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Abstract 

In this paper we address the complexity of postoptimality analysis of O/l programs with 

a linear objective function. After an optimal solution has been determined for a given cost 
vector, one may want to know how much each cost coefficient can vary individually without 
affecting the optimality of the solution. We show that, under mild conditions, the existence of 
a polynomial method to calculate these maximal ranges implies a polynomial method to solve 
the O/l program itself. As a consequence, postoptimality analysis of many well-known NP-hard 
problems cannot be performed by polynomial methods, unless .P = 1 ‘Y. A natural question that 
arises with respect to these problems is whether it is possible to calculate in polynomial time 
reasonable approximations of the maximal ranges. We show that it is equally unlikely that there 
exists a polynomial method that calculates conservative ranges for which the relative deviation 
from the true ranges is guaranteed to be at most some constant. Finally, we address the issue of 
postoptimality analysis of &-optimal solutions of NP-hard O./l problems. It is shown that for an 

z-optimal solution that has been determined in polynomial time, it is not possible to calculate 
in polynomial time the maximal amount by which a cost coefficient can be increased such that 
the solution remains E-optimal, unless 8 = 1 ‘9. 0 I999 Published by Elsevier Science Ltd. All 

rights reserved. 

Kq~rorrls: Postoptimality analysis; Computational complexity 

0. Introduction 

Whereas sensitivity analysis is a well-established topic in linear programming (see 

[2] for a comprehensive review), its counterpart in mixed integer programming and 
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combinatorial optimization is a much less developed research area. The excellent an- 

notated bibliography by Greenberg [4] shows that in the last 20 years results have 

appeared more or less isolated in the literature, but that quite recently there seems to 

be an increased interest. 

In this paper we address the complexity of postoptimality analysis of O/l programs 

with a linear objective function. The first complexity results with respect to stability 

analysis of such problems have appeared in the Russian literature. We refer to Sotskov 

et al. [lo] for a review of these results, which mainly relate to situations in which 

several problem parameters may vary simultaneously. Our results concern individual 

changes of parameters. To be more precise, we consider the situation in which an 

optimal solution has been determined with respect to a given cost vector and one 

wants to know how much each cost coefficient can vary individually without affecting 

the optimality of the solution. We show that, under mild conditions, the existence of 

a polynomial method to calculate these maximal ranges implies a polynomial method 

to solve the O/l program itself. As a consequence, postoptimality analysis of many 

well-known NP-hard problems cannot be performed by polynomial methods, unless 

.d = .,t “.Y. A natural question that arises with respect to these problems is whether it 

is possible to calculate in polynomial time reasonable approximations of the maximal 

ranges. We show that it is equally unlikely that there exists a polynomial method that 

calculates conservative ranges for which the relative deviation from the true ranges is 

guaranteed to be at most some constant. 

Of course, one is not always willing or able to compute an optimal solution of an NP- 

hard problem and much research has been devoted to the design of fast heuristics. The 

performance of these heuristics can either be evaluated experimentally or theoretically. 

In the latter case one often tries to prove that the heuristic always produces E-optimal 

solutions, i.e., the relative deviation of the solution value from the optimal value is 

less than some constant E. This means that we have a guarantee on the quality of the 

solution that the heuristic produces and we may be interested to know under which 

changes of the cost coefficients this guarantee still holds. Therefore, we also study the 

complexity of postoptimality analysis of &-optimal solutions of NP-hard O/l problems. 

Our result is that for an E-optimal solution that has been determined in polynomial 

time, it is impossible to calculate in polynomial time the maximal amount by which 

a cost coefficient can be increased such that the solution remains E-optimal, unless 
3 = .,I[ ‘.Y. 

Despite these negative results, one may still want to calculate (approximations to) the 

stability measures mentioned above. Algorithms to do so have been proposed in several 

papers. The interested reader is referred to Gordeev et al. [3], Sotskov [9], Kravchenko 

et al. [6], Sotskov et al. [l 11, Libura et al. [7] and Chakravarti and Wagelmans [I]. 

Finally, we should mention that results quite similar to our main results (Theorems 1 

and 2 in this paper) have independently been obtained by Ramaswamy and Chakravarti 

[8]. The difference between their and our results is discussed in Section 1. Ramaswamy 

and Chakravarti have also studied problems with a min-max objective function. They 

show that for these problems it is again unlikely that the maximal ranges can be 



computed in polynomial time if the problem itself is NP-hard. Furthermore, they also 

show positive results: both for linear and min-max objective functions, the maximal 

ranges can be computed in polynomial time if the problem itself is polynomial solvable. 

This paper is organized as follows. In Section 1 we prove our main results with re- 

spect to optimal solutions. The results on E-optimal solutions are presented in 

Section 2. Section 3 contains concluding remarks. 

1. Postoptimality analysis of optimal solutions 

Consider an optimization problem of the following form: 

min c cjx; 
i=l (P) 

s.t. xtXc{O, l}” 

with CEQJ, i.e., the cost coefficients are positive rationals. Throughout this paper we 

will only consider rational cost coefficients, because computational complexity theory 

only concerns such problems (see, for instance, [5]). Note that irrational values can be 

approximated by rationals and that we may as well assume that all cost coefficients 

are integers. Furthermore, throughout this paper we assume that X, the set of feasible 

solutions, does not depend on the cost coefficients. 

We will prove two theorems with respect to (P) and discuss their implications. The 

first theorem concerns decreasing cost coefficients. 

Theorem 1. Consider (P) for a ,fixecl set X c (0, 1 }“. This problem is polynomiull~~ 

~oI~uhle ,for uny c E Q’, [f the following t,tto conditions uw both .suti.@l. 

(a) 

(b) 

For rwq~ problem instance it tukes polynomiul time to determine LI ,fi~u.rihle 

solution x E X which is minimul, i.e., tlwe does not exist uno ther,feasihl~~ .solution 

x’ E X ll,ith x’ d x. 

For twer)- cost uector cl G Q;1 und ,fiv ecer), optimul sollltion x of the problem 

instunce @ined by c’, the maximul adue I, hi. ,t*hich the cost cwfiic~itwt c!f 
x,. i = 1,. . . n. muv be decreused .such that x rem&s optimul, cun he tketerminrrl 

in pol~xorniul time. Here I, s ci i/x remuins optimul fiw arbitrarily smull positire 

(most coqficients qf xi. 

This theorem has implications for many well-known NP-hard problems. For instance. 

we are able to conclude that, unless .f =. 1‘9, it is impossible to determine in polyno- 

mial time the maximal amounts by which the distances in a traveling salesman problem 

(TSP) can be decreased individually without affecting the optimality of a given tour. 

The proof of the theorem makes use of four lemmas which we will prove first. 

Assume that a polynomial procedure LOW( ‘, I c,x) calculates li, i E { 1,. . . . II}. as 

defined under (b) of the theorem with respect to the cost vector L’ and a given corrc- 

sponding optimal solution x. Furthermore, define N(j,c, ii) to be the vector obtained 
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from c by replacing cj by cj - 6, and let A(j,c, S) be the set of optimal solutions to 

(P), when c is replaced by N(j,c, 6). 

Lemma 1. If LOW(j,c,x)=O for some j6 (1,. ..,n}, then xj =O. Furthermore, 

A( j,c, 6) is the same for all 0 < 6 CC, and this set consists of exactly those solu- 

tions x’ which are optimal with respect to c and have xi = 1. 

Proof. The key observation is that replacing Cj by N( j, c, S), 0 < 6 <cj, does not 

change the value of any solution X with Zj = 0, whereas the values of all solutions 

X with Xj = 1 decrease by 6. Hence, if Xj = 1, x would remain optimal for every 

0 < 6 < cj and this means that LO W( j, c,x) = Cj > 0. Therefore Xj = 0 must hold. Fur- 

thermore, from the key observation and the fact that LO W( j, c,x) = 0 it follows that 

there exists at least one solution x’ with xi = 1 which is optimal with respect to c. Since 

the value of such a solution decreases by 6, whereas the value of any other solution 

decreases by at most 6, it now follows that for any 0 < 6 <cj, A( j, c, 6) consists of 

exactly those solutions x’ which are optimal with respect to c and have xj = 1. 0 

Lemma 2. Suppose that LO W(j, c,x) = 0 for a certain j E { 1,. . . , n}. Let i fj and 

6~0. If xi=09 then 

(i) x is optimal with respect to N(i,c, 6) and 

(ii) LO W( j, N(i, c, 6),x) = 0 tf and only if there is at least one solution x’ which is 

optimal with respect to c and has xj = 1 and xi = 0. 

Proof. To prove (i), we note that the values of all solutions X with Xi = 0, remain 

unchanged when c is replaced by N(i, c, S), whereas the values of all solutions X with 

Xi = 1 increase by (61. Hence, x remains optimal. 

LO W( j, c,x) = 0 means again that there exists at least one solution x’ with xJ = 1 

which is optimal with respect to c. If c is replaced by N(i, c, 6), these solutions x’ have 

their value increased by )61 if they have xi = 1, whereas their value remains unchanged 

if xi = 0. 

To prove (ii), first assume LO W( j,N(i,c, 6),x) = 0. Then there exists at least one 

solution x” with x7 = 1 which is optimal with respect to N(i, c, 8). Since, the value of x 

does not change when c is replaced by N(i, c, 6) and the value of every other solution 

does not decrease, x” must also be optimal with respect to c. Furthermore, because its 

value does not increase, xy =0 must hold. We now have that, if LO W(j,N(i,c, 6),x) 

= 0, then xj = 0 and 1 for at least one solution x’ which is optimal with respect to c. 

On the other hand, if LO W( j, N(i, c, 6),x) > 0 then every solution x’ with xi = 1 which 

is optimal with respect to c, is no longer optimal when c is replaced by N(i,c,6). This 

implies that each such solution x’ has x( = 1. 0 

Lemma 3. Suppose that LO W( j, c,x) = 0 for a certain j E { 1,. . . , n}. Let i # j and 

0<6<ci. Zf xi = 1, then 

(i) x is optimal with respect to N(i,c, S), and 
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(ii) LO W( j, N(i, c, 6),x) = 0 if and only if there is at least one solution x’ which is 

optimal with respect to c and has xi = 1 and x: = 1. 

Proof. Analogous to the proof of Lemma 2. 0 

Lemma 4. Given an optimal solution x with respect to c and a value 6, 0 <d cc,. (in 

element qf’ A(j, c, 6) can he found in polynomial time. 

Proof. If LOW( j,c,x) 3 6, then x E A(j, c, S) and we are done. Otherwise, 

the definition of LO W( j, c,x) implies that LO W( j, N(i, c, LO W( j, c,x)),x) = 0. Us- 

ing Lemma 1, it follows that xj = 0 and that every solution x’ which belongs to 

A( j,c, 6) has x5 = 1. Furthermore, it suffices to determine some solution x’ which is 

optimal with respect to N(i, c, LO W( j, c,x)) and has xi = 1. We will describe a pro- 

cedure, based on Lemmas 2 and 3, to construct such a solution x in polynomial 

time. 

Initially, we set S:= {j} and c’ :=N(i,c, LOW(j,c,x)). At termination of our pro- 

cedure, S will contain the indices i for which x( = 1, where x’ is some solution with 

the desired properties. To determine S, we modify c’. It will always hold trivially that 

x is optimal with respect to this cost vector. We will also make sure that at least one 

solution x’ with the desired properties remains optimal with respect to c’. 

Lemma 2 can be used to determine which indices i fj with xi = 0 will appear in S, as 

follows. Consider these indices one by one in some arbitrary order. If 

LO W( j, N(i,c’, 8),x) = 0 for some arbitrary S’<O, then there exists - among the 

solutions still under consideration ~ an optimal solution x’ with x{ = 0. In this case we 

set c’ := N(i,c’, 6’). Note that this renders any solution x” with x:’ = 1 non-optimal. 

Therefore, from this point on, we will only consider solutions .Y’ with x: = 0. 

If LO W(j, N(i, c’, 8),x) > 0, then all solutions x’ still under consideration must have 

x: = 1. Only in this case we add i to S. 

We repeat the above until all indices i # j with x, = 0 have been considered. Then we 

consider the indices i with xi = 1 and we use Lemma 3. If LO W( j, N(i,c’, 8),x) = 0 

for some arbitrary 0 < 6’ <CL, then there exists - among the solutions still under consid- 

eration - a solution x’ with x( = I. In this case we add i to S and set c’ := N(i,c’, (‘5’). 

which means that from now on we will restrict our search to solutions x’ with X: = 1. 

because solutions with xi = 0 are no longer optimal. If LO W( j, N(i, c’, 8’)~) > 0, then 

all solutions x’ which are still under consideration must have xi = 0. In this case we 

do not update c’. 

After all indices have been considered, x’ is defined as the solution which has exactly 

the components in S equal to 1. Note that S, and therefore x’, may depend on the order 

in which indices are considered in the above procedure. However, x’ found in this way 

clearly has the desired properties. Furthermore, it is easily seen that the procedure is 

polynomial. 3 

We are now able to prove Theorem 1. 
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Proof of Theorem 1. Let FE QJ be a given cost vector. We will show that the cor- 

responding problem instance can be solved in polynomial time by solving a sequence 

of reoptimization problems. 

Define M s 1 + EYE, Fi and let x be an arbitrary feasible solution with the property 

mentioned under (a) of the theorem. Initialize the entries of cost vector c’ as follows: 

ci := Ei if xi = 1 and c: := M if x, = 0. Because there is no feasible x’ # x with x’ < x, 

x is clearly optimal with respect to c’. 

Now replace the value of any cost coeffcient c( which is equal to M by the value 

C, and compute a new optimal solution using the polynomial procedure described in 

the proof of Lemma 4. Repeat this until c’ = 2. At this point we have determined a 

solution which is optimal with respect to Z. 

Since the above boils down to executing a polynomial procedure at most IZ times, 

the overall running time is polynomially bounded. 0 

The following theorem states a similar result with respect to increasing cost coeffi- 

cients. 

Theorem 2. Consider (P) for a jixed set X c (0, I}“. This problem is polynomially 

solvable for any c E Q!, if the following two conditions are satisjied. 

(a) For every problem instance it takes polynomial time to determine a feasible 

solution x EX which is minimal. 

(b) For every cost vector c’ E QJ and jbr every optimal solution x of the problem 

instance dt$ned by c’, the maximal value ui by which the cost coeficient qf 

Xi, i=l,... ,n, may be increased such that x remains optimal, can be determined 

in polynomial time. Here ui E o(j if x remains optimal for arbitrarily large cost 

coeficients of x,. 

Proof. Analogous to the proof of Theorem 1. Given a minimal feasible solution x, ini- 

tialize the cost vector c’ as follows: set c( := Ci if xi = 0; define Emin EE min {C;: Ii= 1,. . . , 

n: xi = 0}, E G &in/n and set c: :=min{~, ?i} for all i with x1 = 1. Then solution x is 

optimal with respect to c’. Now, for each i with ci < C;, increase the value of cl to C, 

and compute a new optimal solution after each change of c’. 0 

Ramaswamy and Chakravarti [8] have independently obtained results which are quite 

similar to Theorems 1 and 2. The difference is that we consider the situation in which 

the cost coefficients may change, but will always remain positive, whereas Ramaswamy 

and Chakravarti study the case that the cost coefficients are not restricted in sign. 

(This allows them to prove their results under conditions which are milder than our 

condition (a).) Hence, these results should be viewed as being complementary, rather 

than identical. 

The following result relates Theorems 1 and 2 to the complexity of the question 

whether a given solution is still optimal after an arbitrary change of (one or more 

components of) the cost vector. 



Proposition 1. Suppose that an opptimnl solution is known Jbr the instance of’ (P) 

corresponding to m certain cost vector (: E 0;. Ij’ it cun he checked in polynomiul 

time n~hether- this solution is also optimul w,ith respect to an urhitrq- cost wcto1 

c’ E Q;I, then fhe vulues 1; und ui, i = 1. . , n, as defined in Thvrems 1 und 2 CLUI hc 

de~evmined in pol~morniul time. 

Proof. The idea is to find the values 1; and u,, i = I,. . . , n, by binary search. For 

details we refer to the proof of Proposition 3 (with E = 0). 0 

This proposition implies, for instance, that it is not possible to check in polynomial 

time whether an optimal TSP tour is still optimal after an arbitrary change of the 

distance matrix. unless .Y =. I ‘2. 

Remark 1. Results similar to Theorems I and 2 and Proposition I hold if the objective 

function of (P) is to be maximized instead of minimized. 

Remark 2. Condition (a) in Theorems I and 2 is less strong than may seem at first 

sight. Consider the following well-known formulation of the generalized assignment 

problem: 

,?I I, 

min x x c,,xi, 
/=I /=I 

s.t. c .Y;, = I for all i = I,. , m, 
/‘I 
111 

c Ui,X,j < h, for all j = I,. , n, 
/Cl 

x,, E (0, I} for all i= I,..., m, ,j= I,. ..,I?. 

It is NP-hard to determine a feasible solution for this formulation, and therefore 

the theorems do not immediately apply. However, by introducing an additional agent 

which can handle all jobs at very large costs the following suitable formulation (P) is 

obtained. 
l,? II 

min 

+ 

CliXli + ML+1 
IFI /=I 1 
,i- I 

s.t. c x,,= 1 for all i= l,..., nz, 
/‘I 

c a,,.X;, < hj for all j = I , . . I?, 
1-I 
lli 

c x,.~,+I G m, 
/:I 

.~,,t{O,l} foralli-l,..., m, j=l,..., n+l. 
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This formulation has a trivial feasible solution that satisfies condition (a) in Theorems 1 

and 2. The constant A4 is chosen to be equal to Cr!, c’=, cii + 1, which implies that 

x~,~+I =0 for all i= I,..., m in any optimal solution of (P), if the original formulation 

has a feasible solution. Hence, if both formulations are feasible, they have the same 

optimal solutions. Note that the size of the two formulations is of the same order. 

Since (P) has the same structure as the original formulation, polynomial algorithms to 

compute maximal ranges associated with individually changing cost coefficients of any 

formulation with this structure, would imply a polynomial algorithm to solve (P), and 

therefore also the original formulation of the generalized assignment problem. 

Remark 3. We have assumed that the only available information is the optimality of a 

given solution for a particular problem instance. If additional information is available, 

then it is possible that the values I; and uI, i = 1,. . . , n, can be computed in polynomial 

time, even if (P) is NP-hard and Bf JlrY. Typically, solution methods for NP-hard 

problems generate useful information as an inexpensive byproduct. As an extreme 

example, we can simply use complete enumeration to find an optimal solution and 

store at the same time for every variable xi the optimal values under the restrictions 

xi = 0 or xi = 1. Subsequently, it is easy to determine Ii and II, for all i = 1,. . . , n. 

Knowing that it is unlikely that the maximal allowable increases and decreases of the 

cost coefficients can be determined exactly in polynomial time, a natural question that 

arises is whether it is possible to calculate reasonable approximations of these values 

in polynomial time. In particular, we are interested in underestimates that are relatively 

close to the true values. We would then obtain for every cost coefficient a range in 

which it can be varied individually without affecting the optimality of the solution 

at hand. These are not necessarily the maximal ranges, but hopefully they are not too 

conservative. Therefore, one would like to have some guarantee that the approximations 

are reasonable. For instance, this is the case if the estimate is known to be at least 

( 1 -E) times the true value for some E, 0 <E < 1. However, we have the following result. 

Proposition 2. Let CE Q; be an arbitrary cost vector. Consider un optimal solution 

with respect to the cost vector E and let ui < 00 be the muximul allowable increase oj 

C,, i E (1,. . . , n). If it is possible to compute in polynomial time a value u”i such thut 

(1 --E)u~ d u”i d ui, for some E E Q, O< E < 1, then Ui can be determined in polynomial 

time. 

Proof. Without loss of generality, we may assume that C E NT, i.e., all cost coefficients 

are positive integers. Then all solutions have an integer value and this implies that 

Ui E N. Let C’ E C and 22,’ E i&. For k > 1 we define Ck E Q$ and i$, k 3 1, recursively 

as follows: 
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and 6: is the approximation of the maximal allowable increase of cost coefficient 

c,” which is calculated analogously to z?i with respect to Ck and the original optimal 

solution. 

Hence, we are considering a sequence of cost vectors for which only the ith entry is 

changing. Note that the original solution remains optimal, because the approximations 

are underestimates of the maximal allowable increases. 

Let us define CT EC, + Ui, then CT E W and 1;” > ( 1 - r)(cF - C,!’ ) for all k > I. Using 

induction it is easy to verify that c,* - F/ <Ed-’ ui for all k 3 1. Therefore, c,* - C,” < 1 

if Ed-’ II, < 1 or, equivalently, (l/~)‘-~l ui < 1. The latter holds for all k > “‘log u,. (Note 

that l/~> 1.) 

Because c,* E iV, it is easy to see that c,? - $ < 1 implies c,* = [C,kl. If u, <x, then 

clearly u, d ‘j$, C,. Hence, c,! is found after calculating O(’ ‘log 11, ) = O(log(Cy=, (7, )) 

times an approximation of an allowable increase. If the latter calculations can be done 

in polynomial time, a polynomial method to calculate II, = c,* - Ci results. C! 

Remark 4. A similar result holds with respect to maximal allowable decreases. 

2. Postoptimality analysis of z-optimal solutions 

Consider a binary program of the following form: 

min c CjXi 

i=l 
(P) 

s.t. x E x c (0, l}” 

with c E QzO. Note that, contrary to the preceding section, we now allow zero cost 

coefficients. 

We will prove two results with respect to (P), which can be used to show that, unless 

.Y = 1 Y, several sensitivity questions related to E-optimal heuristics for 

NP-hard problems cannot be answered by polynomial algorithms. For instance, we 

will be able to conclude that existence of a polynomial algorithm to determine, for 

any cost coefficient of a min-knapsack problem, the maximal increase such that an 

E-optimal solution maintains this property, would imply .Y =. 19. (As before, we may 

only draw such conclusions if the NP-hard problem can be formulated in polynomial 

time as a suitable O/l program, but again this is the case for many well-known NP-hard 

problems.) 

As another example, suppose that an &-optimal tour has been obtained, for an in- 

stance, of the traveling salesman problem which obeys the triangle inequality. We will 

be able to conclude that it is unlikely that there exists a polynomial algorithm to de- 

termine whether after a change of the distance matrix (not necessarily maintaining the 

triangle inequality) the tour is still &-optimal. Similar results can be derived for other 

NP-hard problems (see also Remark 5 after Theorem 3). 
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Theorem 3. Suppose thut H is a polynomial E-upproximution algorithm (E E Q+) jbr 

(P) that has been upplied to the instance corresponding to an arbitrary cost vec- 

tor FEQZ,. Let u,, i= I,..., n, be the maximal value by which Ci cun be increased 

such that the heuristic solution remains E-optimal. If Ui can be determined in polyno- 

mial time for all i = 1,. . . , n, then the optimal value of the problem instance can be 

determined in polynomiul time. 

Proof. Let Z* and zH denote, respectively, the value of the optimal and heuristic 

solution. Because H is E-optimal it holds that zH d (1 + E)z*. We will show that once 

the values uir i = 1,. _ _ ,n, have been calculated it is possible to calculate z* after a 

polynomial number of additional operations. 

For every SC (1,. . . , n} we define za(S) as the optimal value under the condition 

that xi = 0 for all i E S, and analogously we let zr (S) denote the optimal value under 

the condition that Xi = 1 for all i E S. Furthermore, define 

Xir{i/l <i< , n and xi = 1 in the heuristic solution} 

and 

Suppose i EX,, then increasing Ci will increase the value of the heuristic solution, 

whereas the value of any feasible solution with xi = 0 will remain constant. Hence, if 

there exists a feasible solution with xi = 0, then the heuristic solution can not remain 

&-optimal when 5, is increased by arbitrarily large values. It is now easy to see that ,J?, 

is the set of variables that are equal to 1 in every feasible solution. Thus, if Xl =xr 

then it follows from the non-negativity of the cost coefficients that z* =zH. 

Now suppose that 2, #xl and i E Xl \xl. Let Z(6) denote the optimal value of the 

problem instance that is obtained if Ei is increased by 6 3 0. Hence, Z(0) = z* and 

on [O,oc) the function Z is either constant or linear with slope 1 up to a certain 

value of 6 and constant afterwards. If C, is increased by Ui, then the value of the 

heuristic solution becomes equal to Z” + u,. From the definition of U, it follows that 

zH + ui = (1 + E)Z(Z.Q) (see Figs. 1 and 2). Moreover, if 6 = zt, then Xi = 0 in an optimal 

solution. Hence, Z(u;) = ZO( {i} ) and therefore zH + ui = (1 + E)zg({i}). It follows that 

zo({i}) can be easily calculated for all i E& \,f,. 

In an optimal solution of the original problem instance either xi = 1 for all i E X1 \,J?i 

or xi = 0 for at least one i E Xl \x,. Therefore, we have the following equality: 

z* = min[zi (XI \Ti ), min{zc( { i}) / i E X1 \Xl }]. 

Finally, note that zi (Xi \J?i ) = zi (Xi ) and zi (Xi ) = zH because of the non-negativity of 

the cost coefficients. Therefore, z* can now easily be calculated. 0 

Remark 5. If the objective function of (P) is to be maximized instead of minimized, 

then a similar result holds with respect to maximal allowable decreases of objective 

coefficients. 



Fig. I 

zH,6 

(1 +&)Z= 

(1 + E )z o((i 1) 
(1 + e P (6) 

ZH 
Z’= Z 0((i)) z (6) 

I I 

0 ‘i 6 + 
Case B: 0 lies zn the znterunl on which Z(6) is constant 

Fig. 2 

Proposition 3. Suppose that H is u polynomiul e-upproximation ulgorithm (E E Q+) 

,for (P) that bus been upplied to the instmnce corresponding to an urhitrur?l cost wctot 

C E Q;O. If it can he checked in polynomiul time whether the heuristic solution is LIISO 

E-optimul with respect to unother urbitrury cost vector c’ E Qzo, then thr optitd 

due qf the problem instance cun he determined in polynomial time. 

Proof. We use Theorem 3 and its proof. It suffices to show that the values II,, i = I.. , n, 

can be calculated in polynomial time for all it 2’1 if there exists a polynomial 



262 S. Van Hoesel, A. Wagelmansl Discrete Applied Mathematics 91 (1999) 251-263 

algorithm to check &-optimality of the heuristic solution. The idea is to use this algo- 

rithm in a binary search for uI, i 6x1. 

First note that we may assume that E E N” and EC E N”. This implies that if Ui < oo, 

then ui EN. 

Suppose Ci, i EX~, is increased to a value greater than (1 + E) c/‘=, E,, then the 

value of the heuristic solution also becomes greater than this value. Therefore, the 

heuristic solution can only stay e-optimal if the optimal solution value is greater than 

CT=1 Ej. Clearly, every feasible solution with xi = 0 will have a value at most cy=t Fj 

and if such a solution exists, then Ui <co. We conclude that Ui = 00 if and only if the 

heuristic solution stays &-optimal and by assumption this can be checked in polynomial 

time. 

The above implies that ui <co is equivalent to 0 < Ui ,< (1 + E) cJ=, Zj. In this case 

the exact (integer) value of Ui can be found in polynomial time by a binary search 

among the integers in this range, where in each iteration &-optimality of the heuristic 

solution is checked. 0 

Remark 6. Note that E in Proposition 3 may depend on the size of the problem in- 

stance. but not on the values of the cost coefficients. 

3. Concluding remarks 

We think that the results in this paper are particularly interesting because of their 

generality. Many well-known NP-hard optimization problems can be put in the form 

to which the results apply. Note, however, that we have only considered the cost co- 

efficients of the O/l formulation. For instance, although many min-max problems can 

be formulated as O/l problems with a linear objective function, viz., as the minimiza- 

tion of a single variable, our results are clearly not relevant for those problems. For 

complexity results on min-max problems we refer to Ramaswamy and Charkravarti [8]. 

The kind of postoptimality analysis considered in this paper corresponds to the 

classical way of performing sensitivity analysis in linear programming: only one cost 

coefficient is assumed to change, the other coefficients remain fixed. Of course, one 

may also be interested in simultaneous changes. For instance, for linear programming 

Wendell [ 121 propounds the so-called tolerance approach which allows for such changes. 

However, given our results, we do not expect that a similar approach to NP-hard O/l 

problems leads to subproblems that are polynomially solvable, even if &-optimal solu- 

tions are considered instead of optimal ones. 

The results in this paper can be viewed as being negative, because they state that 

certain polynomial algorithms are unlikely to exist. On the other hand, Ramaswamy 

and Charkravarti [8] show that if we are dealing with a polynomially solvable problem 

(P), then it is always possible to compute the maximal ranges of each individual 

cost coefficient in polynomial time. Recently, Chakravarti and Wagelmans [l] have 

generalized this result to the calculation of the stability radius of a solution, which is 
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a measure for maximal simultaneous changes of cost coefficients. They also discuss a 

further generalization to Wendell’s tolerance approach. 
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