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Abstract

Pricing data reflect multiple decisions (e.g., regular pricing and discounting) often made by multiple
decision makers. For example, temporary price reductions (high frequency price changes) can be
used to price discriminate in the short run, while regular price adjustments (low frequency price
changes) reflect more strategic or long-term goals. It is therefore possible that the “reaction” of one
brand’s price to another depends on the frequency of the data analysed. Time disaggregation does
not remedy this problem, because frequency aggregation exists even when data are analyzed at the
lowest possible level of temporal aggregation. This paper therefore decomposes pricing interactions
across multiple frequencies or planning cycles. Using weekly sku-level price data in 37 grocery cate-
gories, we shed some light on the nature of pricing interactions across alternative planning horizons.
We find that cross-brand correlation in prices occurs at multiple planning horizons, and that the
planning horizon of the predominant interaction does typically not coincide with the sampling rate
of the data. We next demonstrate that different conclusions about the nature of price competition
emerge from different periodicities of pricing data by applying a structural model of competitive
price responses to different price periodicities identified by spectral decomposition. Calibrated on
short-term price variation, the model indicates that pricing among brands is cooperative, whereas
the long-term price variation suggests independent or Nash competitive behavior. We provide al-
ternative interpretations for this finding and we conclude that price periodicity matters for the
inference of competitive response.

Keywords: Competition; Competitive Reactions; Price Reactions; Spectral Analysis; Time
Series; Vector Autoregression; Empirical Generalizations; Long-term Effects.



1 Introduction

Empirical research pertaining to the measurement and prediction of competitors’ price interactions

is pervasive in the marketing literature (e.g., Gatignon 1984; Hanssens 1980; Lambin, Naert, and

Bultez 1975). More recently, considerable attention has been devoted to the dynamics inherent in

competitor price interactions (Dekimpe and Hanssens 1999; Leeflang and Wittink 1992, 1996, 2001;

Nijs et al. 2001, Steenkamp et al. 2004). These papers have led to a richer view of competition,

engendering the view that response may occur with some delay.

Our aim is to contribute to this literature by considering how inferences regarding pricing in-

teractions vary across different periodicities in pricing data. Weekly pricing data, for example,

may embed both regular price decisions (which may change on an infrequent basis) and tempo-

rary price reductions (which may occur more frequently). Though these multiple decisions are

agglomerated into a single pricing series, the goals of short-term and long-term pricing decisions,

as well as consumer response to them, may be different. For example, a manufacturer might use

discounts to (1) collude against weaker brands (Lal 1990), (2) exploit asymmetries in price response

around a reference price (Greenleaf 1995), (3) price discriminate among brand switchers (Farris and

Quelch 1987), (4) increase consumption, (5) induce trial, or (6) meet quarterly goals. In contrast,

regular price changes might reflect (1) changes in overall cost structure, (2) a signal of quality,

or (3) a drive toward increased profitability. Retailers, likewise, might choose to use discounts

for purposes of (1) category management, (2) price discrimination among store switchers, or (3)

shifting inventory costs to consumers (Blattberg and Eppen and Lieberman 1981). Moreover, the

timing of pricing decisions can differ across agents. Manufacturers, for instance, can react to each

other’s regular price changes, as the rate of price change for regular prices is sufficiently slow that

manufacturers have the opportunity to observe and react to such changes. From discussions with

manufacturers, we note that it usually takes 6 months or more to implement a price change into

retail (see also Chintagunta, Dube and Singh 2002; Kopalle, Mela and Marsh 1999). In contrast,

short-term changes in price often occur too quickly for manufacturers to respond (Leeflang and

Wittink 1992).1 Therefore, it stands to reason that observed pricing interactions may vary across

frequencies and that aggregating these across frequencies obscures insights regarding the nature of

1An exception to this generalization exists when manufacturers can obtain competitive dealing schedules from
their retailers well in advance of the deals.
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price interactions.

Further substantiating this argument in the context of modeling competition in prices, Kadiyali,

Sudhir, and Rao (2001, p. 177) note that “periodicity of decision making and time aggrega-

tion/disaggregation are important issues to bear in mind.” They suggest additional research is

needed in this area. In this context, we propose an exploratory approach to identify the planning

cycles (or periodicities) at which, empirically, prices interact across brands. Using this approach,

we next test the conjecture that considering alternative planning cycles in pricing data changes

inferences regarding price competition and find that this is indeed the case. In light of this finding,

we argue that it is desirable to decompose the data into planning cycles and then let theory inform

the modeler which frequency is most germane to the pricing decision of interest. For example, if the

aim is to ascertain competitors’ responses to promotion we would select different, and presumably

shorter, planning cycles than if we wanted to see whether the data inform us about the competition

in regular prices.

The following example illustrates how measures of price interactions depend on planning cycles.

For illustrative purposes, we focus on correlation between prices of different brands as a measure

of price interaction. This measure is purely descriptive. However, if competitors respond to each

other’s price changes, one expects such reactions to manifest themselves as a statistical relation

between observed prices.2 Consider Figure 1 which depicts more than 4 years of retail price per

can for two brands of beer in a Dominick’s Finer Food store in Chicago.

–––— insert Figure 1 here –––—

The contemporaneous correlation among the price residuals is -0.05 (not significant) for the

data in Figure 1. However, as is clear from the graph, there are multiple frequencies represented in

the price data. First, there exist high-frequency oscillations in short-term pricing (occurring every

five weeks or so). Pricing at this periodicity appears indicative of temporary price reductions. For

these frequencies, the correlation in residuals is −0.26 (t = −3.56), implying a contemporaneous
negative interaction. To the extent short-term price variation is retailer driven, this would suggest

that the retailers tend to promote an alternate weeks (Krishna 1994). Second, there exist lower

frequency price fluctuations (occurring every 15 weeks or so), perhaps associated with longer-term

2Correlation in the temporal domain is sensitive to whether a competitor interacts with some delay or not. We
later propose a frequency based correlation measure that remains unaffected by response delays.
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movements in regular price. If one focuses on these long-term variations in prices, the correlation

is 0.96 (t = 45.36), reflecting changes in regular price (possibly reflecting changes in costs or other

factors common across firms).3 Thus, inasmuch as these estimates are taken to be reflective of

competitive interaction, different conclusions regarding the nature of competitors’ price interactions

are drawn by looking at different planning horizons.

In sum, our objectives in this paper are to (1) empirically characterize the degree to which

price interactions occur at different periodicities, (2) provide some insight about their dependence

on decision horizons and on category and brand characteristics, (3) show that inferred competitor

price interactions depend on the periodicity of the pricing data. The spectral approach employed

in this paper complements econometric and economic analyses in the time domain (e.g., VAR

and NEIO, respectively). Further, the issue of periodicity aggregation is very distinct from time

aggregation (Leone 1995). Even when data are disaggregated to the shortest data interval, multiple

decision makers and multiple decisions remain combined in the data. Indeed, as data are sampled at

higher frequencies (e.g., weekly vs. monthly), more interactions become intermingled in the pricing

series. As such, the literature on time aggregation provides limited insights into the periodicity

of decision making. In contrast, our analysis seeks to inform the modeler about the frequency or

periodicity in which the price interactions occur.

Our paper proceeds as follows. Section 2 outlines the methods used to illustrate our points.

Section 3 discusses the data and Section 4 presents the results of the analysis. A key finding is that

empirically the periodicity of price interactions generally differs from the sampling rate of the data.

In Section 5, we explore further implications of our findings by showing that the frequency of price

interactions can affect statistical inferences regarding the nature of price competition. Section 6

concludes the paper.

2 Method

To assess the influence of periodicity on competition, we employ a spectral decomposition of price

series. This analysis is purely descriptive and is intended to show how the magnitude and direction

of price interactions depend on frequencies, which we denote “planning horizons.” In a second

3For this illustration, we isolated the short (long) term variation in the data, by using a high (low) pass filter
which eliminates variation below or above quarterly frequencies.
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stage analysis, we use regression methods to determine how the magnitude and direction of price

interactions depend on a variety of brand and category level variables.

2.1 Spectral decomposition of price covariation

Spectral analysis is a technique that creates a (co)variance decomposition of data (e.g., price) into

different planning cycles or frequencies. For this and other reasons, spectral analysis has been

widely applied in economics and finance (e.g., Andersen and Bollerslev 1997). However, it has been

used only rarely in marketing (Chatfield 1974). We use a multivariate spectral decomposition to

analyze the competitive price series in many different product categories. The methods for doing

this are well-documented (e.g., Hamilton 1994) and therefore we relegate the technical aspects of

the analysis to an appendix (Appendix A). To measure whether price covariation is present across

frequencies, we compute the coherence at each frequency.

Coherence is equal to the squared correlation coefficient for two or more series of data at a

specific frequency (Hassler 1993). Hence, in the context of pricing data, coherence is equal to

the squared correlation coefficient for pairs of competing prices at a particular planning horizon

` (e.g., weeks, months, quarters). The coherence values range from 0 (no interaction between

two competitors at planning horizon `) to 1 (very strong interaction at `). If the coherence is

close to 0 at a planning horizon of 3 months, price changes for one brand occurring at 3 month

intervals are uncorrelated with those from another brand. In contrast, a coherence close to 1 at the

monthly level indicates strong price interactions occurring at roughly 4 week intervals. Importantly,

coherence measures the presence of correlation in prices at a particular planning cycle, regardless

of whether competitor price interactions are instantaneous or lagged. This attractive property

ensures that there is no confound between price reactions and the timing of those reactions. For

purposes of notation, let hcii0(ω) denote coherence for the prices of brand pair {i, i} in category c,
and frequency ω (which implies planning horizon ` = 2π/ω). The coherence measure is symmetric,

i.e., hcii0(ω) = h
c
i0i(ω).

As an example, Figure 2 portrays the coherence between Budweiser and Old Milwaukee es-

timated using the data in Figure 1 and controlling for the other brands’ prices (i.e., the pricing

analysis is multivariate). The horizontal axis depicts the pricing cycle, or planning horizon (in

weeks), and ranges from a low of 200 weeks and a high of 2 weeks (2 weeks implies 26 price cycles
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per year — as prices are set weekly, the shortest complete price cycle for weekly data, and thus

highest frequency observable in the data is biweekly).4 The vertical axis is coherence. The obser-

vations in Figure 2 represent the 5%, 25%, 50%, 75% and 95% percentiles in the distribution of

the coherence estimates in the beer category at each planning horizon (the methodological section

outlines the procedure for estimating these percentiles).

Three areas of high coherence between Budweiser and Old Milwaukee are indicated. First, the

highest coherence occurs at cycles of roughly 5 weeks (monthly cycles). The high-frequency price

changes evidenced in Figure 1 occur at this periodicity. Second, Figure 2 details strong coherence in

pricing for price cycles of approximately 15 weeks (quarterly). A comparison of the top and bottom

graphs in Figure 1 suggests that the slower moving regular price shifts are common to both brands,

and that longer-term coherence in pricing may be present. Finally, there is a strong biweekly

pricing cycle, reflective of weekly price changes indicated in Figure 1. Hence, the interaction of

prices between Budweiser and Old Milwaukee contains at least three empirically important planning

horizons, and coherence captures them all.

–––— insert Figure 2 here –––—

In addition to coherence, multivariate spectral analysis provides two other descriptive measures

of the statistical interaction of two time series of prices stemming from the polar representation

of their spectrum (e.g., Hamilton 1994, p. 275). The first of these measures is called phase. This

metric captures whether prices tend to move in the same direction or in opposite directions. As

with coherence, phase is specific to the planning horizon ω. The value of the phase lies between −π
and +π radians. A phase of 0 implies that prices change concurrently, or “in-phase.” Such series

are positively correlated. A phase of ±π indicate that prices are perfectly “out-of-phase.” Such

series are negatively correlated. Figure 2’s short-term price interactions (approximately 5 weeks)

between Budweiser and Old Milwaukee have a phase close to +π, indicating that prices are out of

phase in the short-term (indicating that the promotions of these brands are negatively correlated).

However, the peak in coherence corresponding to approximately 15 weeks evidence a phase very

close to 0. As such, it appears that prices move together in the long term, but disparately in

4It is noted that cycles (or periods) and frequencies are inversely related. That is letting ` denote the length of the
price cycle (counted in time units), and ω denote frequency (expressed in radians), the relationship between planning
period and frequency can then be expressed as ` = (2π/ω), 0 < ω ≤ π (see also Harvey 1975).
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the short term. These two facts accord with the price series in Figure 1. The second measure,

called gain, is harder to interpret but seeks to express the attenuation of one price by another at

a particular frequency. Statistically, its interpretation is similar to the magnitude of a regression

coefficient (Brillinger 1981). In the example of Budweiser and Old Milwaukee, Figure 1 suggests

the price variation of each of these brands is roughly equal, thus it is not surprising that we find

the gain for the short-term and long-term price cycles are both close to 1.

In this paper, we limit our attention to the analysis of coherence for two key reasons. First, our

goal is to determine the periodicity at which pricing interactions occur, as this determination is a

useful precursor to analyses of pricing competition — and coherence is the only measure related to

this objective. Second, coherence is a prerequisite for analyzing other metrics such as phase and

gain. Phase and gain have little meaning when coherence is small or insignificant.

2.2 Regression

The next step of our analysis assesses whether competitor interactions, as measured by coherence,

systematically vary across planning horizons. To proceed with this analysis, we follow several steps,

outlined below:

1. Categorize the continuous periodicities (ω) into a discrete number of planning horizons

(p = {0, 1, 2}). Following Leeflang and Wittink (1992), we define short-term reactions as those that
occur at intervals of 4 weeks or less (monthly). Leeflang and Wittink (1992; 2001) note that this

cutoff corresponds roughly with the period in which manufacturers can not adequately respond

to observed changes in retail price activity. We denote medium-term as those reactions that occur

between the 4 week period and 13 week (quarterly) period. Such price movements are more likely

to include manufacturer reactions to competitors’ discounting policies, and may include changes in

regular price. We define price changes that occur at greater than a quarterly frequency as longer-

term, and these may be more reflective of longer term strategic objectives. Finally, we disregard

price changes that occur with a periodicity of more than 26 weeks to ensure a sufficient number of

cycles to produce a reliable analysis. In addition, avoiding annual cycles in prices reduces the risk

of inadvertently confusing positive covariation in prices due to common seasonality in costs with

positive covariation because of strategic long term price matching.

2. Compute the representative coherence for each planning horizon. Within each planning
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horizon (short, medium, long) there exist multiple coherences, so the problem of selecting the most

representative coherence becomes germane. For each planning cycle, we select across all member-

frequencies the highest ratio of coherence to its standard deviation.5 In other words, the criterion

for the presence of price interaction at any frequency range is that coherence should be important

for at least one frequency that is considered part of that range. For example, the characteristic

short term coherence is that for which

max
{ω s.t. ω<4 weeks}

mean(hcii0(ω))
std(hcii0(ω))

(1)

where mean(hcii0(ω)) and std(h
c
ii0(ω)) are the mean and standard deviation of the sampling draws

at of the coherence at planning cycle ω (see Appendix A). We maximize this ratio for each of the

three planning horizons (short, medium, and long) to select the representative coherence in each of

these planning horizons.

The procedure of selecting the characteristic coherences within a planning horizon can be il-

lustrated by referencing Figure 2. Among all the short run ω’s the ratio of mean coherence to its

standard deviation for Budweiser-Old Milwaukee is highest at 2.1 weeks for the short run. Thus

the representative coherence for that price pair in the short run is the coherence at 2.1 weeks.

Continuing this logic, the medium term coherence corresponds to the mean coherence at 4.9 weeks,

and the long-term coherence corresponds to the mean coherence at 15.4 weeks. Although this ex-

ample contains sizable coherence in all three planning horizons, the subsequent sections show that,

empirically, this is not the case in general.

3. Regress planning horizon, brand and category characteristics on coherence

Using regression analysis, we investigate whether there are important differences in coherence

across pairs of brands, across categories, and across planning horizons. Knowledge of these differ-

ences is useful in predicting when periodicity matters (in terms of making inferences about compet-

itive pricing interactions). Appendix B provides details regarding the specification and estimation

of the regression model. We note that the regression takes into account unobserved heterogeneity

in brand pairs and in categories.

5In addition to the highest formulation, we tried a weighted average formulation, wherein the mean coherences
were weighted by their variances and summed across the planning cycle. The results were essentially identical.
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3 Data

We use the Dominick’s Finer Foods (dff) data base for this research.6 The dff data are comprised

of 7 years of weekly store movement data, and are thus well suited to study longer-term variation in

retail prices. The dff data contain 29 categories, although many of these categories contain multiple

subcategories (e.g., grooming products contain razors, shaving cream, and deodorant among other

sub-categories). In total, we conducted spectral analyses on 37 subcategories.7 From the many

upcs within a category, we select the most important ones for analysis, defined as those that had

both high levels of demand within the category and a long duration in the data. When possible,

we selected similar upcs from different brands (but not necessarily different manufacturers) to

comprise the different retail price series within a category. For example, in bottled juices, we

selected a skus related to a particular size (64 oz.) and a particular type of juice (apple juice) for

each of the major brands. Selecting similar skus from the same store ensures that we are most

likely to observe price interactions where they exist. We selected only one retail price series per

brand. Though we consider retail prices, it is also possible to use wholesale pricing data to analyze

pricing behavior. We refrain from doing so for several reasons. First, many firms only have access

to retail prices, so the most useful approach for these firms will focus on retail prices. Second, the

wholesale data, by excluding retailer behavior, omits an important player of interest to many firms.

Third, in the Dominick’s data, the wholesale prices are not manufacturer prices to the retailer, but

rather reflect a weighted average cost of inventory. As such, it is not purged of retailer behavior,

because it includes the effect of retail sales data and accounting procedures.

The number of price series per category ranged from 2 to 9. The 37 categories yielded 355 pairs

of price series. For the second stage analysis, we therefore have 355 pairs times 3 planning horizons,

or 1065 observations of coherence. The unit of analysis consists of upc prices at the store level.

Last, we note that there are a few missing observations scattered about in the data. When these

occur, we set the missing prices equal to those of the nearest period. This interpolation approach

ensures that prices more closely match the modal prices for regular and sale prices rather than

6http://gsbwww.uchicago.edu/kilts/research/db/dominicks/
7Analgesics, bar soaps, bath soaps, candy bars, cereal, gum, soup, conditioners, cookies, cola, deoderant, floss,

fabric softener sheets, fabric softner liquids, frozen dinners, frozen entrees, frozen orange juice, graham crackers,
apple juice, liquid dish detergent, liquid laundry detergent, liquid soaps, oatmeal, refrigerated orange juice, paper
towels, toilet paper, razors, beer, saltines, shredded cheese, shaving cream, shampoo, sliced cheese, snack crackers,
toothbrushes, toothpaste, and tuna fish.
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some point in between.8 Exceptionally, the series for one upc are too short, for instance because

it is discontinued. In such cases, we resorted to an average of the prices for the most similar upcs

within brand. A sample graph of the upc level retail price series was presented in Figure 1.

4 Results

4.1 At which planning cycles do prices interact empirically?

Coherence: Figure 3 depicts the retail pricing coherence (averaged over brand pairs) for 4 il-

lustrative categories. The shredded cheese category evidences a sharp reduction in coherence at

the four week frequency, and negligible interaction in retail prices beyond 10 weeks. Cereal prices

have a very high coherence at about 2 1/2 weeks suggesting that the prices of competitors in the

cereal category are strongly correlated. In contrast, prices in the razor category evidence short-

and long-term interactions, while prices in the bath-soap category have high degrees of coherence

across all planning cycles. Additional variation in the nature of coherence exists across brand pairs

within categories. Collectively, the figure suggests that empirical interactions in price occur at very

different cycle lengths. These patterns are reflective of patterns in the other categories as well. In

almost all of the 37 categories studied, the most important frequency of price interaction does not

coincide with the sample rate of the data (weekly). This finding is especially important given that

all analyses of competition, to our knowledge, focus on variation in price at the sampling rate of

the data (which is often weekly). These results further suggest that it is possible to broaden our

conception of pricing interactions by focusing on specific and theory-driven frequencies in the data.

–––— insert Figure 3 here –––—

To underscore the point that coherence manifests across frequencies, we plot, in Figure 4, the

5%, 25%, 50%, 75% and the 95% quantiles of the distribution of the mean coherences across all of

the brand pairs in the analysis for the retail pricing series. The 95% quantiles in Figure 4 indicates

that substantial coherence exists over all frequencies, and that spectral analysis is a useful approach

for divining these planning cycles. Moreover, as we will show, these frequencies play an important

8We also tried a c-spline interpolation, and the results were virtually identical. As the number of missing ob-
servations is small, alternative common methods of interpolation will probably have inconsequential effects on our
results.
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role in inferences regarding the nature of competitive interactions. Next, we seek to assess whether

there is any systematic variation in the degree of coherence across brands, categories and time.

–––— insert Figure 4 here –––—

4.2 Do empirical interactions in price depend on the brand, category and plan-
ning horizon?

It is apparent from the forgoing analysis that there exists substantial variation in coherence across

brands, categories and time. We now explore the existence of patterns in coherence. In partic-

ular, we investigate whether our measures of price interaction are affected by brand or category

characteristics. Such an analysis could be useful for researchers interested in ascertaining when or

whether periodicity is likely to matter. The list of descriptors considered is not exhaustive, but

rather reflects the confluence of the measures available in the data, and prior findings in the pricing

literature.

4.2.1 Brand level influences on competitor price interactions

We commence by outlining several factors at the level of brand-pairs that are hypothesized to affect

the pricing interactions. These brand-pair level variables (defined in Appendix C ) are denoted,

zcii0 and they are as follows:

• Within Firm Effects. Reflective of common category planning practices, we expect manufac-

turers to price their skus similarly. This would lead to higher coherence among skus.

• Between Firm Effects. Price and quality tiers can also affect price interactions (Blattberg

and Wisniewski 1989; Bronnenberg and Wathieu 1996).

— Private Label. Given that private label store brands are often in different quality tiers

than national brands (Hoch 1996), we expect coherence to be modest for brand pairs

that include a store brand.

— Price Differential. Leeflang and Wittink’s (2001) survey of managers indicates that

competitor response is more likely when brands are positioned similarly. As such, one

might expect coherence to be limited for disparately priced brands.
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4.2.2 Category Level Influences on Competitor Price Interactions

In addition to brand descriptors, we delineate a set of category descriptors, denoted by vc, that we

expect will moderate price interactions. These factors (again defined in the Appendix C) and the

directions of our expectations regarding their effects on price interactions, are as follows:

• can Industry Characteristics. We consider the following industry factors:

— Concentration. Chen et al. (1992) find that absence of competitive response is more

likely with fewer competitors, as more competitors often implies a market of greater

strategic importance. This suggests that coherence should be lower in more concentrated

markets.

— Volatility. Highly volatile markets with a larger percentage of firms exiting and entering

the market can decrease the likelihood that organizations can monitor price activity and

this may reduce coherence in pricing.

• Consumer Characteristics. Increased consumer price sensitivity is indicative of lower switch-
ing costs and thus greater competitive threats. As such, higher price elasticities are associated

with a greater likelihood of competitive response (Kuester, Homburg, and Robertson 1999),

suggesting increased coherence in price. Leeflang and Wittink (2001) further find that higher

cross-brand elasticities lead to greater price reactions.

— Penetration. Increased penetration has been associated with greater price sensitivity

(Narasimhan, Neslin and Sen 1996). If this association holds, we expect penetration to

contribute to an increase in coherence.

— Storability. Bell, Chiang, and Padmanabhan (1999) find that increased storability leads

to increased price sensitivity.9 Thus, we expect coherence to increase in storability.

4.2.3 Regression Results

Table 1 presents the results of the coherence regression. Overall, the fit of the model with the data

is good and the significant results are consistent with our expectations. Several effects merit spe-

9Other factors may influence price sensitivity as well (Bell et al. 1999). However, our attempts to measure them
via a survey approach yielded variables that are redundant with the information contained in the variables listed
above (for example, stockpilability was highly correlated with interpurchase time).
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cial consideration due to the novelty of the findings. In particular, consistent with the cospectrum

observed in Figure 4, we find that coherence is more prevalent in the short run than the long run.

The result is consistent with Chen, Smith and Grimm (1992), who observe smaller reactions to

strategic, as opposed to tactical, actions (as strategic actions involve greater commitment of re-

sources over time). Further, Chen and MacMillan (1992) note that more irreversible decisions (e.g.,

regular price as opposed to temporary price) can lessen reactions. The effect of same manufacturer

is positive and quite substantial, as manufacturers tend to coordinate prices of their brands within

a category. In addition, brand pairs with a large price differential show little interaction in pricing.

At the category level, we find that more concentrated markets are contain brand pairs that have

lower coherence. This indicates that all else equal, the observed prices in concentrated markets

tend to be more independent. Storability is positively associated with coherence. This is because

storability makes it appealing to consumers to buy when prices are temporarily low. This increased

price sensitivity makes price reactions more effective, raising coherence.

–––— insert Table 1 here –––—

Overall, we conclude that competitor price interactions vary systematically across time, brands,

and categories. Next, we argue that these frequency decompositions can be used as a pre-cursor to

the specification and interpretation of models of pricing conduct. As correlation in prices does not

equate to strategic pricing interactions, we advocate the exploration of coherence in price cycles to

screen which planning cycles may be of importance for strategic analysis. In the next section, we

seek to demonstrate this point by showing that modeling alternative periodicities in the data leads

to different inferences about competitive response.

5 Inferring competitive responses

5.1 Overview

So far we have argued that multiple decisions are represented in weekly pricing data and that

some of these decisions are associated with shorter and other with longer planning cycles and

reaction speeds. We have further shown that the empirical interaction of shelf prices differs across

planning cycles and that for each price pair the dominant interaction does generally not occur at

the sample rate of the data. We now take our analysis a step further and show —again using spectral
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decomposition— that the impact of periodicity on statistical inferences about price setting can be

profound. To accomplish this goal, we first theoretically outline how periodicity can matter and

then provide an empirical illustration to show this is the case.

Consider demand qi given by a linear function in own prices pi and competitive prices pj , j 6= i,

qi = f(pi, pj). (2)

Assuming constant marginal cost ci, the first order condition on profit maximization is that

p∗i − ci = −
qi

dqi/dpi
= − f(pi, pj)

fpi(pi, pj)
. (3)

Substituting a linear demand equation for ease of exposition, where bii indicates an own-price

response coefficient and bij indicates cross-price response coefficient, we obtain

fpi(pi, pj) =
dqi
dpi

= bii + bij
∂pj
∂pi

(4)

with bii < 0 and bij > 0.

With Bertrand-Nash competition, all players take each other’s actions as given, i.e., a condition

for inference of Bertrand-Nash competition is ∂pj/∂pi = 0. On the other hand, if player i thinks

that raising its price will make player j do the same, then ∂pj/∂pi > 0. Given the signs of bii and

bij the latter condition is associated with higher margins, and is therefore taken as an indication of

“soft” competition or “cooperative” behavior. Conversely, finding that ∂pj/∂pi < 0 is associated

with lower margins and is taken as evidence of non-cooperative conduct.

Of interest is how pricing decisions at different planning cycles affect these inferences. One

particularly interesting case arises when price elasticities vary with the periodicity of prices. For

instance, promotional price response (and elasticity) is usually higher than regular price response

(Blattberg, Briesch and Fox 1995). Such a result might reflect consumers’ increased tendency to

stockpile in response to a temporary price reduction relative to a regular price decrease (Krishna

1994). To assess the impact of this difference on the inferred competitive response, we point out

that a firms’ profit margins are invariant to whether data used are quarterly or weekly. This

condition is unnecessary but simplifies the argument. From equation (3) and (4) it then follows

that the empirical estimate for the sum bii + bij · (∂pj/∂pi) is invariant to whether the weekly or
quarterly information in the data is used (i.e., the same margin is estimated). If bii is more negative

with weekly data than with quarterly data, then bij · (∂pj/∂pi) needs to be more positive. Then, if
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the increase in own price response is larger than the increase in cross-price response, ∂pj/∂pi will

be estimated with a higher value from high-frequency data (when demand is more elastic) than

from low-frequency data. Thus, estimating the system on weekly data will lead to inferences of

more cooperative conduct than on the quarterly data. Though we focus on bii, it is important to

note the argument generalizes to other parameters of interest in the model — as any parameter can

change with the periodicity (e.g., retailer, consumer or manufacturer conduct), this increases the

likelihood that inferences regarding competitive conduct can change with periodicity, and amplifies

our core contention that periodicity matters.

The intuition behind our argument is that under Bertrand-Nash competition margins should

shrink when price sensitivity increases. Under the assumptions communicated above the only way

in which the system of equations in equation (3) and (4) can deal with the equality of margins

across regimes of different frequencies and price responses in weekly or quarterly data is to infer

more cooperation when price response is high. Therefore, under such conditions, there appears be a

tendency toward inferring “collusion” or “cooperative conduct” from high frequency high elasticity

data.10

To illustrate these points, we adopt a specification for f(pi,pj) similar to Kadiyali et al. (2000).

As with Kadiyali et al. (2000, p. 132), we find the log-log, semi-log, and linear demand models

to be quite comparable in fit. While the semi-log model enables separate identification of each of

the conduct parameters, our goal is to show competitive interactions can differ across planning

horizons, and a linear model is sufficient for this purpose. Like Kadiyali et al. (2000), we choose

a category with two national brands and a private label; shredded cheese. The shredded cheese

category was selected because (1) it evidences a difference in coherence patterns in the long term

and short term, (2) the number of brands is low (2 major national brands and 1 private label),

thus facilitating estimation of the structural model, and (3) because we have exact knowledge of

the variable costs in this category through consultation with a former category manager of one of

the major firms in the industry.

10Rather crucially, this statement builds on the scenario that the only thing that changes across data of different
frequencies is own price response bii. Although this “all else equal” condition substantively holds in our empirical
example, we do not wish to suggest it holds in general. Still, if inferences about other parameters change across data
of different frequency, it would be a coincidence if the inference about the responses ∂pj/∂pi remained unaffected.
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We specify the demand for brand i to be given by

qi = ai + bip1 + cip2 + dip3 + gi · ddshifti (5)

where p1 is the price of Kraft Shredded Cheese, p2 is the price of Sargento Shredded Cheese, and

p3 is the price of store brand shredded cheese. The demand shifters (ddshifti) we use include

the total demand of competing brands in the outside stores (i.e., stores other than the one used

in estimation) and monthly dummies. It can be shown (see Appendix D) that the estimation

equations for shredded cheese are thus given by

q1 = a1 + b1p1 + c1p2 + d1p3 + g1 · ddshift1
q2 = a1 + b2p1 + c2p2 + d2p3 + g2 · ddshift2
q3 = a3 + b3p1 + c3p2 + d3p3 + g3 · ddshift3

mp1 = mc1 + γ1q1

mp2 = mc2 + γ2q2 (6)

r1 = α1q1 + α2r2 + α3r3

r2 = α4q2 + α5r2 + α6r3

r3 = α7q3 + α8r2 + α9r3

where mpi is the manufacturer price of brand i ∈ {1, 2, 3}, mci is the manufacturer cost, and ri is
the retailer mark-up.

It is also shown in Appendix C that deviations from the Nash condition in the manufacturer

pricing equations (mpi) is given by ki = −(1/γi)− bi 6= 0, i ∈ {1, 2}. Given estimates for the mean
and variance of γi and bi, it is possible to obtain estimates for the variance of ki, and therefore

test for deviations from Nash. The system of equations in 6 are estimated using linear three-stage

least-squares (3SLS), with the lagged prices and quantities in outside stores as well as the store

under investigation as instruments.

5.2 Inferences at Alternative Planning Cycles

Our first consideration in this example is to ascertain what frequencies to use in our analysis. We

used spectral analysis to determine that the best empirical decomposition is obtained around a

frequency less than and equal to 4 weeks and a frequency more than 4 weeks (see also Leeflang
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and Wittink (1992) for a theoretical rationale as well as the empirical data in Figure 3).11 We

then filtered the shredded cheese category to select these frequency components for analysis (see

Hamilton 1994). We employ a low pass filter and next a high pass filter to separate the two

frequency components.

The key parameter estimates from the structural model are presented in Table 2, and the

own- and cross-price coefficients exhibit face validity. We focus our discussion on the inferences

about manufacturer pricing rules to illustrate that differences in competitive response can exist

over planning horizons. From Table 2 we observe that own price sensitivity is higher in the high

frequency than in the low frequency data. Further, we also observe that the cross price sensitivity

does not increase with high frequency data as much. A potential explanation for this pattern is

that the lion-share of the short term price effect comes from shifting demand around in time rather

than across brands.

–––— insert Table 2 here –––—

A necessary condition for a Bertrand-Nash interaction is that k1 = −(1/γ1)−b1, k2 = −(1/γ2)−
b1 = 0. To explicitly test for deviations from Nash, we calculate the ki and its variance using the

delta method. Table 3 presents these results. Using the low frequencies in the data, we would infer

that the manufacturers compete in a Nash equilibrium, as ki is not significantly different from 0

for either national brand. On the other hand, using the high frequency data, we would infer that

the game deviates significantly from Nash, as ki > 0 for both national brands. Thus, as expected,

our inference about competition depends strongly on which frequencies in the data are used for

analysis. The differences between long and short run are significant at t = 9.16 for k1 and at

t = 3.19 for k2, with cooperation being greater in the short run.

–––— insert Table 3 here –––—

The findings are consistent with our speculation that higher price response bii, all else constant,

tends to lead to an inference of more cooperative behavior. As our estimates for own price response

for the national brands are 30-90% higher for high frequency data, this implies that the inferred

level of cooperation should be higher. This is precisely what we observe. The finding of short-

term pricing cooperation is also consistent with Lal (1990) who shows that leading brands collude

11We also used decompositions below and above 13 weeks with the same results as presented here.

16



through their promotions to lock out lower quality brands. We note that implicit collusion in short-

term pricing is possible when manufacturers learn about promotion schedules in advance from the

retailer.

In sum, we conclude that our inferences about the nature of the competitive game varies with

the periodicity and that more cooperative conduct is inferred with the high frequency data than

with the low frequency data. Thus, we demonstrate that it is possible to isolate frequencies of

high pricing interactions as inputs for a more structured approach to competitive price analysis.

One alternative to our analysis would be to include a discount variable in the supply and demand

equations to capture the different goals of regular and discount pricing, and we think this would

be a useful extension. However, even with such an approach, it is not clear in which frequency or

frequencies pricing variation should predominate.

6 Conclusion

We presented a literature that suggests that price data reflect multiple decisions and multiple

decision makers such as retailers and manufacturers, and that these decisions manifest as different

pricing interactions across different planning horizons. This literature, therefore, suggests that a

single pricing series can exhibit multiple interactions across different frequencies. Using the beer

category example, we illustrated that high and low frequency price changes interact differently

across competitors. We then formalized this illustration by applying a spectral decomposition to the

data in order to uncover the frequencies at which competitor price interactions are most intense. We

depicted results for 4 additional categories and found that multiple competitor interactions across

pricing frequencies seem prevalent. Next, using data on 37 categories, we generalized these results.

We found that competitor interactions, as measured by coherence, do not predominate at the

sampling rate of the data. Rather, we find that significant competitor price interactions occur across

all planning horizons, be they weekly, monthly, or quarterly. We further demonstrate systematic

differences in price interactions across brands and categories, noting that pricing interactions are

more prevalent in the short-term, within a given manufacturer’s brand portfolio, within price tiers,

in less concentrated markets, and in categories that are storable.

We then demonstrated, both theoretically and empirically, that inferences regarding competi-

tive responses require some notion of what constitutes a plausible decision cycle. Using a structural
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modeling approach estimated at different planning horizons in the shredded cheese category, we

showed that inferences about the nature of competition can deviate significantly across planning

horizons. In particular, we find that increased price response, all else equal, tends to favor inferences

of cooperation. As such, we envision the spectral approach considered herein to be a useful precur-

sor and complement to more structural approaches for competitive inference. We provide empirical

proof for the conjecture that a modeler’s choices about periodicity in pricing influence assessments

about competitive interaction. We conclude that choices about periodicity ideally combine a spec-

tral exploration of the data with theory about price response, and a modeler’s knowledge about

managerial constraints in the timing of competitive reactions. Given the influence of periodicity

on the inference of primitives such as marginal cost or the nature of competitive interactions, it is

important to properly account for this phenomenon when developing managerial insights into these

factors.

There is little doubt that studies on price competition will be of continuing importance in the

future. Above all, we hope that the research herein is taken as a constructive step in the direction

of studying the periodicity of price decision making. Beyond that domain, we hope that spectral

analyses may be fruitfully employed to understand the periodicity of decision making in other

marketing contexts.
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Variable Parametera t

Brand Level Variables
Same Manufacturer 0.70 6.30 ∗∗

Private Label 0.03 0.25
Price Differential -0.15 -3.14 ∗∗

Category Level Variables
Concentration -1.88 -3.23 ∗∗

Volatility -0.42 -1.21
Penetration -0.00 -0.32
Storability 0.33 2.83 ∗∗

Planning Horizon -1.15 -14.86 ∗∗

Intercept -0.66 -0.87
R2 0.49
aNegative effects denote lower coherence
∗p < 0.05, ∗∗p < 0.01

Table 1: Estimation results for coherence
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low frequency high frequency
Parameter Value t Value t

Demand equations
Kraft Demand
Price Kraft (b1) -1568.12 -14.00 -2928.24 -27.30
Price Sargento (c1) 928.11 5.70 1010.44 4.64
Price Dominicks (d1) 1119.68 6.93 -169.20 -0.95
Sargento Demand
Price Kraft (b2) 927.19 8.40 536.20 4.11
Price Sargento (c2) -1505.25 -10.35 -2005.80 -16.97
Price Dominicks (d2) -19.47 -0.15 -90.98 -0.77
Dominicks Demand
Price Kraft (b3) 1496.32 5.40 1706.18 3.75
Price Sargento (c3) 1012.72 2.71 -485.72 -0.84
Price Dominicks (d3) -4113.34 -13.13 -4766.57 -10.78
Manufacturer pricing rules
Kraft Rule
Quantity Kraft (γ1) 0.000582 30.41 0.000608 36.09
Sargento Rule
Quantity Sargento (γ2) 0.000694 32.20 0.000777 50.93
Retailer Pricing Rules
Kraft Rule
Quantity Kraft (a1) -0.00017 -15.49 -0.00014 -21.29
Markup Sargento (a2) 0.728 10.72 0.276 4.60
Markup Dominicks (a3) 0.245 4.73 0.031 0.69
Sargento Rule
Quantity Sargento (a4) -0.00014 -14.94 -0.00012 -13.00
Markup Kraft (a5) 0.390 11.23 0.170 3.47
Markup Dominicks (a6) 0.226 6.31 -0.079 -1.84
Dominick’s Rule
Quantity Dominicks (a7) -0.00009 -15.39 -0.00008 -19.52
Markup Kraft (a8) 0.248 4.88 0.069 1.23
Markup Sargento (a9) 0.640 9.20 0.003 0.04
System-weighted R2 0.73 0.70

Table 2: Structural model results

low frequency high frequency
Parameter Value t Value t

k1 -150.09 -1.44 1283.50 11.00
k2 64.33 0.39 718.80 5.95

Table 3: Manufacturing pricing rule parameters
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Figure 1: Weekly prices for Budweiser and Old Milwaukee
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Figure 2: The distribution of coherence between Budweiser and Old Milwaukee
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Figure 3: Average coherence for the brand pairs of four different categories
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Figure 4: The distribution of coherence across all brand pairs over multiple planning periods.
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A Estimation of Spectral Model

We employ the following procedure to obtain the spectral decomposition of the retail pricing series.

The discussion is topical. For more detail, interested readers are referred to Harvey (1975), or for

a more advanced treatment, Hamilton (1994).

1. Difference the data. Trends are similar to very low frequency cycles (because trends are akin

to long-term price movements with an infinite cycle duration). As such, trends increase the apparent

power of the lower frequencies in the data, and can lead to spurious low frequency signals in the data

(Chan, Hayya, and Ord 1977; Harvey and Jaeger 1993; Nelson and Kang 1981). Moreover, spectral

analysis is predicated upon the assumption that the data are stationary. Augmented Dickey-Fuller

tests on the price series in our data indicate that this is often not the case. For these reasons,

we apply a first differencing filter to the data. The coherence, gain, and phase relationships are

invariant to filtering when the same linear filter is applied to all the series (see Fishman 1969,

Hassler 1993). Hence, first differencing does not impact the measures of coherence, gain and phase.

We note that differencing the data has the advantages of (1) increasing the likelihood that the

series are stationary, (2) filtering the zero frequency, (3) preserving the coherence, phase and gain

relationships, and (4) controlling for linear trends in price (including linear inflation trends).12

2. Estimate a var model. For all prices yict, for brands i = 1, ...,Kc, in a category c = 1, ..., C,

and time periods t = 1, ..., T, estimate

yct =
(Kc×1)

αc0 +
PX
s=1

Ψcs · yct−s + ect (A.1)

where P is the number of lags. The coefficients of this model, Ψcs, are used to compute the

spectral decomposition. Given that regular price changes often show little or no variation for up

to six months, we allow for very long lag-shifts of up to 26 weeks (i.e., P = 26). We allow for

this flexibility because we wish to explore the longer term price interactions for which lower-order

var models may be less appropriate. On the other hand, the higher order var models yields an

impractical number of parameters. There is a Kc×Kc coefficient matrix Ψ to be estimated for each
lag. With 5 brands and 26 periods, this would yield more than 600 parameters. This empirical

task is impossible, as the number of observations is insufficient to estimate such a large number

of parameters. Accordingly, we follow the standard practice of zeroing parameters with t-statistics

less than 1.5 (similar to Dekimpe and Hanssens 1999).13 We proceed in phases, by first estimating

12It is important to note that differencing the data controls for linear trends in inflation in costs and prices.
However, ingredient costs in food may be seasonal, and also impact our results. If coherence is driven by costs, we
will observe a seasonal peak of 6 or 12 months in the data. We do not observe these peaks.
13We also used a cut-off of t=1.0 to assess the sensitivity of our results to assess the sensitivity of our results to

the inclusion of more parameters. The results remained essentially identical.
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a var model of order 1, and then retaining the parameters with t-statistics greater than 1.5. We

then add a second lag, and repeat the process. This process continues until all P lags are added to

the model.

3. Compute the spectrum and cospectrum. The spectrum can be interpreted as the proportion

of the variance in a price series attributable to a certain frequency. Higher power indicates greater

price variation at a given frequency. The cospectrum is then analogous to the covariance, and

measures the degree of covariation between two series at a given frequency. We use the coefficient

matrices Ψcs to compute the complete power spectrum (Hamilton 1994). Defining Ωe = E(ecte
0
ct),

the spectrum at frequency ω = 0, ...,π is a square matrix of size Kc that is equal to

Sc(ω) =
(Kc×Kc)

(2π)−1
"
IKc −

PX
s=1

©
Ψcse

−jsωª−1#Ωe "IKc −
PX
s=1

©
Ψ0cse

jsω
ª−1#

, (A.2)

where j =
√−1. In our empirical work, the complex matrix Sc(ω) is computed at discrete ω =

[0, 0.01π, 0.02π, ...,π], and the resulting series {Sc(ω) | ω = 0, ...,π} defines what is known as the
power spectrum. Unlike power spectrums estimated from bi-variate var models, our approach

controls for the observed effects of all other brands’ prices, because the var is estimated on the full

set of prices.

4. Compute the coherence and phase. Define for each pair of brands ic and i
0
c the following four

quantities:

scii(ω) = Scii(ω)

sci0i0(ω) = Sci0i0(ω) (A.3)

qcii0(ω) = im {Scii0(ω)}
ccii0(ω) = re {Scii0(ω)}

where im{arg} is the imaginary part, and re{arg} is the real part of its arguments. The factor qcii0
is called the “quadrature” and ccii0 is called the “cospectrum.” Coherence is computed as follows

hcii0(ω) ≡
£
qcii0(ω)

¤2
+
£
ccii0(ω)

¤2
scii(ω)s

c
i0i0(ω)

. (A.4)

Note that the coherence measure is symmetric — it is analogous to an R2 measure in regression
and measures the strength of association between two series at different frequencies (i.e., planning

horizons).

5. Compute the moments of coherence. We note that there is no confidence interval around

(A.4). To approximate such an interval, we generate 1000 draws from the sampling distribution

of the estimated var parameters of equation (A.1), and use these draws to obtain an empirical

distribution for the power spectrum, and the resulting measure in equation (A.4). For instance,
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the distributions underlying the box-plots in Figure 2 are computed from the 1000 replications of

the spectral decompositions of the 1000 randomly drawn var models. This procedure enables one

to ascertain which frequencies are associated with tightly distributed coherences.

B Estimation Of Cross-time, Brand and Category Effects

After collecting the coherences across planning horizons p = {0, 1, 2} , brand pairs ii0 = 1, ..., Nc,

and categories c = 1, ...C, we then estimate the following regressions for coherence,

hii0cp = δ0h + v
0
cαh + z

0
ii0c0βh + γhp+ εii0c + ηcp + ξii0cp, (B.1)

where p is planning horizon and the same manufacturer indicator variable is denoted, zcii0 .
14 The

ηcp are within category/horizon random effects, the εii0c are within brand-pair effects, and the ξii0cp
are the observational errors. We specify these random effects to account for potential correlations

across observations within the same time horizon and category as well as within the same brand pair

across time horizons (as, strictly speaking, these coherence estimates are not independent replicates,

and failure to accommodate correlations among these repeated measures might overstate the power

of the fixed effects). We specify ξii0cp ∼ IIDN(0,σ2ξ), ηcp ∼ IIDN(0,σ2η), and εiic0 ∼ IIDN(0,σ2ε0)
and assume these three errors to be independent.

Thus, the component of the covariance structure of the within category covariation of coherence

is the variance structure of ηcp + ξii0cp across all c, i.e.,

Λc =

 σ2ξ + σ2η · · · σ2η
...

. . .
...

σ2η · · · σ2ξ + σ2η


Nc×Nc

and Λ =

 Λ1 · · · 0
...

. . .
...

0 · · · ΛC


N×N

, (B.2)

where N =
P
∀cNc. To obtain the covariance matrix for the system stacked across brand-pairs,

categories, and planning horizons we combine Λ with the brand-pair random effects. The resulting

covariance matrix is given by

Ω = I3 ⊗ Λ−1 + σ2ει3ι
0
3 ⊗ IN , (B.3)

where I3 is a 3-dimensional identity matrix, IN is an N-dimensional identity matrix and ι3ι
0
3 is a 3

x 3 matrix of ones. Ω is thus dimensioned 3N × 3N.
We use Maximum Likelihood to estimate the model parameters θh = [δ0h,αh,βh,σ

2
ξ ,σ

2
η,σ

2
ε].

Define eii0cp = hii0cp − δ0h + v
0
cαh + z

0
ii0c0βh + γhp. Array these residuals across brand pairs and

categories, so that we obtain an N × 1 vector ep, and let the N × 3 matrix u ≡ [ e0 e1 e2 ].

Then the likelihood function is proportional to

L(θ) ∝ |Ω|−0.5 exp ¡−0.5 · ¡vec(u)0Ω−1vec(u)¢¢ . (B.4)

14Given that coherence is constrained to lie between 0 and 1, we use the logistic transform of coherence in
our analysis of the effect of brand and category characteristics on coherence. This transformation is given by
ln(hii0(ω)/(1− hii0(ω))). Also note that the transform is taken before any sample moments are computed.

30



After taking the log of the likelihood and simplifying (Magnus 1982), the log-likelihood function

can be written as (ignoring an irrelevant constant),

lnL(θ) = −0.5 · ln |Ω|+ 0.5 · trace(u0 · Λ−1 · u)− 0.5 · trace(u0 ·B · u ·A)) , (B.5)

where A = 1
3ι3ι

0
3, B = Λ

−1− (Λ+3σ2εIN)−1, and the log of the determinant can be shown to equal
(using some results on determinants in Magnus (1982) and Searle (1982))

ln |Ω| = 2Pc[ln(σ
2
ξ +Ncσ

2
η) + (Nc − 1) ln(σ2ξ)]+P

c[ln(σ
2
ξ + 3σ

2
ε +Ncσ

2
η) + (Nc − 1) ln(σ2ξ + 3σ2ε)]

. (B.6)

Note that the log-likelihood when expressed in this form requires only an inversion of a block

diagonal N × N matrix, which is much smaller than Ω. Estimation proceeds by maximizing

equation (B.5) over θ.

C Variable Operationalization

The variables in Table 1 are operationalized as follows. Same manufacturer is an indicator variable

that assumes the value of one if the two brands are produced by the same manufacturer, and 0

otherwise. Note, the same manufacturer is not equivalent to the same brand. Private label is an

indicator variable that assumes the value of one of the brands is a store brand. Price differential

reflects the mean per unit absolute price difference over time. Price differential was based upon

standardized series in order to make the variables comparable across categories (as units of volume

differ across categories).

Concentration is measured as the Herfindahl index. Volatility is defined as the sum of manu-

facturer births and deaths in the data expressed as a fraction of the number of manufacturers. A

birth is determined by the appearance of a manufacturer sometime over the duration of the data.

A death is determined by the disappearance of a manufacturer prior to the end of the data. Each

of these is converted to a percent by dividing by the total number of manufacturers. Penetration

(as the percent of consumers using the category) is obtained from the IRI factbook. Storability is

rated on a scale of 1-7 via a survey distributed to students in a large MBA program. Table C.1

outlines summary statistics for these variables.
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Table C.1 - Variable Means

Variable Mean Standard Deviation

Brand Variables
Same Manufacturer 0.14 0.35
Private Label 0.20 0.40
Price Differential 1.17 0.79
Category Variables
Concentration 0.26 0.13
Volatility 0.95 0.21
Penetration 71.0 22.3
Storability 4.96 0.56

D Specification and Estimation of Structural Model

We use the following demand equations for three brands (ignoring demand shifters for sake of

explication),

qi = ai + bip1 + cip2 + dip3. (D.1)

Then profits for brand 1 are then given by (mp1 −mc1)q where mp1 is the manufacturer price

of brand 1, and mc1 is the manufacturer cost. The derivative with respect to p1 is given by

(mp1 − mc1)0q1 + (mp1 − mc1)q01. This implies (mp1 − mc1)(b1(∂p1/∂mp1) + c1(∂p2/∂mp1) +
d1(∂p3/∂mp1)) + q1 = 0. Noting that p1 = mp1 + r1 where p is retail price and r is markup, then

(mp1−mc1)(b1(1+∂r1/∂mp1)+ c1(∂p2/∂mp1)+d1(∂p3/∂mp1))+ q1 = 0. Setting ∂r1/∂mp1 = t1,

∂p2/∂mp1 = t2, and ∂p3/∂mp1 = t3 implies mp1 = mc1 − q1(b1 + b1t1 + c1t2 + d1t3)−1. When t1,
t2, and t3 are 0, we observe Nash, however these parameters are not separately identified. Setting

k1 = b1t1 + c1t2 + d1t3 we obtain mp1 = mc1 − q1(b1 + k1)−1. Thus, if k1 differs from 0, the game

is not Nash (Kadiyali et al 2000). Note that k1 = 0 is a necessary but not sufficient condition for

Nash. Setting k1 = −(1/γ1)− b1 yields

mp1 = mc1 + γ1q1 (D.2)

which is the estimation equation. After estimating γ1 and b1, the variance of k1 can be inferred

using the delta method. A similar equation holds for the other brands. Note that γ is a measure

of relative margins inasmuch as the manufacturer margin, mp1 −mc1 = γ1q1.

Retailer profits are given by r1q1 + r2q2 + r3q3. Selecting r1 to maximize profits implies r
0
1q1 +

r1q
0
1+r

0
2q2+r2q

0
2+r

0
3q3+r3q

0
3 = 0. Thus, q1+r1(b1(∂mp1/∂r1+1)+c1∂mp2/∂r1+d1∂mp3/∂r1)+

r2(b2(∂mp1/∂r1+1)+c2∂mp2/∂r1+d2∂mp3/∂r1)+r3(b3(∂mp1/∂r1+1)+c3∂mp2/∂r1+d3∂mp3/∂r1) =

0. Again, noting we can not separately identify the conduct parameters, we obtain r1 = −(b1 +
k4)

−1q1 − (b2 + k5)(b1 + k4)−1r2 − (b3 + k6)(b1 + k4)−1r3 where k4 = b1∂mp1/∂r1 + c1∂mp2/∂r1 +
d1∂mp3/∂r1, k5 = b2∂mp1/∂r1+c2∂mp2/∂r1+d2∂mp3/∂r1, and k6 = b3∂mp1/∂r1+c3∂mp2/∂r1+

d3∂mp3/∂r1. When k4, k5, k6 = 0, this is Nash (Kadiyali et al. 2000). Setting k4 = (−1 −
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α1b1)/α1, k5 = −b2−α2(b1+ k4) = −b2+α2/α1, and k6 = −b3−α3(b1+ k4) = −b3−α3/α1 yields

the estimation equation,

r1 = α1q1 + α2r2 + α3r3 (D.3)

which is linear. Equations (D.1-D.3) together form the system in equation (6)
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