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Abstract

We study the problem of scheduling maintenance services. Given is a set of m machines and integral cost-coefficients
ai and bi for each machine i (1 6 i 6 m). Time is discretized into unit-length periods; in each period at most one
machine can be serviced at a given service cost bi. The operating cost of machine i in a period equals ai times the number
of periods since the last servicing of that machine i. The problem is to find a cyclic maintenance schedule of a given
length T that minimizes total service and operating costs. We call this problem the periodic maintenance problem or
PMP.

In this work we are interested in computing optimal solutions to instances of PMP. We investigate several formu-
lations for PMP. Two formulations, referred to as a flow formulation and a set-partitioning formulation, appear to
have good linear programming relaxations. We exploit the problem structure by showing how the column generation
subproblem can be solved in polynomial time. Our work leads to the first exact solutions for larger sized problem
instances, and we present extensive computational results.
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1. Introduction

The planning and scheduling of preventive
maintenance activities is often crucial for the
cost-effectiveness of many large industrial organi-
zations. For instance, manufacturing organiza-
tions that have highly sophisticated and complex
machinery have long recognized that efforts spent
ed.
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on preventive maintenance can contribute signifi-
cantly towards an efficient running of the organi-
zation. Also in service organizations (like medical
facilities or governmental institutions), preventive
maintenance is regarded as an important activity
that can help to reach the organization�s perfor-
mance goals. However, the costs associated with
preventive maintenance can be significant: there
are not only costs involved with the maintenance
itself, also the costs of production losses during
the maintenance have to be taken into account.
Computerized maintenance management systems
(CMMS�s) are becoming increasingly popular as
a tool to increase machine-availability and more
generally, to improve control over the mainte-
nance activities. Software vendors (see for instance
http://www.plant-maintenance.com/index.shtml)
offer packages that usually includes a scheduling
module that suggests (among other things) when
to service which unit (or machine). This decision
is seen as a re-occurring event, i.e., it is expected
that a schedule is of a cyclic nature, and hence will
be executed repeatedly.

There is a huge amount of literature available
on preventive maintenance. However, approaches
in literature usually are of a stochastic nature
where a probability distribution is used to describe
the failure properties of a machine (see for instance
Gertsbakh and Gertsbakh, 2000). In this work we
take a different, completely deterministic, ap-
proach (see Wagner et al., 1964, for an early refer-
ence). More specifically, we deal with the problem
of cyclically scheduling maintenance activities un-
der a certain given cost-structure assuming a fixed
cycle length. A precise description is given in the
next subsection.

1.1. Problem description

We consider the following problem. There are a
number of machines Mi, i 2 {1, . . ., m}, and there
is a time interval T = {1, 2, . . ., T} with T P m.
During each period of the time interval T, at most
one machine can be serviced. When machine Mi is
serviced, a given, non-negative, servicing cost of bi

is incurred, regardless of the period. At time mo-
ment t 2 T, a machine Mi that is not serviced dur-
ing some period is in operation and incurs an
operation cost of ji(t) · ai, where ai is a given posi-
tive integer, and where ji(t) is the number of peri-
ods elapsed since last servicing machine Mi,
i 2 {1, . . ., m}. Observe that we assume here that
the operating costs of a machine increase linearly
with the number of periods elapsed since last ser-
vicing that machine. The problem is now to deter-
mine a maintenance schedule, i.e., to decide for
each period t 2 T which machine to service (if
any), such that total servicing costs and operating
costs are minimized.

Below, when motivating the problem, we intro-
duce several good reasons to view such problem in
a cyclic context. In such a context, it is assumed
that the maintenance schedule will be executed
repeatedly. Thus, in period k · T + t (k 2 N,
t 2 T), the same machine that was serviced in per-
iod t will be serviced again. In addition, the cost
will be considered in this infinite horizon context.
Consequently, the cost of a maintenance schedule
is calculated by summing over all t 2 T the total
of the servicing costs incurred in period t and the
operating costs incurred by the machines which
are not serviced in period t. These operating costs
are defined in a cyclic context, i.e., the last mainte-
nance service may lie in a previous execution of the
maintenance schedule. We will refer to this prob-
lem as the periodic maintenance problem (PMP).
Notice that in an optimal solution to PMP, each
machine is served at least once. Finally, we notice
here explicitly that in PMP T is considered to be an
input parameter.

For ease of understanding, we now present a
brief example.

Example. Let T = 7, m = 3 and the set of
machines is {1, 2, 3}. Further, let bi = 1,
i = 1, 2, 3, and let a1 = a2 = 10 and a3 = 1. Con-
sider the solution (1, 2, 1, 2, 1, 2, 3). This sequence
of maintenance services is to be read as follows: in
the first period, we service machine 1, in the second
period machine 2, et cetera, until we service in the
seventh period machine 3. Then, this sequence of
maintenance services is repeated, i.e., in the 8th
period we service machine 1 again, followed by
machine 2 in period 9, and so on. The cost of this
solution can be computed as follows. Since there is
maintenance in each of the seven periods of T, and
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since all service costs bi are equal to one, the total
servicing costs equal 7. For the first machine the
operating costs are incurred in periods 2, 4, 6 and
7. In periods 2, 4 and 6, these costs equal 10, and
in period 7 these costs amount to 20. Thus,
machine 1 has a total operating cost of 50.
Similarly, it can be checked that machine 2 has
operating costs of 20 + 0 + 10 + 0 + 10 + 0 +
10 = 50, and machine 3 has operating costs of
1 + 2 + 3 + 4 + 5 + 6 = 21. Thus the total cost
for this solution is 128. The reader can verify
that the solution presented above is in fact
optimal.

Apart from the application sketched in the
introduction, PMP and variants of PMP have
real-life applications with different origins such as
the scheduling of maintenance services, multi-item
replenishment of stock, and broadcasting of data
messages over a communication channel (see the
references in Section 2). In particular, the problem
where the cycle length is not given, but instead a
decision variable, has received quite some atten-
tion. In the remainder, we refer to the variant of
PMP where T is considered to be a decision vari-
able, as the free periodic maintenance problem
(FPMP); we use T � to denote the optimal cycle
length in FPMP.

Our motivation for investigating PMP, rather
than FPMP, is twofold. First of all, PMP is a prac-
tical problem. Especially in the context of con-
structing maintenance schedules, it is very
natural to fix the cycle length to some constant
such as 365, 52, 30, 7, 24 or 60. Indeed, an organi-
zation that implements a cyclic maintenance sche-
dule will, for reasons of simplicity, ensure that the
length of the cyclic schedule coincides with the size
of a natural time interval such as the number of
days per year, or the number of weeks per year,
or the number of days per week. Further, in many
practical settings, it is desirable that the cycle
length T is not too large. In fact, even for instances
of modest size, for example m = 2, a1 = 1, a2 = a,
b1 = b2 = 0, the optimal cycle length T � can be
fairly large: for this case, T � P b

ffiffiffiffiffi
2a
p
c (see Anily

et al., 1998). Thus, one is interested in computing
a cyclic schedule with a cycle length that is
bounded from above by some reasonably small
(given) integer B. In such a case, one can find the
optimal T 6 B by solving the PMP for each possi-
ble value of T not exceeding B. In both cases, the
task is to find a solution of some specific cycle
length that may differ from the optimal length
T �. As far as we are aware, the PMP has not been
studied before.

A second motivation of our work is that we are
interested in solving instances of the problem to
optimality. As we shall see in Section 2, apart from
Anily et al. (1998) which deals with a special case
of FPMP, most research has focused on complex-
ity results, and approximation for FPMP. From
this point of view, we further explore the area of
solving instances to optimality by solving them
for a fixed, but not necessarily optimal, T. In addi-
tion, our results provide insight in the effect of
varying T on the actual schedule and its solution,
i.e., we investigate the sensitivity of the solution
with respect to the cycle length.

This paper is organized as follows. In the next
section we present a brief literature review. Section
3 discusses several models, and how they might be
of use in solving the problem to optimality. Sec-
tion 4 presents a branch and price algorithm that
solves one of the models of Section 3 to optimality.
In Section 5 we present computational results on
instances with 3–10 machines and with a number
of periods ranging from 10 to 100. Section 6 con-
tains the conclusions.
2. Literature review

An area where preventive maintenance schedul-
ing has been applied is in the operational planning
of power generating plants. We refer to Kralj and
Petrović (1988, 1995) for an overview of optimiza-
tion techniques (including integer programming)
in this field, and to Charest and Ferland (1993)
for applying local search techniques to solve a
model related to the set-partitioning model of Sec-
tion 3.

Maintenance scheduling problems that involve
coordinating a common resource to maintain a
set of machines have been investigated by Duffuaa
and Ben-Daya (1994), Hariga (1994), and Sule and
Harmon (1979). An overview on these and several
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other preventive maintenance scheduling problems
can be found in Dekker et al. (1997).

Anily et al. (1998) consider the special case of
FPMP, where bi = 0 for all i 2 M, and they de-
scribe an application in the multi-item replenish-
ment of stock. They prove that there exists an
optimal schedule that is cyclic. Further, they de-
scribe a network-flow based algorithm that has
exponential complexity to solve the problem ex-
actly. This approach allows them to solve in-
stances with up to four machines exactly. In
addition, the authors propose two lower bounds
and a greedy heuristic, which performs very well.
Notice however that in their problem setting, the
cycle length is a decision variable, and therefore
the solutions given by the heuristic may use a dif-
ferent cycle length then the cycle length of an opti-
mal solution. The case with three machine and
zero servicing costs is investigated in Anily et al.
(1999). In this work the authors introduce an algo-
rithm solving certain instances of the problem to
optimality and for the other instances they present
a heuristic algorithm with performance ratio of
1.0333.

Bar-Noy et al. (2002) and Kenyon et al. (2000)
consider a generalized version of the FPMP where
in each period at most M machines can be ser-
viced. Their interest in the problem is motivated
by applications that arise in broadcast scheduling.
Bar-Noy et al. (2002) prove that FPMP is NP-
hard. Further, they investigate lower bounds and
propose a 9

8
-approximation algorithm. Kenyon

et al. (2000) present a polynomial-time approxima-
tion scheme for FPMP with bounded service costs.
The version of the problem with non-identical ser-
vice times is studied in Kenyon and Schabanel
(2001). Recently, Schabanel (2000) shows that
the version of FPMP in which preemptions are al-
lowed, is also NP-hard.

Brakerski et al. (2001) consider the problem of
encoding a solution in such a way that the next
machine to be serviced can always be found
quickly, given that all service activities performed
up till now are known. Brauner et al. (2001) ad-
dress related scheduling problems that arise from
compact encodings of solutions.

Another area that is related to the PMP is the
so-called parallel machine replacement problem
(see Jones et al., 1991; McClurg and Chand,
2002). This problem deals with a set of machines
whose operational costs increase with age, while
in each period there is the possibility to replace a
machine at the expense of purchasing costs. The
authors present a dynamic programming proce-
dure to balance operational costs and purchasing
costs. However, in contrast to the PMP, the paral-
lel machine replacement problem has a fixed hori-
zon, and is motivated from an economic
perspective, incorporating salvage costs, and the
discounting of costs.

We now briefly examine the PMP from a com-
plexity viewpoint. First of all, notice that the input
to PMP consists of 2m + 1 numbers (the ai, bi and
T). Thus, an algorithm which has the parameter T

present in its running-time is not a polynomial-
time algorithm for PMP. In fact, all models we
present in this paper have (at least) a pseudo-poly-
nomial number of variables. Second, the reduction
in Bar-Noy et al. (2002) shows that FPMP is NP-
hard even when T � is known. This implies indeed
that PMP is NP-hard as well, since it may be the
case that T = T �.
3. Modeling PMP

In this section we describe three formulations
for PMP. Section 3.1 gives a quadratic program-
ming formulation, Section 3.2 describes an integer
programming based formulation, and Section 3.3
presents a set-partitioning formulation.
3.1. A quadratic programming formulation

Here we introduce a compact and natural, but
non-convex quadratic program modeling PMP
with operational costs only, i.e., we first assume
bi = 0 for all i 2 M. The model uses a variable
xi,t 2 Z+, i 2 M, t 2 T, which represents the num-
ber of periods between the current period t 2 T

and the last period before t when machine i has
been serviced. Clearly, for any machine i, and
any period t, the value of variable xi,t is obtained
by either adding 1 to the value of xi,t�1, or by set-
ting it to 0. Setting the value of xi,t to 0 corre-



Table 1
A feasible solution

Period (t 2 T)

1 2 3 4 5 6 7

Sequence of maintenance
services (machines)

1 3 1 2 1 3 2

y1,t (service indicator) 1 0 1 0 1 0 0
y2,t (service indicator) 0 0 0 1 0 0 1
y3,t (service indicator) 0 1 0 0 0 1 0
x1,t (state) 0 1 0 1 0 1 2
x2,t (state) 1 2 3 0 1 2 0
x3,t (state) 2 0 1 2 3 0 1
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sponds to servicing machine i in period t. PMP can
now be formulated as follows:

min
X
i2M

X
t2T

aixi;t; ð1Þ

xi;tþ1ðxi;tþ1 � xi;t � 1Þ ¼ 0; i 2 M ; t 2 T n T ; ð2Þ

xi;1ðxi;1 � xi;T � 1Þ ¼ 0; i 2 M ; ð3Þ

xi;t þ xk;t P 1; i 6¼ k; i 2 M ; k 2 M ; t 2 T ;

ð4Þ

xi;t 2 Zþ; i 2 M ; t 2 T : ð5Þ
Eqs. (2) and (3) ensure the required behavior of the
xi,t variables. Eqs. (4) imply that no two machines
can be served simultaneously. Notice that if for
some machine i one of the associated variables is
integral, (2) and (3) together imply that all other
variables corresponding to machine i are integral
as well.

Since most of the available software for solving
quadratic programming problems only solve the
problems with quadratic objective function and
linear constraints, we have not been able to solve
problem instances through the formulation given
above. Instead, we now linearize model (1)–(5)
and take into account the servicing costs bi:

min
X
i2M

X
t2T

ðaixi;t þ biyi;tÞ; ð6Þ

xi;tþ1 P xi;t þ 1� Nyi;tþ1; i 2 M ; t 2 T n T ; ð7Þ

xi;1 P xi;T þ 1� Nyi;1; i 2 M ; ð8Þ
X
i2M

yi;t 6 1; t 2 T ; ð9Þ

xi;t 2 Zþ; i 2 M ; t 2 T ; ð10Þ

yi;t 2 f0; 1g; i 2 M ; t 2 T ; ð11Þ

where N is a sufficiently big number (here, e.g.,
N = T is large enough).

The binary variable yi,t simply takes on value 1
if we service the ith machine in period t and 0
otherwise. The objective (6) minimizes the total
costs that now consist of operating costs and ser-
vicing costs. Eqs. (7) and (8) enforce the variables
xi,t to behave in the same way as in the previous
model. According to (9) we cannot service more
than one machine in a single period. Restrictions
(10) and (11) are the integrality constraints. We re-
fer to the formulation (6)–(11) as QP.

Example. We illustrate model (6)–(11) with the
following example. Let T = 7, m = 3 and the set of
machines is {1, 2, 3}. A feasible solution of the
formulation is depicted in Table 1.

Notice that formulation (6)–(11) involves a so-
called big N parameter which renders the associ-
ated linear relaxation to be rather poor. For
instance, by setting yi,t = 1/m and xi,t = 0, i 2 M,
t 2 T, we satisfy all constraints of the linear
relaxation. The value of the objective function of
this solution to the linear relaxation is equal to
T
P

i2M bi=m which can be an arbitrary bad lower
bound for the optimum. This explains the poor
computational performance we obtained using the
standard ILP-packages dealing with formulation
(6)–(11), see Section 5.3.

Another weak point of this formulation is that
we use the fact that the objective is to minimize

the total operating and servicing costs. This means
that not every solution that satisfies (7)–(11) is a
meaningful solution to PMP. Thus, to solve the
problem under maximization or mixed min–max
criteria we cannot even use the linear model
described above.

3.2. An integer programming formulation

We now present a formulation that contains
O(m · T 2) binary variables. We introduce a
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variable xs;t
i , i 2 M, s, t 2 T, whose value equals 1 if

machine i is serviced in period s, and serviced next
(cyclically) in period t + 1, and 0 otherwise. Notice
that when s is the last service in T, we have that
t 6 s, because of the cyclicity of the maintenance
schedule. Using costs c(s, t) defined as follows:

cðs; tÞ ¼

ðt � sÞðt � sþ 1Þ
2

if s 6 t;

ðT � sþ tÞðT � sþ t þ 1Þ
2

if s > t;

8>><
>>:

the problem can be modeled as follows:

min
x

X
i2M

X
s2T

X
t2T

ðaicðs; tÞxs;t
i þ bix

s;t
i Þ; ð12Þ

subject toX
i2M

X
s2T

xs;t
i 6 1; t 2 T ; ð13Þ

X
s2T

xs;t
i ¼

X
s2T

xtþ1;s
i ; i 2 M ; t 2 T n T ; ð14Þ

X
s2T

xs;T
i ¼

X
s2T

x1;s
i ; i 2 M ; ð15Þ

X
s2T

X
t2T

xs;t
i P 1; i 2 M ; ð16Þ

xs;t
i 2 f0; 1g; i 2 M ; s 2 T ; t 2 T : ð17Þ

Inequalities (13) express that in each period at
most one machine can be serviced, equalities (14)
and (15) imply that there is a next period in which
a machine will be serviced, inequalities (16) say
that each machine is serviced at least once, and fi-
nally (17) are the integrality constraints.

Again, the LP relaxation of this formulation is
rather poor. For example, setting xt;t

i ¼ 1
m for all

t 2 T and for all i 2 M, and all other variables
equal to 0, yields a feasible solution with zero
operating costs. Notice how this solution resem-
bles the example demonstrating the poor behavior
of the LP relaxation of (6)–(11). The LP relaxation
is strengthened considerably when we replace (16)
by the following constraints (which are clearly va-
lid for the ILP formulation above):X

s6u

X
t<s

xs;t
i þ

X
s6u

X
tPu

xs;t
i þ

X
tPu

X
s>t

xs;t
i ¼ 1;

for all i 2 M ; 1 < u < T ; ð18Þ
X
s>1

X
t<s

xs;t
i þ

X
s6T

xs;T
i ¼ 1; for all i 2 M ; ð19Þ

X
t<T

X
s>t

xs;t
i þ

X
tP1

x1;t
i ¼ 1; for all i 2 M : ð20Þ

Constraints (18)–(20) state that for every machine
and for every period u, the sum of the variables
corresponding to pairs (s, t) that contain period
u, is one. Notice that the solution given above vio-
lates these constraints. One can view (18)–(20) as a
(polynomially sized) set of valid inequalities for the
formulation consisting of (13)–(17); adding these
inequalities yields a strengthened formulation.
Summarizing, we refer to the formulation consist-
ing of constraints (12)–(15), (17)–(20) as the flow
formulation (FF). In Section 5 we provide compu-
tational results showing that FF yields promising
computational results when solving it using state
of the art standard software CPLEX 7.5.

3.3. A set-partitioning formulation

Yet another formulation, using an exponential
number of variables, concludes this modeling
section.

Let S be the set of all non-empty subsets of T.
Clearly, every s 2 S is a possible set of periods
for servicing a machine i 2 M. Let us call s 2 S a
service strategy or simply strategy. For every pair
consisting of a machine i 2 M and a strategy
s 2 S, we can compute the cost ci,s incurred when
servicing machine i in the periods contained in s

as follows: let ps be the cardinality of s and let qj,
j 2 {1, 2, . . ., ps}, be the distances between neigh-
boring services in s. For example, if T = 7 and
s = {2, 4, 6} then ps = 3 and q1 = 4 � 2 = 2,
q2 = 6 � 4 = 2, q3 = 7 � 6 + 2 = 3. The total ser-
vice and operating cost associated with machine
i 2 M and strategy s 2 S is

ci;s ¼ bips þ ai

Xps

j¼1

ðqj � 1Þqj=2:

So, in the example above the total costs of ser-
vicing machine i using strategy s is ci,s = 3bi +
ai + ai + 3ai = 3bi + 5ai.

Now we introduce a variable xi,s which has
value 1 if machine i 2 M is serviced in the periods
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contained in strategy s 2 S, and 0 otherwise. This
allows for the following set-partitioning formula-
tion (SP):

min
x

X
i2M

X
s2S

ci;sxi;s; ð21Þ

subject toX
s2S

xi;s ¼ 1; i 2 M ; ð22Þ

X
i2M

X
s2S:t2s

xi;s 6 1; t 2 T ; ð23Þ

xi;s 2 f0; 1g; i 2 M ; s 2 S: ð24Þ

Constraints (22) imply that one service strategy
has to be selected for each machine, and con-
straints (23) ensure that no two strategies make
use of a same period. Constraints (24) are the inte-
grality constraints. Despite the exponential size of
this integer linear program it has two important
properties. First, its linear relaxation (obtained
by replacing (24) by xi, s P 0 for all i, s) is solvable
in time polynomial in m and T (see Section 4). Sec-
ond, computational experiments show that the lin-
ear relaxation of this integer problem is quite
strong. In the next section we show how to solve
SP using a branch and price algorithm.

We conclude this section by showing that the
LP relaxation of SP is stronger than the LP relax-
ation of FF.

Theorem 1. Let v(FFLP), v(SPLP) be optimal

solutions of the linear relaxations of FF and SP

respectively. We have v(FFLP) 6 v(SPLP).

Proof. Let x� = {xi,s: i 2 M; s 2 S} be any solu-
tion to the LP relaxation of SP. Construct a solu-
tion y� ¼ fyu;v

i : i 2 M ; u; v 2 T g to the LP
relaxation of FF as follows. Let S(u, v) = {s 2 S:
u, v are consecutive periods in strategy s}. We set
yu;v�1

i ¼
P

s2Sðu;vÞxi;s.
Now let us first show that this solution is

feasible. The solution y� satisfies the flow conser-
vation constraints (14) and (15) from its construc-
tion. Similarly, constraint (23) and the feasibility
of x� implies that (13) is satisfied. Further, it
follows from constraint (22) and the construction
of y� that (18)–(20) is satisfied. We leave it to the
reader to verify that the objective function values
of x� and y� are equal.

Thus, any solution of the LP relaxation of SP

can be converted to a corresponding solution of
the LP relaxation of FF with the same value. This
completes the proof. h
4. A branch and price algorithm for PMP

In this section we show how to solve SP using a
branch and price algorithm. In Section 4.1 we
show how column generation can be used to solve
the LP relaxation of (21)–(24) without enumerat-
ing all variables xi,s. Next, in Section 4.2 we pro-
pose a branching scheme that keeps the structure
of the problem intact. We refer to Barnhart et al.
(1998) for a general description of branch and
price algorithms.

4.1. Column generation algorithm

Its linear relaxation (called SPLP) is obtained
by replacing constraints (24) by xi,s P 0 for all
i, s. The corresponding dual problem (called
SPD) is

max
u;v

X
i2M

ui þ
X
t2T

vt

 !
; ð25Þ

subject to

ui þ
X
t2s

vt 6 ci;s; i 2 M ; s 2 S; ð26Þ

vt 6 0; t 2 T : ð27Þ

The column generation procedure starts with
finding a feasible solution for SPLP. To do that
we can use, for example, a trivial integer solution
where in the first T periods we service all machines
one by one, and for all remaining periods we ser-
vice only the machine with the largest coefficient
ai. So, in a initialization step, we generate the set
of pairs N = {(i, si): i 2 M} where si is the set of
periods when we service machine i 2 M. Let us re-
strict the column set of SPLP to N and let us call
the problems restricted to N as SPLP(N) and
SPD(N) respectively.
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Next, we find an optimal solution for SPLP(N)
and SPD(N) using an LP-solver. Thus, we obtain a
primal–dual pair of solutions (x(N), (u(N), v(N))).
We can extend x(N) to a solution of SPLP by set-
ting the remaining variables to zero. Establishing
whether or not this extended solution is optimal
for SPLP can be done by analyzing the corre-
sponding dual solution (u(N), v(N)). Optimality
of x(N) for SPLP depends on the feasibility of
(u(N), v(N)) in SPD. To verify whether all dual
constraints are satisfied we have to solve the fol-
lowing pricing problem:

Price : 9i 2 M ; s 2 S such that ui þ
X
t2s

vt > cis?

If the dual solution (u(N), v(N)) satisfies all con-
straints of SPD, then x(N) extended with zeros is
an optimal solution of SPLP. If not, then we have
found—by solving the pricing problem—a ma-
chine i and a strategy s whose reduced cost
cis � ui �

P
t2svt is negative. Thus bringing this

variable into the basis will contribute to the objec-
tive function�s value. Then we update N by adding
this variable to it, and we iterate. The efficiency of
this procedure depends to a large extent on the
speed with which the pricing problem can be
solved. We have the following theorem:

Theorem 2. The pricing problem can be solved in

O(mT 3) time.

Proof. We prove that for each i we need to solve
an all-pairs shortest path problem on a directed
graph with O(T) nodes. Since this problem can
be solved in O(T 3) using the Floyd–Warshall algo-
rithm (see Ahuja et al., 1993), the result follows.

Thus, let us now consider a specific machine i,
and let us build the following graph G = (V, A)
with V = T and A = {(p, q): p 6 q, p, q 2 V}.

For each arc (p, q) 2 A we define the following
costs w:

wðp; qÞ ¼ bi þ ai
ðq� pÞðq� p � 1Þ

2
� vq if p 6¼ q

and wðp; pÞ ¼ bi þ ai
T ðT � 1Þ

2
� vp:

This completes the construction of G. Since by (27)
vt 6 0 for all t 2 T, all costs w are non-negative.
Let us now establish a correspondence between a
path P in G and a service strategy s for machine
i. Indeed, consider any path P = {t1, t2, . . ., tk} in
G. We have the following:

Claim: If there exists a path in G from t1 to tk with
costs less than Q � ui þ vt1

� bi � ai
PTþt1�1

t¼tkþ1 ðt � tkÞ
then the current solution is not optimal.

Argument: Notice that Q depends only on t1 and
tk. Consider now the cost of a path
{t1, t2, t3, . . ., tk�1, tk} in V. Summing the appropri-
ate coefficients w gives:

ðk � 1Þbi þ ai

Xk�1

l¼1

Xtlþ1�1

t¼tlþ1

ðt � tlÞ �
Xk

l¼2

vtl :

We now derive:

ðk � 1Þbi þ ai

Xk�1

l¼1

Xtlþ1�1

t¼tlþ1

ðt � tlÞ �
Xk

l¼2

vtl < Q

() kbi þ ai

Xk

l¼1

Xtlþ1�1

t¼tlþ1

ðt � tlÞ �
Xk

l¼1

vtl < ui

() cis �
X
t2s

vt < ui:

It follows that given the first and the last service
period, computing a shortest path in G between
the corresponding vertices determines whether
there is a strategy to be added to the master prob-
lem. Hence, to solve the pricing problem for
machine i we need to compute shortest paths
between every pair of vertices in G. As mentioned
above this can be done using Floyd–Warshall�s
algorithm in O(T 3) operations (see Ahuja et al.,
1993). h

Corollary 4.1. The problem SPLP can be solved in

time polynomial in m and T.

Proof. The proof of the corollary straightfor-
wardly follows from Theorem 2 and the well-
known theorem by Grötschel et al. (1981), stating

There exists a polynomial-time algorithm for the
separation problem for a family of polyhedra, if

and only if there exists a polynomial-time algo-

rithm for the optimization problem for that

family.
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Since the pricing problem is nothing else but the
separation problem for SPD we have that optimi-
zation problems SPD and SPLP are solvable in
time polynomial in m and T. h

In the computations reported in Section 5 we do
not use the approach by Grötschel et al. (1981). In-
stead, we apply the column generation procedure
described above to solve the SPLP. Observe that
this procedure goes through in case a given num-
ber of machines can be serviced in each period
(instead of exactly one machine).

4.2. A branching scheme

To solve the original integer programming for-
mulation SP let us introduce the following branch-
ing strategy. Notice that a traditional branching
strategy that consists of setting a variable to 0 ver-
sus setting a variable to 1, would not preserve the
efficient solvability of the pricing problem (see
Barnhart et al., 1998). Given a linear programming
solution xi,s, define sumiðtÞ ¼

P
s2S:t2sxi;s for i 2 M,

t 2 T.

Lemma 4.2. If the solution is fractional, i.e., if

there exists a machine i0 2 M and a strategy s 2 S

with 0 < xi0;s < 1, then there exists a t 2 T such that

0 < sumi0ðtÞ < 1.

Proof. Consider machine i0 2 M. Let S(i0) be the
set of strategies s for which 0 < xi0;s < 1. We say
that strategy s1 contains strategy s2 if, for each per-
iod t 2 s2, we have that t 2 s1. Let s0 2 S(i0) be a
strategy that does not contain any other strategy
from S(i0) (notice that such a strategy always
exists). We argue by contradiction.

Assume that for all t 2 T the numbers sumi0ðtÞ
are equal to either 0 or 1. This implies that
sumi0ðtÞ ¼ 1 for all periods t 2 s0. Since, by (22),P

s2Sxi0;s ¼ 1, and since for each t 2 s0 we have
that sumi0ðtÞ ¼

P
s2S:t2sxi0;s ¼ 1, it follows that

xi0;s ¼ 0 for each strategy s 2 S that uses a period
t not used by strategy s0. Due to the fact that s0

does not contain any strategy from S(i0), it follows
that for each s 2 S(i0)ns0, there exists a period t 2 s
such that t 62 s0. Consequently, xi0;s ¼ 0 for all
s 2 S(i0)ns0, and hence xi0;s ¼ 1, which is a
contradiction. h
Let us now describe how this branching scheme
preserves the efficient computation of service strat-
egies. Let the branching rule be simply to decide
whether period t 2 T is used in a service strategy
for machine i0 2 M (i.e., sumi0ðtÞ ¼ 1, we refer to
this as branch 1) or not (i.e., sumi0ðtÞ ¼ 0, we refer
to this as branch 2). Considering branch 1, this has
the following consequences for the pricing prob-
lem: each arc passing t, i.e., going from some
t1 < t to some t2 > t is deleted from the graph
and from now on for every child node of the
branching tree machine i0 is serviced at period t.
Moreover, in the graphs associated to the other
machines, we delete all arcs entering node t. So,
for these machines, no path will visit node t. Con-
sidering branch 2 is even easier: we simply delete
from the graph all arcs entering t. Obviously, an
optimal solution is not excluded by this branching
rule and, from Lemma 4.2, we conclude that this
rule excludes the current fractional solution.
5. Computational results

In this section we present computational results
for all ILP models presented in the previous
sections.

5.1. Technical details

All experimental results were obtained on an
AMD Athlon computer with 2400 XP+/1GB
RAM running Debian GNU/Linux 3.0 with ker-
nel 2.4.18. All calculations, except the results re-
ported in Table 2, were limited by 100 000
branching nodes and by 10 000 seconds CPU-time.
To compute the optimal solutions for QP and FF
we use the package ILOG OPL-Studio 3.5 using
the CPLEX MIP Solver. In the calculations results
we mean by OPT, QP- and FF-nodes, QP- and
FF-time respectively: the average maintenance
and operating cost of an optimal solution (the
optimal objective value divided by T), the number
of nodes in the branching tree needed by OPL-Stu-
dio for QP and FF (expressed by the parameter
‘‘MIP-nodes’’) and the CPU-time in seconds for
QP and FF (expressed by the parameter ‘‘Solving
time’’).



Table 2
Formulations QP, FF, and SP (m = 3, bi = 0, i 2 M)

T a OPT QP-nodes QP-time (second) FF-nodes FF-time (second) SP-nodes SP-time (second)

3 1, 1, 1 3.0 14 1 1 1 1 1
3 2, 1, 1 4.0 9 1 1 1 1 1
3 2, 2, 1 5.0 13 1 1 1 1 1
4 5, 1, 1 5.5 20 1 1 1 1 1
4 5, 2, 1 7.0 38 1 1 1 1 1
5 5, 5, 1 10.0 70 1 1 1 1 1
4 10, 1, 1 8.0 29 1 1 1 1 1
4 10, 2, 1 9.5 37 1 1 1 1 1
6 10, 5, 1 13.3333 156 1 3 1 9 1
16 10, 10, 1 17.25 197 040 114 1 1 1 1
8 30, 1, 1 14.5 194 1 1 1 1 1
17 30, 2, 1 17.2941 142 837 89 1 1 33 2
8 30, 5, 1 22.25 437 1 2 1 1 1
9 30, 10, 1 28.4444 1169 1 33 1 15 1
13 30, 30, 1 42.9231 17 099 9 1 1 1 1
10 50, 1, 1 19.0 351 1 1 1 1 1
21 50, 2, 1 22.6667 766 220 604 1 1 1 1
10 50, 5, 1 29.5 1397 2 1 1 1 1
10 50, 10, 1 36.5 1377 1 1 1 1 1
15 50, 30, 1 55.0 44 664 27 17 1 27 1
17 50, 50, 1 66.8235 184 068 114 1 1 1 1
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The computational results for SP are obtained
using the aforementioned branch and price ap-
proach. To compute optimal solutions for the lin-
ear programs SPLP and SPD we use the standard
package ILOG CPLEX 7.5. The programs were
coded in C++. In the following sections we denote
by SP-nodes the number of nodes in the branching
tree created by the algorithm described in Section
4 and we denote by SP-time the CPU-time in sec-
onds rounded up.

5.2. On the column generation

Here we mention two important details concern-
ing the implementation of the branch and price
algorithm described in Section 4. Let us first com-
ment on the choice of an initial feasible solution.

In the initialization phase of the algorithm we
are free to choose any set of pairs (columns of
LP) N = {(i, si): i 2 M}. We have tested two sets
of initial LP columns in our implementation. The
first one contains the pairs (i, si) such that
si = {i} for any i 5 1 and for i = 1 we have
s1 = {1, m + 1, m + 2, . . ., T}. This set corresponds
to the trivial feasible solution of PMP where we
first service all the machines in order 1 up to m

and then from time interval m + 1 onwards, we
service machine 1 only. We shall refer to this set
of initial columns as the simple solution. Another
set of initial columns is formed by the greedy solu-

tion, see Anily et al. (1998). Recall that the greedy

solution can be obtained by the following simple
rule: at each time interval t we service the machine
which would have the maximal aggregated operat-
ing cost in time interval t + 1. In our experiments
we have noticed that the choice of an initial solu-
tion can have a large impact on the resulting com-
putation time. For example, to solve the LP
relaxation of SP in case m = 4, T = 33,
a = (10, 10, 10, 1), b = (0, 0, 0, 0), the algorithm
starting with the simple solution generates 312 col-
umns and stops within 7 seconds, whereas the
algorithm starting with the greedy solution gener-
ates 4383 columns and stops only after 488 sec-
onds. In another instance, m = 3, T = 21,
a = (50, 2, 1), b = (0, 0, 0), the algorithm starting
with the simple solution generates 41 nodes in the
branching tree and stops in 13 seconds, while the
algorithm starting with greedy solution provides
the integer solution in the first node of the branch-
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ing tree and stops in 1 second. We conclude that
the choice of an initial column set has a significant
impact on the running times achieved. In the tables
describing the experiments, we report the calcula-
tion results for SP with the best running time from
the two starting solutions. To specify the initial set
of columns we use the following notation: by de-
fault we use the greedy solution and we mark solu-
tions provided by the algorithm starting with the
simple solution by a superscript ‘‘s’’.

Secondly, in a column generation approach
there is freedom concerning what variables with
negative reduced costs (as found by the solution
of the pricing problem) to add to the set N of col-
umns active in the current LP. For instance, one
could add all variables with negative reduced
costs. For reasons of convenience we have opted
Table 3
Instances with four machines (m = 4, bi = 0, i 2 M)

T a OPT FF-nodes FF-time
(second)

4 1, 1, 1, 1 6.0 1 1
9 2, 1, 1, 1 7.3333 1 1
10 2, 2, 1, 1 8.8 1 1
15 2, 2, 2, 1 10.4 1 1
6 5, 1, 1, 1 10.0 1 1
16 5, 2, 1, 1 11.75 1 1
22 5, 2, 2, 1 13.7273 99 6
6 5, 5, 1, 1 15.0 1 1
6 5, 5, 2, 1 17.5 1 1
24 5, 5, 5, 1 22.25 1 2
6 10, 1, 1, 1 12.5 1 1
6 10, 2, 1, 1 15.0 1 1
6 10, 2, 2, 1 17.5 1 1
8 10, 5, 1, 1 19.5 1 1
6 10, 5, 2, 1 22.5 1 1
8 10, 5, 5, 1 27.875 1 1
8 10, 10, 1, 1 24.5 1 1
6 10, 10, 2, 1 27.5 1 1
9 10, 10, 5, 1 34.0 10 1
33 10, 10, 10, 1 40.4545 3 9
8 30, 1, 1, 1 21.75 1 1
8 30, 5, 1, 1 29.5 1 1
10 30, 5, 5, 1 40.5 3 1
8 30, 10, 1, 1 37.0 1 1
12 30, 10, 5, 1 49.6667 88 2
30 30, 10, 10, 1 58.3333 123 14
26 30, 30, 1, 1 55.8462 1 3
24 30, 30, 5, 1 70.5 36 5
14 30, 30, 10, 1 81.5 20 1
19 30, 30, 30, 1 108.4737 1 1
in our implementation to consider two strategies.
In the first strategy, we add one column at each
iteration, namely the one that has the smallest re-
duced costs (this corresponds to the most violated
constraint in the dual problem). In the second
strategy, we add at most m columns per iteration:
for each machine we find a column with the small-
est reduced costs. In the computational results we
use by default the first version of the algorithm
and we mark results obtained by the second ver-
sion by superscript ‘‘m’’. Again, we report the cal-
culation results with the best running time.

5.3. Different formulations

First of all, as promised in Section 3, we illus-
trate the difference between formulation QP, flow
v(FFLP) SP-nodes SP-time
(second)

v(SPLP)

6.0 1 1 6.0
7.3333 1 1 7.3333
8.8 1 1 8.8

10.4 1 1 10.4
10.0 1 1 10.0
11.75 1 1 11.75
13.5 1 3 13.7273
15.0 1 1 15.0
17.5 1 1 17.5
22.25 15s 3s 22.25s

12.5 1 1 12.5
15.0 1 1 15.0
17.5 1 1 17.5
19.5 1 1 19.5
22.5 1 1 22.5
27.25 19 1 27.25
24.5 1 1 24.5
27.5 1 1 27.5
32.8889 15 1 32.8889
40.4545 17s 17s 40.4545s

21.75 1 1 21.75
29.5 1 1 29.5
39.5 17 1 39.5
37.0 1 1 37.0
48.0 23 1 48.0
57.9231 19sm 19sm 58.3333sm

55.8462 1 3 55.8462
70.4231 19s 4s 70.5
80.4231 23 1 80.7857

108.4737 1 1 108.4737



Table 4
Symmetric instances (m = 3, ai = 1, bi = 0, i 2 M)

T OPT FF-nodes FF-time
(second)

SP-nodes SP-time
(second)

50 3.04 57 33 1sm 51sm

51 3.0 1 13 1s 21s

52 3.0385 111 42 7s 154s

53 3.0377 75 40 7s 247s

54 3.0 1 14 1s 32s

55 3.0364 94 50 1sm 117sm

56 3.0357 156 55 11s 590s

57 3.0 1 19 1s 46s

58 3.0345 69 52 1s 366s

59 3.0339 61 57 3s 407s

60 3.0 1 22 1s 170s

61 3.0328 104 66 3sm 715sm

62 3.0323 107 75 1sm 1437sm

63 3.0 1 28 1s 195s

64 3.0313 61 77 5s 1431s

65 3.0308 80 94 3sm 1098sm

66 3.0 1 31 1sm 470sm

67 3.0299 135 102 1sm 546sm

68 3.0294 162 134 1sm 783sm

69 3.0 1 46 1s 601s

70 3.0286 110 149 7s 5150s

80 3.025 182 258 1sm 1167sm

90 3.0 1 771 1s 1093s

100 3.02 217 1655 1sm 2618sm
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formulation FF and the set-partitioning formula-
tion SP. Table 2 presents computational results
on the three machine instances introduced in Anily
et al. (1998), where bi = 0 for all i 2 M, and we
have chosen T to be the optimal schedule length
as computed in Anily et al. (1998). Recall that, in
order to be able to compare results with a different
T, we express the optimum value (OPT) as the
average operating cost per period.

We conclude from Table 2 that as the schedule
length increases, the number of nodes in QP, as
well as the computation times, increase enor-
mously. However, each model is able to deal with
the smaller sized instances (T 6 5). We also ob-
serve that the computation times for the other
two formulations are much better than QP. There-
fore we concentrate in the remainder on the for-
mulations SP and FF only.

5.4. The quality of the lower bound

Now, we focus on the general performance of
the column generation algorithm for SPLP and
the branch and price algorithm for SP versus the
LP based branch and bound algorithm that the
CPLEX MIP Solver uses to solve FF. Again, we
consider instances from Anily et al. (1998) on four
machines, with servicing costs bi = 0, and we re-
port the solution value in terms of the average
operating cost per period. We have chosen T to
be the optimal schedule length as computed by
Anily et al. (1998).

The computational results depicted in Table 3
show that the lower bounds provided by the two
linear programming relaxations are very good; in
particular the LP relaxation of formulation SP

misses the integral optimum 5 times and the LP
relaxation of formulation FF misses the integral
optimum 8 times (out of 30). Observe also that
these values are obtained in a very short time, usu-
ally within a second.

Notice further that even in case of a positive
integrality gap OPL-Studio can provide an integral
solution for FF analyzing only one node of the
searching tree. The reason for this is that the
OPL-Studio MIP-solver is based on a branch
and cut algorithm which creates a number of cuts
(actually there are nine types of different cuts) that
can lead to an integer solution right in the root-
node of the searching tree (see Table 3).

Finally, we point out that for the instance with
m = 4, a = (30, 10, 10, 1), b = (0, 0, 0, 0), and cycle
length T = 30 (Table 3) we find a solution with
OPT = 58.3333. This value is better than the solu-
tion of OPT = 58.42 reported in Anily et al.
(1998).

5.5. Symmetry

In order to test the proposed solution ap-
proaches for large values of T, we have composed
symmetrical instances where ai = 1 and bi = 0 for
all machines i 2 M. The structure present in these
instances ensures that optimal solutions are not
hard to come by, however, we are interested in
the performance of the algorithms for these in-
stances. Table 4 displays computational results
for m = 3. For all these instances, the integrality
gap of formulation SP equals zero; in contrast,
v(FFLP) = 3 for all instances considered.
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We conclude from the results in Table 4 that
these instances are not so easy to solve, especially
for the branch and price algorithm. Although the
integrality gap of formulation SP for these in-
stances equals zero, and solving the problem in
the root-node is often sufficient, many calls to
the column generation procedure are needed to
prove optimality. The computation times for for-
mulation FF are better, despite the fact that it uses
much more nodes in the search tree. Thus, we con-
clude that the column generation algorithm spends
relatively much time on solving the LP relaxations
of these instances.

We notice also that in these symmetrical in-
stances the algorithm based on solving formula-
tion SP performs better if we start with the
simple solution as an initial set of columns in LP
rather than starting with the greedy solution.
Table 5
Instances with positive maintenance costs (m = 5, T = 18)

a b OPT

5, 1, 1, 1, 1 0, 0, 0, 0, 0 15.0
5, 1, 1, 1, 1 5, 1, 1, 1, 1 17.3333
5, 1, 1, 1, 1 30, 10, 5, 2, 1 27.0417
5, 5, 1, 1, 1 0, 0, 0, 0, 0 21.9583
5, 5, 1, 1, 1 5, 5, 1, 1, 1 25.4167
5, 5, 1, 1, 1 30, 10, 5, 2, 1 33.8333
5, 5, 5, 1, 1 0, 0, 0, 0, 0 29.5
5, 5, 5, 1, 1 5, 5, 5, 1, 1 33.5
5, 5, 5, 1, 1 30, 10, 5, 2, 1 41.125
5, 5, 5, 5, 1 0, 0, 0, 0, 0 40.375
5, 5, 5, 5, 1 5, 5, 5, 5, 1 44.875
5, 5, 5, 5, 1 30, 10, 5, 2, 1 50.375
10, 5, 1, 1, 1 0, 0, 0, 0, 0 26.75
10, 5, 1, 1, 1 10, 5, 1, 1, 1 32.125
10, 5, 1, 1, 1 30, 10, 5, 2, 1 41.0
10, 10, 5, 1, 1 0, 0, 0, 0, 0 43.5
10, 10, 5, 1, 1 10, 10, 5, 1, 1 50.9583
10, 10, 5, 1, 1 30, 10, 5, 2, 1 56.125
30, 10, 5, 1, 1 0, 0, 0, 0, 0 61.4167
30, 10, 5, 1, 1 30, 10, 5, 1, 1 77.4167
30, 10, 5, 1, 1 30, 10, 5, 2, 1 77.5
30, 30, 1, 1, 1 0, 0, 0, 0, 0 69.0
30, 30, 1, 1, 1 30, 30, 1, 1, 1 91.75
30, 30, 1, 1, 1 30, 10, 5, 2, 1 84.6667
30, 30, 30, 1, 1 0, 0, 0, 0, 0 129.5
30, 30, 30, 1, 1 30, 30, 30, 1, 1 155.875
30, 30, 30, 1, 1 30, 10, 5, 2, 1 142.7917
30, 30, 30, 30, 1 0, 0, 0, 0, 0 207.75
30, 30, 30, 30, 1 30, 30, 30, 30, 1 236.5417
30, 30, 30, 30, 1 30, 10, 5, 2, 1 218.2917
5.6. Maintenance costs

In this section we investigate the impact of
strictly positive servicing costs bi. To construct
the instances considered in Table 5 we use a sub-
set of the instances from Anily et al. (1998) on
five machines; we set T = 24 for all the instances
(notice that this may not correspond an optimal
cycle length), and we choose the servicing costs
b as indicated in Table 5. More in particular,
for each choice of a we compared three
choices of b, namely b = 0, b = a, and b =
(30, 10, 5, 2, 1).

Since for all instances of Table 5 the branch and
price algorithm based on solving formulation SP

performs worse than the implementation based
on formulation FF we do not report here the re-
sults for SP.
FF-nodes FF-time (second) v(FFLP)

1 3 15.0
1 3 17.3333

86 10 26.9333
3289 20 21.75

15858 66 25.1429
469 9 33.7143

1 2 29.5
1 2 33.5

542 7 40.8214
59750 260 39.5
82879 357 44.10
25289 127 49.35

1 7 26.75
310 38 31.8333

5394 169 40.4167
4515 208 42.9091

27114 829 50.2
3223 180 55.3833
1443 71 60.8462
912 61 76.5909

1042 67 76.6818
177 25 68.7692
61 18 91.6364

528 54 83.7436
24292 122 126.9474
13947 74 153.7647
24652 152 139.3860
18793 89 204.0
23764 120 232.7826
15191 67 214.5326



Table 6
Instances with many machines (m = 10, T = 18, bi = 0, i 2 M)

a OPT FF-nodes FF-time (second) v(FFLP) SP-nodes SP-time (second) v(SPLP)

1, 1, 1, 1, 1, 1, 1, 1, 1, 1 49.0 �100 000 – 45.0 1s 1s 49.0s

10, 9, 8, 7, 6, 5, 4, 3, 2, 1 232.0 �100 000 – 225.76 93sm 29sm 232.0sm

10, 10, 10, 10, 10, 10, 10, 10, 10, 1 413.5 �100 000 – 393.5 3s 2s 413.5s

100, 1, 1, 1, 1, 1, 1, 1, 1, 1 126.5 1 5 126.5 1m 1m 126.5m

1000, 1, 1, 1, 1, 1, 1, 1, 1, 1 576.5 1 3 576.5 23sm 7sm 576.5sm
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It is hard to infer general statements from the
results presented in Table 5; however, it is safe to
conclude that having positive servicing costs
makes the problem more difficult to solve. Only
for the case with a = (30, 10, 5, 1, 1) the instance
with b = 0 is the most difficult one to solve; for
all other choices of a either b = a or b =
(30, 10, 5, 2, 1) is the more difficult one. Also, the
integrality gap increases in the absence of servicing
costs b = 0. Thus, the results in Table 5 indicate
that the impact of having different servicing costs
on the running time can be significant.
5.7. Cases with many machines

Finally, we investigate how the number of ma-
chines affects the performance of the algorithms.
We have selected five instances with ten machines
introduced in Anily et al. (1998) with servicing
costs b = 0, and we define a relatively modest cycle
length of T = 18. The results are described in
Table 6.

We conclude from these results that the algo-
rithm based on the formulation SP performs bet-
ter than the OPL implementation based on
formulation FF. We explain this as follows. First,
from the experiments with these instances we find
that the linear relaxation provided by formulation
SP is much stronger than the linear relaxation of
formulation FF. Second, when the number of ma-
chines is increased by one, the size of formulation
FF is enlarged with at least 2T rows (constraints),
while the size of formulation SP grows with just
one single row. Indeed, for some instances, for
example the one with a = (10, 10, 10, 10, 10,
10, 10, 10, 10, 1), we could not even solve formula-
tion FF in 12 hours. We see also that if the inte-
grality gap is not zero then the algorithm based
on formulation FF needs much more processing
time and branching nodes than for instances with
a small number of machines (and a non-zero inte-
grality gap).
6. Conclusions

In this paper we have proposed several models
for a periodic maintenance scheduling problem
that has applications in many different areas. In
contrast to previous research, our approach has
been to fix the length of the period to a given con-
stant T. We describe several natural mathematical
programming formulations, most of which are
integer linear programs. We have investigated the
computational behavior of these formulations
when solving them exactly using LP based branch
and bound. One of the formulations is a set-parti-
tioning formulation, that contains a number of
variables that is exponential in the cycle length T.
Among the formulations considered, this formula-
tion has the strongest linear relaxation. We have
shown how this formulation can be solved using
a column generation approach, and how the corre-
sponding pricing problem can be solved efficiently.
This results in a branch and price algorithm. When
comparing the computational results of this ap-
proach to the results obtained through a flow for-
mulation, we conclude that for instances with
many machines the branch and price algorithm
seems more suited, whereas for instances with posi-
tive servicing costs the flow formulation dominates.
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