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Abstract

Bargaining problems are considered where the preferences of the bargainers deviate from

expected utility but can be modelled according to rank-dependent utility theory. Under rank-

dependent utility both the utility function and the probability weighting function influence the

risk attitude of a decision maker. The same definition of risk aversion leads to two forms of

risk aversion: utility risk aversion and probabilistic risk aversion. The main finding is that

these two forms can have surprisingly opposite consequences for bargaining solutions that

exhibit a weak monotonicity property. In particular, in a large class of bargaining problems

both increased utility risk aversion and decreased probabilistic risk aversion of the opponent

are advantagous for a player. This is demonstrated for the Kalai–Smorodinsky bargaining

solution. The Nash bargaining solution does not behave regularly in this respect.

r 2003 Elsevier Science (USA). All rights reserved.

JEL classification: 026; 022

Keywords: Bargaining; Risk aversion; Rank-dependent utility

1. Introduction

A bargaining problem is described by a set of potential outcomes, including a so-
called disagreement outcome. The bargainers try to reach agreement on one of the
outcomes or on a lottery between these outcomes. If they fail, the disagreement
outcome results. A bargaining solution suggests an agreement outcome or lottery for
each possible bargaining problem. In this paper, the so-called welfarist approach to
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bargaining is adopted. In this approach, the solution to the bargaining problem
depends exclusively on its image in utility space.
The axiomatic approach to two-person bargaining problems was initiated by Nash

[9], under the assumption that the two bargainers maximize expected utility. In
expected utility, risk aversion is an important empirical phenomenon. Yaari [21]
provides an intuitive definition of risk aversion and shows that under expected utility
one decision maker is more risk averse than another if and only if the utility function
of the former is a strictly increasing concave transformation of that of the latter. An
interesting question, first studied by Kannai [7] and Kihlstrom et al. [8], concerns the
effect of risk aversion on the outcomes predicted by bargaining solutions. Their
answers to this question confirm a plausible intuition: it is advantagous to play
against a more risk averse bargainer. These results are driven by the fact that a more
risk averse bargainer has a more concave utility function. Therefore, utility at low
levels increases at a faster rate and satisfaction may appear faster. Because most
bargaining solutions are sensitive to this, a more risk averse bargainer may be easier
to satisfy, which is advantageous for the opponent (cf. [10]).
Expected utility as a normative basis for decision making is appealing, but as

empirical findings show, it is descriptively unsatisfactory. Therefore, alternative
models have been developed of which rank-dependent utility [11], which extends
expected utility by allowing for distortion of probabilities, is the best known.
Our paper considers bargaining problems where the bargainers’ preferences can be

represented by rank-dependent utility. In this model Yaari’s concept of increased
risk aversion has still the same natural meaning: a more risk averse person prefers
less lotteries over each riskless alternative. In contrast with expected utility, however,
not only the utility function but also a probability weighting function determines the
risk attitude of a decision maker. An elegant and simple characterization of
increased risk aversion as in the case of expected utility is not yet available.
Chateauneuf and Cohen [2] provide some partial results. Chew et al. [3] characterize
aversion to mean-preserving spreads, which is more restrictive than risk aversion.
In the present paper, two factors of risk aversion are distinguished: utility risk

aversion (as in the expected utility model), associated with the utility function; and
probabilistic risk aversion, associated with the probability weighting function. In our
application to bargaining we concentrate on the latter, because the results for the
former are closely related to those in expected utility. As in the related literature, the
central question is: is it advantagous or disadvantagous to bargain with a more risk
averse person? In Section 3, we investigate the impact of both utility and
probabilistic risk aversion for the Kalai–Smorodinsky bargaining solution [6]. The
main finding is that in a large class of bargaining problems, it is advantagous to have
a less probabilistically risk averse, or a more utility risk averse opponent. The known
effect of risk aversion for the expected utility case (cf. [8]) is a special case of the latter
result. Since both forms of risk aversion arise from the same concept of comparative
risk aversion, this contrast is rather surprising. On closer inspection, however, it is
not counterintuitive that increased probabilistic risk aversion of the opponent could
be bad for a player, because such an opponent might insist on larger probabilities for
good alternatives and thereby reduce the other player’s utility.
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The two results also have some strategic implications, if it is assumed that
bargainers can be dishonest about their true preferences and pretend to evaluate
lotteries by means of a different utility or probability weighting function.
Specifically, it does not pay to pretend to be less probabilistically risk averse, or
more utility risk averse, but it might sometimes pay to pretend to be more
probabilistically or less utility risk averse. For the expected utility case related papers
in this direction are Crawford and Varian [4] and Sobel [17,18].
Although our focus is on the Kalai–Smorodinsky solution the main results in this

paper can be extended to solutions that exhibit some form of monotonicity.
Typically, these do not include the Nash bargaining solution. If this solution is used,
a more probabilistically risk averse opponent might be better but also worse for a
player. We justify the use of the Kalai–Smorodinsky solution in bargaining under
rank-dependent utility by showing that the axiomatization of Kalai and
Smorodinsky [6] still makes sense (see Section 4).
Axiomatic bargaining without expected utility has been studied in other articles

[1,13–15,22]. The paper of Volij and Winter [22] is closest to the present paper. It
applies Yaari’s dual theory of choice to bargaining problems where the set of
alternatives consists of all distributions of one unit of a perfectly divisible good, and
uses the stronger notion of aversion to mean-preserving spreads to study changes in
the Nash solution. Shalev [16] has studied the effect of loss aversion—see also
Section 5.
The proofs are collected in the appendix.

2. Preliminaries

2.1. Rank-dependent utility

Throughout, the set A of riskless alternatives is a nonempty compact topological
space. A lottery is a probability measure with finite support on A; typically denoted

by P ¼ ðp1; a1;y; pn; anÞ where a1;y; anAA; pi
X0 for all i; and

Pn
i¼1 pi ¼ 1: The set

of all lotteries is LðAÞ: A riskless alternative aAA is identified with the lottery
ð1; aÞALðAÞ:
A utility function U : A-R is a continuous function that assigns to each riskless

alternative a real number, expressing its value for a decision maker. A weighting

function is a continuous, strictly increasing function w : ½0; 1�-½0; 1� with wð0Þ ¼ 0
and wð1Þ ¼ 1; representing the decision maker’s personal appraisal of probabilities.
For a decision maker with utility function U ; the preferences over LðAÞ can be
modelled by rank-dependent utility (RDU) if there exists a weighting function w; such
that preferences are represented by the functional RDU : LðAÞ-R defined by

RDUðPÞ ¼wðprð1ÞÞUðarð1ÞÞ

þ
Xn

i¼2
½wðprð1Þ þ?þ prðiÞÞ � wðprð1Þ þ?þ prði�1ÞÞ�UðarðiÞÞ;
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where r is a permutation that orders the riskless alternatives in the lottery from best

to worse, i.e., Uðarð1ÞÞX?XUðarðnÞÞ (cf. [11]). Expected utility holds if wðpÞ ¼ p for
all pA½0; 1�:
Rank-dependent utility, in contrast to expected utility, permits transformations of

probabilities. An alternative is weighted by the transformed probability of obtaining
the alternative or something better minus the transformed probability of obtaining
something better.

2.2. Comparative risk aversion

Yaari [20] introduced a natural definition of risk aversion. A decision maker is
more risk averse than another one, if whenever the former (weakly) prefers a lottery
to a riskless alternative the latter also does. In expected utility it is a well-known
result that one decision maker is more risk averse than a second one if the utility
function of the first is a strictly increasing concave transformation of that of the
second. Under rank-dependent utility, a second component influences the risk
attitude, namely, the weighting function. In the lemma below and in the rest of the
paper, we consider these two components separately, by keeping one fixed and
varying the other.

Definition 2.1. Let the preferences over LðAÞ of two decision makers (DM and gDMDM)

be represented by RDU-functionals RDU and gRDURDU : gDMDM is more risk averse than

DM if for all aAA and all PALðAÞ with gRDURDUðPÞX gRDURDUðaÞ also
RDUðPÞXRDUðaÞ:

Lemma 2.2. Let the preferences over LðAÞ of DM and gDMDM be represented by RDU

and gRDURDU with utility functions U and Ũ and weighting functions w and w̃; respectively.

1. If w ¼ w̃ then gDMDM is more risk averse than DM if and only if there exists a concave

strictly increasing function k : R-R such that Ũ ¼ k 3 U :

2. If U ¼ aŨ þ b for a; bAR; a40 then gDMDM is more risk averse than DM if

w̃ðpÞpwðpÞ for all pA½0; 1�: In particular, if U ¼ Ũ this implies thatgRDURDUðPÞpRDUðPÞ for all PALðAÞ:

If A is connected, the ‘‘only if ’’ implication in part 2 of Lemma 2.2 also holds. In

the situation of Lemma 2.2, part 1, we say that decision maker gDMDM is more utility

risk averse than decision maker DM; whereas in the situation of Lemma 2.2, part 2,

we say that gDMDM is more probabilistically risk averse than DM: Although the above
result is well known and simple to prove, it was not yet stated as in Lemma 2.2.
Part 1 of the lemma is a generalization of Yaari’s result [20] for expected utility;
a predecessor of part 2 can be found in [21]. A proof can also be deduced from
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Chateauneuf and Cohen [2]. A general characterization of comparative risk aversion
that allows for varying utility and weighting functions at the same time, is not yet
available.

2.3. Bargaining problems and solutions

As before, a nonempty compact topological space A is the set of riskless
alternatives. Let RDU1 and RDU2 : LðAÞ-R be the RDU-functionals of two
bargainers with utility functions U1 and U2 and weighting functions w1 and w2;
respectively. A designated element %aAA is the disagreement alternative. We assume
throughout that there is a lottery PALðAÞ with RDU1ðPÞ4U1ð %aÞ and
RDU2ðPÞ4U2ð %aÞ: The two bargainers try to reach an agreement in LðAÞ: If they
fail, %a results. The quadruple ðA; %a;RDU1;RDU2Þ is called a (two-person) bargaining

problem. B is the set of all bargaining problems.
For a bargaining problem B ¼ ðA; %a;RDU1;RDU2Þ; define

SðBÞ ¼ clfðRDU1ðPÞ;RDU2ðPÞÞ : PALðAÞg

and

dðBÞ ¼ ðU1ð %aÞ;U2ð %aÞÞ;

where ‘cl’ denotes the (topological) closure. The point dðBÞ is called the disagreement

outcome. The set SðBÞ is called the feasible set of B: It is a compact subset of R2: In
contrast to the case of bargaining problems under expected utility, examples (with
infinite A) can be constructed where the set fðRDU1ðPÞ;RDU2ðPÞÞ : PALðAÞg is not
closed.
We define

S ¼ fðS; dÞ : S ¼ SðBÞ and d ¼ dðBÞ for some BABg:

A bargaining solution is a map F : S-R2 that assigns to each ðS; dÞAS an element of
S: In the rest of the paper, we also write FðBÞ instead of FðSðBÞ; dðBÞÞ:

2.4. Feasible sets of bargaining problems

Under expected utility, the set of all possible feasible sets is the set of all compact

convex sets in R2: Because of continuity of the weighting functions, a feasible set
SðBÞ is connected under rank-dependent utility, but it is not necessarily convex. It
does, however, satisfy a weaker form of convexity, as formulated in the following
lemma.

For any points s and t in R2 denote by ½s; t� the straight line segment with s and t as
endpoints, i.e., the convex hull of s and t: The vector inequality t4s means ti4si for
i ¼ 1; 2; and tXs means tiXsi for i ¼ 1; 2:
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Lemma 2.3. Let ðS; dÞAS: Then for all s; tAS with s1 ¼ t1 or s2 ¼ t2 we have

½s; t�DS:

This lemma implies in particular that a feasible set S is not only connected but also
simply connected: it contains no ‘holes’ (cf. Lemma A.1 in the appendix).
For ðS; dÞAS the Pareto optimal set PðSÞ is defined by

PðSÞ ¼ fsAS : there exists no tAS with tXs and tasg:

Instead of PðSðBÞÞ we also write PðBÞ:
The following lemma implies that the Pareto optimal set is connected.

Lemma 2.4. Let ðS; dÞAS: Then there is a closed interval ICR and a continuous

strictly decreasing function f : I-R such that PðSÞ is the graph of f, that is,

PðSÞ ¼ fðt; f ðtÞÞ : tAIg:

Lemma 2.4 says that Pareto optimal subset of a feasible set S behaves nicely: there
are no indentations nor even horizontal or vertical line segments. Analogous results
can be derived for the other parts of the boundary of S (cf. Lemma A.3 in the
appendix). Lemma 2.3 implies that also the possibly flat parts in the north, east,
south, and west cannot have indentations.
The next lemma provides a partial answer to the converse question: Which

nonempty compact subsets S of R2 can be generated as feasible sets of bargaining
problems under rank-dependent utility? The lemma says that every connected
compact Pareto optimal set can be generated by an underlying bargaining
problem.

Lemma 2.5. Let ICR be a nonempty closed interval and let f : I-R be a continuous

strictly decreasing function. Then there is a BAB such that PðBÞ is the graph of f,
that is,

PðBÞ ¼ fðt; f ðtÞÞ : tAIg:

2.5. The Kalai–Smorodinsky bargaining solution

For ðS; dÞAS; the utopia point is defined by

uðS; dÞ ¼ ðmaxfs1 : sAS; sXdg;maxfs2 : sAS; sXdgÞ:

For BAB we also write uðBÞ instead of uðSðBÞ; dðBÞÞ: The Kalai–Smorodinsky
solution KS [6] assigns to each ðS; dÞAS the maximal point of S on the line segment
with d and uðS; dÞ as endpoints. It is well defined because S is compact. By Lemma
2.4, KSðS; dÞ is a Pareto optimal point for every ðS; dÞAS:
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This is an adaptation of the definition of KS for expected utility to rank-dependent
utility. Under expected utility, the Kalai–Smorodinsky solution can be justified and
characterized by a set of axioms [6]. This axiomatization can be extended to the
rank-dependent utility case, as we will show in Section 4.

3. Sensitivity of the KS bargaining solution to risk

We investigate the sensitivity of the Kalai–Smorodinsky bargaining solution to
changes in the risk attitude of the bargainers. We first assume that both bargainers
weakly prefer all riskless alternatives to the disagreement alternative, a condition
which will be weakened in Section 3.4. We examine the changes in the outcome
suggested by the Kalai–Smorodinsky bargaining solution if the risk aversion of one
of the players changes. First, we keep the weighting function fixed and vary the
utility function; second, we keep the utility function fixed and vary the weighting
function. The first case is a generalization to rank-dependent utility of known results
for expected utility.

Define Bþ ¼ fBAB : sXdðBÞ for all sASðBÞg:

3.1. Utility risk aversion

Theorem 3.1. Let B and C be bargaining problems in Bþ that are identical except that

player 2 is more utility risk averse in C than in B. Then KS1ðBÞpKS1ðCÞ:

The theorem says that a player does not lose when bargaining with a (new) more
utility risk averse opponent. Fig. 1(a) illustrates this. In the figure, we use the fact
that under rank-dependent utility, the utility function is unique up to scale and
location and the Kalai–Smorodinsky solution satisfies scale invariance (see Section
4), so player 2’s utility function in bargaining problem C can be scaled such that
dðBÞ ¼ dðCÞ and uðBÞ ¼ uðCÞ:

Fig. 1. Diagram (a) illustrates Theorem 3.1 and diagram (b) illustrates Theorem 3.2. In both diagrams,

z ¼ KSðBÞ and ẑ ¼ KSðCÞ: The solid dots correspond to riskless alternatives.
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3.2. Probabilistic risk aversion

Theorem 3.2. Let B and C be bargaining problems in Bþ that are identical except

that player 2 is more probabilistically risk averse in C than in B. Then

KS1ðBÞXKS1ðCÞ:

Theorem 3.2 says that a player does not profit from bargaining with a (new) more
probabilistically risk averse opponent. This is illustrated in Fig. 1(b), where the
utility functions of players 2 in B and C are taken to be equal (cf. Lemma 2.2, part 2,
and recall that KS is scale invariant).
Observe that both in Theorems 3.1 and 3.2 the players 2 in B and C are different

players, so that neither these results nor the associated diagrams imply anything
about gains or losses of these players. See also the discussion below.

3.3. Discussion and strategic implications

Although utility risk aversion and probabilistic risk aversion have a similar impact
on the preferences of a decision maker, namely, the more utility or probabilistically
risk averse a player is, the less lotteries are preferred over each sure alternative, they
have contrary effects in bargaining problems with respect to the Kalai–Smorodinsky
bargaining solution. An intuition for this is as follows. If a player can choose
between a more and a less utility risk averse opponent, it is advisable to choose the
more utility risk averse one, because the marginal utility of the more utility risk
averse player diminishes faster, so that this player is easier to satisfy. But if a
player can choose between a more and a less probabilistically risk averse
opponent, it is advisable to choose the less probabilistically risk adverse one,
because the more probabilistically risk averse player weighs probabilities for
alternatives with high outcomes lower and therefore asks for more security for
obtaining high outcomes.
These considerations represent a positive view: they are of interest for the case in

which the Kalai–Smorodinsky solution offers a good description of the bargaining
outcome. Additionally, it is interesting to consider the strategic implications of
Theorems 3.1 and 3.2 for a bargainer under the assumption that preferences are
private knowledge, so that it is possible to be dishonest about the true preferences.
These implications are relevant from a normative point of view, in particular, for the
question of mechanism design.
Let B ¼ ðA; %a;RDU1;RDU2Þ be a bargaining problem, where RDU2 corres-

ponds to the true preferences of player 2. We consider four cases, namely that
player 2 pretends to be more or less utility or probabilistically risk averse. For
simplicity, it is assumed for the rest of this subsection that A is finite. This ensures

that the image of LðAÞ in R2 is closed and, therefore, it also ensures the existence
of a lottery with rank-dependent utility image equal to the point suggested by the
Kalai–Smorodinsky solution. Nevertheless, analogous results can be derived for
infinite A:
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1. Does it make sense for player 2 to pretend to be more utility risk averse, with

preferences represented by gRDURDU2? Let C ¼ ðA; %a;RDU1; gRDURDU2Þ: We assume thatgRDURDU2 is scaled such that dðBÞ ¼ dðCÞ and uðBÞ ¼ uðCÞ: Let P;QALðAÞ such that

KSðBÞ ¼ ðRDU1ðPÞ;RDU2ðPÞÞ and KSðCÞ ¼ ðRDU1ðQÞ; gRDURDU2ðQÞÞ: Theorem 3.1
implies that RDU1ðPÞpRDU1ðQÞ: If RDU1ðPÞoRDU1ðQÞ; then Pareto optimality

implies RDU2ðPÞ4RDU2ðQÞ: If RDU1ðPÞ ¼ RDU1ðQÞ; then RDU2ðPÞ ¼gRDURDU2ðQÞ; because dðBÞ ¼ dðCÞ and uðBÞ ¼ uðCÞ: But gRDURDU2ðQÞXRDU2ðQÞ by
Lemma 2.2 . Hence, in every case RDU2ðPÞXRDU2ðQÞ: Thus, player 2 never profits
from pretending to be more utility risk averse.
2. Does it make sense for player 2 to pretend to be less utility risk averse, with

preferences represented by dRDURDU2? Nothing can be said in general here, as the
following example shows.

Example 3.3. Let A ¼ fð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð0:55; 0:55Þg; %A ¼ fð0; 0Þ; ð1; 0Þ; ð0; 1Þ;
ð0:5; 0:9ÞÞg; %a ¼ ð0; 0Þ; UiðaÞ ¼ ai for iAf1; 2g; Û2ð0Þ ¼ 0; Û2ð0:55Þ ¼ 0:2; Û2ð0:9Þ ¼
0:55; Û2ð1Þ ¼ 1; and w1ðpÞ ¼ w2ðpÞ ¼ ŵ2ðpÞ ¼ p for all pA½0; 1�: Let B ¼
ðA; %a;RDU1;RDU2Þ and C ¼ ðA; %a;RDU1; dRDURDU2Þ: Moreover, let %B ¼
ð %A; %a;RDU1;RDU2Þ and %C ¼ ð %A; %a;RDU1; dRDURDU2Þ: The lotteries that give rise to
the Kalai–Smorodinsky solution are, respectively,

P ¼ ð1; ð0:55; 0:55ÞÞ;

Q ¼ ð1
2
; ð1; 0Þ; 1

2
; ð0; 1ÞÞ;

%P ¼ ð2
7
; ð1; 0Þ; 5

7
; ð0:5; 0:9ÞÞ;

%Q ¼ ð1; ð0:55; 0:55ÞÞ:

We have

RDU2ðPÞ ¼ 0:5540:5 ¼ RDU2ðQÞ;

but

RDU2ð %PÞ ¼
9

14
o0:55 ¼ RDU2ð %QÞ:

Hence, pretending to be less utility risk averse can be advantagous (player 2 in the

pair %B; %C) but also disadvantagous (player 2 in the pair B;C). &

3. Does it make sense for player 2 to pretend to be less probabilistically risk averse

with preferences represented by dRDURDU2? Let C ¼ ðA; %a;RDU1; dRDURDU2Þ; and assume

again that the utility function Û2 of player 2 is scaled such that dðCÞ ¼ dðBÞ and
uðCÞ ¼ uðBÞ; i.e., Û2 ¼ U2: Let P;QALðAÞ such that KSðBÞ ¼ ðRDU1ðPÞ;
RDU2ðPÞÞ and KSðCÞ ¼ ðRDU1ðQÞ; dRDURDU2ðQÞÞ: Theorem 3.2 implies that
RDU1ðPÞpRDU1ðQÞ: If RDU1ðPÞoRDU1ðQÞ; then Pareto optimality implies

RDU2ðPÞ4RDU2ðQÞ: If RDU1ðPÞ ¼ RDU1ðQÞ; then RDU2ðPÞ ¼ dRDURDU2ðQÞ;
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because dðCÞ ¼ dðBÞ and uðCÞ ¼ uðBÞ: But dRDURDU2ðQÞXRDU2ðQÞ by Lemma 2.2.
Hence, in every case RDU2ðPÞXRDU2ðQÞ: Thus, player 2 never profits from
pretending to be less probabilistically risk averse.
4. Does it make sense for player 2 to pretend to be more probabilistically risk

averse, with preferences represented by gRDURDU2? Nothing can be said in general here,
as the following example shows.

Example 3.4. Let A ¼ fð0; 0Þ; ð1; 0Þ; ð0; 1Þg; %A ¼ A,fð0:55; 0:55Þg; %a ¼ ð0; 0Þ;
UiðaÞ ¼ ai for all aA %A; iAf1; 2g; w1ðpÞ ¼ p; w2ðpÞ ¼

ffiffiffi
p

p
; w̃2ðpÞ ¼ p for all pA½0; 1�:

Let B ¼ ðA; %a;RDU1;RDU2Þ and C ¼ ðA; %a;RDU1; gRDURDU2Þ; and let %B ¼
ð %A; %a;RDU1;RDU2Þ and %C ¼ ð %A; %a;RDU1; gRDURDU2Þ: The lotteries that give rise to

the Kalai–Smorodinsky solution in B;C; %B; and %C; are, respectively,

PEð0:618; ð1; 0Þ; 0:382; ð0; 1ÞÞ;

Q ¼ ð0:5; ð1; 0Þ; 0:5; ð0; 1ÞÞ;
%PEð0:461; ð1; 0Þ; 0:241; ð0; 1Þ; 0:298; ð0:55; 0:55ÞÞ;
%Q ¼ ð1; ð0:55; 0:55ÞÞ:

We have

RDU2ðPÞE0:618o0:707ERDU2ðQÞ;

but

RDU2ð %PÞE0:62540:55 ¼ RDU2ð %QÞ:

Hence, pretending to be more probabilistically risk averse can be advantagous

(player 2 in the pair %B; %C) but also disadvantagous (player 2 in the pair B;C). &

3.4. Extension from Bþ to B

In this subsection the restrictions in Theorem 3.2 on bargaining problems are
weakened. Riskless alternatives are permitted that are worse than the disagreement
alternative for one or both players. In the following, we only consider the effect of
weighting functions. For results concerning utility risk aversion in the expected
utility case, see [12].
Unfortunately, Theorem 3.2 cannot be generalized to an arbitrary compact set A

of riskless alternatives without any further restrictions, as the following example
shows.

Example 3.5. Let A ¼ fð0; 0Þ; ð1; 1Þ; ð�1; 2Þg; %a ¼ ð0; 0Þ; Ui ¼ ai for all aAA;
iAf1; 2g; w1ðpÞ ¼ p; w2ðpÞ ¼

ffiffiffi
p

p
; w̃2ðpÞ ¼ p for all pA½0; 1�: Let B ¼

ðA; %a;RDU1;RDU2Þ and C ¼ ðA; %a;RDU1; gRDURDU2Þ: Then
KSðBÞEð0:724; 1:929Þ
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but

KSðCÞ ¼ ð3
4
; 9
8
Þ:

Hence player 1 obtains more in the game with the more risk averse player 2. &

Nevertheless, we can still partially generalize Theorem 3.2.

Theorem 3.6. Let B and C be bargaining problems in B that are identical except that

player 2 is more probabilistically risk averse in C than in B. If

u2ðBÞ � d2ðBÞ
u1ðBÞ � d1ðBÞ

p
u2ðCÞ � d2ðCÞ
u1ðCÞ � d1ðCÞ; ð1Þ

then KS1ðCÞpKS1ðBÞ:

Condition (1) says that the line segment with dðCÞ and uðCÞ as endpoints is steeper
(has a higher slope) than the line segment with dðBÞ and uðBÞ as endpoints. If
dðBÞ ¼ dðCÞ—which can always be arranged without loss of generality—condition
(1) holds in particular if U1ðaÞXd1ðBÞ for all aAA; that is, if player 1 weakly prefers
all riskless alternatives to the disagreement alternative.

4. An axiomatization of the Kalai–Smorodinsky bargaining solution

The Kalai–Smorodinsky solution for rank-dependent utility bargaining problems
can be characterized by a similar set of conditions as in the expected utility case (see
[6]). The axioms are as follows, formulated for a bargaining solution F :

Symmetry: For every ðS; dÞAB with (i) if ðs1; s2ÞAS then also ðs2; s1ÞAS; (ii) d1 ¼
d2; we have F1ðS; dÞ ¼ F2ðS; dÞ:

Scale invariance: For all ðS; dÞAS and a; bAR2 with a40; we have FðaS þ b; ad þ
bÞ ¼ aFðS; dÞ þ b; where ax :¼ ða1x1; a2x2Þ for all xAR2 and aS þ b :¼ fas þ b :
sASg:

Weak Pareto optimality: For every ðS; dÞAS there is no xAS with x4FðS; dÞ:
Individual monotonicity: For all ðS; dÞ; ð %S; %dÞAS and all iajAf1; 2g with (i) %SDS;

(ii) %d ¼ d; and (iii) uið %S; %dÞ ¼ uiðS; dÞ; we have Fjð %S; %dÞpFjðS; dÞ:
Observe that these conditions still make sense in the rank-dependent utility setting.

In particular, scale invariance reflects the fact that the utility function in rank-
dependent utility is unique up to a positive linear transformation. Also the following
characterization is similar to the one obtained in [6] but in the proof (see the
appendix) the construction of auxiliary bargaining problems needs special attention
because of the different domain, in particular the presence and construction of
nonconvex problems.

Theorem 4.1. Let F be a bargaining solution. Then F satisfies symmetry, scale

invariance, weak Pareto optimality and individual monotonicity if, and only if, F ¼ KS:
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5. Conclusion

It has been shown in this paper that, with respect to the Kalai–Smorodinsky
solution, in many situations it is on the one hand not advantagous to bargain against
a more probabilistically risk averse opponent, but on the other hand also not
advantagous to bargain against a less utility risk averse opponent. These results are
surprising, since both probabilistic and utility risk aversion arise from the same
definition of risk aversion. The intuition behind the results could be that a more
utility risk averse bargainer is easier to satisfy and is therefore less demanding in a
bargaining problem, whereas a more probabilistically risk averse bargainer wants a
higher guarantee to obtain good outcomes and is therefore more demanding. In this
paper, we varied the attitude towards risk either with respect to the weighting
function or with respect to the utility function, and kept the other component fixed.
It may be interesting to design an experiment to test which of the two components
has more influence in bargaining problems.
The main results can be generalized to n-person bargaining problems

with the restriction that the feasible sets are made comprehensive. It is also
possible to adapt the results to bargaining solutions exhibiting certain mono-
tonicity properties. For instance, the egalitarian bargaining solution defined on the
set of comprehensive problems or the Kalai–Rosenthal solution [5] are such
candidates.
The extension of the Nash bargaining solution [9] to bargaining problems

under rank-dependent utility is more problematic. In particular, feasible sets
are not necessarily convex, so that the Nash bargaining solution is not
uniquely defined. Nevertheless, even if we restrict attention to bargaining
problems where the Nash bargaining solution is well defined, it does not behave
regularly. Both cases can arise: a player can gain or lose with respect to the Nash
bargaining solution when bargaining with a more probabilistically risk averse
opponent.
Cumulative prospect theory [19] differs from rank-dependent utility in the sense

that probabilities are weighted in a different way, depending on whether the
associated riskless alternatives are preferred to a specific reference point or not. All
of the above results can be generalized to cumulative prospect theory. There, a
distinction between gains and losses is made, and a third factor influences the risk
attitude of a decision maker, namely loss aversion. The impact of loss aversion in
bargaining problems is a subject for further research. Also Shalev [16] considers loss
aversion in bargaining but in a quite different framework.
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Appendix A. Proofs

Before proving Lemmas 2.3 and 2.4 we first prove some auxiliary results from

which these lemmas will be derived. By jj 
 jj we denote the Euclidean norm on R2:

We say that a feasible set S has a hole if there is an hAR2 and an e40 such that (i)

xeS for all xAR2 with jjx � hjjoe and (ii) for every xAR2 with xa0 there is a
number lx40 with h þ lxxAS:

Lemma A.1. Let B ¼ ðA; %a;RDU1;RDU2ÞAB: Then SðBÞ contains no holes.

Proof. Define T ¼ fðRDU1ðPÞ;RDU2ðPÞÞ : PALðAÞg: By definition, SðBÞ ¼ clfTg:
We say that T contains an almost-hole if there exists an hAR2 and a e40 such that (i)

xeS for all xAR2 with jjx � hjjoe and (ii) there is a yAR2 such that for every xAR2

with xa0 and xaty for every number tX0 there is a number lx40 with h þ lxxAS:
Since T is connected and SðBÞ is the closure of T ; it is sufficient to show that T

contains no almost-holes. We first prove the following claim.

Claim. For all s; tAT with either s1 ¼ t1 or s2 ¼ t2 the straight line segment between

these two points is contained in T, i.e., ½s; t�DT :

Proof. Let s; tAT with s2 ¼ t2 (the case s1 ¼ t1 is analogous). Let P ¼
ðp1; a1;y; pk; akÞ and Q ¼ ðq1; b1;y; qn; bnÞALðAÞ with ðRDU1ðPÞ;RDU2ðPÞÞ ¼ s

and ðRDU1ðQÞ;RDU2ðQÞÞ ¼ t: Without loss of generality, assume that all

probabilities in P and Q are positive, and let C ¼ fa1;y; ak; b1;y; bng: Let U2 be
the utility function of player 2.

Case 1: For all cAC; U2ðcÞ ¼ s2: Then all lotteries on elements of C have rank-
dependent utility equal to s2 for player 2 and all points in ½s; t� can be obtained by
such lotteries. Hence, ½s; t�DT :

Case 2: There are c; c̃AC with U2ðcÞaU2ðc̃Þ: Let %cAarg maxfU2ðcÞ : cACg and

%
cAarg minfU2ðcÞ : cACg: Clearly, U2ð%cÞ4s24U2ð

%
cÞ: Let R ¼ ðr; %c; 1� r;

%
cÞ be the

unique lottery with RDU2ðRÞ ¼ s2: Let r ¼ ðRDU1ðRÞ;RDU2ðRÞÞ; then we will show
that the straight line segment between s and r is in T : Similarly, it can be shown that
the straight line segment between r and t is in T : Therefore, the straight line segment
between s and t is contained in T :

Observe that for every lottery P̃ ¼ ðp̃1; a1;y; p̃k; ak; p̃kþ1; %c; p̃kþ2;
%
cÞ with

RDU2ðP̃Þ ¼ s2; for every iAf1;y; kg and for every e with 0pepp̃i; there exist

some l; pX0 with lþ p ¼ e such that for the lottery ePePe ¼ ðp̃1; a1;y; p̃i�1; ai�1;

p̃i � e; ai; p̃iþ1; aiþ1;y; p̃k; ak; p̃kþ1 þ l; %c; p̃kþ2 þ p;
%
cÞ we have RDU2ð ePePeÞ ¼ s2:

Starting with P we now gradually construct new lotteries with RDU2-value equal

to s2 by shifting, for every aief%c;
%
cg; the corresponding decision weight pi in a

continuous way, simultanously to %c and
%
c until we reach R; such that the RDU2-

value stays constant. In this way, we obtain every point on the straight line segment
between s and r as the image of at least one of the contructed lotteries. This
completes the proof of the claim. &
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We now continue with the proof of the lemma. Assume for contradiction that T

contains an almost-hole, and let hAR2 be as in the definition of an almost-hole. In
particular, there exist lð1;0Þ; lð�1;0Þ40 with h þ lð1;0Þð1; 0Þ; h þ lð�1;0Þð�1; 0ÞAT ; or

there exist lð0;1Þ; lð0;�1Þ40 with h þ lð0;1Þð0; 1Þ; h þ lð0;�1Þð0;�1ÞAT : Assume the

former is the case, the latter is analogous. Observe that ðh þ lð1;0Þð1; 0ÞÞ2 ¼
ðh þ lð�1;0Þð�1; 0ÞÞ2 ¼ h2: Hence the claim implies that ½h � lð�1;0Þð1; 0Þ; h þ
lð1;0Þð1; 0Þ�DT : In particular, hAT ; which contradicts (i) in the definition of an

almost-hole. Therefore, T contains no almost-holes and the proof of the lemma is
complete. &

The following lemma is needed to derive Lemma 2.4.

Lemma A.2. Let B ¼ ðA; %a;RDU1;RDU2ÞAB with utility functions U1 and U2 and

weighting functions w1 and w2 for players 1 and 2, respectively. Let
%b2Aarg maxfU2ðaÞ: aAAg and %b1Aarg maxfU1ðaÞ: aAAg: Let S ¼ SðBÞ and

xAPðSÞ: Then

(i) if x2oU2ð %b2Þ then for every e40 there is a yAS with y1ox1; y24x2; and

jjx � yjjoe;
(ii) if x1oU1ð %b1Þ then for every e40 there is a yAS with y2ox2; y14x1; and

jjx � yjjoe:

Proof. We only prove (i), the proof of (ii) is analogous. Suppose that (i) is not true.
Together with xAPðSÞ this implies that there is a #e40 such that

S-fyAR2 : jjy � xjjo#e; y24x2g ¼ |: ð2Þ

Let PALðAÞ be an arbitrary lottery with RDU2ðPÞpx2: Such a lottery is of the

form P ¼ ðp0; %b2; p1; a1;y; pn; anÞ with U2ð %b2ÞXU2ða1ÞX?XU2ðanÞ; and possibly,

p0 ¼ 0:

Claim 1. There is a number 0p %po1; independent of P, such that p0p %p:

Proof. Let
%
b2Aarg minfU2ðaÞ : aAAg: Since RDU2ðPÞpx2 we have

x2Xw2ðp0ÞU2ð %b2Þ þ
Xn

i¼1
½w2ðp0 þ?þ piÞ � w2ðp0 þ?þ pi�1Þ�U2ðaiÞ

Xw2ðp0ÞU2ð %b2Þ þ
Xn

i¼1
½w2ðp0 þ?þ piÞ � w2ðp0 þ?þ pi�1Þ�U2ð

%
b2Þ

¼w2ðp0Þ½U2ð %b2Þ � U2ð
%
b2Þ� þ U2ð

%
b2Þ:
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Hence

w2ðp0Þp
x2 � U2ð

%
b2Þ

U2ð %b2Þ � U2ð
%
b2Þ

o1;

so that

p0pw�1
2

x2 � U2ð
%
b2Þ

U2ð %b2Þ � U2ð
%
b2Þ

 !
:¼ %po1:

This proves the claim. &

Claim 2. Let m ¼ 1
2
ðx2 þ U2ð %b2ÞÞ; and let kAf1;y; ng such that U2ðaiÞom3iXk:

Then there is a number 0o
%
pp1; independent of P, such that

Pn
i¼k pi

X

%
p:

Proof. Since RDU2ðPÞpx2 we have

x2Xw2ðp0ÞU2ð %b2Þ þ
Xn

i¼1
½w2ðp0 þ?þ piÞ � w2ðp0 þ?þ pi�1Þ�U2ðaiÞ

Xw2ðp0ÞU2ð %b2Þ þ
Xk�1
i¼1

½w2ðp0 þ?þ piÞ � w2ðp0 þ?þ pi�1Þ�m

þ
Xn

i¼k

½w2ðp0 þ?þ piÞ � w2ðp0 þ?þ pi�1Þ�U2ð
%
b2Þ

¼w2ðp0ÞU2ð %b2Þ � w2ðp0Þm þ wðp0 þ?þ pk�1Þ½m � U2ð
%
b2Þ� þ U2ð

%
b2Þ

Xw2ðp0 þ?þ pk�1Þ½m � U2ð
%
b2Þ� þ U2ð

%
b2Þ:

Hence

w2ðp0 þ?þ pk�1Þpx2 � U2ð
%
b2Þ

m � U2ð
%
b2Þ

o1;

so that

p0 þ?þ pk�1pw�1
2

x2 � U2ð
%
b2Þ

m � U2ð
%
b2Þ

 !
o1;

and thereforeXn

i¼k

pi
X1� w�1

2

x2 � U2ð
%
b2Þ

m � U2ð
%
b2Þ

 !
:¼

%
p40:

This proves the claim. &

Claim 3. Let %p and
%
p be as in Claims 1 and 2, and let 0oepminf1� %p;

%
pg: Let m and k

be as in Claim 2 and let Pe be a lottery obtained from P by increasing p0 with e and

weakly decreasing, for i ¼ k;y; n; pi with ei
X0 such that

Pn
i¼k ei ¼ e: Then there is a

number 0orðeÞAR; independent of P, such that RDU2ðPeÞXRDU2ðPÞ þ rðeÞ:
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Proof. Define
%
wðeÞ :¼ minfw2ðq þ eÞ � w2ðqÞ : 0pqp1� eg: Observe that

%
wðeÞ40:

By rearranging the expression in the definition of RDU and setting a0 :¼ %b2; we have:

RDU2ðPeÞ ¼
Xk�1
i¼0

w2ððp0 þ eÞ þ p1 þ?þ piÞ½U2ðaiÞ � U2ðaiþ1Þ�

þ
Xn�1
i¼k

w2ððp0 þ eÞ þ p1 þ?þ pk�1 þ ðpk � ekÞ þ?þ ðpi � eiÞÞ

� ½U2ðaiÞ � U2ðaiþ1Þ� þ U2ðanÞ

X

Xk�1
i¼0

w2ððp0 þ eÞ þ p1 þ?þ piÞ½U2ðaiÞ � U2ðaiþ1Þ�

þ
Xn�1
i¼k

w2ðp0 þ p1 þ?þ piÞ½U2ðaiÞ � U2ðaiþ1Þ� þ U2ðanÞ

X

Xk�1
i¼0

½w2ðp0 þ p1 þ?þ piÞ þ
%
wðeÞ�½U2ðaiÞ � U2ðaiþ1Þ�

þ
Xn�1
i¼k

w2ðp0 þ p1 þ?þ piÞ½U2ðaiÞ � U2ðaiþ1Þ� þ U2ðanÞ

¼RDU2ðPÞ þ
%
wðeÞ½U2ða0Þ � U2ðakÞ�

XRDU2ðPÞ þ
%
wðeÞ½U2ð %b2Þ � m�:

The claim follows by defining rðeÞ :¼
%
wðeÞ½U2ð %b2Þ � m�: &

For the next claim, let
%
b1Aarg minfU1ðaÞ : aAAg:

Claim 4. Let Z40 and let Q ¼ ðq1; a1;y; qn; anÞ and QZ ¼ ðq̃1; a1;y; q̃n; anÞ be

arbitrary lotteries such that QZ arises from Q by shifting around probability such thatPn
i¼1 jqi � q̃ijpZ: Then there are positive numbers M1ðZÞ and M2ðZÞ; independent of

Q, such that jRDU1ðQÞ � RDU1ðQZÞjpM1ðZÞ and jRDU2ðQÞ � RDU2ðQZÞjpM2ðZÞ;
and, moreover, M1ðZÞ;M2ðZÞ-0 as Z-0:

Proof. We only prove the first inequality, the proof of the second one is analogous.

Without loss of generality assume U1ða1ÞX?XUðanÞ: Then

jRDU1ðQÞ � RDU1ðQZÞj

¼
Xn�1
i¼1

w1ðq1 þ?þ qiÞ½U1ðaiÞ � U1ðaiþ1Þ� þ U1ðanÞ
					
�
Xn�1
i¼1

w1ðq̃1 þ?þ q̃iÞ½U1ðaiÞ � U1ðaiþ1Þ� � U1ðanÞ
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¼
Xn�1
i¼1

½w1ðq1 þ?þ qiÞ � w1ðq̃1 þ?þ q̃iÞ�½U1ðaiÞ � U1ðaiþ1Þ�
					

					
p
Xn�1
i¼1

maxfjw1ðq þ ZÞ � wðqÞj : 0pqp1� Zg½U1ðaiÞ � U1ðaiþ1Þ�

pM1ðZÞ;

with M1ðZÞ :¼ maxfjw1ðq þ ZÞ � wðqÞj : 0pqp1� Zg½U1ð %b1Þ � U1ð
%
b1Þ�40: Since

M1ðZÞ-0 as Z-0 the proof of Claim 4 is complete. &

We will now complete the proof of the lemma. Take a sequence of lotteries
P1;P2;y with ðRDU1ðPcÞ;RDU2ðPcÞÞ-x as c-N: Assume without loss of

generality that jjðRDU1ðPcÞ;RDU2ðPcÞÞ � xjjo#e
4
for every c: By (2), RDU2ðPcÞpx2

for every c: Take Z40 so small that M1ðZÞ;M2ðZÞo#e
4
(with M1ðZÞ; M2ðZÞ as in Claim

4). Finally, take e40 with 2eoZ and 0oepminf1� %p;
%
pg (as in Claim 3). Then

Claim 3 implies that for an c0 sufficiently large we have RDU2ðPe
c0 ÞXRDU2ðPc0 Þ þ

rðeÞ4x2; with Pe
c0 and rðeÞ as in Claim 3. Since 2eoZ it follows by Claim 4 that

jRDU1ðPc0 Þ � RDU1ðPe
c0 ÞjpM1ðZÞ and jRDU2ðPc0 Þ � RDU2ðPe

c0 ÞjpM2ðZÞ: Hence,
jRDU1ðPc0 Þ � RDU1ðPe

c0 Þjp
#e
4

and jRDU2ðPc0 Þ � RDU2ðPe
c0 Þjp

#e
4
: Thus,

jjðRDU1ðPe
c0 Þ;RDU2ðPe

c0 ÞÞ � xjjo#e whereas RDU2ðPe
c0 Þ4x2; contradicting (2). This

completes the proof of lemma. &

Proof of Lemma 2.4. Let %x be the point of S with maximal first coordinate among
the points of S with maximal second coordinate. Similarly, let

%
x be the point of S

with maximal second coordinate among the points of S with maximal first
coordinate. Clearly, %x and

%
x are Pareto optimal points, and for every point xAPðSÞ

we have %x1px1p
%
x1:

To prove the lemma it is sufficient to prove that for every aAR with %x1pap
%
x1

there is a number f ðaÞAR with ða; f ðaÞÞAPðSÞ: such a number must then be unique
and the implied function f is strictly decreasing and, by Lemma A.2, also
continuous. Hence, f satisfies the requirements of the lemma.
For a ¼ %x1 take f ðaÞ ¼ %x2 and for a ¼

%
x1 take f ðaÞ ¼

%
x2: For aAR with %x1oao

%
x1

define f ðaÞ :¼ maxfb : ða; bÞASg: Suppose ða; f ðaÞÞePðSÞ: Then let x be the point
with maximal first coordinate among all points of D :¼ fyAS : yXða; f ðaÞÞg with
maximal second coordinate. Clearly, xAPðSÞ; x14a; and x2o %x2: Then Lemma
A.2(i) implies that there is a point yAD with y24x2; a contradiction to the definition
of x: This completes the proof of the lemma. &

For ðS; dÞAS we define

PþþðSÞ ¼ fsAS : there exists no tAS with t1Xs1; t2Xs2 and tasg;

Pþ�ðSÞ ¼ fsAS : there exists no tAS with t1Xs1; t2ps2 and tasg;

P�þðSÞ ¼ fsAS : there exists no tAS with t1ps1; t2Xs2 and tasg;
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and

P��ðSÞ ¼ fsAS : there exists no tAS with t1ps1; t2ps2 and tasg:

Observe that PþþðSÞ ¼ PðSÞ:
The following lemma is a generalization of Lemma 2.4. The proof can proceed

completely analogous to the proof of Lemma 2.4, and is therefore omitted. The
lemma is used in the proof of Lemma 2.3.

Lemma A.3. Let ðS; dÞAS: Then there are closed intervals Iþþ; Iþ�; I�þ; and

I��DR; continuous strictly decreasing functions f þþ : Iþþ-R; f �� : I��-R and

continuous strictly increasing functions f þ� : Iþ�-R; f �þ : I�þ-R such that

PþþðSÞ ¼ fðt; f þþðtÞÞ : tAIþþg;

Pþ�ðSÞ ¼ fðt; f þ�ðtÞÞ : tAIþ�g;

P�þðSÞ ¼ fðt; f �þðtÞÞ : tAI�þg;

P��ðSÞ ¼ fðt; f ��ðtÞÞ : tAI��g:

Proof of Lemma 2.3. We first observe that the points of S with maximal second
coordinates form a straight line segment, possibly consisting of only one point: all
these points can be obtained by lotteries between riskless alternatives with minimal
and maximal utility for player 1 among all the riskless alternatives that have
maximal utility for player 2. The same is true for all points with minimal second
coordinates, or maximal or minimal first coordinates.
Let s; tAS be points that have one coordinate in common. Without loss of

generality assume s1ot1 and s2 ¼ t2: If s2 is maximal or minimal in S then ½s; t�DS

follows from the observations in preceding paragraph. Otherwise, any point hA½s; t�
strictly between s and t satisfies condition (ii) in the definition of a hole: this follows
from the observations in the preceding paragraph and from Lemma A.3. Suppose
that there would be such an h with heS: Since S is closed there must be an e-
neigborhood of h that is not in S: Hence, h satisfies also condition (i) in the definition
of a hole, and thus S has a hole. This contradicts Lemma A.1 and completes the
proof. &

Proof of Lemma 2.5. Let I ¼ ½a; b�: If aab; define the continuous strictly increasing
function w : ½0; 1�-½0; 1� by

w
b� t

b� a


 �
¼ f ðtÞ � f ðbÞ

f ðaÞ � f ðbÞ

for every tAI : In particular, wð0Þ ¼ 0 and wð1Þ ¼ 1; so that w satisfies all the
requirements of a weighting function.

If a ¼ b; then for %a take any point in R2 with %aoða; f ðaÞÞ:
Define A ¼ f %a; ða; %a2Þ; ða; f ðaÞÞ; ð %a1; f ðaÞÞg:
If aab then take %a ¼ ða; f ðbÞÞ: Define A ¼ f %a; ðb; f ðbÞÞ; ða; f ðaÞÞg:
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Define UiðaÞ ¼ ai for all aAA and iAf1; 2g; w1ðpÞ ¼ p and w2ðpÞ ¼ wðpÞ for all
pA½0; 1�: Let B ¼ ðA; %a;RDU1;RDU2Þ: By construction,

fðt; f ðtÞÞ : tAIg ¼fðRDU1ðPÞ;RDU2ðPÞÞ : P ¼ ðða; f ðaÞÞ; p; ðb; f ðbÞÞ; 1� pÞ

for some pA½0; 1�g:

This is the set PðBÞ; and by Lemma 2.3, SðBÞ ¼ fxAR2 : %apxpðt; f ðtÞÞ
for some tAIg: &

Proof of Theorem 3.1. Let B ¼ ðA; %a;RDU1;RDU2Þ; C ¼ ðA; %a;RDU1; gRDURDU2ÞABþ

such that RDU2 is associated with U2 and w2 and gRDURDU2 with Ũ2 ¼ k 3 U2 and w2 for

a concave strictly increasing transformation k : R-R: It can be assumed that fU2U2 is
scaled such that dðBÞ ¼ dðCÞ and uðBÞ ¼ uðCÞ; since the Kalai–Smorodinsky

solution is scale invariant (see Theorem 4.1). This implies that Ũ2ðaÞXU2ðaÞ for all
aAA and therefore,gRDU2RDU2ðPÞXRDU2ðPÞ ð3Þ

for all PALðAÞ: Consider KSðBÞ: Because dðBÞ ¼ dðCÞ and uðBÞ ¼ uðCÞ; we either
have KSðBÞpKSðCÞ or KSðBÞ4KSðCÞ: Weak Pareto optimality of the Kalai–
Smorodinsky solution (see Theorem 4.1) and (3) imply KSðBÞpKSðCÞ; hence
KS1ðBÞpKS1ðCÞ: &

Proof of Theorem 3.2. Let B ¼ ðA; %a;RDU1;RDU2Þ; C ¼ ðA; %a;RDU1; gRDURDU2ÞABþ

such that RDU2 is associated with U2 and w2 and gRDURDU2 with U2 and w̃2 where
w2ðpÞXw̃2ðpÞ for all pA½0; 1�: (Hence, without loss of generality we have scaled the
utility function of player 2 in C such that it is equal to U2; cf. Lemma 2.2.) Then by
Lemma 2.2, part 2,

RDU2ðPÞX gRDURDU2ðPÞ ð4Þ

for all PALðAÞ: Consider KSðCÞ: Because dðBÞ ¼ dðCÞ and uðBÞ ¼ uðCÞ; either
KSðCÞpKSðBÞ or KSðCÞ4KSðBÞ: Weak Pareto optimality of the Kalai–
Smorodinsky solution (see Theorem 4.1) and (4) imply KSðCÞpKSðBÞ; hence
KS1ðBÞXKS1ðCÞ: &

Proof of Theorem 3.6. Let B ¼ ðA; %a;RDU1;RDU2Þ; C ¼ ðA; %a;RDU1; gRDU2RDU2ÞAB

such that RDU2 is associated with U2 and w2 and gRDURDU2 with U2 and w̃2 where
w2ðpÞXw̃2ðpÞ for all pA½0; 1�—this is similar as in the proof of Theorem 3.2—and
u2ðBÞ�d2ðBÞ
u1ðBÞ�d1ðBÞp

u2ðCÞ�d2ðCÞ
u1ðCÞ�d1ðCÞ: Because the Kalai–Smorodinsky solution is scale invariant (see

Theorem 4.1) we can assume without loss of generality that dðBÞ ¼ dðCÞ ¼ ð0; 0Þ:
Define HðCÞ to be the maximal point of SðCÞ on the line segment with dðBÞ and

uðSðBÞ; dðBÞÞ as endpoints. As in the proof of Theorem 3.2, it can be shown that

HðCÞpKSðBÞ: ð5Þ
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From Lemma 2.4 it follows that HðCÞ is Pareto optimal. Suppose that

KS1ðCÞ4H1ðCÞ: Then, KS2ðCÞ ¼ u2ðCÞ
u1ðCÞKS1ðCÞXu2ðBÞ

u1ðBÞKS1ðCÞ4u2ðBÞ
u1ðBÞH1ðCÞ ¼ H2ðCÞ:

This contradicts the Pareto optimality of HðCÞ: It follows that
KS1ðCÞpH1ðCÞ: ð6Þ

From (5) and (6),

KS1ðCÞpKS1ðBÞ;

which was to be proved. &

Proof of Theorem 4.1. Symmetry, scale invariance and individual monotonicity of
the Kalai–Smorodinsky solution are immediate. (Weak) Pareto optimality follows
from Lemma 2.4.
Let F be a bargaining solution which satisfies symmetry, scale invariance, weak

Pareto optimality and individual monotonicity. We show that F ¼ KS: Our proof
deviates from the proof in [6] because also certain nonconvex feasible sets are
permitted.

Let ðS; dÞAS: Define T ¼ fas þ b : sASg with a ¼ ð 1
u1ðS;dÞ�d1

; 1
u2ðS;dÞ�d2

Þ and

b ¼ �ad: Then ðT ; 0ÞAS; (where we write 0 instead of ð0; 0Þ) and scale invariance
implies

KSðT ; 0Þ ¼ aKSðS; dÞ þ b

and

FðT ; 0Þ ¼ aFðS; dÞ þ b:

So it is sufficient to prove that KSðT ; 0Þ ¼ FðT ; 0Þ: Note that uðT ; 0Þ ¼ ð1; 1Þ and,
therefore,

KS1ðT ; 0Þ ¼ KS2ðT ; 0Þ:

Let C ¼ ðA; %a;RDU1;RDU2ÞAB such that T ¼ SðCÞ and 0 ¼ dðCÞ: Let U1 and U2

be the associated utility functions.
First consider the case that uðT ; 0Þ ¼ ð1; 1ÞAT ; hence KSðT ; 0Þ ¼ ð1; 1Þ: Since, by

Lemma 2.4, PðTÞ ¼ fð1; 1Þg; there must be an aAA with ð1; 1Þ ¼
ðRDU1ðaÞ;RDU2ðaÞÞ: Define C0 ¼ ðf %a; ag; %a;RDU1;RDU2ÞAB where RDU1 and
RDU2 are the restrictions of the rank-dependent utility functionals in C: With L :
¼ SðC0Þ; we have FðL; 0Þ ¼ ð1; 1Þ by weak Pareto optimality of F : By individual
monotonicity of F applied to LDT we have FðT ; 0ÞXFðL; 0Þ ¼ ð1; 1Þ; hence
FðT ; 0Þ ¼ ð1; 1Þ ¼ KSðT ; 0Þ: This completes the proof of the theorem for this case.
Second and last, consider the case that uðT ; 0Þ ¼ ð1; 1ÞeT ; hence

KSðT ; 0Þoð1; 1Þ: By Lemma 2.4 there is a function f ; the graph of which

coincides with PðTÞ: Define y :¼ ðminfx1 : xATg;minfx2 : xATgÞ: Let B ¼
ð %A; ð0; 0Þ;RDU1;RDU2Þ; where

%A ¼ fðU1ðaÞ;U2ðaÞÞ : aAAg,fy; ðy1;maxfx2 : xATgÞ; ðmaxfx1 : xATg; y2Þg;
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with the utility functions %Ui defined by %UiðxÞ ¼ xi for every xA %A; and with weighting
functions %wi equal to those in C: Then dðBÞ ¼ 0; PðBÞ ¼ PðTÞ; and

SðBÞ ¼ fxAR2 : ypxpx0 for some x0APðTÞg:

Denote T̃ ¼ SðBÞ: Then uðT̃; 0Þ ¼ ð1; 1Þ and TDT̃; so by individual monotonicity of

F ; FðT̃; 0ÞXFðT ; 0Þ: Since KSðT̃; 0Þ ¼ KSðT ; 0Þ; it is sufficient to show that

FðT̃; 0Þ ¼ KSðT̃; 0Þ: then KSðT ; 0ÞXFðT ; 0Þ which implies KSðT ; 0Þ ¼ FðT ; 0Þ since
KSðT ; 0Þoð1; 1Þ:
Let z :¼ KSðT̃; 0Þ (so z1 ¼ z2) and let f : ½0; 1�-½0; 1� be a continuous strictly

decreasing function with ðt; f ðtÞÞAT̃; f ðz1Þ ¼ z2; and f ðtÞ ¼ f �1ðtÞ for every tA½0; 1�:
Then f ð0Þ ¼ 1; f ð1Þ ¼ 0; and by Lemma 2.5 and its proof there is a ðV ; 0ÞAS with

PðVÞ equal to the graph of f and V ¼ fxAR2 : 0pxpx0 for some x0APðVÞg:
Because V is symmetric by construction, symmetry and weak Pareto optimality of F

imply FðV ; 0Þ ¼ z: Since uðV ; 0Þ ¼ ð1; 1Þ and VDT̃; individual monotonicity of F

implies FðT̃; 0ÞXFðV ; 0Þ ¼ z; hence FðT̃; 0Þ ¼ z ¼ KSðT̃; 0Þ since zAPðT̃Þ: This
completes the proof of the second case, and hence of the theorem. &
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