6; the total
simulation period was 500 s.

The partialization analysis based on the entire data
(Fig. 6b) reveals three excitatory direct connections,
while the second peak in the SCD between neurons 1
and 3 is correctly attributed to an indirect connection via
neuron 2. Additionally, for neurons 2 and 3 both SCD
and SPCD show a peak at the origin, which indicates the
presence of a common input from an unmeasured
source. To investigate the temporal variation of the
dependence structure we have computed the time-vary-
ing SPCD and SCD from overlapping segments of
length 20 s and shift 2.5 s (Fig. 6a). Here the changes
along the vertical axis reflect the nonstationarity of the
functional relationships between the processes. In par-
ticular, we find that the direct connection between neu-
rons 1 and 3 is not purely excitatory but becomes
inhibitory over the last 150 s of the simulations. From
the plot we can identify time intervals over which the
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Fig. 5. Identification of multiple connections of
opposite directions. a Simulated network with
excitatory feedback. b Estimated SPCD
S4201,6(u). ¢ Estimated partial coherence
|R4,2“A6(i)\2. d Estimated partial phase (2>4_2“'6()v)
with 95% confidence interval
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processes seem to be approximately stationary. For two
such intervals (150-250 s and 350-500 s) we have com-
puted SPCD and SCD to analyze the effective connec-
tivity of the network at these times. As can be seen in
Fig. 6b, the analysis of these shorter segments leads to a
correct identification of the network. In particular, we

note that the results reject the presence of a common
input for neurons 2 and 3 as the peak at the origin of the
SPCD has vanished.

3.5 Partial correlation analysis
of measured spike trains

Finally, we analyzed spike train data from the lumbar
spinal dorsal horn of a pentobarbital-anaesthetized rat
during noxious stimulation. The firing times of ten
neurons were recorded simultancously by a single
electrode with an observation time of 100 s. The data
have been measured and analyzed by Sandkiihler and
Eblen-Zajjur (1994), who studied discharge patterns of
spinal dorsal horn neurons under various conditions.

Figure 7b displays the estimated SCD and SPCD for
the ten neurons. The SCD shows for 32 (71%) pairs of
neurons a peak at or near the origin. In 18 (40%) cases,
these peaks are accompanied by smaller bilateral peaks.
From the estimated autospectra (Fig. 7a) we find that
these smaller peaks are associated with rhythmic dis-
charges at 5 Hz in one or both neurons, which corre-
sponds to the observed time lag of 200 ms to the main
peak.

A much clearer picture of the connectivity structure is
provided by the SPCD. The majority of the peaks
present in the SCD have disappeared after partializa-
tion. Only for nine pairs of neurons do we observe a
highly significant peak at u =12 ms preceded by a
smaller trough. These troughs may be due to either
partialization on successive neurons as described in
Sect. 3.2 or the periodic firing of the neurons, which in
general leads for a direct connection to a similar com-
bination of peak and trough. In the latter case, the
trough appears also in the SCD as, for example, for
neurons 8 and 10, but the difference in the depth of the
trough in the SCD and in the SPCD may still be due to
partialization. Furthermore, only two pairs exhibit small
bilateral peaks besides the sharp main peak. These can
be ascribed to the strong periodicity of discharges of
neuron 1, which is included in both pairs. Additionally,
we find a small central trough for the SPCD between
neurons 1 and 3.

To identify the connectivities for this set of the neu-
rons, we apply the recursive identification procedure by
Dahlhaus et al. (1997). In the first step, we estimate the
partial correlation graph (Fig. 8a) using the approxi-
mate threshold for the SPCD derived in Sect. 2.3. To
determine the terminal vertices, i.e., vertices that have no
adjacent edges pointing to other edges, in the underlying
directed graph, we identify preliminary directions for the
edges from the lags of the peaks and troughs. The nine
peaks are interpreted as direct excitatory connections
between the neurons according to the remarks above,
whereas the direction of the edge associated with the
central trough remains open. Figure 8b shows the
determined terminal vertices and the identified final
directions for the adjacent edges. In the next step, the
terminal vertices are removed from the vertex set and the
partial correlation graph is estimated from the SPCD for
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Fig. 7. a Logarithm of spectral densities for spinal dorsal horn
neurons 1 to 10. b Scaled partial covariance densities (below diagonal)
and scaled covariance densities (above diagonal) for spinal dorsal horn

the thus reduced set of neurons. In the SPCD between
neurons 1 and 3 (Fig. 9), the trough has now disap-
peared. Therefore, the edge between 1 and 3 in the ori-
ginal partial correlation graph has been due to the
converging of the connections from neurons 1 and 3 to
neuron 4. Since for all other pairs the SPCD remains
basically the same, we obtain the partial correlation
graph in Fig. 8c. Repeating the recursive scheme three
more times the final directions of all edges are deter-
mined and we obtain the connectivity graph in Fig. 8d
as the final estimate of the connectivities between the
neurons.

Comparing the connectivity graph with the SCD we
find that neuron 9 is totally disconnected from the
other neurons, although it is weakly correlated with
neurons 1 and 2. The autospectra (Fig. 7a) reveal that
all three neurons exhibit a strong periodicity at 5 Hz.
Therefore, the time lags between successive discharges
tend to be the same for these neurons, which then leads
to a correlation that is not associated with a connec-
tivity.

neurons 1 to 10. The horizontal dotted lines signify pointwise 95%
thresholds for the hypothesis that the scaled (partial) covariance
density is zero

We note that this graph displays only the relative
connectivity structure, and it cannot be excluded that
some or all of the direct connections are only due to
indirect connectivities or common inputs involving
unmeasured neurons. Nevertheless, the results allow
one to falsify certain hypotheses that are in conflict
with the estimated graph. For example, the periodic
behavior of many of the measured neurons might
suggest one common input for those neurons. In that
case, the corresponding subset of vertices in the con-
nectivity graph must be complete, that is, any two
vertices in the subset are joined by an edge. This is
clearly not the case for the estimated connectivity
graph in Fig. 8d.

Finally, we computed the time-varying SPCD and
SCD to check for temporal variation in the effective
connectivity of the network. Here we only give the re-
sults for neurons 1-5, plotted in Fig. 10, but the results
for the complete network are similar. The shapes of
SPCD and SCD appear stable over the entire observa-
tion period, and we therefore conclude that the
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terminal vertices. d Estimated connectivity graph for neurons 1 to 10

stationarity assumption for the above partialization
analysis is fulfilled.

4 Discussion

We have seen that the scaled partial covariance density is
a useful tool for the identification of functional connec-
tivities in neural ensembles. Although the presented time
domain techniques are mathematically equivalent to the
frequency domain approach suggested by Brillinger
et al. (1996), Rosenberg et al. (1989), and Dahlhaus
et al. (1997), both methods emphasize distinct features
of the data. We have shown that the SPCD can be used
for the identification of the direction and the type of
synaptic connections.

The results in this paper have shown that the detec-
tion of different neural configurations like direct, indi-
rect, diverging, and converging connections depends on
the signal-to-noise ratio of the measured spike trains. In
particular, high ratios lead to a quasideterministic neural

SPCD

10l
300 0 300

time [msec]

Fig. 9. Estimated SPCD §, 3567,3(u) for spinal dorsal horn neurons

coupling that prevents the discrimination of direct and
indirect connectivities. Another limiting factor in the
analysis of neural ensembles is the number of neurons
included in the study. Partialization of an increasing
number of neurons leads to deterioration of the detect-
ability and eventually to the breakdown of the identifi-
cation method. The effect can be compensated for by an
increase of the sampling interval.

As we have emphasized before, the partialization
statistics proposed in this paper measure only the
effective connectivity between the observed neurons.
Therefore, the connectivity graph obtained from a par-
tialization analysis can replicate the true physiological
connectivity only in a simplified way; direct connections,
for example, may involve additional interneurons. Fur-
thermore, only connections that were sufficiently active
to be detectable at the time of observation are included
in the connectivity graph.

These problems apply to steady-state experimental
situations. Additional problems arise if firing rates and
interactions between the neurons vary over time during
behavior or sensory stimulation. For the evaluation of
the temporal modifications of the functional relation-
ships between the neurons we suggested applying the
partialization method to short overlapping segments of
the full spike trains and ploting the resulting statistics
as functions over time. Naturally these statistics will
have a lower precision, but they provide a rough picture
of the temporal firing pattern and functionality of the
network. In particular, the results may indicate time
regions over which the process seems to be approxi-
mately stationary. The data from each of these regions
can then be analyzed by the proposed partialization
method.
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Appendix

We give a short proof for the asymptotic distribution of
the empirical SPCD. For the empirical SCD the
asymptotic distribution has been derived by Rigas
(1991). Let C = V\{a, b}. We start by noting that under
the assumptions of suc(u) =0 the SPCD estimate
§‘(1;)C(u) has the same limiting distribution as
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Since the partial cross-spectral density fc is a nonlin-
ear function of the entries of the spectral matrix
f = (fij) the partial covariance density can be expressed
as the integral of a nonlinear function of the spectral
matrix. The asymptotic normality of estimates of such
integrals of nonlinear functions of the spectral matrix
has been proved by Taniguchi et al. (1996). Writing
Dij = Ofpjc/0fi; we further obtain from the expression
for the best predictor N, () by elementary calculations
that

> Dy(Dfiy(4) = fupie(4),
> DDA S (A fis(A) = fuc (R fiaic (A),

ijkl

S DD (D fa (W) i () = Fuae () finic(2),
ijki

Z D’J(A)Dkl(/l)fl]kl (17 _/‘{7 :u) = lebab\C(;“, _/17 :u)

ijkl

where fi; and fuuc are the fourth-order cumulant
spectra of the multivariate process N and the bivariate
partial residual process e c, respectively. From the

results in the cited paper it now follows that the partial
covariance density estimate given by Eq. 3 is asymptot-
ically normal with variance

waar(cjg‘)c(u))
/by
=TR[] et~
—n/b,
/br
2”5;;“ [ Fuacincli) (5)
—n/b,

Since fupapjc 1S absolutely integrable, the first term
converges to zero as by — 0. Further we have

Futc(2) =54 [ gualu) exp(izu) du

where the second term is absolutely integrable. Conse-
quently, the second term in Eq. 5 converges to (Hs/
sz)papb, from which the stated asymptotic variance
follows.
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