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Abstract

In this paper we reformulate Mertens’ definition of ordinality for solutions defined on
Ž .the class of strategic form games. Using this reformulation, the relations between strong

invariance, abr-invariance and ordinality can easily be described. This results in a short
proof of a theorem of Mertens. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

In game theory, the invariance of solutions under certain ‘irrelevant’ changes of
a game is an important issue. Well-known examples of this general notion of
invariance are symmetry, anonymity and independence of irrelevant alternatives.
The strength of these types of invariance in cooperative game theory, bargaining
theory and social choice theory is clear since they are frequently being used in the
axiomatic characterization of solutions in these areas.

1.1. Historical background

Ž . Ž .Thompson 1952 and Dalkey 1953 introduced a number of types of invari-
ance of solutions for non-cooperative games. They described four ways to change
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the tree of an extensive form game without changing the strategic possibilities of
the players and showed that the Nash equilibrium concept was invariant under

Ž .these transformations. Kohlberg and Mertens 1986 further developed the ideas of
Dalkey and Thompson. They introduced two more such ‘irrelevant’ ways to
change an extensive form game and showed that two extensive form games can
thus be transformed into one another if and only if these games have the same
reduced normal form. In this context, the reduced normal form of an extensive
form game is the game that is obtained by taking the normal form of the extensive
form game and then successively deleting those pure strategies that are payoff-
equivalent with some other mixed strategy. This observation led Kohlberg and

(Mertens to the following formulation of invariance: solutions for either extensiÕe
)form games or normal form games should depend only on the reduced normal

form of a game. Subsequently they carried this argument even further and stated
that one should treat mixed strategies just like pure strategies. With this, they
meant that one should not only identify pure strategies with payoff-equivalent
mixed strategies, but simply identify any pair of payoff-equivalent mixed strate-
gies.

However, these formulations of invariance still had some loose ends. First of
all, it is not clear why a solution should only depend on the reduced game that

Ž .results after identifying payoff-equivalent mixed strategies. There might be other,
more rigorous but still natural, identifications of games. The second problem is
related to the way Kohlberg and Mertens interpreted solutions. In their terminol-
ogy, in contrast to earlier definitions, a solution is a rule that assigns to each game

Ž .a collection of subsets of the mixed strategy space of the game. These subsets
are called solution sets. Now, even if two games yield the same game after
identification of certain strategies, it is not clear how the solution sets of the
original two games should be compared with each other.

1.2. Mertens’ approach

Ž . Ž .These two problems— 1 how to compare games and 2 how to compare
Ž .solution sets of ‘identical’ games—were addressed in Mertens, 1987 . We will

briefly discuss his ideas. For a more detailed motivation of his approach we refer
Ž .to Mertens 1987 .

Ž .Concerning the first main problem, he argued as follows. The only relevant
information about a game is the choice correspondence, i.e., set of optimal choices
of a player against each system of beliefs this player can have about what his
opponents will do. Moreover, a solution should also be stable against any

Ž .identification of mixed strategies that respects the structure of this choice
Žcorrespondence e.g., identification of payoff-equivalent strategies is supposed to

.‘respect the structure’ . As an answer to the question what this set of optimal
choices, the choice set, should actually be, Mertens writes:
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Still, there remain at least two different possible interpretations for the choice
Žset: either the set of all best replies, or the set of all admissible in the sense of

.individual decision theory best replies. We will to some extent pursue both
avenues in parallel, but when they start to diverge, we will abandon the first
track, because the other is ultimately the only good one . . .

Although Mertens did indeed investigate a number of alternative definitions of
the choice set, and even of admissibility, he also proved that his notion of
Ž .i,a -admissibility eventually yields the strongest results. He consequently stated
that this type of admissibility seemed to be preferable. In this paper, we will adopt
this view and only analyse the case where the players only have independent

Ž Ž . .beliefs the ‘i’ in i,a refers to independence of beliefs and only play a-admissi-
ble best replies to such beliefs.

As a next step to a solution of the first problem, he developed an intricate
Ž .mechanism to compare the i,a -admissible best reply correspondences of two

given games with each other. Since this mechanism is the main subject of analysis
in this paper, we will give a loose description of how it works. Let us mention

Ž .here that we will deviate slightly from the terminology used by Mertens 1987 .
This is mainly due to the fact that we felt that his use of the notions of
‘correspondence’ and ‘isomorphism’ was unconventional and therefore a bit
confusing. Instead we will use the more neutral terms ‘relations’ and ‘permissible
relations’, respectively.

ŽConsider two games with the same player set and, for each player, a for the
. Ž .moment arbitrary relation between his mixed strategies in the one game and

those in the other game. In our context, a relation is a subset of the product of the
respective strategy spaces of a given player in these two games. We implicitly
assume that every strategy in the one game is related to at least one strategy in the
other game and vice versa. Now we focus our attention on one of the players.

Ž . 2Given some arbitrary belief this player has about what his opponents will do in
the first game, the weights that this belief puts on the strategy profiles of his
opponents can be transferred 3 to the strategy profiles of the second game using
the relations between the respective strategy spaces of the opponents in these
games. Now suppose that these relations are such that, for any belief this player

Ž Ž .can have in the first game, his choice set i.e., his set of i,a -admissible best
.replies in this game corresponds exactly, via his relation, to the choice set in the

second game against any belief that can be obtained by the transfer of weights as
mentioned above. Then, Mertens argued, this player would make exactly the same

2 Formally a belief is a probability distribution over the set of mixed strategy profiles of the
opponents.

3 How this transfer works precisely is not easy to explain and elaborated in an example in Section 4.
Formally, both strategy profiles should be the marginal distributions of a finite distribution over the
relation.
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Ž .choices in both games according to his relation , provided that he believes that his
Ž .opponents will make the same choices in both games according to their relations .

ŽSo, if these relations are such that the above holds for all players in which case
.we will say that the relations are permissible , then any reasonable solution should

assign ‘the same’ solution sets to both games.
This brings us to the second problem: given this identification of games using

permissible relations between the strategy sets of two games, how do we identify
solution sets a given solution assigns to the two games? The answer is simple,
once we have these relations. A solution set in the first game is ‘the same’ as a
solution set in the second game if every strategy profile in the first solution set is
related to a strategy profile in the second solution set and vice versa. The solution
is called compatible with these relations if for every solution set of the first game,
and any pair of related strategy profiles for which the first profile is an element of
this solution set, there is a solution set of the second game containing the second

Žstrategy profile, while it is also ‘the same’ as the first solution set. Other
definitions using this identification are also conceivable, e.g., we might say that
the solution is compatible with these relations if any set of strategy profiles of the
second game that is ‘the same’ as a solution set of the first game is also a solution
set. However, this would for instance rule out point-valued solutions. Therefore,

.Mertens chose to use the above definition. Finally, Mertens called a solution
Ž .i,a -ordinal if it is compatible with any maximal permissible relation between
two games.

1.3. Discussion

Apart from the development of this systematic approach to tackle the two
previous problems, there are at least two other facets of the paper of Mertens that
need to be mentioned. First, Mertens shared the conviction of Kohlberg and
Mertens that any reasonable definition of invariance should treat mixed strategies
just like pure strategies. As a result of this conviction he regarded the class of

Žstrategic form games i.e., the class of games where each player has a polytope as
.strategy space and where every payoff function is affine w.r.t. each player as the

natural domain for a solution since this is the smallest class of games containing
all normal form games that is closed under the identification of arbitrary payoff-
equivalent strategies.

Secondly, Mertens designed the abstract definition of ordinality in order to
capture the essence of our intuitive understanding of what the invariance of a
solution should be. For this reason, he wanted his definition of ordinality not to

Ž .depend on any additional convex, or even topological structure of the strategy
spaces since such additions are not relevant for the general notion of invariance.
Therefore, Mertens could not use the conventional definition of admissible best
replies for his purposes, since this conventional definition involves completely
mixed strategies, a notion that depends entirely on the convexity of the strategy
spaces. It forced him to make a sharp distinction between the actual strategies the
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players can use and the beliefs of a player about what his opponents will do. To be
sure that his definition of ordinality did indeed not depend on any structure of the
strategy space, he maintained to make this distinction in every step he took. In his

Ž .paper it for instance plays a prominent role in the definition of i,a -admissibility
Ž .and therefore also in the definition of permissible relations.

The major drawback of this approach, although it is a very general and elegant
way to deal with the problems at hand, is that it yields a definition of ordinality
that is, to put it in Mertens’ own words, ‘highly abstract and apparently unman-
ageable’. There are, however, two results in his paper where Mertens tries to get
insight in this highly abstract definition. First of all he analyzes the structure of
permissible relations. To this end, he introduces an equivalence relation on the
strategy space of each strategic form game, thus splitting the strategy space of the
game under consideration into equivalence classes. Then he shows that a permissi-
ble relation between a game and itself induces a one-to-one and onto function
between the equivalence classes of the game. Secondly, he analyzes the connec-
tion between ordinality and the notions of invariance 4 and admissible best reply
invariance. 5 To be precise, he proves that a solution that is both invariant and
admissible best reply invariant is also ordinal. Furthermore he argues that ordinal-
ity is equivalent with invariance and admissible best reply invariance for point-val-
ued solutions as well as for solutions whose solution sets consist of unions of
entire equivalence classes. Our example in Section 7, however, shows that an
ordinal solution need neither be invariant nor admissible best reply invariant. So,
for an arbitrary solution, being ordinal is certainly not equivalent with being both
invariant and admissible best reply invariant. This only holds for very specific
types of solutions as said above, e.g., when we only consider one-point solutions
or equivalence-class-valued solutions. Furthermore, there are a number of fre-
quently used solutions, such as persistency or strategic stability, that are not of
such a type. All these together show that it is still not entirely clear what ordinality
actually means for a number of well-known solutions, apart from the highly
abstract definition provided by Mertens.

1.4. Aim of the paper

The main goal of this paper is to get more insight in what Mertens’ notion of
ordinality entails. Specifically, we derive an equivalent definition of ordinality in
the context of strategic form games. The advantage of the equivalent definition is
twofold. First, it is stated in terms of the familiar notion of admissibility instead of
Ž .i,a -admissibility. Secondly, there is no need to consider the relation between

4 A solution is invariant if it assigns the same solution sets to games that have the same reduced
normal form.

5 A solution is abr-invariant if it assigns the same solution sets to games that have the same
admissible best reply correspondence.
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belief systems induced by the relation between actual strategies. As a result of this,
the ‘alternative’ definition of ordinality is easier to understand and to work with
than the original one. For example, Theorem 2 of Mertens can now be proven
fairly quick as we will show in Sections 6 and 8. The price we pay for this
simplification is an additional convexity requirement on the relations between the
strategy spaces of games.

Furthermore, we provide an example that shows to what extent ordinality and
the related notions of invariance and abr-invariance differ from each other.

1.5. Organization of the paper

After some preliminary work in Section 2, our definition of ordinality is
presented in Section 3. Since the original definition is still not very well under-
stood, we go through the notions necessary for our definition one by one, and try
to give some intuition for each of them.

Ž .Then, in Section 4, we give Mertens’ original definition of i,a -ordinality and
explain the link of each part of this definition with the corresponding part in our
definition.

ŽIn Section 5 we show that both definitions are equivalent. Although we work
Ž .in the specific context of a subclass of strategic form games when proving the

equivalence, this is not very restrictive. Mertens never meant his definition to be
used outside the scope of strategic form games. His motivation for stating his
definitions as general as possible was that he wanted to stress the fact that his

.definition did not depend on any particular structure.
Finally, a new type of invariance, called strong inÕariance is introduced in

Section 6. It is shown that this notion is equivalent with invariance and admissible
best reply invariance. Also, in Sections 7 and 8, the relations between ordinality
and invariance, admissible best reply invariance, and strong invariance are investi-
gated. In Section 7, we present an example of a solution for strategic form games
that is ordinal, but neither invariant nor admissible best reply invariant, and
therefore certainly not strongly invariant. Section 8 provides a short proof of the
fact that strong invariance implies ordinality. Thus, Sections 6 and 8 combine to a

Ž .compact proof of Theorem 2 of Mertens 1987 .

� 4 nNotation For ngN[ 1,2, . . . , R is the vector space of n-tuples of real
� n < 4 nnumbers and D [ pgR p G0 for all i and Ý p s1 . For a set S;R ,n i i i

Ž .conv S is the convex hull of S. For an sgS, d is the function on S defined bys

1 if tss
d t [ .Ž .s ½0 if t/s

n Ž . Ž .If C;R is a convex set, relint C is the relative interior of C and ext C
denotes the set of extreme points of C. For two sets S and T , proj : S=T™S isS

Ž .the map defined by proj s,t ss. The map proj is defined similarly.S T



( )A.J. Vermeulen, M.J.M. JansenrJournal of Mathematical Economics 33 2000 13–34 19

2. Preliminaries

² Ž . Ž . : �A general form game is a tuple Gs N, X , u , where Ns 1,i i g N i i g N
42, . . . ,n is the set of players, X is the strategy set of player i and u :Pi i ig N

² :X ™R is the payoff function of player i. Such a game is also denoted by X,u .i

A strategic form game is a general form game for which each strategy set is a
6 Ž .polytope contained in some Euklidean space and each payoff function is

² :multi-affine. Such a game is denoted by P,u . The best reply correspondence of
player j is denoted by b :P™P .j j

Ž .Following Mertens 1987 we call a strategy p gP of a strategic form gamej j
² :P,u an admissible best reply of player j against qgP if there exists a

Ž t. Ž . Ž t.sequence q in relint P converging to q such that p gb q for all t. Fort g N j j
aŽ .a qgP, b q denotes the set of admissible best replies of player j against q andj

aŽ . aŽ .b q [P b q .i i
Ž .A solution for general strategic form games is a map s that assigns to each

Ž . ² : Ž .general strategic form game Gs X,u a collection s G of subsets of X. The
Ž .elements of s G are called solution sets.

3. Ordinality for strategic form games

In this section, we will give a reformulation of Mertens’ original definition of
Ž .i,a -ordinality for strategic form games. This definition will be entirely in terms

Ž .of well known notions concerning strategic form games and therefore easier to
understand than the more general one of Mertens. In Section 5, we will show that
for strategic form games both definitions are equivalent.

Since ordinality is a type of invariance—roughly meaning that the solution sets
of comparable games should be related—we first need to explain when two games
with the same players are comparable and how solution sets of such games should
be related. This will be elaborated in four steps.

Ž . ² :1 First we describe how to compare strategy profiles of two games Gs P,u
² :and Hs Q,Õ .

A non-empty subset rsP r of the product P=Q is called a relationi i
Ž .between P and Q if, for any i, r is a subset of P =Q and proj r sP andi i i P i ii

Ž .proj r sQ .Q i ii

Ž .The interpretation of ‘ p , q gr ’ is simply that the strategy p gP can bei i i i i

compared with the strategy q gQ and vice versa. Furthermore, any strategy in Pi i i

can be compared with at least one strategy in Q and vice versa.i

6 The fact that the strategy spaces of strategic form games are polytopes is crucial for the
equivalence of our definition with the one of Mertens. The equivalence hinges on a property, reflected
in Lemma 6, that is very specific for polytopes.
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Ž .2 Next we explain when the two games G and H are comparable.
Clearly not every relation between P and Q is a sensible one since related

profiles should in some sense be strategically equivalent. Therefore, we incorpo-
rate the admissible best replies into the definition of comparability of two games.
Furthermore, we will consider only convex relations.

Definition 1 A convex relation r is called admissible-best-reply preserving
Ž . aŽ X. aŽ X. Ž . Ž X X .abr-preserving for short if pgb p , qgb q for all pairs p,q , p ,q gr.

Definition 1 expresses the fact that r is supposed to respect the structure of the
choice correspondence. After all, this is the kind of identification of games against
which we want solutions to be stable.

Ž .If there exists at least one maximal with respect to inclusion abr-preserving
Ž .convex relation between the strategy sets of two games, then these games are

called comparable.
Ž .3 Now we describe how the solution sets of two comparable games should be

related.
Let r be a maximal abr-preserving convex relation between G and H. We say

that a set A;P is related to a set B;Q if there exists a set C;r with
Ž . Ž .proj C sA and proj C sB.P Q

This condition says the following: two solution sets are related if any strategy
profile in the one solution set can be compared with some strategy profile in the
other set.

Ž .4 Finally, let s be a solution. We say that s is compatible with a maximal
abr-preserving convex relation r between the strategic form games G and H if

Ž . Ž . Ž .for every Ags G and x, y gr with xgA there exists a Bgs H related to
A that contains y.

This condition says the following: if a solution set of the one game contains a
strategy profile that can be compared with a strategy profile of the other game,
then this other game has a related solution set containing this profile.

Definition 2 A solution s for strategic form games is called ordinal if s is
compatible with any maximal abr-preserving convex relation between two strate-
gic form games. 7

Summarizing this section: the ordinality of a solution s for strategic form
games can be checked in three steps:

Ž . ² : ² :1. take two arbitrary strategic form games P,u and Q,Õ

7 X �Ž . <Ž .If r is a maximal permissible relation between two strategic form games, then r [ q, p p,q
4g r is also a maximal permissible relation between the same two games. This shows that in the

definition of a compatible solution, the roles of G and H, x and y and A and B are symmetric and
may therefore be exchanged simultaneously. In other words: a solution is compatible with r iff it is
compatible with r

X. Hence ordinality is a symmetric notion.
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2. determine all abr-preserving convex relations between P and Q; find the
maximal elements 8 of the relations found in the foregoing step

Ž .3. check whether s is compatible with all the relations found in step 2 .

4. Mertens’ definition of ordinality

In this section we give Mertens’ original definition of ordinality. Although
Mertens meant his definition to be used in the strategic form context, he defined it

Žin a very general setting because he wanted to stress the independence of his
.definition from any additional structure in the strategic form context . We will, for

ease of exposition, stick to the general framework. Since the definition does need
some preliminary work we subdivided this section into subsections, each subsec-
tion corresponding to one step in our own definition.

( )4.1. Admissible best replies against beliefs

Ž .First, we describe how Mertens defines, for a general form game, admissible
best replies of a player against the belief of this player concerning the behavior of
his opponents.

˜Ž . w xFor a strategy set S, S is the collection of functions f :S™ 0,1 such that its
Ž . � < Ž . 4 Ž .support supp f [ sgS f s /0 is a finite set and Ý s s1. Usuallysg suppŽ f .

˜ ˜Ž .an element of S is called a finite belief over S. Note that S is a subset of the
normed 9 vector space consisting of all real-valued functions on S with finite
support.

Following Mertens we suppose that player j of the game G

10 ˜ ˜ ˜1. chooses an element f gX [P X , where an f gX represents theyj yj i/ j i i i

belief of player j concerning the behavior of player i

2. chooses a strategy x gX maximizing his expected payoff given his beliefsj j

summarized in f .yj

8 For two given games the number of maximal elements is finite; moreover these relations can be
characterized using identifications of certain equivalence classes in the polytopes involved.

9 5 5 < Ž . <For a finite belief f , f [Ý f s .1 sg supp Ž f .
10 ˜ ˜We will frequently abuse the notation X when X is a product set P X . In that case X will bei i

˜ ; Ž .P X instead of P X . Although the latter can also be used Mertens , it yields a weaker notion ofi i i i

ordinality.



( )A.J. Vermeulen, M.J.M. JansenrJournal of Mathematical Economics 33 2000 13–3422

Note that the expected payoff to player j corresponding to a strategy x givenj

the belief vector f is equal toyj

< <U x f [ f y u x y .Ž .Ž . Ž .Ý Łj j yj i i j j yj
i/jŽ .y gsupp fyj y j

˜ ˜A strategy x gX is called a best reply of player j against fgX[P X —j j i i
Ž .denoted as x gB f —ifj j

< <U x f GU z f for all z gX .Ž . Ž .j j yj j j yj j j

Ž .Mertens calls a strategy x gX an i,a -admissible best reply of player j againstj j
˜ t ˜Ž .fgX if for any finite set P C ;X there exists a sequence f in Xi i t g N

Ž 5 5 .converging to f w.r.t. the -norm such that for all t1

1. x is a best reply against f t
j

Ž t.2. C ;supp f for all i/ j.i i

Ž .The set of i,a -admissible best replies of player j against f is denoted by
i ,a Ž . i ,a Ž . i ,a Ž .B f and B f [P B f .j k k

Ž t.Note that the second condition implies that the sequence f can be chosent g N

to have an arbitrarily large support. Compared with the definition of admissibility
in the context of games in strategic form, this condition replaces the statement that
the sequence should be completely mixed. In fact, in Theorem 1 we will show that

Ž .for such games i,a -admissibility and admissibility are related in a very natural
manner.

4.2. Mertens’ original definition

Now we are prepared to formulate Mertens’ original definition. This will be
done by describing, for each of the four steps we used in Section 3, the way
Mertens has coped with them.

Ž . 111 Mertens also uses relations as a tool to compare strategies and strategy
profiles.

Since Mertens also wants to compare beliefs over strategies, he introduces, for
˜ ˜Ž .a relation r between strategy sets S and T , the subset r of S=T consisting of˜

˜ ˜Ž .those pairs f , g gS=T for which an hgr exists such that f and g are the˜
marginals of h.

Intuitively, the relation r links a pair of beliefs whenever it is possible to˜
redistribute the weights of the first belief to the weights of the second belief via r.

11 Mertens uses the term ‘correspondence’ instead of ‘relation’.
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Ž .Note that the convexity requirement we imposed in 2 of Section 3 is in fact a
consequence of Mertens’ requirement on r.˜

The following picture is to clarify the above construction. Imagine that the
horizontal axis depicts the set S, while the vertical axis represents T. The shaded
area indicates the relation r, a subset of the Cartesian product S=T. Now the
fractions in the shaded area indicate the probability distribution h. The weights are

Ž .obviously supposed to be put on the dots next to it so h is indeed carried by r .
Clearly f and g are the marginals of h.

Ž .2 In order to define the comparability of two general form games, say
² : ² :Gs X,u and Hs Y,Õ , Mertens proposes to incorporate the admissible best

replies into the definition of comparability of two games.
Following Mertens, we call a relation rsŁ r between X and Y permissiblei i
12 Ž . Ž .if for all x, y gr and all f , g grsŁ r˜ ˜i i

xgBi ,a f mygBi ,a g .Ž . Ž .
If r is moreover maximal with respect to inclusion, it is called maximal

permissible.
Using this terminology the identification of games used by Mertens can be

defined as follows. Two games are comparable if there exists at least one
Ž .maximal permissible relation between the strategy sets of these games.

12 Ž . ŽŽ . Ž ..To simplify notation, we write x, y g P r instead of x , y , . . . , x , y g P r andi i 1 1 n n i i
Ž . ŽŽ . Ž ..f , g g P r instead of f , g , . . . , f , g gŁ r .˜ ˜i i 1 1 n n i i
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Ž .3 The way Mertens considers two solution sets of two comparable games as
Ž .related given a maximal permissible relation is the same as described in 3 of

Section 3.
Ž .4 The compatibility of a maximal permissible relation is defined analogously
Ž .to 4 of Section 3.

Ž . ŽDefinition 3 A solution s for general form games is called i,a -ordinal ordinal
.for short if s is compatible with any maximal permissible relation r between

two general form games.

Summarizing, in order to check the ordinality of a solution s for general form
games the following three steps are needed:

Ž . ² : ² :1. take two arbitrary general form games X,u and Y, Õ

2X. determine all permissible relations between X and Y; take the maximal ones

X Ž3. check whether s is compatible with all the relations found in step 2 i.e., the
.maximal ones .

5. Equivalence of both definitions for strategic form games

Ž . 13In this section we show that for strategic form games i,a -ordinality is
equivalent with ordinality as defined in Section 3. Crucial in our proof is the fact

Ž .that for a strategic form game i,a -admissibility can be redefined in terms of
admissible best replies without using beliefs over relations. Theorem 1 is, in fact,
the mathematical formalization of this fact.

In order to prove Theorem 1 we need to establish a link between beliefs over a
polytope, say P, and elements of that polytope. To that end we define the affine

˜Ž .projection mapping p :P™P by

˜p f [ f p p fgP .Ž . Ž . Ž .Ý
Ž .pgsupp f

It is straightforward to show that this mapping is Lipschitz continuous.
˜² :Now let P,u be a strategic form game. If fgP represents a collection of

Ž . Ž Ž . Ž ..beliefs, one for each player, then p f [ p f , . . . , p f is a strategy profile1 n

in P. The fact that, for all j, the payoff functions U and u are componentwisej j

13 Ž .A solution for strategic form games is called i, a -ordinal if the requirement in Definition 3 holds
for all strategic form games.
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linear implies that the best replies against a collection f of beliefs coincide with
Ž .the best replies against the strategy profile p f . Formally:

˜ Ž . Ž Ž ..Lemma 1 For all fgP and all j, B f sb p f .j j

Ž .The next theorem states that we have an even stronger result: the i,a -admissi-
ble best replies against a collection f of beliefs coincide with the admissible best

Ž .replies against the strategy profile p f .

˜ i ,a aŽ . Ž Ž ..Theorem 1 For all fgP, B f sb p f .

˜ i ,a Ž .Proof. Let fgP, pgP and jgN. We will show that p gB f mp gj j j
aŽ Ž ..b p f .j

i ,a t ˜Ž . Ž . Ž .a Suppose that p gB f . Then we can find a sequence f in Pj j t g N

Ž . t Ž .converging to f such that for all t, 1 p is a best reply against f ; and 2j
Ž . Ž t.ext P ;supp f for all i/ j.i i

t Ž t. t Ž .Now take q [p f . Then q g relint P and, by the continuity of p ,
t Ž . Ž t. Ž Ž t.. Ž t.q ™p f as t™`. Furthermore, by Lemma 1, p gB f sb p f sb qj j j j

j Ž .for all t. So p is an admissible best reply against p f .
Ž . aŽ Ž .. Ž t.b Suppose that p gb p f . Then we can find a sequence q inj j t g N

Ž . Ž . Ž t.relint P converging to p f such that p gb q for all t.j j
˜Let, for each i, C be a finite subset of P and g gP some function withi i i i

Ž .supp g sC .i i
Ž t. Ž .By Lemma 6 in Appendix A, there exist sequences r in P and ´t g N t t g N

Ž . t Ž . Ž . tin 0,1 such that q s 1y´ p f q´ r for all t and ´ ™0 as t™`. Sincet t t
t Ž . t Ž . t Žq g relint P , we can find an s gP and a number l g 0,1 such that q s 1yt
. Ž . tl p g ql s . Now we consider for igN and tgNt t

t ˜t tf [ 1y´ 1y´ f q´ d q´ 1yl g ql d gP .Ž . Ž . Ž .i t t i t r t t i t s ii i

t Ž t. t Ž .Obviously, f ™ f as t™` and, for all t, p f sq and C ssupp g ;i i i i i i
Ž t.supp f . Further,i

p gb q t sb p f t sB f tŽ . Ž . Ž .Ž .j j j j

Ž .for all t. So p is an i,a -admissible best reply against f. Ij

Ž .Using the previous theorem we will now show that i,a -ordinality can also be
defined in terms of admissible best replies without using beliefs over relations. For
this, we first need to get some insight in the connection between a relation
between two polytopes and the set of beliefs over it.

For a relation r between two polytopes P and Q, we introduce the subset

<p r [ p f ,p g f , g gr� 4Ž . Ž . Ž . Ž .Ž .˜ ˜
&

Ž .of P=Q. Since for a pair p, q gr, d is an element of P=Q with supportŽ p,q .
Ž .contained in r and d and d as marginals, the pair d , d is contained in r.˜p q p q
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Ž . Ž Ž . Ž .. Ž .Hence p,q s p d ,p d gp r and we have a proof of the first part of the˜p q
Ž . Ž .following lemma. The proof of part 2 is quite straightforward and 3 is an

Ž .immediate consequence of 2 and the fact that p is affine.

Ž .Lemma 2 Let r be a relation between two polytopes P and Q. Then 1
Ž . Ž . Ž . Ž .r;p r , 2 r is conÕex, 3 p r is conÕex.˜ ˜ ˜

With the help of this result we can show that the collection of projections of
beliefs over a relation is just the convex hull of that relation.

Theorem 2 If r is a relation between two polytopes P and Q, then

p r sconv r .Ž . Ž .˜

Ž . Ž . Ž .Proof. a First we show that rsp r if r is convex. In view of 1 of the˜
Ž . Ž . Ž .foregoing lemma, we only need to prove that p r ;r. Let p,q gp r . Then˜ ˜

Ž . Ž . Ž .there exists a pair f , g gr such that p f sp and p g sq. Furthermore there˜&
Ž .is an hg P=Q with f and g as marginals and supp h ;r. Then

psp f s f x xs h x , y xŽ . Ž . Ž .Ý Ý Ý� 0Ž . Ž .xgsupp f xgsupp f ygQ
Ž . Ž .x , y gsupp h

s h x , y xŽ .Ý
Ž . Ž .x , y gsupp h

Ž . Ž . Ž .and, similarly, qsÝ h x, y y. Hence, p,q sÝ h x, yŽ x , y.g suppŽh. Ž x , y.g suppŽh.
Ž . Ž . Ž .x, y is a convex combination of points contained in supp h ;r. So p,q g

Ž .conv r sr.
&

Ž . Ž . Ž . Ž Ž .. Ž .b Since r;conv r , we have p r ;p conv r . Hence, by part a and˜
Ž . Ž .1 and 3 of the foregoing lemma

&
conv r ;p r ;p conv r sconv r .Ž . Ž . Ž . Ž .˜ Ž .

Ž . Ž .This implies that p r sconv r . I˜

² : X ² :Consider two strategic form games Gs P,u and G s Q,Õ with the same
set of players. We will show that the permissibility of a relation between P and Q
can be checked without using beliefs.

Lemma 3 A relation r between P and Q is permissible if and only if for all
Ž . Ž X X. Ž .p,q gr and all p ,q gp r̃

pgb a pX
mqgb a qX .Ž . Ž .
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Ž . Ž . Ž X X. Ž .Proof. a Suppose that r is permissible and let p,q gr and p ,q gp r .˜
Ž X X. Ž Ž X. Ž X.. Ž X X .Then there is a pair f , g gr with p f ,p g s p , q . Hence, by˜

Theorem 1 and the permissibility of r,

pgb a pX
m pgb a p f X

m pgBi ,a f X
mqgBi ,a gXŽ . Ž . Ž . Ž .Ž .
mqgb a qX .Ž .

Ž . Ž .b Suppose that the equivalence described in the lemma holds for all p,q gr

Ž X X. Ž . Ž . Ž .and all p ,q gp r . Take a pair p,q gr and a pair f , g gr. Then˜ ˜
Ž Ž . Ž .. Ž .p f ,p g gp r . In combination with Theorem 1 this leads to˜

pgBi ,a f mpgb a p f mqgb a p g mqgBi ,a g .Ž . Ž . Ž . Ž .Ž . Ž .
That is: r is permissible. I

For a convex relation r between P and Q, Theorem 2 implies the equality
Ž .psp r . So Lemma 3 states that a convex relation between P and Q is˜

permissible if and only if it is abr-preserving. Now we have a characterization of
permissibility of a convex relation directly in terms of b a.

So in order to show that b a can be used as the basic notion for the definition of
ordinality we only need to show that a maximal permissible relation is convex.
This is done in

Ž .Lemma 4 If r is a permissible relation between P and Q, then p r is also a˜
permissible relation between P and Q.

Ž .Proof. Let r be a permissible relation between P and Q. Since p r is a convex˜
Ž . aŽ X.relation, p r is permissible if and only if the equivalence pgb p mqg˜

aŽ X. Ž . Ž X X . Ž .b q holds for all pairs p,q , p ,q gp r . By Lemma 3, however, we know˜
Ž . Ž . Ž X X. Ž .that this equivalence is correct if p,q gr. Now take pairs p,q , p ,q gp r̃

aŽ X.and suppose that pgb p .
Ž . Ž . Ž 1 1. Ž KLet j be fixed. Since p r sconv r , we can find pairs p , q , . . . , p ,˜j j j j j

K . Žq in r and positive numbers l , . . . ,l summing up to 1 such that p ,j j 1 K j
. K Ž k k .q sÝ l p , q .j ks1 k j j

aŽ X. Ž t. Ž .Since p gb p , there exists a sequence p in relint P converging toj j t g N
X Ž t.p such that p gb p for all t. By Lemma 8 in Appendix A, there exists aj j

Ž t. Ž . X Ž t t. Ž .sequence q in relint Q converging to q such that p ,q gp r for˜t g N

all t.
Ž t. k Ž t. aŽ t.Fix a tgN. Since p gb p , we find that p gb p sb p for allj j j j j

k aŽ t. Ž t. Ž t.ks1, 2, . . . , K. So q gb q sb q for all k. Hence, q gb q .j j j j j

Since this relation holds for any t, q is an admissible best reply against qX. Soj
aŽ X .qgb q , because the foregoing holds for all j. By symmetry the proof is

complete. I
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Now let r be a maximal permissible relation between P and Q. Because
Ž . Ž . Ž .r;p r and p r is permissible, we obtain the equality rsp r . So r is˜ ˜ ˜

convex.
So now we have shown that a relation r is maximal permissible if and only if

it is maximal abr-preserving. Hence, a solution s for strategic form games is
Ž Ž . .compatible with all maximal permissible relations i.e., s is i,a -ordinal if and

Žonly if it is compatible with all maximal abr-preserving convex relations i.e., s is
. Ž .ordinal . This establishes our main goal of this section: a solution is i,a -ordinal

if and only if it is ordinal.

6. Some other invariance concepts for solutions of games in strategic form

In this section, we will investigate three invariance concepts for solutions of
strategic form games. Two of these concepts—invariance and abr-invariance—
were introduced by Mertens, while the third one, called strong invariance, is new.
Our purpose is to show that a solution is strongly invariant if and only if it is an
invariant and abr-invariant solution.

Within the framework of ordinality the strategy sets of the same player of two
Ž .strategic form games with the same set of players are compared by means of a

relation between these strategy sets. For a number of other invariance concepts
these strategy sets are compared by means of an affine and surjective mapping
between these sets. In order to make this precise, we need a number of concepts to
be introduced now.

² :A reduction from a strategic form game Gs P,u onto a strategic form game
X ² : Ž .G s Q,Õ is a mapping fs f , . . . , f such that f :P ™Q is affine and1 n i i i

surjective for all i.
A reduction f from G onto G

X preserÕes payoffs if u sÕ ( f for all i. In thisi ipay
X Xsituation we write G ™ G . A reduction f from G onto G preserÕes admissible

f
best replies if for all p, pX gP

pgb a pX
m f p gb a f pX .Ž . Ž . Ž .Ž .

abr XIn this situation we write G™ G .
f

Definition 4 A solution s for strategic form games is called inÕariant if for all
pay

X XŽ .triplets G , G , f , with G ™ Gf
Ž . Ž X. � Ž . < Ž .41 s G s f S Sgs G ,
Ž . y1Ž . � Ž . < Ž . 4 Ž X.2 f T sj Sgs G f S sT for all Tgs G .

abrX XŽ . Ž . Ž .If 1 and 2 are satisfied for all triplets G , G , f , with G™ G , then the
f

solution is called strongly inÕariant.
Ž . Ž U . Ž U .A solution is abr-invariant if s G ss G for all pairs G , G with

abr U Ž .G™ G . Here id is the identity between the necessarily identical strategy sets
id

of G and G
U.
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Since a reduction preserving payoffs also preserves admissible best replies, a
strongly invariant solution is also invariant. Obviously, a strongly invariant
solution is abr-invariant. Moreover

Theorem 5 A solution s for strategic form games is strongly inÕariant if and
only if s is inÕariant and abr-inÕariant.

Proof. Suppose that s is an invariant and abr-invariant solution for strategic form
² :games. Let f be a reduction from a strategic form game Gs P, u onto the

X ² :strategic form game G s Q, Õ that preserves admissible best replies.
U ² :We introduce the strategic form game G s P, w , where w [Õ ( f is ai i

multi-affine mapping on P. Then obviously f is a reduction from G
U onto G

X

that preserves payoffs.
abr U ŽNext we will show that G™ G . Using the fact that the reduction f from G

id
X U X.onto G and from G onto G preserves admissible best replies, we find that

for all p, pX gP

pgb a pX
m f p gb a

X f pX
mpgb a

U pX .Ž . Ž . Ž . Ž .Ž .G G G

Ž . Ž U . Ž X. � Ž . < Ž U .4Hence s G ss G , which implies that s G s f S Sgs G s
� Ž . < Ž .4 Ž .f S Sgs G . So s satisfies property 1 of Definition 4.

pay
X XUy1Ž . Ž .Finally, let Tgs G and suppose that xg f T . Since G ™ G and s

f
Ž U . Ž .is invariant, there must be an Sgs G ss G containing x such that

Ž . y1Ž . � Ž . < Ž . 4f S sT. Hence, f T ;j Sgs G f S sT . Since the other inclusion is
Ž .trivial, property 2 of Definition 4 has been proved. So s is strongly invariant. I

7. An example

In this section, we give an example of an ordinal solution for strategic form
Ž .games that is not abr -invariant and hence not strongly invariant.

² :Let s be the solution that assigns to a strategic form game P,u the
collection of all non-empty subsets of P. There is however one exception: s

assigns to the 2=2-bimatrix game

0,0 0,0Ž . Ž .U
G s

0,0 0,0Ž . Ž .
� 4the set D =D .2 2

Next we consider the game

1,1 1,1Ž . Ž .UU
G s

1,1 1,1Ž . Ž .
and note that the map id: D =D ™D =D is a reduction from G

U onto G
UU

2 2 2 2

that preserves admissible best replies. Because every proper subset S/f of
Ž UU . Ž U .D =D is contained in s G but not in s G , s is not abr-invariant.2 2
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Note that s is also not invariant: if

0,0 0,0 0,0Ž . Ž . Ž .UUU
G s ,

0,0 0,0 0,0Ž . Ž . Ž .
UUU pay U � Ž . < Ž UUU .4 D2=D 2 � 4 Ž U .then G ™ G , but p T Tgs G s2 _ f /s G . Hence,p

according to Theorem 5, it is certainly not strongly invariant. This shows that
Ž .Theorem 2 of Mertens 1987 only works one way.

In order to show that s is ordinal, let r be a maximal permissible relation
² : X ² :between two strategic form games Gs P,u and G s Q,Õ . We will prove

that s is compatible with r. We distinguish two cases.
Ž . X U U1 Suppose that G /G . Let A be a solution set for G containing p and let

U Ž U U .q be an element of Q with p , q gr. Since r is a relation, for each pgA
Ž . Ž Ž ..we can choose an h p gQ with p, h p gr. For convenience, we choose

Ž U . U �Ž Ž .. < 4 Ž .h p sq . Now let C[ p, h p pgA ;r. Then B[p C is a solutionQ
X U Ž .set for G containing q . Since p C sA, s is compatible with r.P

Ž . X U2 Suppose that G sG . We will need three steps to prove the compatibility
of s .

Ž . aŽ X. X2a First we will show that pgb p for all p, p gP. Since r is a relation,G
X Ž . Ž X X.we can find q, q gD =D such that p,q and p , q are elements of r. By2 2

aŽ X. a Ž X.Uthe permissibility of r, pgb p mqgb q sD =D .G G 2 2
Ž . U Ž . Ž . U2b Let r be the convex relation P= D =D . In view of part 2a , r is2 2

permissible. Since r is maximal, rsr
U.

Ž . U U2c Now let A be a solution set for G containing p and let q be an element
Ž U U . Ž .of D =D with p , q gr. Then by taking C[A= D =D ;r and2 2 2 2
Ž U .B[D =D gs G , one can show that s is compatible with r.2 2

8. Strong invariance and ordinality

In this section, we investigate, for solutions of strategic form games, the
relation between strong invariance and ordinality. We will use the reformulation of
ordinality as described at the end of Section 5.

² : X ² :So, let Gs P,u and G s Q,Õ be two strategic form games and suppose
Ž U U .that p ,q gr, where r is an abr-preserving convex relation between P and Q.

U ² : Ž U U .Lemma 5 There exists a strategic form game G s R,w such that p ,q g
R;r,

abrU
G ™ GprojP

and
abr XU

G ™ G .projQ

Proof. We start for a given j with the construction of R . Since r is a relationj j
Ž . X Žbetween P and Q , we can choose for each d gext P a d gQ with d ,j j j j j j j
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X . Ž . X Ž X .d gr and similarly for each e gext Q an e gP with e , e gr . Let Ej j j j j j j j j j
Ž U U .be the set consisting of all pairs obtained in this way plus the pair p , q .j j

Ž .Now we define R [conv E and w [u (proj . By the convexity of r ,j j j j P jpay
U U UŽ .p ,q gR ;r . Since proj : R™P is affine and surjective, G ™ G .j j j j P proj P

abrUSo G ™ G .
projP abr X X XU Ž . Ž .In order to prove that G ™ G , take p, p , q, q gR;r. Then the fact

projQabr X X XU a aŽ . Ž . Ž .Uthat G ™ G implies that p,q gb p ,q mpgb p . Since r pre-G Gproj P
Ž . a Ž X X. aŽ X.Userves admissible best replies, this implies p,q gb p ,q mpgb p mqG G

a Ž X. Ž . a Ž Ž X X..X Xgb q mproj p,q gb proj p , q . IG Q G Q

Theorem 6 A solution s for strategic form games is strongly inÕariant if and
only if s is compatible with any abr-preserÕing conÕex relation between two
strategic form games.

Ž .Proof. a Suppose that s is compatible with any abr-preserving convex relation
between two strategic form games.

² :Take a reduction f from the strategic form game Gs P, u onto the strategic
X ² :form game G s Q, Õ that preserves admissible best replies. Then r[

�Ž Ž .. < 4p, f p pgP is a convex relation between P and Q that preserves admissible
best replies.

Ž . Ž . Ž Ž ..a1 Let Sgs G . Take a pgS. Then p, f p gr and the compatibility of
Ž X. Ž .s with respect to r implies the existence of a Bgs G containing f p and a

Ž . Ž .C;r with proj C sS and proj C sB. Now the fact that C; r implies thatP Q
Ž . � Ž . < Ž .4 Ž X.Bs f S . Hence, f S Sgs G ;s G .

Ž . Ž X . y1Ž . � Ž . < Ž . 4a2 Let Tgs G . In order to prove that f T ;j Sgs G f S sT ,
y1Ž .take a pg f T .

As we noticed in 6, the definition of compatibility is symmetric with respect to
Ž .the two games involved. Hence, there exist an Ags G containing p and a

Ž . Ž . Ž .C;r with proj C sA and proj C sT. Again we find that Ts f A whichP Q
� Ž . < Ž . 4implies that pgj Sgs G f S sT .

Ž . Ž . Ž .In view of the relations proved in a1 and a2 , s satisfies conditions 1 and
Ž .2 of Definition 4, i.e. s is strongly invariant.

Ž .b Suppose that s is strongly invariant. Suppose that r is an abr-preserving
convex relation between the strategic form games G and G

X. In order to show that
Ž .s is compatible with r, take an Ags G and a profile pgA such that

Ž . Xp,q gr for some strategy profile q for the game G . By the foregoing lemma,
abrU U² : Ž .there exist a game G s R,w with p,q gR;r and G ™ G and

projPabr XU
G ™ G .

projQ
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Ž . -1Ž .Since p g A, p,q g proj A . Since s is strongly invariant andP

abrU
G ™ G ,projP

Ž U . Ž . Ž .there is a Cgs G containing p,q with f C sA.
abr XUThe strong invariance of s and the fact that G ™ G then implies that

projP
Ž . Ž X. Ž . Ž .B[g C gs G . Furthermore, qsproj p,q gproj C sB.Hence s isQ Q

compatible with r. I

This result, together with the observations at the end of Section 5 and Theorem
5, yields

Ž .Corollary Mertens A strongly inÕariant solution for strategic form games is
ordinal.

Appendix A

( t)Lemma 6 Let P be a polytope. If pgP and p is a sequence in Pt g N

( t) ( ) ( )conÕerging to p, then there exist sequences r in P and ´ in 0,1 sucht g N t t g N
t ( ) tthat p s 1y´ pq´ r for all t andt t

lim ´ s0.t
t™`

Proof. Without loss of generality we assume that pt /p for all t.
Ž .a Suppose that P is given by the linear system AxGb. Then for tgN we

consider the number

b y AptŽ .i i t<l [max Ap ) Ap F0.Ž . Ž .it it½ 5Ap y ApŽ . Ž .i i

t Ž . tIt is easy to show that l -0 for large t and that r [ 1yl p ql pgP.t t t
Ž . Ž .b Furthermore we choose for each t a natural number i t such that

Ž . Ž t.Ap ) Ap andiŽ t . iŽ t .

b y AptŽ . Ž .i tiŽ t .
l s .t tAp y ApŽ . Ž .Ž . Ž .i t i t

Ž . wŽ . Ž t. x wŽ . x Ž .Now we take ´ [1r 1yl s Ap y Ap r Ap yb g 0,1 .t t iŽ t . iŽ t . iŽ t . iŽ t .
Ž .Since there is a positive number h with Ap yb Gh for large t, the factiŽ t . iŽ t .

t Ž . tthat p ™p as t™` guarantees that ´ ™0 as t™`. Finally, 1y´ pq´ r st t t

p t for all t. I
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( )Lemma 7 Let r be a relation between two polytopes P and Q. If pgrelint P ,
( ) Ž . Ž .then there exists a qgrelint Q such that p,q gp r .˜

Ž . XProof. Since r is a relation between P and Q, for any dgext P a d gQ exists
Ž X. Ž . X Ž X .with d, d gr and similarly for each egext Q an e gP with e , e gr.

Ž .Since pg relint P , there are positive numbers l ,m summing up to one suchd e

that

ps l dq m eX .Ý Ýd e
Ž . Ž .dgext P egext Q

Now

q[ l dX q m eg relint Q .Ž .Ý Ýd e
Ž . Ž .dgext P egext Q

Furthermore, by Theorem 2,

p ,q s l d ,dX q m eX ,e gconv r sp r . IŽ . Ž . Ž . Ž . Ž .˜Ý Ýd e
Ž . Ž .dgext P egext Q

Ž . Ž .Lemma 8 Let r be a relation between two polytopes P and Q. If p,q gp r̃

( t) ( )and p is a sequence in relint P conÕerging to p, then there exists at g N

( t) ( ) Ž t t. Ž .sequence q in relint Q conÕerging to q such that p ,q gp r for all t.˜t g N

Ž t. Ž . Ž .Proof. By Lemma 6 there exist sequences r in P and ´ in 0,1 sucht g N t t g N
t Ž . tthat p s 1y´ pq´ r for all t andt t

lim ´ s0.t
t™`

Ž . tSince p r is a relation between P and Q, we can find, for all t, an s gQ such˜
Ž t t. Ž . t Ž .that r ,s gp r . By the foregoing lemma there is, for all t, a q in relint Q˜ ˜

Ž t t. Ž .such that p ,q gp r for all t. Now we take, for tgN,˜ ˜
t t tq [ 1y´ 1y´ qq´ s q´ q g relint Q .Ž . Ž . Ž .˜t t t t

In view of the boundedness of Q, q t ™q as t™`. Furthermore, the equality

pt ,qt s 1y´ pt q´ pt ,q tŽ .Ž . Ž .t t

t t ts 1y´ 1y´ pq´ r q´ p ,qŽ . Ž .Ž .t t t t

ts 1y´ 1y´ pq´ rŽ . Ž .Ž t t t

t t tq´ p , 1y´ 1y´ qq´ s q´ qŽ . Ž . ˜ .t t t t t

2 t t t ts 1y´ p ,q q´ 1y´ r ,s q´ p ,qŽ . Ž . Ž . Ž . ˜Ž .t t t t
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Ž t t. Ž .shows that p , q is, for all t, a convex combination of elements of p r .˜
Ž . Ž t t. Ž .Hence, by 3 of Lemma 3, p ,q gp r for all t. I˜
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