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Does seasonal adjustment induce common cycles?
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Abstract

In this note we analyze via Monte Carlo simulations how serial correlation common features test statistics behave when
X-11 seasonal adjusted data are encountered. We emphasize both size and power distortions. We illustrate the analysis on
Japanese consumption/ income relationship.  1998 Elsevier Science S.A.
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1. Introduction and motivation

Because official statistical agencies and international institutions often release seasonally corrected
data, numerous papers have been studying the effect of seasonal adjustment on econometric inference
and hypothesis testing [see inter alia Wallis (1974), Ghysels and Perron (1993), Ghysels et al. (1993)
or Maravall (1995)]. One of the most important messages is that estimates are not consistent when
lagged dependent variables are present among the regressors; with the exception of cointegrating
vectors that are not affected by seasonal filters even if the short run dynamics is. Consequently, in this
note we examine, through Monte Carlo experiments, to what extent the common practice of
seasonally adjusting data may yield spurious, or misses, serial correlation common feature (SCCF)
vectors. Stemming from the work by Engle and Kozicki (1993), Tiao and Tsay (1989), Velu et al.
(1986), the goal of SCCF analysis is to find, in a multivariate stationary autoregressive model, linear
combinations of economic time series that are white noise processes. This kind of analysis is relevant
when searching for short run synchronous comovements in economic time series and yields more
efficient estimates due to the reduction in the number of parameters.

We analyze the small sample impact of the well known X-11 linear filter on two different models.
In particular we consider:
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where we assume, without loss of generality, that y is measured quarterly. y is a n-dimensionalt t
4 4 2seasonal process with D512L and D 512L . As (12L )5(12L)(11L)(11L ), both models4

imply only one unit root at the zero frequency. Model (1) displays the usual deterministic pattern
structure in which, for the first differenced variables, the seasonal component is summarized by
dummy variables. The second model exhibits unit roots at all seasonal frequencies, so the seasonality
is said to be stochastic (see Franses (1996) for a survey).

Define [F :F :...:F ]5F. Notice that common features are present if the rank of F is smaller than1 2 p

n. In this paper we analyze the size, i.e. when rank(F ),n, as well as the power, i.e. when
rank(F )5n, of serial correlation common feature tests statistics. As we cannot ignore the presence of
seasonal components we first analyze the case in which unadjusted y has been filtered correctly byt

(12L) and four dummies or by the D operator. These results are then compared to those obtained for4

time series that have been adjusted by the X-11 filter. In this last situation we transform variables in
28

SA i 21level by the linear approximation y 5C(L)y where C(L) 5 o C L with C(L)5C (L ) andt t i
i5228

C(1)51. The common feature analysis is then applied to the first or the fourth differences of
SA SAseasonally adjusted data, i.e. on D y or D y .t 4 t

Proposition 1.1. The common feature space for the unadjusted data is not a common feature space for
seasonally adjusted data.

*Proof. Following inter alia Ericsson et al. (1994) it is useful to express C (L)5C (1)1C (L)D,
*where D is the difference operator and C (L) is a two-sided linear filter with polynomial coefficients

SA*C . For non cointegrated stationary time series, with for instance z ;Dy , we get z 5C(L)z 5Ci t t t t
˜* *(1)z 1C (L)D z 5z 1C (L)D z . Assume there exists a n3r matrix b whose columns span thet t t t

SA˜ ˜ ˜ ˜ ˜*cofeature space. Premultiplying both side by b9, we get b9z 5b9 z 1b9C (L)D z . b9z is a whitet t t t
˜noise by definition of SCCF. Note however that b C*(L)D z is a weighted sum of an invertiblet

SA 2˜MA(1) process, and hence b9z will not be a white noise .ht

Proposition 1.2. Inference on common feature space conducted on unadjusted data differs from the
one conducted on seasonally adjusted data.

p
iProof. Let us consider the VAR( p) defined by (1) where F (L)5I2 o F L . Applying the lineari

i51

approximation of the seasonal filter yields C (L)F (L)z 5C (L)d D 1C(L)´ . Substituting z byt t t t
SA SA 3z 1(z 2z ) and using the previous filter we obtaint t t

2Consequently we end up with a non-synchronous common cycle as defined by Vahid and Engle (1996).
3Notice that, if the sum of dummy variables coefficients is zero over a year, C (L)d D 50 (Ericsson et al. (1994)).t
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SA SA
C(L)F(L)z 1C(L)F(L)(z 2 z ) 5C(L)´t t t t

SA SA SA*F(L)z 5 2C(L)F(L)(z 2 z ) 1C(L)´ 2C (L)F(L)Dzt t t t t

SA SA*Now, the error process h 52C (L)F (L)(z 2z )1C(L)´ 2C (L)F (L)D z is no longer ant t t t t

innovation and it is not even orthogonal to the regressors, which will induce inconsistency and
inefficiency for the reduced rank test statistics.h

2. Test statistics

´In the lines of Tiao and Tsay (1989), Gourieroux and Peaucelle (1993), Ahn and Reinsel (1988),
Velu et al. (1986) we test for zero canonical correlations between the (n3T ) matrix W ;DY 51 t

9 9 9 9 9 9hDy ...Dy j and the (n3p)3T matrix W 5hDY ...DY j . Note that for the non X-11 filter case,1 T 2 t21 t2p

W and W have to be adjusted for their means and seasonal components, i.e. both terms have been1 2

regressed on four centered dummies and the analysis is carried out on residuals. For stochastic
9 9¯seasonality the analysis is conducted between W ;D Y 5hD y ...D y j9 and the (n3p)3T matrix1 4 t 4 1 4 T

9 9 9W̄ 5hD Y ...D Y j where both sets have been adjusted for their means. When the X-11 filter is2 4 t21 4 t2p
SA SA9 SA9˜ ˜ ˜¯ ¯used, we replace W , W and W , W by W and W where W ;DY 5hDy ...Dy j9 and the1 2 1 2 1 2 1 t 1 T

SA9 SA9 9˜(n3p)3T matrix W 5hDY ...DY j . Notice that once the seasonal filter has been applied, it is2 t21 t2p

numerically equivalent to first difference X-11 filtered data when the DGP is model (1) or to take the
fourth differences of X-11 filtered data when the DGP is model (2). We consequently do not report
both results. In practice, however, the statistical properties of raw data are usually not known. So, we
will take most of the time first differences of non stationary seasonally adjusted data.

For a multivariate Gaussian covariance stationary process, the sequence of common feature
likelihood ratio test statistics is, for H :rank[F :...:F ]#n2r against H :rank[F :...:F ].n2r (see0 1 p a 1 p

¨Lutkepohl (1991)):

r

z 5 2 T O log(1 2 l ), r 5 1,...,n (3)r i
i51

where 0#l #l #...#l #1 are the ordered eigenvalues of the symmetric matrix1 2 n

21 / 2 21 21 / 29 9 9 9 9L 5 (W W ) W W (W W ) W W (W W ) (4)r 1 1 1 2 2 2 2 1 1 1

The eigenvalues of L , estimated in the usual way, are the squared canonical correlations and ther

smallest of them measures the relationship between the linear combination of the components of W1

and the linear combination of the components of W that is the least correlated. If the null hypothesis2
9 21 / 2cannot be rejected, the columns of the matrix a ;(W W ) v , where v are the eigenvectors of L1 1 r r r

associated with this smallest correlation, span the cofeature space. This matrix a whose columns span
the left null space of F 5[F :...:F ] is such that a9F 50 . Because of the covariance-stationary1 p (r3np)

2hypothesis, the test statistics asymptotically follows, under the null, a x with rnp2r(n2r) degrees of
freedom (see Vahid and Engle, 1993).
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3. The data generating process and simulation results

Under the reduced rank null hypothesis, we generate a bivariate process in which the first as well as
the fourth differenced variables follow a VAR of order 2 with a cofeature vector equal to [1,21]:

0.2 2 0.5 2 0.32 0.16 9 3
F 5 , F 5 , V 5 ,F G F G F G1 2 ´0.2 2 0.5 2 0.32 0.16 3 4

.1 2 2 2 1
d 5F G

2 6 1.5 2 0.5 5

Under the alternative, it is easy to choose a DGP that would give a power of 100% in almost all
situations. To circumvent this problem, we specify an alternative hypothesis relatively close to the
null by fixing F 5F 50.1.12 2.21

In the linear approximation of X-11 filter we do not reconstruct the initial and the final observations
in order to avoid the appearance of other problems, such as nonlinearity for instance (Maravall, 1997).
Consequently we generate 521281T 128 observations. We drop the first 52 to initialize the process
and take the T observation in the middle in each case. The weights of the linear 56th order moving
average are often given (in Ghysels and Perron (1993) for instance) up to three digits. In order to
minimize rounding errors we recalculate the weights for eight decimals. Also notice that we exclude,
in the simulation study, cointegrating relationships both at seasonal and at zero frequencies. We also
assume that the deterministic seasonal pattern is constant through time.

Three sample sizes are used, that is T580, 160, 500. The first two sample sizes mimic most
economic time series for which we often get 20 or 40 years of quarterly data. We also add a larger
sample size in order to analyze the behavior of test statistics when the sample increases. All the
computations have been done in Gauss 3.14 with the RNDN generator process using 10 000
replications. The estimated model has got successively p51, 2, 4, 8 lags. Table 1, Table 2 and Table
3 give outcomes of the simulations. Table 1 presents empirical sizes, the nominal one being 5%, for
the case in which the correct filters have been applied. Table 2 presents sizes when X-11 filter is used.
For these two tables we present the frequencies of rejecting the true null hypothesis that the smallest
eigenvalue is zero (r51), the rejection frequency for the sum of the two eigenvalues being 100% in

˜almost all cases. We also present the median of coefficient b for the normalized cofeature vector [1,2

Table 1
Empirical sizes and cofeature vector median and interquartile ranges for NSA

DGP Filter Lags T580 T5160 T5500
r51 b b r51 b b r51 b b0.5 0.75–0.25 0.5 0.75–0.25 0.5 0.75–0.25

Dy Dy p51 5.10 0.996 0.4253 5.20 0.998 0.2869 5.19 1.001 0.1559t t

1SD 1SD p52 5.70 0.993 0.3152 5.21 0.998 0.2172 4.96 0.999 0.1195
p54 7.48 0.993 0.3411 5.98 0.998 0.2233 5.36 0.999 0.1211
p58 10.76 0.993 0.3809 7.64 0.995 0.2366 5.67 0.999 0.1225

D y D y p51 4.33 0.969 0.4085 4.80 0.984 0.2778 5.12 0.996 0.15584 t 4 t

p52 4.81 1.005 0.3122 4.77 1.002 0.2147 4.82 1.000 0.1200
p54 5.69 1.003 0.3321 5.03 1.002 0.2204 5.00 1.000 0.1204
p58 8.03 1.003 0.3742 6.27 0.999 0.2351 5.08 1.000 0.1226
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Table 2
Empirical sizes and cofeature vector median and interquartile ranges for X-11 SA

DGP Filter Lags T580 T5160 T5500
r51 b b r51 b b r51 b b0.5 0.75–0.25 0.5 0.75–0.25 0.5 0.75–0.25

SA
Dy Dy p51 8.62 1.157 0.5151 11.43 1.182 0.3549 16.83 1.192 0.1973t t

1SD p52 19.62 0.976 0.3460 35.80 0.974 0.2321 82.82 0.974 0.1315
p54 41.46 0.955 0.4069 72.56 0.953 0.2611 99.95 0.952 0.1448
p58 67.29 0.952 0.4782 95.83 0.949 0.2931 100 0.949 0.1539

SA
D y Dy p51 94.03 0.549 0.3014 100 0.740 0.2637 100 0.555 0.11814 t t

p52 99.98 0.766 0.3257 100 0.763 0.2280 100 0.760 0.1243
p54 100 0.831 0.3103 100 0.831 0.2161 100 0.831 0.1207
p58 99.97 0.848 0.3330 100 0.847 0.2300 100 0.846 0.1259

˜ ˜2 b ], the true one being [1,21], as well as the interquartile difference of b as a parameter of2 2
4dispersion. Table 3 deals with the size-adjusted power for T5160 and T5500.

In the first case, the appropriate filter is used. It emerges from Table 1 that there exist no bias nor
size distortions in large samples. For small samples, we see a small size distortion if we overspecify
the dynamics: empirical sizes go up to 10% in the worst case when T5100 and p58. A small bias
also appears in the fourth difference case if one underspecifies the dynamics, that is taking p51. The
dispersion is smallest when the correct lag length is selected, that is when p52. The power is also
high under the true dynamic structure but decreases for small samples if we overspecify the lag
structure.

Once the data have been seasonally adjusted, we however observe huge size distortions yielding

Table 3
Empirical sizes-adjusted power and cofeature vector median and interquartile ranges

DGP Filter Lags T5160 T5500
r51 b b r51 b b0.5 0.75–0.25 0.5 0.75–0.25

Dy Dy p51 49.69 0.145 0.2504 97.62 0.147 0.1344t t

1SD 1SD p52 95.02 20.088 0.3906 100 20.082 0.2012
p54 87.00 20.089 0.4024 100 20.081 0.2016
p58 70.66 20.088 0.4214 99.96 20.081 0.2053

SA
D y Dy p51 0 0.165 0.1623 0 0.166 0.08994 t t

p52 7.69 0.059 0.2002 5.46 0.062 0.1086
p54 16.14 20.006 0.2246 24.66 0.000 0.1197
p58 14.58 20.019 0.2433 23.34 20.014 0.1266

SA
Dy Dy p51 65.08 0.143 0.5346 99.4 0.138 0.2942t t

1SD p52 41.79 20.154 0.6865 88.70 20.162 0.3738
p54 27.87 20.127 0.6787 67.90 20.1339 0.3511
p58 19.79 20.113 0.7578 49.66 20.1351 0.3808

4To get size-adjusted powers, we analyze frequencies of rejecting H when H is true with critical values corresponding toa a

5% empirical size levels calculated for each specific case.
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test statistics too liberal. Moreover, size distortions increase with the number of lags added in the
estimated model, a phenomenon which is amplified when the sample size increases. This result can be
easily understood with respect to Propositions 1.1 and 1.2. Due to underlying MA(1) structure, the
MA parameters are consistently estimated when the sample size increases. Even if the bias is small in
this case, it doesn’t decrease when T increases. The power of the test statistic strongly decreases for
seasonally adjusted data even when the correct difference operator has been applied. Tests are still
consistent in this case because lim P (j . c)5100%. The power is very small if we take the firstHa r

T →`

difference of X-11 filtered data whilst the raw model has also unit roots at seasonal frequencies.
Moreover, the consistency of test statistic is questionable with respect to the power evolution from
T5160 to T5500. Unfortunately, taking the first difference of seasonally adjusted data is a popular
practice in empirical studies.

4. The Japanese consumption function

We now analyze the impact of seasonal adjustment on the consumption / income relationship. The
raw as well as the seasonally adjusted data come from the Japanese national accounts and are recorded

5quarterly from 1955Q2 up to 1996Q4 . Consumption is the total consumption and the income variable
we retained is the GDP less government expenditures. The variables are in constant prices. Some
seasonal unit root tests and cointegration analyses have previously been done on this data set by Engle
et al. (1993) or Hall et al. (1997). As suspected by the last authors we also detect a shift in regime in
1974Q1, so we start our analysis in 1974Q2 in this illustrative example. The log levels of the data are
drawn in Fig. 1. As previous studies do not cover the same period, we also use HEGY (see Hylleberg
et al., 1990) test statistics in order to analyze if there are some roots at zero or at seasonal frequencies.

Fig. 1. Japanese consumption and income at constant prices.

5The data may be found on the Japanese statistical office Web site http: / /www.stat.go.jp /19.htm.
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Table 4
HEGY unit root test statistics

ln C ln Y ln (C /Y )t t t t

Lags 1,3,4,5,6,8,10 1,3,4,5,9 1,2,3,6,7,10,11,12
det. part c, trend, SD c, trend, SD c, trend, SD
p 21.58 23.24 21.761

p 20.19 0.56 22.602

p 22.63 22.16 0.103

p 21.93 21.86 21.574

p >p 5.26 4.11 1.253 4

It is shown in Table 4 that the log of both non seasonally and seasonally adjusted data have a unit root
at zero frequency, and that raw time series have also unit roots at all seasonal frequencies. Moreover,
the vector [1,21] is not a cointegrating vector as may be seen in the last column of Table 4.

Table 5 however shows the existence of a long run relationship at the zero frequency but not at
seasonal frequencies. The variables are stochastically cointegrated, e.g. are stationary around a
deterministic trend, which partly measure the upward trend of the foreign balance. For the raw data

2the cointegrating relationship is c 514.14710.010595trend10.637y , where c 5(11L1L 11t 1t 1t
3 2 3L )c and y 5(11L1L 1L )y , while c 53.43910.002565trend10.646y with the seasonallyt 1t t t t

adjusted data. Notice that both relationships present the same income elasticity as explained by
Ericsson et al. (1994).

We may now conduct a common feature analysis in the variables written in their correct ECM
6form .VAR models which may best characterize the covariance structure of the data are models with 1

or 6 lags for the fourth differences of the seasonally unadjusted model and 2, 6 or 12 lags for the first
differences of the seasonally adjusted model. Consequently we choose successively p52,6,12 in
order to examine the stability of results through p, having in mind that p56 seems better for both
models.

Table 6 gives the common feature test statistic for the seasonal as well as the non seasonal data set.

Table 5
HEGY seasonal cointegration tests

c 5f( y , determ) 0 frequency Semi-annual Annualt t

Raw data Lags 1 to 5 1 to 7 1 to 8
det. part c, trend c, SD c, SD
Test Stat. 24.60 22.64 4.38

Season. adj. Lags 1 to 2 – –
det. part c, trend – –
Test Stat. 24.59 – –

6 4That means with the (12L ) difference operator and the function of c ,y for unadjusted time series and with the1t21 1t21

(12L) operator and the function of c ,y for the seasonally adjusted data.t21 t21
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Table 6
Common feature test statistics for Japanese consumption function

SALags D y D y4 t t

r51 5%cv r52 5%cv b r51 5%cv r52 5%cv b

p52 33.50 (7.81) 146.52 (15.50) 0.65 7.52 (7.81) 22.11 (15.10) 0.19
p56 60.93 (19.67) 204.63 (36.41) 0.71 16.78 (19.67) 44.68 (36.41) 0.67
p512 84.44 (35.17) 259.76 (65.17) 0.68 30.51 (35.17) 74.03 (65.17) 1.09

We test for a ‘weak form reduced rank structure’ (see Hecq et al. (1997): a situation in which the short
run dynamics matrices and the long run coefficients matrix do not have a common left null space as
assumed by Vahid and Engle (1993) or Ahn (1997) for seasonal cointegrating vectors. In all cases the
model that considers a linear combination of the first (or the fourth differenced data) corrected for
long run effects instead of a combination of differenced variables only, has been retained with respect
to likelihood ratio test statistics and information criteria (for finite sample properties see Hecq et al.
(1997)).

What emerges from Table 6 is that we cannot reject the hypothesis of one serial correlation
common feature vector with seasonally adjusted data while we clearly rejected this hypothesis for the
unadjusted data. In light of the simulations outcome, this result can be explained by a strong decrease
of power with seasonally adjusted data. Also remark that we reject (results not reported) the presence
of a common feature vector in the fourth differences of seasonally adjusted data. Due to the presence
of unit roots both at zero and at seasonal frequencies, the power of SCCF test statistic is higher when
the analysis is applied on fourth differenced adjusted data.

5. Conclusion

We have seen, through Monte Carlo simulations, that the practice of using serial common feature
test statistics on seasonally adjusted data is a perilous exercise. Due to size distortions, we face the
worst situation in which tests are not able to detect common features because of size distortions.
Because of lack of power, they spuriously signal discovery of common features when these features
do not exist. So, what could be done in empirical studies? It is easy to answer: use seasonally
unadjusted data sets. Because the nature of the seasonality present in raw data is crucial, we could at
least consider the statistical properties of the data if not from raw data, from previous studies.
However it is well known that the power of procedures like HEGY is low in several situations like the
presence of a shift in mean or in seasonal pattern, GARCH, nonlinearity...

Consequently, we would advise, when using seasonally adjusted data, to test for non-synchronous
common cycle, that is a linear combination of a VARMA( p,1) for instance which yields a MA(1)
process, that is also a scalar component model of order (0,1). The interpretation of the results is
however different from Vahid and Engle (1996). In this case, cycles are not really non-synchronous
because the vector corresponding to the SCM(0,1) may be a serial correlation common feature for the
non-observable raw data. However, this is only valid if we succeed in detecting the correct nature of
the seasonality in raw data, otherwise we throw out the dynamics like we would throw out the baby
with the bath water.
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