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Nash Refinement of Equilibria 

H. PETERS 2 A N D  K. V R I E Z E  3 

Communicated by G. P. Papavassilopoulos 

Abstract. A method for choosing equilibria in strategic form games is 
proposed and axiomatically characterized. The method as well as the 
axioms are inspired by the Nash bargaining theory. The method can be 
applied to existing refinements of Nash equilibrium (e.g., perfect equi- 
librium) and also to other equilibrium concepts, like correlated equi- 
librium. 
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1. Introduction 

The multiplicity of Nash equilibria in strategic form games has been a 
problem since the introduction of the concept by Nash (Ref. 1). Many 
refinements of  Nash equilibria have since then been proposed; see Van 
Damme (Ref. 2) for a survey. Furthermore, methods of equilibrium 
selection were developed by Harsanyi and Selten (Ref. 3) and also by G/ith 
and Kalkofen (Ref. 4). As it refers to a selection from a correspondence, 
the expression "equilibrium selection" refers to methods that always lead to 
a unique equilibrium; see Giith and Kalkofen, Ref. 4, p. 13. This paper will 
be concerned with correspondences assigning to a strategic form game a 
nonempty subset of the set of  lotteries over all equilibria of a certain kind. 
Therefore, it deals with refinement of  equilibrium, rather than selection. A 
correspondence as meant here will be called simply a "solution." 
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Instead of proposing another refinement of Nash equilibrium, the 
paper introduces a general method of choosing equilibria from classes of 
equilibria associated with various specifications of the admissible joint 
strategies of the players. These specifications may lead to well-known 
concepts like Nash equilibrium or correlated equilibrium (cf. Aumann, 
Refs. 5-6), but in principle also to other kinds of equilibrium, as long as 
the specification of the admissible joint strategies is symmetric with respect 
to the players, closed within the set of probability distributions over the 
players' pure action combinations, and consistent with respect to sub- 
games. Furthermore, the method may also be applied to refinements of 
equilibrium sets that satisfy certain minimal requirements. Examples of 
Nash equilibrium refinements are: perfect equilibrium (Selten, Ref. 7), 
proper equilibrium (Myerson, Ref. 8), and persistent equilibrium (Kalai 
and Samet, Ref. 9). The application to the set of perfect Nash equilibria is 
discussed in detail in Section 4. 

In order for the method to be applied to some equilibrium concept, in 
each game a so-called disagreement payoff vector has to be chosen. This is 
done by specifying a disagreement map, satisfying certain conditions. For 
instance, in an earlier version of this paper (Peters and Vrieze, Ref. 10), the 
method was developed for the class of Nash equilibria, with the vector of 
the players' maximin payoffs as disagreement vector. 

For a given disagreement map and a given equilibrium concept, the 
paper focuses on the solution assigning those lotteries between equilibria 
that maximize the product of the payoff gains of the players relative to 
their disagreement payoffs, and so clearly is inspired by the Nash bargain- 
ing solution (Nash, Ref. 11). This so-called Nash solution will be character- 
ized in a way that is closely related to the Nash characterization of the 
Nash bargaining solution. However, the axioms used relate to the strategic 
form game, in contrast with the approach in Harsanyi and Selten (Ref. 12, 
p. 98). 

It should be stressed that application of the method proposed in this 
paper does not entail that the noncooperative game is changed into a 
cooperative one, nor that it is solved by cooperative principles. Rather, the 
presumption is that an equilibrium can be self-enforcing and that the 
problem is not with the notion of equilibrium itself, but with the multiplic- 
ity of equilibria. Therefore in this paper, a cooperative part is added to the 
normal form game: the players agree (perhaps with binding force) on a 
method to guide them in their playing the game. However, the recommen- 
dation of this method is not binding, but nevertheless important, since it 
may serve as a focal point. Thus ultimately, the players still play the game 
noncooperatively, according to the specification of the admissible joint 
strategies. If fully binding agreements on the playing of the game were 
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possible, then there would be no need to consider only equilibria, and a 
method like the Nash solution could as well be applied to the whole 
cooperative payoff space. 

As stated, a solution chooses lotteries between equilibria. The reason 
for modeling a solution like this is partly technical (it leads to convex 
payoff sets) and partly intuitive. Consider for instance the battle of the 
sexes (see also Section 5), 

L R 

BLO, O 1, ' 

and the Nash equilibrium. The Nash solution with the maximin payoff 
vector as disagreement vector prescribes each of  the two pure Nash 
equilibria (T, L) and (B, R) with probability 1/2. This seems not only fair, 
but also helps the players in reaching expected payoffs that Pareto-domi- 
nate the symmetric mixed Nash equilibrium payoffs. The Pareto optimality 
property seems to be compelling for a cooperative recommendation 
method. However, a method recommending both (T, L) and (B, R) would 
not be very helpful. In analogy with the well-known interpretation of mixed 
strategies embodying the players uncertainty as to what their opponents 
will do, a lottery on Nash equilibria can be interpreted as the players 
uncertainty as to the final recommendation, rather than as a public lottery 
performed by some mediating institution. In the case of correlated equi- 
libria, such a lottery is again a correlated equilibrium. 

The present paper takes the belief that an equilibrium or refinement 
can be self-enforcing as a starting point and tries to present a general (i.e., 
applicable to a whole class of games) method to select from a possible 
multiplicity of equilibria. It should be noted that Tedeschi (Ref. 13) 
proposed independently a refinement for correlated equilibrium that is 
related to our method applied to the correlated equilibria case. 

The organization of the paper is as follows. Section 2 describes the 
basics of the model, and Section 3 introduces and discusses the axioms. In 
Section 4, the characterization result is stated and proved. Section 5 
concludes. 

2. Basics of  the Model 

For a nonempty set A, oLa(A) denotes its lottery set, i.e., the set of 
probability distributions on A with finite support. Let N = {1, 2 . . . . .  n} 
denote the set of players. 
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In order to define a game in strategic form, we first introduce the 
concept of  a joint strategy specification for N. This is a correspondence T 
assigning, to each n-tuple ($1 . . . . .  Sn) of  finite sets, a subset of  the lottery 
set La( X 7=1S;) and satisfying conditions (T1) - (T3)  below. Elements of  
T(Sa . . . . .  Sn) are admissible joint strategies. The probability assigned by 
a ~ T ( S 1 , . . . ,  S,)  to the element (sl . . . . .  s~) of  >(7=~S; is denoted by 
a(sa, � 9  s,). The set S; is the action set of  player i, i.e., the set of  pure 
strategies available to player i. 

In what follows, some notations will be useful. For 

s = ( s a ,  s 2 ,  �9 �9 � 9  s , )  e >~ S , ,  
i=1 

s - ;  denotes the vector obtained by deleting the ith component of  s. The set 
S - ;  is defined similarly, i.e., 

S- i ,=  • Sk. 
k ~ ;  

The meaning of  other notations in this spirit, like s -iJ, S -;a, (s -i, s]), etc., 
should be clear. In particular, (s -;J, v, w) has v and w as ith a n d j t h  entries, 
respectively. 

The conditions on a joint strategy specification T are as follows: 

(T1) T(Sa . . . . .  S ,)  is a closed subset of  s )<7=iS;); 
(T2) T ( S a , . . . ,  S,)  is symmetric; i.e., if Si = S  j, then for all 

s~ ~ S;, ~ ~ S;, and a e T( Sa . . . . .  S,),  there exists a 
~ e T ( S a , . . . ,  S ,)  such that a(s -i':, gi, ~ )  = ~( s-iJ,  ~, s;) for 
every s-;JeS-i ':; 

(T3) T is consistent; i.e., if S~ c Si for every i~N,  then extending 
each o" e T(S'~ . . . . .  S'~) to X 7= ~ S;, by assigning the probability 
0 to action combinations not in X 7=iS';, gives an.element of  
T(Sa . . . . .  s , ) .  

Well-known examples of  specifications T(S1 . . . . .  S,)  are, with some 
abuse of  notation, ~ (  X 7= I S;), X 7= 1L#(Si), and X 7= aS;, i.e., the sets of 
correlated, mixed, and pure joint strategies, respectively. 

A strategic form game on N has the form 

Y' = ( S  ! . . . . .  S,,  T, K, . . . . .  X, ) ,  

where the sets S; are the players' action sets, T is a joint strategy 
specification, and K;: L?( X 7= ~ S;) --+ R is the Von Neumann-Morgenstern  
payoff function of  player i, assigning expected pa3,offs in particular to 
elements a of  T(S1 . . . .  , S,);  so, the functions K; are supposed to be 
determined by their values on X 7= ~ S;. 
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Next, the concept of equilibrium will be defined. For that purpose, we 
need some notations. For a ~ T ( S 1 , . . .  ,So), i~N,  and s ~ S i  such that 
~( t-i, si) > 0 for some t - i ~ S  -t, let 

Y. 
t - i ~ S  - i  

be the marginal probability of s - ~ S  -i, given s~. Let further 

#i(a) := {si eSf:3s - t e S  -i, with a(s -i, si) > O} 

be the support of a for player i. When judging the quality of an action 8f, 
player i compares the associated expected payoff to the expected payoff 
from a switch to a different action st, conditionally on the other players 
playing according to a(. [ s~,.). Hence, player i compares the numbers 

K,(,r(.  Is3),s,)'. - - E K,(s- ' , s i ) 'Ks- ' l s%),  si Si" 
s - i e S - i  

We are now in a position to define the equilibrium concept. A strategy 
a ~ T(SI . . . . .  S,)  is said to be an equilibrium if, for each player i and each 

Kg(g(" ]~i), 6)  --Ki(a(" I~i), sg), for each sieSi. 

It can be verified easily that this definition coincides with the idea of a 
correlated equilibrium or a Nash equilibrium in pure or mixed strategies, in 
the respective associated cases. 

From now on, the joint strategy specification T will he fixed. ~v  will 
denote the collection of all games with N players. E(F) will denote the set 
of equilibria of 1 v . For 

r ( s , , . . . ,  s.)= 
i = l  

the nonemptiness of E(F) was already established by Nash (Ref. 1), while 
for 

the nonemptiness of E(F) is proved in Aumann (Ref. 4). 
In general, E(F) contains more than one element, and different 

elements of E(F) give rise to different payoff vectors. In the next section, 
we present a procedure which will turn out to assign a unique payoff vector 
to each game. This solution procedure can not only. be applied directly to 
E(F), but also to refinements of E(F). 
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In order to introduce this procedure, the concept of  cyclic symmetry of  
a game needs to be defined. In this concept, cyclic permutations of  the 
player set or subsets of  the player set play a role. For  ~ r L c N, a 
permutation rc of  N is called L-cyclic if n is N\L-invar iant  [i.e., n(i) = i, for 
every i ~L] and the restriction of 7r to L is cyclic of  order [L I. Recall that 
this last property means that 

rclLI(i) = i and L = { te l ( i ) , . . . ,  ~ZlLI(i)}, for every i e L .  

Here, gk(i) - - - -  ~ Z  o �9 �9 �9 o n(i), n applied k times. As an example, suppose that 
L = {1, 2, 3, 4}; then, n with rffl) = 2, n(2) = 3, u(3) = 4, and u(4) = 1 is 
an L-cyclic permutation. For  ~ r L c N and an L-cyclic permutation rc of 
N, a game F is called re-cyclic symmetric if the following two conditions 
hold: 

(CS1) 
(CS2) 

Si = S s, for all i , j  e L;  

Kg(s) =K~k(;)(nk(s)), for every i e N ,  every s s S 1  x " " " X SN, 

and every k = 1 . . . . .  ]L I - 1, where (Tzk(s))j,=s(~k)_~(j), for 
every j e N. 

Observe that cyclic symmetry is a weak kind of symmetry. Usually for 
r L c N, a game is called L-symmetric if (CS1) is satisfied and, for 

every N\L-invar iant  permutation n, it holds that 

Ki(s)  = K,(o(rffs)), for all i ~ N .  

Hence, an L-symmetric game in the usual sense is also ~r-cyclic symmetric; 
but except for ILl = 1 and ILl = 2, the converse is not true. 

With n an L-cyclic permutation of  N, a subset V c T(S1 . . . . .  Sn) is 
called re-cyclic symmetric if, for every a e V and k = 1, 2 . . . . .  ILl - 1, also 
ak ~ V, where ak is defined by 

ak(nk(s))  ,=a(S), for all s e S i  x . . .  x S , .  

Observe that, for a n-cyclic symmetric game F, also E(F)  is g-cyclic 
symmetric. 

A game 

s r F' = ( S ' 1 , . . . ,  Sn, T, K, . . . . .  K' n)  

is a subgame of  F if S'i c Si and K'; is the restriction of K i to S~, for every 
i e N .  

Let D be a map which assigns to every game a vector in the payoff 
outcome space with the following properties: 
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(D1) Di(F) __ Ki(a), for all acE(V) and ioN; 
(D2) for all F, F ' c C ~  with F' a subgame of F for which, for all i c N  

and for all s o S ' i x ' "  x S ' i _ i x S i \ S ~ x S ~ + l X . . . x S ' ,  it 
holds that K~(s) = Di(F'), we have D(F) = D(F'); 

(D3) if F is n-cyclic symmetric for an L-cyclic permutation n, then 
Di(F) = Dj(F) for all i, j c L .  

D is called a disagreement map, and D(F) is called a disagreement point. 
An example of D in the Nash-equilibria case [the case where 

T(S1 . . . . .  S.) ~ X 7=1~(S~)] is the value vector defined by 

v/(F) -- min max Ki(tr -i, si). 
ff --iE X j  # i~ (S i )  8iES i 

Evidently, being the payoff that player i can guarantee for himself, v~ (F) is 
less than or equal to Ki(a ) for all acE(F) ,  while properties (D2) and (D3) 
can easily be checked to hold for v. 

For a given disagreement map D, a solution is a correspondence 
assigning to each Fcf# N a nonempty subset of Aa(E(F)), the set of lotteries 
on E(F). If player i has payoff function Ki, then Ki(/0 denotes i's expected 
payoff from the lottery #eA~ 

The Nash solution E is defined as follows. For every F s ~  N, define 
N(F) by 

N(F) ,={icN:  Ki(a ) > Di(F), for some acE(F)}.  

Then, if N(F) # lZ/, for every kicLa(E(F)), let / icE(F) if and only if ki 
maximizes the product [li~N(r)[Kg (#) --Dg (F)], over all # c Aa(E(F)). Other- 
wise, if N(F) = ffS, for every/i c~(E(F)) ,  let/i ~E(F) if and only if 

K(~) ,= [K, (~)  . . . .  , K. (~)] = D ( r ) .  

Observe the similarity between this definition and the definition of the 
Nash bargaining solution; cf. Nash (Ref. 11). 

3. Axioms 

This section is concerned with the formulation and discussion of the 
axioms that will be used in the characterization of the Nash solution. 
Throughout, a fixed joint strategy specification T and disagreement map D 
will be assumed. Let �9 be a solution. 

(A1) Pareto Optimality. For all F~f# N, p~O(F), vcL~(E(F)), if 
K(v) >_ K(#), then K(v) = K(p). 
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Note that Pareto optimality is required with respect to ~(E(F)) ;  as is 
well known, equilibria that are efficient with respect to the total strategy 
space may fail to exist. 

(A2) Payoff Representation Invariance. For all Fe(# N and all 
a, b ~ R", with a strictly positive, 

O(F) = (I)(a F + b), 

with 

aF + b  .'=(S l . . . .  , Sn, T, aiK1 + b l , . . . ,  a,,K,, + b , , ) .  

The Von Neumann-Morgenstern payoff functions Ki are unique only 
up to positive affine transformations. This fact is reflected by the payoff 
representation invariance axiom. Alternatively, applying positive affine 
transformations to the payoffs in a game does not affect the players 
strategic possibilities. 

(A3) Payoff Completeness. For all F~(~ N, #~tI)(F), veLP(E(F) ) ,  if 
K(v) = K(#), then v~O(F). 

Payoff completeness requires a solution not to discriminate between 
lotteries of equilibria with the same expected payoffs. 

(A4) Cyclic Symmetry. For every F~f# N and L-cyclic permutation 
~, if F is n-cyclic symmetric, then K;(#) = Kj (#), for all # ~tI)(F) 
and all i, j ~L. 

If F is n-cyclic symmetric, then there is no apparent way to distinguish 
between the players in L, and so the solution should not make such a 
distinction. Observe that, if �9 happens to be payoff unique [i.e., 
K(#) = K(v) for all #, v~O(F)], then cyclic symmetry would be implied by 
the standard anonymity property. 

The final axiom is given below. 

(A5) Multilateral Reduction Independence. Consider all games 
F, F'E~ N such that: 

(M1) F' = (S'I . . . . .  S ' ,  T, K~ . . . . .  K ' )  is a subgame of 

F = ( S ,  . . . .  ,S~, T, K1 , . . . ,K~) ;  

(M2) D(F') = D(F); 
(M3) for all i e N  and for all 

t t t r seS'~ x . . .  x S i -1  x S i \ S i  x St+.~ x . . "  x Sn, 
K,(s) _ z),(r). 

If r c~ ~e(E(F')) ~ ~ ,  then ~(F') = O(F). 
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In words: Assume that a game F' arises from a game F by reducing the 
strategy sets in such a way that (i) the disagreement point does not change 
and that (ii) for any player, deviating to a strategy only feasible in the 
larger game yields him at most his disagreement payoff if all other players 
stick to their strategies in the reduced sets. Then, the solution in the smaller 
game F' should be a subset of the solution in the original game F, provided 
this is feasible. 

Note that condition (M3) describes a Nash equilibrium-like situation 
with respect to omitting strategies. One can imagine a bargaining process 
resulting in each player promising not to use certain of his strategies. If the 
conditions of multilateral reduction independence are fulfilled, then these 
promises are self-enforcing. 

Also note that, by (T3), (D1), (M2), (M3), 

E(F') c E(F). (I) 
A stronger version of the multilateral reduction independence axiom can be 
obtained by replacing (M3) by (1). This version could also be used in the 
characterization result in the next section. However, condition (M3) has a 
more intuitive strategic interpretation, which we prefer. Consistently with 
what we wrote in Section 1, we view the solution tI) as a recommendation 
method on which the players have reached an agreement, possibly after 
having discussed its characterizing properties. In particular, they may agree 
on a property like multilateral reduction independence on the basis of the 
given strategic interpretation. 

The multilateral reduction independence axiom is clearly related to 
Nash's independence of irrelevant alternatives (Nash, Ref. 11) and to 
Aumann's version of that axiom for correspondences (Aumann, Ref. 14). 
It is formulated in terms of the underlying strategic game, contrary to 
Axiom 6 in Harsanyi and Selten (Ref. 12, p. 99). 

Of the axioms proposed, the only one that does not have an immediate 
equivalent in the Nash (Ref. 11) original formulation is that of payoff 
completeness. This is not surprising, since the Nash bargaining problem is 
modeled in the utility space (i.e., payoff space), and an underlying set of 
alternatives does not play an explicit role. 

4. Characterization of the Nash Solution 

As before, f9 N is the class of games on N for some fixed pair T, D. The 
characterization theorem of the Nash solution is given below. 

Theorem 4.1. A solution �9 on ~N satisfies Pareto optimality, pay- 
off representation invariance, payoff completeness, cyclic symmetry, and 
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multilateral reduction independence if and only if �9 is the Nash solution 
Y~. 

In the following lemma the " i f"  part of Theorem 4.1 is checked. 

Lemma 4.1. The Nash solution E satisfies the five axioms mentioned 
in Theorem 4.1. 

Proof. Pareto optimality, payoff representation invariance, and 
payoff completeness of the Nash solution E are straightforward. Cyclic 
symmetry of E follows from the fact that E(F) is re-cyclic symmetric 
whenever F has this property, payoff uniqueness of E [i.e., K(p) = K(v) for 
all /~, v~Y.(F)] and anonymity of E [i.e., the vector K(#) permutes with 
every permutation of the player set, for every/~eE(F)]. 

Finally, multilateral reduction independence of E follows with the aid 
of (1). [] 

The proof of the "only if" part will be based on a cyclic symmetriza- 
tion method, which in the two-person case is closely related to a sym- 
metrization method introduced by Griesmer et al. (Ref. 15). To 

F = (S, . . . . .  S,, T, K I , . . . ,  K, ), 

we associate the game 

F = ( S  . . . . .  S, T,K'I . . . . .  g , )  

in the following way: 

(i) S = S l k . ) S 2 k . ) ' ' ' t , . J S n  . 

The original action sets are supposed to be disjoint. 
(ii) Let rE be the shift-permutation 

n(1) = 2, n(2) = 3 , . . . ,  n(n - 1) = n, re(n) = 1. 

If g = ( S l  . . . . .  g , ) ~ S  x . . .  x S and there is a k ~ { 1 , 2  . . . . .  n} 
such that 

Yi~Snk(i), for each ieN, 

then 

/~i(gl . . . . .  gn) '=K~k~0(zck(s-)), for each iEN. 

Note that TCk(S) was defined in Section 2; see condition (CS2). 
(iii) If  g = (g~ , . . . ,  g,) ~S x �9 �9 �9 • S and a k as in (ii) does not exist, 

then 

gi(g) : = D i ( F ) ,  for each ieN. 
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Observe that (ii) above applies to g if and only if 

s . . . . .  Sn, S l , . . .  ,Sk), for some k e { 1 , 2  . . . . .  n}, 

with 

si ~Si, for each i~N. 

In that case, 

g i ( S k  + l , S k _ r  2 , �9 . �9 , S n ,  S 1 . . . . .  Sk) = Ki+k(mod,)(S 1 , S 2 . . . . .  Sn). 

It can easily be checked that the game F is n-cyclic symmetric. 
Recall that the map T is defined for all n-tuples of  finite sets, in 

particular also for (S . . . . .  S) as above. 
For  the two-person case, a game F written as a bimatrix [/(1, K2] gives 

as cyclic symmetrization the game r" defined as 

[ /~1(F)'/~2(F) K ' ' K 2  1 
K[, K~ /31(F ) , / )2(F)  ' 

where / )k(F)  denotes a square matrix of appropriate size with each entry 
equal to Dk(F) and the superscript t denotes the transposed matrix. 

In the three-person case, the cyclic symmetrization of a game F leads 
to 

pl.2 pl.2 pl.2 

pl.1 

where the first block row of each matrix corresponds to actions of player 
1 from $1, the second one to actions from $2, and the third one to actions 
from $3. The three-block columns correspond in a similar way to $1, $2, $3 
for player 2. Observe that the first matrix is [SI[ layers deep, each one 
corresponding with a certain action of  player 3 in 1 ~ from $1. Analogous 
structures hold for the second and third matrix. Each dot consists of  a 
block of  appropriate size with each element equal to [D~ (F), D2(F), D3(F)]. 

Similarly as above, cyclic symmetrization can be defined for subsets 
L ~ N, for instance for L = { 1, 2 . . . . .  l}, 

r =  ( , ~ ,  S,+ l . . . . .  s , ,  r ,  l~l,  . . . , g , ) ,  

/ times 

with S = U~= 1Sk and g'i, i = 1, 2 , . . . ,  n, defined analogously as above, 
using the L-cyclic shift permutation. 
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In the sequel, we need some additional notation. Let # e T(S  . . . . .  S) 
in F, and let ~ be a permutation of  N. Define the number 

an(g~t ( l  ) . . . . .  S~(n)) t= ~ . . .  E IT(S1 . . . .  , Sn) ,  
Sl eSn(1) gnaSh(n) 

i.e., as the total probability mass assigned by t~ to the subgame in i ~ arising 
from the permutation re. If  this number is positive, define the joint strategy 
t/~ e T(S~o) , . . . ,  S~(~)) in the game (S~o) . . . . .  S~(,), T, Kin) . . . .  , K~(~) ) by 

~ . ( s ,  . . . .  , s . )  ,= o(s ,  . . . . .  s . )  lO=( s .  m . . . . .  & . ) ) .  

The next lemma paves the way for the proof  of  the "only if" part of  
Theorem 4.1. It states that an equilibrium in F induces equilibria in the n 
subgames 

7ok(F) .'= <Sk+, . . . . .  S,,, S, . . . . .  Sk, T, Kk + , . . . . .  K , ,  K, . . . . .  K, ) .  

Lemma 4.2. Let F and P be as above, with additionally 
De(F) = D:(F), for all i , j ~ N .  Let rr be the shift permutation. Then: 

(i) F is 7r-cyclic symmetric; 
(ii) D(F)  = D(F);  
(iii) forevery t /eE(F),  ifa,,(S~k(1) . . . . .  S~k(~)) >0,  then 0~keE(rtk(F)). 

Proof. 
(i) This is obvious from the definition of F. 
(ii) Consider the subgame ($1, $2 . . . . .  Sn, T, K 1 , . . . ,  K, ) of  F, 

which is identical to the original game F. By definition of  F, we have that, 
for each (Sl . . . . .  gn)~S1 x . . .  • Si_l  x S \ S i  x Si+l x . . .  • S~, 

g i (s l  . . . . .  sn) = D,(F), 

Hence, property (D2) of D implies D(F) = D(F). 
(iii) Let 6EE(r ') ,  and let 6=k(&+~ . . . . .  S~, S~ . . . .  , Sk) > 0  for some 

ke{1,  2 . . . . .  n}. Let for player i - k(mod n), s~ ~&, with st e#i-ktmod ~)(0). 
Then, by definition of  equilibrium, 

&(O(~),  ~)  > R/(O(~), s~), for all s, e&.  

Observe that 

_~i(O(~i), si ) = ~ _~z( s- i ,  s i)O(s-i l  si)" ~ a( t- i ,  si) 
S - i~s  -i  t -Ti~S -i  

+[1 1 - o(t-", ~)  D,-kimod.)(1D 
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= K,(~dsS).  s,)" Z ~(t- -~, s,A ) 
t - i e S  - i  

On the right-hand side of  this equality, only the first term depends on s~. 
Hence from 

-- -- ^ A -- - ^ K, (a(si), s,) >_ Ki (,T(si), s~), 

we can conclude that 

K,O~(s.) .  s~.) >_ Ki(~k(g~ ). s,). 

which yields o-,keE(nk(F)). [] 

It should be noted that part (iii) of  Lemma 4.2 for n = 2 is related to 
parts (iii) and (iv) of  Theorem 4.1 in Jansen et al. (Ref. 16). 

Next, the "only if" part of  Theorem 4.1 can be proved. 

Lemma 4.3. Let the solution (I) on f#N satisfy the five axioms men- 
tioned in Theorem 4.1. Then, q) equals the Nash solution Z. 

Proof. Let F ~ f f ~  and let N(F)  be as in the definition of  the Nash 
solution. If  N(F)  = ~ ,  then 

SO 

{K(/~): # �9 2~~ } = {D(F) }, 

~(I- )  c x ( r )  = ~ ( E ( r ) ) .  

From this and the payoff completeness of  q), 

* ( r )  = X(r) .  

If  IN(F)[ = 1, then ~(F)  = Z(F) follows straightforwardly by Pareto 
optimality and payoff completeness. From now on, let 

N(F)  = {1 . . . . .  l}, with l > 2. 

In view of the payoff representation invariance, it is w.l.o.g, to assume 

D ( r )  = ( 0 , . . . , 0 )  

and 

Y~(F) = {/~ e&f(E(r)) :  Ki(/~) = 1, 1 <_i<l; Ki(#) =0 ,  l +  1 <iNn}. 
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The definition of the Nash solution then implies that, for all # e La(E(F)), 

K(#) ~conv({le;: 1 _< i < l} u {(0 . . . . .  0)}), (2) 

where e * is the ith unit vector in R n. 
Let P be the n-cyclic symmetric game associated with F, where n is the 

N( F) -cyclic shift permutation, as defined above. Let tr ~E(F). Then, a can 
be extended to P in the obvious way by assigning probability 0 to the added 
action combinations. So, E(F) c E(P). Let #~E(P).  Then by Lemma 4.2 
applied to F and P, we obtain [recall that D(F) = 0] 

l 

g(e) = [g , (e )  . . . . .  R.(e)]  = ~ , l k [ /~k ( , ) (~k ) , . . . ,  K~k( , ) (~)] ,  
k = l  

with 
I 

2 k > 0  and Y, 2ke[0,1]. 
k = l  

Since for each k = 1 . . . .  , l we have 

[K=k(1)(ff=k) . . . .  , K=k(n)(ff, k)l ~conv({/eq 1 < i _< l} to {(0, 0 . . . . .  0)}), 

by (2), it follows that 

R(f f )~conv(  {lei: 1 < i < l} va {(0, 0 . . . . .  0)}). 

Therefore, 

{K(ff): 6 ~E(F)} = conv({lei: 1 <_ i < l} u {(0, 0 , . . . ,  0)}). 

P is n-cyclic symmetric, so for all tr sO(P) we have 

Ki(tr) = Kj(tr), i , j~{1  . . . . .  1}, 

By Pareto optimality, we then have a e e#(p) only if 

Ki(tr ) = Kj(tr) = 1, for all i,j~{1 . . . .  ,1}, 

since there exists a a~Za(E(F)) c 5r with 

K~ (tr) = 1, 1 < i < / ,  

Ki(a) = 0, otherwise. 

Therefore, by payoff completeness, we have 

O(P) = {tr eZP(E(P)): Ke(a) = 1, i < 1 < l; K~(tr) = 0, otherwise}. 

In the formulation of the multilateral reduction independence axiom, 
the roles of F, F', S] . . . . .  S', can be played by F, F, $1 . . . . .  S,, respec- 
tively. Condition (M3) of the axiom follows from the definition of F. Also, 
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hence, 

by this axiom. Again using the payoff completeness axiom, this implies that 

O(F) = { o ' ~ ( E ( F ) ) :  Ki(o- ) = 1, 1 < i < l; Ki(a ) = 0, otherwise}. 

Therefore, 

O(r)  = z ( r ) .  [] 

Evidently, Theorem 4.1 follows from Lemmas 4.1 and 4.3. 
The Nash proof of the characterization of the Nash bargaining 

solution uses a triangular bargaining problem [e.g., as in (2)] as a symmet- 
ric superset of the given bargaining problem, to which in particular the 
bargaining axioms of Pareto optimality, symmetry, and independence of 
irrelevant alternatives can be applied. In the proof of Theorem 4.1, more 
specifically of Lemma 4.3, the image of Aa(E(F)) in payoff space is rotated 
with respect to the straight line xl =x2 . . . . .  xn, and the union is 
taken. This leads to the cyclic-symmetric image of Aa(E(F)). This approach 
could be applied to the Nash original characterization as well; however, the 
converse is not apparent, because it is not clear how, for a given game 
F', a related game F (larger in the sense formulated in the multilateral 
reduction independence axiom) can be constructed that has a triangular 
image in payoff space. 

Next, we show that Theorem 4.1 is tight in the sense that none of the 
five axioms can be dispensed with. For each of the axioms, we will describe 
a solution violating that axiom while satisfying the four other axioms. 

(i) Pareto Optimality. Let (I)(F):={#~Ae(E(F)): K(/0 =D(F)},  if 
this set is nonempty; let ~( F) ..= Y.( F), otherwise. 

(ii) Payoff Representation Invariance. Let �9 assign to F the set of 
all elements in :T(E(F)) with lexicographically maximal payoffs. 

(iii) Payoff Completeness. Let O(F) .-= Y(F), if Z(F) c~ E(F) = ~ ;  let 
�9 (F) .-= Z(F) c~ E(F), otherwise. 

(iv) Cyclic Symmetry. Let �9 assign to F the set of all elements of 
5e(E(F)) that maximize successively the payoffs to the players in 
some given order. 

(v) Multilateral Reduction Independence. Let n = 2 and 

u ( r ) , = [ m a x  K,(a), max K2(a)l. 
L~E(F) ~e~(r) 

Let �9 assign to F the set of all members of Aa(E(F)) that 
maximize the players' payoffs restricted to the line segment 
connecting D(F) and u(F). 
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The proofs of these statements are left to the reader. In particular, to 
check the multilateral reduction independence, it is usually convenient to 
use inclusion (1). 

Finally, we substantiate our claim, made in the introduction, that our 
method and in particular Theorem 4.1 may be applied to refinements of 
Nash equilibrium, by showing this for perfect equilibria (Selten, Ref. 7). 
Thus, let PE(F) denote the set of perfect Nash equilibria in a game F. This 
set is n-cyclic symmetric whenever F is. In (D1), in the definition of a 
solution and in particular of the Nash solution, and in the definitions of the 
axioms, replace E(10 by PE(F). In the definition of multilateral reduction 
independence, replace (M3) by the condition PE(F') c PE(F). It can be 
chekced, but is not completely trivial, that with these modifications Lem- 
mas 4.1, 4.2, and 4.3 still hold true, with E( r )  replaced by PE(r') and 
E(z*(F)) by eE(nk(F)) in Lemma 4.2, and with E(F) and E(F) replaced by 
PE(F) and PE(F), respectively, in Lemma 4.3. Consequently, Theorem 4.1 
presents a characterization for the case of perfect Nash equilibria as well. 
See also Example 5.4 in the next section. 

5. Conclusions 

In this paper, we have introduced and axiomatically characterized a 
general method of equilibrium refinement. The adjective "general" refers 
here to the fact that the method may be applied to several equilibrium 
concepts and refinements thereof and to a whole class of games. Since in 
many games, existing refinements do not lead to unique equilibria, the 
method described may well serve as an aid to arrive at a unique equi- 
librium, at least at unique equilibrium payoffs. 

The paper will be concluded by some examples. 

Example 5.1. If the set 

K,= {K(#) = (/(1 (#) . . . . .  K,(/x)): # ~ Aa(E(F)) } 

has a unique Pareto optimal point, then the Nash solution consists of those 
# ~Aa(E(F)) which yield this point as payoff outcome. If in particular, E is 
the set of all Nash equilibria and a certain equilibrium point payoff 
dominates all other equilibria, then this equilibrium point will be assigned 
by the Nash solution. 

Example 5.2. A generic 2 x 2 bimatrix game possesses 1 or 3 equi- 
librium points. In the latter case, two of these are pure and diagonal-wise 
situated, while the third one is completely mixed. Let 
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a l  ~ a2) 

(Vl, V2) 

Payoff to player 1 

Fig. 1. Description of Example 5.2. 

al, a2 bl, b21 
c l , c2  dl ,  d2 

be a generic bimatrix game with three equilibria. Without loss of  generality, 
assume that the two pure equilibria are on the same diagonal, with 
equilibrium payoffs (al, a2) and (dl, d2). It is well known that the equi- 
librium payoffs of the mixed equilibrium equal (vl ,  v2), where vi is the 
maximin value of  player i, so 

/)l ----" (a l  dl - b! c I ) / ( a  1 + dl - bl - el), 

v2 = (a2d2 - b2c2)/(a2 + d2 - b2 - c2). 

Suppose that the Nash solution is applied to the set of  Nash equilibria E, 
and let D assign the individual maxmin values. With 

2 = (d~ - v O l 2 ( d l  - a ~ )  - (d2 - v 2 ) / 2 ( a 2  - d2), 

it can be checked that the Nash solution payoffs equal (x 1 , x2), where 

(i) (Xl, x2) = (al, a2), if 2 ___ I, 
(ii) (xl, x2) = (dl, d2), if 2 < 0, 
(iii) (x~, x2) = 2(a,, a2) + (1 - 2)(d~, d2), if 0 < 2 _< 1 (see Fig. 1). 

Notice that case (iii) corresponds to the  correlated equilibrium where with 
probability 2 both players choose their first action and with probability 
1 - 2  both players choose their second action. Applying this result to the 
battle of  the sexes, 

2,1 0 , 0 ]  

0,0  1 ,2J '  

it follows that the Nash solution corresponds to plating cell (2, 1) with 
probability 1/2 and cell (1, 2) with probability 1 [2. 
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Example 5.3. Let E be the set of Nash equilibria. It can easily be 
checked that any extreme point of 

K = {K(#) = (Kl(kt),... , K,(#)):/z 6Aa(E(F))} 

can be associated with an extreme point of a maximal Nash subset; see 
Nash (Ref. 1) or Heuer and Millham (Ref. 17). Hence, the Nash solution 
can always be written as a possibly nonunique convex combination of 
extreme points of maximal Nash subsets. 

Example 5.4. Consider the bimatrix game 

L R 

M 0,0 0 , 2 1 .  
B 7,0 5, 

Let the disagreement point be given by the individual maxmin values, i.e., 
the point (5, 0). Applying the Nash solution for the case of Nash equi- 
librium, we obtain the outcome (6.5, 0.5), which is reached by playing 
(T, L) and (B, R) each with probability 1/2. If we restrict attention to 
perfect Nash equilibria, the Nash solution prescribes (T, L) with probabil- 
ity 1. By deleting the second row of player 1, so that the game becomes 

L R 

B 7,0 5, ' 

the Nash solution is not affected if lotteries between all Nash equilibria are 
considered. However, the pair (T, L) is no longer perfect, and when 
restricted to perfect Nash equilibria, the Nash solution prescribes (T, R), 
the sole remaining perfect Nash equilibrium. Observe that this does not 
violate the multilateral reduction independence axiom. 
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