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Summary. We consider the problem of reallocating the total initial endow-
ments of an infinitely divisible commodity among agents with single-peaked
preferences. With the uniform reallocation rule we propose a solution which
satisfies many appealing properties, describing the effect of population and
endowment variations on the outcome. The central properties which are
studied in this context are population monotonicity, bilateral consistency,
(endowment) monotonicity and (endowment) strategy-proofness. Further-
more, the uniform reallocation rule is Pareto optimal and satisfies several
equity conditions, e.g., equal-treatment and envy-freeness. We study the
trade-off between properties concerning variation and properties concerning
equity. Furthermore, we provide several characterizations of the uniform
reallocation rule based on these properties.

JEL Classification Numbers: D71.

1 Introduction

In this paper we study situations where the total of initial endowments of an
infinitely divisible good is reallocated among a group of agents. In many
cases where free disposal of the good is not allowed (non-price models) it is
natural to assume that the agents’ preferences over their shares of the good
are single-peaked. Each agent has an optimal share of the good, below which
and above which preference is decreasing.

There is a wide literature exploring the situation where the problem is
reduced to the allocation of a total endowment. As described in Sprumont
[12], rationing in a two-good economy in which prices are in disequilibrium
can be interpreted as such a distribution problem with total endowment. A
solution for this class of problems satisfying many appealing properties is the
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uniform rule. Benassy [2] described the uniform rule as a strategy-proof
rationing scheme: an agent who misrepresents his preference cannot improve
his outcome. Sprumont [12] started the axiomatic analysis in 1991. He
proved that the uniform rule is the only rule which satisfies Pareto optim-
ality, strategy-proofness and anonymity. Ching [3] weakens anonymity to a
condition called equal treatment of equals: agents announcing the same
preferences are treated equally. The axiomatic analysis of Thomson (see [13],
[14] and [15]) provides several characterizations of the uniform rule including
consistency and monotonicity properties.

In this paper we study similar properties in the more general setting of
economies where agents have initial endowments. This extension of the
model quite naturally arises if we observe distribution problems with total
endowments where preferences might change over time. Consider for ex-
ample the distribution of a task (e.g., fixed amount of teaching hours) among
the members of a group. The (single-peaked) preferences of the agents do not
only depend on the total endowment, but also on external factors (time for
research, other tasks) which are not fixed. So, over time, preferences might
change, calling for a reallocation of the task.

Another interpretation of the model can be found in a recent paper by
Barberà, Jackson and Neme [1] who study sharing problems where agents
might have natural claims, or are treated with different priorities. In this
setting they characterize the class of distribution rules that are strategy-proof
and Pareto optimal, but which allow for an asymmetric treatment of the
agents. Adding a third condition, describing a kind of individual mono-
tonicity, yields a subclass of strategy-proof and Pareto optimal rules which
they call sequential allotment rules and which they consider to be a natural
extension of the procedure which underlies the uniform rule. By applying
uniform division in the stepwise definition of a sequential allotment rule,
thereby reducing the computation to one step, the uniform reallocation rule,
introduced in Klaus, Peters and Storcken [6], is obtained.

In Klaus, Peters and Storcken [6] the main result is the characterization of
the uniform reallocation rule by Pareto optimality, strategy-proofness, re-
versibility and an equal-treatment condition which is based on the pre-
ferences and the net demands of the agents. Reversibility guarantees a
symmetrical treatment between reallocation problems in excess demand and
reallocation problems in excess supply. In Klaus, Peters and Storcken [7]
some variations of the reallocation model (e.g. allowing for debts) and their
impact on the characterization result are studied.

Like the uniform rule, the uniform reallocation rule satisfies many de-
sirable properties, which we study here. We can strengthen equal-treatment
to envy-freeness which, in our setting, is formalized in terms of allotment
changes and not in terms of the outcome as in the case of dividing a total
endowment. Our first result (Theorem 3.1) is that, similar to the total en-
dowment case (see Thomson [14], Lemma 1), the uniform reallocation rule is
the unique reallocation rule satisfying Pareto optimality, peaks-onliness and
envy-freeness.
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Besides strategy-proofness, which describes the influence of certain pre-
ference variations on the outcome, and Pareto optimality, the uniform re-
allocation rule has several properties incorporating the variation of the
remaining model assumptions.

One such property, introduced by Thomson [15] for the total endowment
case, is population monotonicity. In the reallocation case this property
describes the impact of merging two reallocation problems. We show
(Theorem 3.2) that in the characterization of Theorem 3.1 peaks-onliness can
be replaced by population monotonicity.

A further monotonicity property, endowment monotonicity, describes the
change of the solution if certain endowment variations are considered. By
decreasing (increasing) the endowments in case of excess demand (supply), no
individual is better off than before. This monotonicity condition is an ex-
tension of the one-sided resource-monotonicity of Thomson [14], introduced
for division problems. Thomson proves ([14], Theorem 2) that the uniform
rule is the only rule satisfying Pareto optimality, envy-freeness and one-sided
resource-monotonicity for a restricted domain of single-peaked, continuous
preferences. For the reallocation case a similar result (Theorem 4.4) can be
deduced where the conditions of envy-freeness and monotonicity are adapted
as indicated above. However, the proof of this characterization of the uni-
form reallocation rule is based on a different argument and remains valid for
the whole domain of single-peaked preferences.

The next property of the uniform reallocation rule we study is bilateral
consistency. For the total endowment case, bilateral consistency of a rule
requires the following. Consider a division assigned by a rule and assume
that all agents except two leave with their assigned quantities of the good. If
the remaining agents divide the remaining endowment again by applying the
same rule, then they receive the same shares as before. Thomson [13] pro-
vides two characterizations of the uniform rule by means of Pareto optim-
ality, bilateral consistency and continuity in the total amount to divide. In
the first characterization ([13], Theorem 1) envy-freeness singles out the
uniform rule. In the second characterization ([13], Theorem 2) envy-freeness
is replaced by individual rationality from equal division: no agent, after the
distribution, is worse off than in the case of equally dividing the total en-
dowment. In a recent study, Dagan shows that the continuity property may
be skipped (see [4], Theorem 2 and Theorem 3).

For reallocation problems, bilateral consistency will be based on two-
agent subeconomies in which the leftover (supply or demand) of the de-
parting agents is, up to domain restrictions, added equally to the endow-
ments of the remaining agents. For more explanation see Section 5. It will be
shown that bilateral consistency and individual rationality together with
Pareto optimality determine the uniform reallocation rule for reallocation
problems with at least three agents (Theorem 5.2). For reallocation problems
with at least four agents individual rationality can be replaced by envy-
freeness (Theorem 5.3). The proofs of Dagan’s characterizations ([4], The-
orem 2 and Theorem 3) can be adapted to the reallocation case. This yields
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different proofs of Theorem 5.2 and Theorem 5.3 for problems with at least
four agents. Further characterizations of the uniform reallocation rule can
be obtained by Pareto optimality, bilateral consistency and extra conditions,
for instance boundedness (of the outcome) by endowments and peaks
(Theorem 5.1)

Finally, endowment strategy-proofness is studied. If initial endowments
are private information it might happen that agents manipulate the outcome
by only reporting–showing–a smaller part of their endowments. Reallocation
rules where agents cannot profit from withholding parts of their endowments
are called endowment strategy-proof. Endowment strategy-proofness to-
gether with Pareto optimality, bilateral consistency and the dummy property
(agents who have their peak as initial endowment do not participate in the
reallocation) characterizes the uniform reallocation rule (Theorem 6.3). In
Theorem 6.4 we show that we can replace endowment strategy-proofness
and the dummy property by equal-treatment and a reversibility property
which is stronger than the reversibility condition as introduced in Klaus,
Peters and Storcken [6]. This latter condition links the outcomes of excess
demand and excess supply. To be more precise, consider a situation with
demanders, having their peaks above their initial endowments, and suppliers,
having their peaks below their initial endowments. Now this situation is
reversed by turning demanders into suppliers with supply equal to their
former demand and suppliers into demanders in a similar way. Reversibility
requires that the allotment changes of the latter problem are opposite to
those of the former.

We conclude by giving a short overview (as far as we are aware of it) over
recent research on the reallocation problem and the uniform reallocation rule
in particular. In Thomson [16] reallocation problems as considered here and
their extensions to ‘‘open economies’’–reallocation problems where in addi-
tion to the individual endowments a total endowment has to be distributed–
are studied. In particular several extensions of allocation rules (e.g., uniform
rule, proportional rule, equal-distance solution) and their properties are
discussed. The axiomatic analysis provides impossibility as well as possibility
results (characterizations of the uniform reallocation rule or its extended
version). Some of the properties under consideration are envy-freeness,
monotonicity with respect to the individual and the total endowment,
strategy-proofness, consistency and population monotonicity. A similar ap-
proach can be found in Moreno [9]. Moreno focusses on envy-freeness and
population monotonicity properties. In Klaus [6] the axiomatic analysis
started here is continued. It is shown that Pareto optimality is implied by
individual rationality and endowment monotonicity. This result is used to
obtain two characterizations of the uniform reallocation rule, namely by
individual rationality, endowment monotonicity and envy-freeness or bi-
lateral consistency respectively.

The paper proceeds as follows. In Section 2 we introduce the model and
the uniform reallocation rule. In Sections 3, 4, 5 and 6 we introduce the
equity and variation properties which yield several characterizations of the
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uniform reallocation rule. An overview over the results is given in Section 7
and the independence of the axioms used in the characterizations is shown.
Furthermore, a discussion of the sensitivity of the model assumptions is
included.

2 Reallocations

Consider exchange economies with a single good for which the agents have
single-peaked (ordinal) utility, for instance strictly concave utility functions
with a global optimum. So, the commodity space is one dimensional: R�.
Let i be an agent. Then his utility function ui is a continuous function from
R� to R such that

� there is a unique point ûi at which ui is maximal
� for all a; b 2 R�; ui�a� < ui�b� if a < b � ûi�a� or if a > b � ûi:

The point ûi is called the peak of i. Denote the set of all these utility
functions by U. A set of agents is denoted by N � N. Furthermore, UN

denotes the set of N -tuples u of utility functions. So, u � huiii2N , where ui is
the utility function of agent i. If u; v 2 UN , then û � v̂ indicates that for every
agent i the peak ûi at u is equal to the peak v̂i at v.

A reallocation problem or in short a problem is a triple hN ; e; ui, where N is
a nonempty and finite set of agents, N � N, e is a vector of initial endow-
ments e � heiii2N 2 RN

�
and u is a profile of utility functions: u 2 UN . At e the

initial or individual endowment of agent i is ei.
In problem hN ; e; ui agent i is a demander whenever his endowment ei is

strictly less than his peak ûi. In that case he wants more of the good. His (net)
demand is denoted by di�N ; e; u�, so di�N ; e; u� : � ûi ÿ ei. Denote the set of
demanders by D�N ; e; u�. A supplier is an agent j who has an endowment that
is strictly greater than his peak. The supply of such an agent is
sj�N ; e; u� : � ej ÿ ûj. The set of suppliers is denoted by S�N ; e; u�. If agent k
is neither a supplier nor a demander, then his peak ûk equals his endowment
ek . In that case he favors no trade, and is called a nontrader. Let
d�N ; e; u� : �

P

i2D�N ;e;u� di�N ; e; u� denote total demand and
s�N ; e; u� : �

P

i2S�N ;e;u� si�N ; e; u� total supply. The excess demand function
z�N ; e; u� : � d�N ; e; u� ÿ s�N ; e; u� may be positive, zero, or negative. If it is
positive we say that the problem has excess demand. If it is zero, the problem
is balanced and one would expect that the reallocation is such that every
agent gets his peak. If it is negative, then we have excess supply.

A vector x � hxiii2N 2 RN
�

is called feasible or a reallocation at problem
hN ; e; ui if

P

i2N xi �
P

i2N ei. A reallocation x is called Pareto optimal (at
problem hN ; e; ui�, if there is no reallocation y � hyiii2N in RN

�
, such that

ui�xi� � ui�yi� for all agents i 2 N and

uj�xj� < uj�yj� for at least one agent j 2 N :
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Utility strictly increases, if the peak is approached from above or from be-
low. Therefore, a reallocation x 2 RN

�
is Pareto optimal at problem hN ; e; ui,

precisely when x is same-sided, i.e., xi � ûi for all i 2 N or xi � ûi for all i 2 N .
Consequently, a reallocation x 2 RN

�
is Pareto optimal if and only if,

xi � ûi for all i 2 N whenever z�N ; e; u� > 0 (excess demand);

xi � ûi for all i 2 N whenever z�N ; e; u� � 0 (balanced), and

xi � ûi for all i 2 N whenever z�N ; e; u� < 0 (excess supply).

Sprumont [12] uses same-sidedness as definition of Pareto optimality.
In several properties, discussed hereafter, the number of agents is not

fixed, therefore solutions will be defined over the set of all problems. To
avoid repetition of the Pareto optimality condition, it is incorporated in the
definition of a rule as follows.

A (reallocation) pre-rule w assigns to every problem hN ; e; ui a reallocation
w�N ; e; u�. A (reallocation) rule u assigns to every problem hN ; e; ui a Pareto
optimal reallocation u�N ; e; u�.

Let hN ; e; ui be a problem and i 2 N . Then wi�N ; e; u� denotes the allot-
ment of i under pre-rule w at problem hN ; e; ui. Furthermore,
Dwi�N ; e; u� : � wi�N ; e; u� ÿ ei denotes the actual allotment change for agent
i under w at hN ; e; ui.

An agent i is non-satiated under pre-rule w at problem hN ; e; ui if
ûi 6� wi�N ; e; u�:

A special rule is the uniform reallocation rule Ur, introduced in [6]. For a
problem hN ; e; ui it is defined as follows,

Ur
j �N ; e; u� : �

min fûj; ej � kg if z�N ; e; u� > 0 �excess demand�
ûj if z�N ; e; u� � 0 �balanced�
max fûj; ej ÿ kg if z�N ; e; u� < 0 �excess supply�

8

<

:

for every j 2 N , where k � 0 solves
P

i2N Ur
i �N ; e; u� �

P

i2N ei.
By definition, the uniform reallocation rule is same-sided and therefore

Pareto optimal and well-defined as a reallocation rule. It works as follows. If
there is excess demand, then all suppliers and non-traders get their peaks.
Demanders either receive their peaks or get maximal equal allotment change
k. In excess supply all non-satiated agents get minimal allotment change ÿk.
Hence, agents are either satiated or receive the same (maximal or minimal)
allotment change. In fact, combined with Pareto optimality this determines
exactly the uniform reallocation rule. For later reference, we state this ob-
servation as a lemma.

Lemma 2.1. The uniform reallocation rule is the only rule u such that, for every
problem hN ; e; ui non-satiated agents

(a) obtain maximal allotment change maxfDui�N ; e; u� j i 2 Ng if the
problem is of excess demand,
(b) obtain minimal allotment change minfDui�N ; e; u� j i 2 Ng if the
problem is of excess supply.
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3 Peaks-onliness, envy-freeness and population monotonicity

In this section we focus on rules which base the outcomes on the peaks
instead of the complete utility functions. The uniform reallocation rule is
such a rule. Moreover, it will appear to be the only rule which satisfies this
condition and at which no agent envies another one. Furthermore, a
monotonicity condition is discussed. It is shown that this condition and envy-
freeness imply the peaks-onliness condition. Because the uniform realloca-
tion rule satisfies this condition, this implication yields a second character-
ization of this rule.

Let w be a pre-rule. Then w is said to be peaks-only if for all problems
hN ; e; ui and hN 0; e0; u0i, with N � N 0; e � e0 and û � û0,

w�N ; e; u� � w�N 0
; e0; u0�:

So, a pre-rule w is peaks-only if, and only if, the outcomes only depend on
the peaks of the utility functions and not on the whole functions. As a
manner of speaking, peaks-only rules ignore intensities and ordinality of
preferences. Nevertheless, many well-known rules are peaks-only. The uni-
form rule for allocation problems without initial endowments as defined in
Sprumont [12], proportional rules with respect to peaks or endowments and
hierarchical rules (see Section 7) are peaks-only. It is evident that by its
definition the uniform reallocation rule is also peaks-only. Clearly, if a rule
takes intensities into account, then it is apt to be vulnerable to strategic
behavior and more difficult to apply.

The pre-rule w is said to be envy-free if for all problems hN ; e; ui and all
individuals i; j;2 N ,

ui�wi�N ; e; u�� � ui��ei � Dwj�N ; e; u����;

where �ei � Dwj�N ; e; u��� : � maxf0; ei � Dwj�N ; e; u�g:
So, i envies j if i prefers j’s allotment change or the part of j’s allotment

change which is feasible for him to his own allotment change. The uniform
reallocation rule is envy-free. For instance, in case of excess demand, only
demanders can be non-satiated and, if so, they obtain the same, maximal
allotment change.

The well-known property of envy-freeness was introduced by Foley [5] for
resource allocation problems. Envy-freeness for division problems with sin-
gle-peaked preferences was first used by Sprumont in his axiomatic analysis
of the uniform rule, [12]. A concept of envy-freeness in terms of allotment
changes–called fair net trade–as introduced above was formulated by
Schmeidler and Vind [11] in the more general context of exchange economies.

The following theorem characterizes the uniform reallocation rule as the
only rule which is envy-free and peaks-only1. The main idea of the proof is

1 Unless mentioned otherwise, the expression ‘‘characterization’’ implies the logical indepen-
dence of the characterizing axioms. For all characterizations appearing in this paper, however,
the discussion of logical independence of the axioms is postponed to Section 7.
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that, because of these two properties, allotment changes for non-satiated
agents are maximal or minimal, depending on whether the problem is in
excess demand or in excess supply. As this typically describes the uniform
reallocation rule, we are done.

The theorem and its proof are similar to Lemma 3 and its proof in
Thomson [14], which treats the case of total endowment instead of initial
endowments.

Theorem 3.1. The uniform reallocation rule is the only envy-free and peaks-
only rule.

Proof. Clearly, the uniform reallocation rule is an envy-free and peaks-only
rule. In order to prove that it is the only one let u be an envy-free and peaks-
only rule. Let hN ; e; ui be a problem. We prove that u�N ; e; u� � Ur

�N ; e; u�.
By Pareto optimality, it follows immediately that u�N ; e; u� � Ur

�N ; e; u� � û
if z�N ; e; u� � 0 (balanced). Without loss of generality suppose that
z�N ; e; u� > 0 (excess demand). By Lemma 2.1 it is sufficient to prove that
non-satiated agents get maximal allotment changes at u. Let i 2 N be a non-
satiated agent at u�N ; e; u�. Hence by same-sidedness, ui�N ; e; u� < ûi.
Consider the allotment change Duj�N ; e; u� of an arbitrary agent j. As
there is a utility profile v 2 UN , such that v̂ � û and vi�x� > vi�ui�N ; e; u�� for
all x > ui�N ; e; u�, it follows by envy-freeness and peaks-onliness that
Duj�N ; e; u� � ei � ui�N ; e; u�. Hence, Duj�N ; e; u� � Dui�N ; e; u�: h

The following characterization of the uniform reallocation rule involves
population monotonicity. Loosely speaking, a rule is population monotonic
if merging two disjoint problems either both of excess demand or both of
excess supply, makes in one subgroup either all agents weakly better off or all
agents weakly worse off. So, if we add a demander to a problem hN ; e; ui with
excess demand, yielding problem hN 0; e0; u0i, then either all agents in N
weakly prefer the outcome at hN ; e; ui to that at hN 0; e0; u0i or all agents in N
prefer it the other way around.

A pre-rule w is said to be population monotonic, if for all problems
hN ; e; ui and hN 0; e0; u0i, such that zhN ; e; ui � zhN 0; e0; u0i > 0 and N \ N 0

� ;,

either ui�wi�N ; e; u�� � ui�wi�N [ N 0
; he; e0i; hu; u0i�� for all i 2 N

or ui�wi�N ; e; u�� � ui�wi�N [ N 0
; he; e0i; hu; u0i�� for all i 2 N :

Here he; e0i is the vector x in RN[N 0

�
such that xi � ei for all i 2 N and xi � e0i

for all i 2 N 0. The profile hu; u0i 2 UN[N 0

has a similar meaning.
Note that z�N ; e; u� � z�N 0; e0; u0� > 0 if, and only if, both problems have

excess demand or both problems have excess supply.
The uniform reallocation rule is population monotonic. To see this, let

hN ; e; ui and hN 0; e0; u0i be two problems with excess demand. Let k; k0 and l
be the maximal allotment changes of Ur in the problems hN ; e; ui, hN 0; e0; u0i
and hN [ N 0; he; e0i; hu; u0ii respectively. Let i; j 2 N . Suppose i is strictly
better off at hN ; e; ui than at hN [ N 0; he; e0i; hu; u0ii. Suppose for j the con-
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verse holds. Then i and j must be demanders. Hence, the agents i and j are
not satiated at problem hN [ N 0; he; e0i; hu; u0ii and hN ; e; ui respectively. So,

l � Dui�hN [ N 0
; he; e0i; hu; u0ii� < Dui�N ; e; u� � k and

k � Duj�N ; e; u� < Duj�N [ N 0
; he; e0i; hu; u0i� � l:

Because this cannot be true, all agents in N are either weakly better off in
hN ; e; ui than in hN [ N 0; he; e0i; hu; u0ii, or all are weakly worse off. The proof
for problems with excess supply is similar.

Hence, the uniform reallocation rule is population monotonic. Moreover,
the following theorem shows that envy-freeness and population mono-
tonicity characterize the uniform reallocation rule.

Theorem 3.2. The uniform reallocation rule is the only envy-free and population
monotonic rule.

Proof. In order to prove that Ur is the only envy-free and population
monotonic rule suppose u is such a rule. It is sufficient to prove that u is
peaks-only. Let hN ; e; ui be a problem and v 2 UN such that û � v̂. Without
loss of generality let N � f1; 2; . . . ; ng and suppose z�N ; e; u� > 0. Consider
N 0

� fn � 1; . . . ; 2ng. Take e0 2 RN 0

such that e0i�n � ei for all i 2 N . Let
u0 2 UN 0

be such that u0i�n � vi for all i 2 N . It is sufficient to show that
ui�N ; e; u� � ui�n�N

0; e0; u0�, because this also implies ui�N ; e; v� � ui�n
�N 0; e0; u0�. Clearly, z�N 0; e0; u0� > 0. Consider hN [ N 0; he; e0i; hu; u0ii. Then
z�N [ N 0; he; e0i; hu; u0i� > 0. Envy-freeness and same-sidedness imply for all
i 2 N ,

ui�N [ N 0
; he; e0i; hu; u0i� � ui�n�N [ N 0

; he; e0i; hu; u0i� � ûi � û0i�n:

Population monotonicity, same-sidedness and feasibility imply for all i 2 N ,

ui�N [ N 0
; he; e0i; hu; u0i� � ui�N ; e; u�:

Similarly for all i 2 N 0 it follows that

ui�N [ N 0
; he; e0i; hu; u0i� � ui�N

0
; e0; u0�:

Hence, for i 2 N ;ui�N ; e; u� � ui�n�N
0; e0; u0�: h

4 Monotonicity

This section provides a characterization of the uniform reallocation rule
which is based on an endowment monotonicity property. Endowment
monotonicity means that if, in case of excess demand, the individual en-
dowments decrease (or increase in case of excess supply), then no individual is
better off after the change. The characterization says that the uniform re-
allocation rule is the only rule which is endowment monotonic and envy-free.

The stages of the proof of this characterization are as follows. First it is
shown that endowment monotonicity and Pareto optimality imply co-
ordinatewise continuity. Then another preliminary result is obtained. It says
that endowment monotonic and envy-free rules have the dummy property.
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This latter condition means that non-traders are left on their endowments,
hence receive zero allotment change. Next we show that endowment
monotonic rules which satisfy the dummy property, assign allotments
somewhere between the individual endowments and peaks. With these results
the characterization follows easily.

Because the properties, dealt with in this section, leave the group size and
utilities unchanged, we fix the set of agents at N and the profile of utility
functions at u. Moreover, a problem hN ; e; ui is now denoted by e. Let x and
y be two vectors in RN

�
. Then x � y means that xi � yi for all i 2 N .

We say that the pre-rule w is endowment monotonic or monotonic, if for all
problems e and e0 such that e � e0,

if z�e0� � 0; then ui�wi�e�� � ui�wi�e
0
�� for all i 2 N , and

if z�e� � 0; then ui�wi�e
0
�� � ui�wi�e�� for all i 2 N .

In [14], Thomson introduced endowment monotonicity properties for
division problems. His one-sided resource-monotonicity corresponds to our
monotonicity property. Other variations of endowment monotonicity for the
reallocation setting and its extension to open economies are discussed in
Thomson [16].

Let u be a rule. Then, under same-sidedness monotonicity is equivalent to
ui�e� � ui�e

0
� for all i 2 N and all e � e0 in RN

�
such that z�e0� � 0 or

z�e� � 0. By this it follows easily that Ur is monotonic.
For all e 2 RN

�
; a 2 R� and i 2 N , let e�a; i� denote a vector of endow-

ments such that e�a; i�k � ek if k 2 N ÿ fig and e�a; i�i � a: So, e�a; i� is a
unilateral change of e by agent i. Furthermore, a denotes i’s endowment in
that change.

The pre-rule w is said to be coordinatewise continuous if for all i 2 N and
all e 2 RN

�
the function a 7!wi�e�a; i�� is continuous.

The following lemma states that monotonic rules are coordinatewise
continuous. A similar result for allocation problems, without initial en-
dowments, can be found in Thomson [14] (in the proof of Theorem 2).

Lemma 4.1. Let u be a monotonic rule. Then u is coordinatewise continuous.

Proof. Let a1; a2; . . . ; at; . . . be a sequence in R� converging to a 2 R�, and
let x : � u�e�a; i�� and xt

: � u�e�at; i�� for some fixed i 2 N and all t 2 N.
We want to show that xt converges to x. Without loss of generality suppose
that a1 < a2 < a3 < . . . < a: We distinguish two cases.

Case 1. z�e�a; i�� � 0:
Then z�e�at; i�� > 0 for all t 2 N. Hence, by same-sidedness, it follows

that x � û and xt
� û for all t 2 N. Now, by monotonicity, xt

� x for all
t 2 N and the sequence x1; x2; . . . ; xt; . . . is non-decreasing. By feasibility, it
follows that

X

j2N

xt
j �

X

j2N

e�at
; i�j and
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X

j2N

xj �
X

j2N

e�a; i�j:

Because e�at; i� converges to e�a; i�; xt converges to x.

Case 2. z�e�a; i�� < 0:
Then there is a number t0 such that z�e�at; i�� < 0 for all t � t0. Without

loss of generality let t0 � 1. The proof proceeds similar to Case 1. h

A pre-rule w is said to have the dummy property, if for all non-traders j at
problem e the allotment change is zero, i.e., wj�e� � ej:

Lemma 4.2. Let u be a monotonic and envy-free rule. Then u has the dummy
property.

Proof. Suppose at problem e, uj�e� 6� ej for some non-trader j. This implies
that z�e� 6� 0 because otherwise, by Pareto optimality, every agent gets his
peak. We assume z�e� > 0, the other case is similar.

By same-sidedness uj�e� < ûj � ej: Furthermore, by monotonicity it is
without loss of generality (lower the endowments if necessary) to assume that
all agents, except agent j, have either maximal demand or zero as initial
endowment, i.e., for all i 2 N ÿ f jg; ei � maxfûi ÿ m; 0g, where
m :� maxi6�jfûi ÿ eig.2 Here, m > 0 because z�e� > 0. Let a :� Duj�e� < 0
denote the allotment change of agent j. For 0 � e � ÿa we consider the
following endowment vector:

~e�e�i : �
ei if i 6� j
uj�e� � e if i � j.

�

Hence, uj�e� � ~e�e�j � ej: Furthermore, denote the allotment changes at ~e�e�
by ae

i : � Dui�~e�e�� for all i 2 N . By envy-freeness between j and agents
i 2 N ÿ f jg and monotonicity it follows that, for all i 6� j and 0 � e � ÿa:

~e�e�j � ae
i > ûj or ~e�e�j � ae

i � ~e�e�j � ae
j � uj�~e�e�� � uj�e�:

Because ûj ÿ ~e�e�j � ÿa ÿ e this implies for all i 6� j and all 0 < e � ÿa:

ae
i > ÿa ÿ e or ae

i � ae
j � uj�e� ÿ ~e�e�j < 0:�1�

Now we prove that ae
i � 0 for all i 6� j and 0 < e � ÿa: Suppose, to the

contrary, that ae
i < 0 for some i 6� j and 0 < e � ÿa. Then ~e�e�i � ei > 0. So

ûi ÿ ei � m � ûk ÿ ek for all k 6� j. So, because by same-sidedness
ûk � ae

k � ~e�e�k � ae
k � ek , it follows that ûi � ae

k � ~e�e�i for all k 6� j. Because
i does not envy k, we must have ae

k � ae
i < 0 for all k 6� j. Hence, ae

k < 0 for
all k 2 N . This, however, contradicts feasibility. So, ae

k � 0 for all k 6� j, and
(1) implies:

ae
i > ÿaÿ e > a for all i 6� j and all 0 < e � ÿa:�2�

By monotonicity we have for all 0 � e � s � ÿa and all i 6� j:

2 For problems in excess supply, assume that all suppliers have equal maximal supply.
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as
i � ae

i :�3�

Now (2) and (3) and coordinatewise continuity (Lemma 4.1) together imply
a0

i � ÿa. This is only possible if N � fi; jg; a0
i � ÿa and a0

j � a: Hence, j
envies i. h

A pre-rule w is bounded by endowments and peaks, if for all problems e and
all i 2 N

either ei � wi�e� � ûi or ûi � wi�e� � ei:

Boundedness by endowments and peaks implies the dummy property.
Furthermore, boundedness by endowments and peaks implies individual

rationality, i.e., for all problems e and all i 2 N

ui�ei� � ui�wi�e��:

The following lemma shows that under monotonicity and same-sidedness the
dummy property is equivalent to boundedness by endowments and peaks.

Lemma 4.3. Let u be a monotonic rule which has the dummy property. Then u
is bounded by endowments and peaks.

Proof. Let e be a problem. Without loss of generality suppose z�e� > 0: By
same-sidedness, ui�e� � ûi for all i 2 N . Suppose there exists a j 2 N , such
that uj�e� < ûj: It suffices to prove that ej � uj�e�. Consider �e 2 RN

�
; with

�ei � ei for all i 2 D�e� and �ei � ûi for all i =2D�e�. By monotonicity,
ui��e� � ui�e� for all i 2 N . By the dummy property, ui��e� � ûi for all
i =2D��e�. Therefore j 2 D�e� � D��e�. By monotonicity it is sufficient to prove
that ej � �ej � uj��e�. Suppose to the contrary that uj��e� < �ej:

Consider ~e 2 RN
�

, such that ~ei � �ei for all i 2 N ÿ f jg and ~ej � ûj: Be-
cause uj��e� < �ej, it follows by same-sidedness and feasibility that
D��e� 6� f jg. Hence z�~e� > 0. Therefore by monotonicity we have

ui��e� � ui�~e� for all i 2 N :

By feasibility this yields uj�~e� � uj��e� � ûj ÿ �ej < ûj � ~ej: This, however,
contradicts the dummy property. So, uj��e� � �ej:

Finally, we prove the characterization of this section.3 h

Theorem 4.4. The uniform reallocation rule is the only rule which is envy-free
and monotonic.

Proof. The uniform reallocation rule satisfies both properties. In order to
prove that it is the only one let u be a rule with these properties, and consider
problem e. Without loss of generality suppose z�e� > 0:

By same-sidedness and boundedness by endowments and peaks (Lemmas
4.2 and 4.3) it follows that ui�e� � ûi for all i =2D�e�: By Lemma 2.1 it is

3 We did not succeed in proving the independence of this characterization. To be more precise, it
is an open problem whether Pareto optimality is independent of the other properties on the
general domain of single-peaked, continuous preferences.
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sufficient to prove that non-satiated agents get maximal allotment change.
Let i; j 2 D�e�, such that ui�e� < ûi. Then we have to show that
Duj�e� � Dui�e�.

Suppose to the contrary that Dui�e� < Duj�e�. Because of envy-freeness,
ei � Duj�e� > ûi: Take k 2 S�e�. Consider e�a; k�; a � ek and a ! ûk : By co-
ordinatewise continuity, monotonicity and envy-freeness it follows that

e�a0; k�i � Duj�e�a
0
; k�� > ûi; where a0 � ûk :

Note that k is a non-trader at problem e�a0; k�. Hence, the set of suppliers has
been decreased by one. Repeating this process yields a problem, say ~e, such
that ~el � el for all l 2 D�e�; ~ek � ûk for all k =2D�e� and

~ei � Duj�~e� � ei � Duj�~e� > ûi:

In particular, we have Duj�~e� > 0: But then either feasibility or boundedness
by endowments and peaks is violated. h

Results on endowment monotonicity for allocation rules can be found in
Thomson [14]. There, a characterization of the uniform allocation rule for a
restricted class of single-peaked preferences4 by one-sided resource-mono-
tonicity and envy-freeness is derived. Theorem 4.4, which can be seen as an
extension of this result to the reallocation case, is based on a different proof
technique, and holds for the whole domain of single-peaked preferences.

5 Consistency

In this section three characterizations of the uniform reallocation rule are
discussed. Consistency essentially means that under the mechanism at hand
subgroups of agents do not redistribute their subtotal differently. So, if a
group S of agents leaves with their allotments, then, loosely speaking, ap-
plying the mechanism for the remaining agents yields the same outcome as
before. In a reallocation problem, by leaving the grand coalition the agents
of S create an allocation problem: the (positive or negative) leftover of S has
to be distributed among the remaining agents. Then, the original endow-
ments plus the shares of the leftover form the initial endowments in the
restricted reallocation problem. In order to preserve the original positions of
the remaining agents, we define the reduced reallocation problem by equal5

adjustment of the initial endowments. Thus, we include an equity principle

4 The function r : R� ! R� [ f1g which assigns to each point either the corresponding
indifference point on the other side of the peak, and zero or infinity if such a indifference point
does not exists, has to be bounded. However, on this preference domain we can prove that
Pareto optimality is implied by envy-freeness and monotonicity.
5 As equal as possible with respect to the restrictions of the model.
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into the consistency condition. Actually, we will only need consistency for
two-agent problems, i.e., bilateral consistency.6

The relation with Thomson’s bilateral consistency for the allocation
setting is illustrated by comparing Theorem 2 in [13], where the uniform rule
is characterized by bilateral consistency, individual rationality from equal
division, and Pareto optimality7, with Theorem 5.2 below, in which the
uniform reallocation rule is characterized by bilateral consistency, individual
rationality, and Pareto optimality.8

First we prove that the uniform reallocation rule is the only rule which is
bilaterally consistent and bounded by endowments and peaks. Then we show
that replacing the latter condition by the weaker individual rationality con-
dition, yields a second characterization of the uniform reallocation rule for
problems with at least three agents. Finally we show that for problems with
at least four agents, bilateral consistency and envy-freeness determine the
uniform reallocation rule.

A pre-rule w is said to be bilaterally consistent, if for all problems hN ; e; ui
and all agents i; j 2 N , i 6� j,

wi

ÿ

fi; jg; e�i; j�; ujfi;jg
�

� wi�N ; e; u�:

Here, ujfi;jg � hu�i�; u�j�i denotes the restriction of u to fi; jg and the adjusted
endowment vector e�i; j� 2 Rfi;jg

�
is defined as follows. Without loss of gen-

erality suppose Dwi�N ; e; u� � Dwj�N ; e; u�: Then, dividing the ‘‘net-leftover’’
P

k2Nÿfi;jg�ek ÿ wk�N ; e; u�� as equally as possible among i and j yield the
adjusted endowments

e�i; j�j : � max 0; ej �
1
2
�Dwi�N ; e; u� � Dwj�N ; e; u��

� �

and

e�i; j�i : � ei � �Dwi�N ; e; u� � Dwj�N ; e; u�� ÿ �e�i; j�j ÿ ej�:

So, endowment adjustments are as close as possible9 to the mean allotment
changes of i and j. It is straightforward to prove that the adjusted endow-

6 Another possibility for the two-agent subeconomy would be to give these agents their
allotments in the original problem as initial endownments. This would lead to a very weak
consistency property, already implied by Pareto optimality and individual rationality–which is
not surprising because the allotments of the rule under consideration would already have been
incorporated in the formulation of the subeconomy also for the remaining agents. Furthermore,
information from the original problem concerning the relative strength of the agents with respect
to demand and supply would be lost.
7 Dagan [4] has shown that continuity is redundant.
8 As considered by Thomson [16] one could extend the model by allowing the total endowment
to be unequal to the sum of the initial endowments, thus combining allocation and reallocation.
In such a model, Thomson’s bilateral consistency for reallocations can be adapted in a
straightforward manner, see Thomson [16]. In a characterisation, however, one would need
again some equity principle.
9 By just applying mean allotment changes negative endowments, which are not admissable in
this model, might occur.
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ments e�i; j�j and e�i; j�i are non-negative. Furthermore, if Dwi�N ; e; u� � 0,
we obtain mean allotment changes

e�i; j�j : � ej �
1
2
�Dwi�N ; e; u� � Dwj�N ; e; u�� and

e�i; j�i : � ei �
1
2
�Dwi�N ; e; u� � Dwj�N ; e; u��:

It is straightforward to prove that the uniform reallocation rule is bilaterally
consistent.

The next theorem characterizes this rule as described before.

Theorem 5.1. The uniform reallocation rule is the only rule which is bilaterally
consistent and bounded by endowments and peaks.

Proof. Let u be such a rule and hN ; e; ui a problem. It is sufficient to prove
that u�N ; e; u� � Ur

�N ; e; u�. For two-agent problems and balanced pro-
blems this follows easily.

Suppose that the problem hN ; e; ui has at least three agents and is in
excess demand, z�N ; e; u� > 0. By boundedness by endowments and peaks
and same-sidedness, ui�N ; e; u� � ûi for all non-demanders i =2D�N ; e; u�:
Now, by Lemma 2.1, it is sufficient to show that non-satiated demanders get
maximal allotment changes. Let i; j 2 D�N ; e; u� such that ui�N ; e; u� < ûi:

We have to show that Dui�N ; e; u� � Duj�N ; e; u�.
Suppose to the contrary that

Duj�N ; e; u� > Dui�N ; e; u�:�4�

Because of boundedness by endowments and peaks Dui�N ; e; u� � 0. So,
e�i; j�j 6� 0. Consider problem




fi; jg; e�i; j�; ujfi;jg
�

. By bilateral consistency,

ui

ÿ

fi; jg; e�i; j�; ujfi;jg� � ui�N ; e; u�:

Because e�i; j�i � ei �
1
2 �Dui�N ; e; u� � Duj�N ; e; u�� and (4) we have

ui�N ; e; u� < e�i; j�i:

If e�i; j�i � ûi, then obviously boundedness by endowments and peaks is
violated. If e�i; j�i > ûi, then by boundedness by endowments and peaks

ui

ÿ

fi; jg; e�i; j�; ujfi;jg
�

� ûi:

But as ui

ÿ

fi; jg; e�i; j�; ujfi;jg
�

� ui�N ; e; u� < ûi; this cannot be the case.
Hence, we have a contradiction and are done.

The case of excess supply with possibly adjusted endowments is proven
similarly. h

Note that Theorem 5.1 holds also if we fix N.
The following theorem shows that under Pareto optimality and bilateral

consistency the boundedness condition of the previous theorem and in-
dividual rationality are equivalent if there are at least three agents.
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Theorem 5.2. For problems with at least three agents, the uniform reallocation
rule is the only individually rational and bilaterally consistent rule.

Proof. Let u be an individually rational and bilaterally consistent rule. It is
sufficient to prove that u is bounded by endowments and peaks (Theorem
5.1). By Pareto optimality, this holds for balanced problems. Let hN ; e; ui be
a problem with at least three agents and suppose z�N ; e; u� > 0 (excess
demand). By individual rationality and same-sidedness,

ej � uj�N ; e; u� � ûj for all j =2 S�N ; e; u�:

For a supplier i 2 S�N ; e; u� it follows by same-sidedness that ui�N ; e; u� � ûi.
Now suppose that ui�N ; e; u� < ûi. We deduce a contradiction and are done.

By feasibility and individual rationality there is a demander j 2 D�N ; e; u�
such that

Duj�N ; e; u� > 0:�5�

By bilateral consistency

ui�N ; e; u� � ui

ÿ

fi; jg; e�i; j�; ujfi;jg
�

:

It follows from (5) that e�i; j�i > ui�N ; e; u�: So, by individual rationality, (6),
and ûi > ui�N ; e; u�;

e�i; j�i � ûi > ui�N ; e; u�:�7�

Let M � fi; j; lg, where l =2 fi; jg: Take �e 2 RM
�

such that �ek � e�i; j�k for
k 2 fi; jg and �el � e�i; j�i. Take u0 2 UM such that u0

jfi;jg � ujfi;jg and û0l � �el.
So, the problem fi; jg; e�i; j�; ujfi;jg


 �

is enlarged with a non-trader l and this
yields hM ; �e; u0i. By individual rationality ul�M ; �e; u0� � û0l � �el: So,
�e�i; j� � e�i; j�. Because u0

jfi;jg � ujfi;jg, by bilateral consistency and (6),

uk�M ; �e; u0� � uk fi; jg; e�i; j�; ujfi;jg
ÿ �

� uk�N ; e; u� for k 2 fi; jg:

Hence, by bilateral consistency we have for k 2 fi; lg

uk�M ; �e; u0� � uk fi; lg; �e�i; l�; u0
jfi;lg

� �

:

Since Dul�M ; �e; u0� � 0 and because of the choice of �el and (7)

�e�i; l�i � �ei �
1
2
�Dui�M ; �e; u0� � Dul�M ; �e; u0��

� �ei �
1
2

Dui�M ; �e; u0�

� �ei �
1
2
�ui�M ; �e; u0� ÿ �ei�

�

1
2

e�i; j�i �
1
2

ui�N ; e; u� > ui�N ; e; u�:

By individual rationality �e�i; l�i � ûi > ui�N ; e; u�: By adding non-traders in
this manner we obtain a sequence �et

�i; lt� such that
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�et
�i; lt�i � ûi > ui�N ; e; u� and

�et
�i; lt�i �

1
2

� �t

e�i; j�i �
Xt

k�1

1
2

� �k

ui�N ; e; u�

�

1
2

� �t

e�i; j�i � 1 ÿ
1
2

� �t� �

ui�N ; e; u� for all t 2 N:

This obviously yields a contradiction.
The case of excess supply with possibly adjusted endowments is proven

similarly. h

The previous theorem holds if we fix N and if N has at least three agents.
For fixed N with two agents the theorem does not hold, because in that
situation bilateral consistency has no impact.

The last characterization in this section is obtained by extending a result
of Dagan ([4], Lemma 2) to reallocation rules and applying bilateral con-
sistency and Theorem 3.1.

Theorem 5.3. For problems with at least four agents the uniform reallocation
rule is the unique rule satisfying envy-freeness and bilateral consistency.

As already mentioned above, we use in the proof of Theorem 5.3 the
following extension of a result of Dagan ([4], Lemma 2) for allocation rules.

Lemma 5.4. Let there be at least four agents. If a rule is bilaterally consistent
and envy-free, then the rule satisfies peaks-onliness for all two-agent problems.

The proof of Lemma 5.4 is similar to the proof of Dagan’s result [4],
Lemma 2.

Proof. Let u be a bilaterally consistent and envy-free rule and consider the
two-person problem hN ; e; ui;N � fi; jg. To show peaks-onliness we have to
prove that for utility functions u; v with û � v̂ it holds that

u�N ; e; u� � u�N ; e; v�:

Because there are at least four agents, we can consider the problem
hN 0; e0; u0i;N 0

� fk; lg such that N \ N 0
� ; and ei � e0k ; ej � e0l; v̂i � û0k ; v̂j

� û0l. Merging the two problems yields �N [ N 0; he; e0i; hu; u0i�. By Pareto
optimality

um�N [ N 0
; he; e0i; hu; u0i� � hû; û0i

jfmg for all m 2 N [ N 0 or

um�N [ N 0
; he; e0i; hu; u0i� � hû; û0i

jfmg; for all m 2 N [ N 0
:

Then, by envy-freeness

ui�N [ N 0
; he; e0i; hu; u0i� � uk�N [ N 0

; he; e0i; hu; u0i� and

uj�N [ N 0
; he; e0i; hu; u0i� � ul�N [ N 0

; he; e0i; hu; u0i�:
�8�

By applying bilateral consistency on N and N 0 as remaining agents we obtain
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um�N ; e; u� � um�N [ N 0
; he; e0i; hu; u0i�;m 2 N ; and

un�N
0
; e0; u0� � un�N [ N 0

; he; e0i; hu; u0i�; n 2 N 0
:

�9�

Equation (8) together with (9) yields

ui�N ; e; u� � uk�N
0
; e0; u0� and

uj�N ; e; u� � ul�N
0
; e0; u0�:

�10�

Now, by applying a similar argument as above to the problems hN 0; e0; u0i
and hN ; e; vi it follows that

uk�N
0
; e0; u0� � ui�N ; e; v� and

ul�N
0
; e0; u0� � uj�N ; e; v�:

�11�

Hence, by ((10) and (11)) the lemma is proven. h

Proof of Theorem 5.3. Let u be a bilaterally consistent and envy-free rule.
Then, bilateral consistency together with Lemma 5.4 implies peaks-onliness
for problems with an arbitrary number of agents n � 4. Then, by Theorem
3.1 the rule u equals the uniform reallocation rule for problems with at least
four agents. h

In Thomson [13] and Dagan [4] results similar to those described in
Theorem 5.2 and Theorem 5.3 are stated for allocation rules. Thomson in-
cludes a continuity condition in his characterizations ([13], Theorem 1,
Theorem 2), besides bilateral consistency, individual rationality from equal
division or envy-freeness respectively. Dagan proves that the results of
Thomson remain true without continuity for allocation problems with at
least four agents ([4], Theorem 2, Theorem 3). Now, ‘‘translating’’ the steps
of the proofs 10 in Dagans characterizations into the reallocation setting is
almost sufficient to get alternative proofs of Theorem 5.2 and Theorem 5.3.
The argument of converse consistency (see [4], Lemma 4), which completes
the proofs of the characterizations, however, has no equivalent in the re-
allocation setting. By assuming that a rule, satisfying the characterizing
properties, does not equal the uniform reallocation rule, and using bilateral
consistency, a contradiction, which completes the alternative proofs, is easily
derived.

6 Strategy-proofness

In this section we discuss characterizations of the uniform reallocation rule in
which endowment strategy-proofness plays a prominent role. This condition
makes sense in those situations where the initial endowments are private
information and the preferences are known. It guarantees, so to speak, that
withholding some of the endowment by an agent is not profitable for that
agent, whatever the other agents do. So, truth-telling is a weakly dominant

10 [4], Lemmas 2, 3, 5 and 6 can be proved in their ‘‘reallocation version’’.
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strategy. If agents were also allowed to offer more than their actually
possession, then feasibility could cause that some agents obtain a negative
allocation. Because our model does not allow such assignments, supplies are
considered to be real amounts handed out to the mechanism. Then, demands
can be faked only by withholding endowment.

The notion of manipulation by withholding initial endowments–W-ma-
nipulability–is introduced by Postlewaite [10] for pure exchange economies.
However, in this setting ‘‘endowment strategy-proof ’’ mechanisms do not
exist (see [10], Theorem 1), whereas in our setting for example the uniform
reallocation rule has this property.

A pre-rule w is said to be (endowment) strategy-proof, if for all problems
hN ; e; ui, all agents i 2 N and all e0 2 RN

�
, with e0j � ej for all j 2 N ÿ fig and

e0i � ei,

ui�wi�N ; e; u�� � ui�ei � Dwi�N ; e0; u��:

If i acts strategically and pretends to have e0i instead of ei, then the pre-rule w
assigns wi�N ; e0; u� to i. But, as endowments are private information, w can
better be interpreted as a pre-rule which assigns allotment changes. So, i’s
actual allotment in that situation is ei � Dwi�N ; e0; u�. Therefore, strategy-
proofness is defined in this way. It means that i cannot envy himself in a
situation of withholding endowment.

The following Lemma shows that if a rule is strategy-proof, then with-
holding endowment by non-satiated agents yields a smaller allotment
change, in case of excess demand, and a greater allotment change, in case of
excess supply.

Lemma 6.1 Let u be a strategy-proof rule. Let hN ; e; ui be a problem and i 2 N
such that ui�N ; e; u� 6� ûi. Let e0 2 RN

�
such that ej � e0j for all j 2 N ÿ fig

and ei � e0i. Then:

(a) If z�N ; e0; u� � 0; then Dui�N ; e0; u� � Dui�N ; e; u�; and
(b) if z�N ; e; u� > 0; then Dui�N ; e0; u� � Dui�N ; e; u�:

Proof. Suppose z�N ; e0; u� � 0. Then, by same-sidedness, ui�N ; e0; u� � ûi and
ui�N ; e; u� > ûi. Then, by strategy-proofness it follows that ei � ui
�N ; e0; u� ÿ e0i � ui�N ; e; u�. This implies the desired result.

Suppose z�N ; e; u� > 0. Then, by same-sidedness, ui�N ; e0; u� � ûi and
ui�N ; e; u� < ûi. Let f : � supfx 2 R�jui�x� � ui�ui�N ; e; u��g. Obviously,
f > ûi. Suppose ei ÿ e0i < f ÿ ûi. By strategy-proofness, ui�N ; e0; u� ÿ e0i
�ei � ui�N ; e; u� or ui�N ; e0; u� ÿ e0i � ei � f . Because ei ÿ e0i < f ÿ ûi � f
ÿui�N ; e0; u�, by same-sidedness, it follows that the latter cannot be the case.
The first yields the desired result. In case of ei ÿ e0i � f ÿ ûi, we shift ei

stepwise (with the size of the steps small enough) to e0i and apply the same
argument as above in each step. h

We have the following consequence of the previous lemma.
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Corollary 6.2. Let u be a strategy-proof rule. Let hN ; e; ui be a problem with
excess demand. Then,

(a) ei � ui�N ; e; u� � ûi for all i 2 D�N ; e; u�; and
(b) uj�N ; e; u� � ûj for all j =2D�N ; e; u�:

Proof. By same-sidedness, uk�N ; e; u� � ûk for all k 2 N . For all k 2 N let
e�k� 2 RN

�
such that e�k�l � el for all l 2 N ÿ fKg and e�k�k � 0. Take

k 2 N . Suppose uk�N ; e; u� < ûk . Then Duk�N ; e�k�; u� � Duk�N ; e; u� by
Lemma 6.1. Because uk�N ; e�k�; u� � 0, it follows that Duk�N ; e�k�; u� � 0.
So, Duk�N ; e; u� � 0. Therefore ek � uk�N ; e; u�. So, k 2 D�N ; e; u�. This
completes the proof. h

A similar result cannot be obtained for the excess supply case, even if
there were an upper bound for the endowments. (For instance, if there are
finite resources.) This is due to the asymmetry in the definition, caused by the
requirement of e0i � ei. Therefore, strategy-proofness as defined here, has not
such a great impact on the solution as one would expect. The following
theorem characterizes the uniform reallocation rule as the only strategy-
proof and bilaterally consistent rule which has the dummy property. Re-
calling Theorem 5.2, Theorem 6.3 implies that, if there are at least three
agents, under bilateral consistency and Pareto optimality, strategy-proofness
together with the dummy property is equivalent to individual rationality.

Theorem 6.3. Let there be at least three agents. Then, the uniform reallocation
rule is the only rule which is bilaterally consistent, strategy-proof, and has the
dummy property.

Proof. In order to prove that Ur is the only rule with these properties, let u be
such a rule. Let hN ; e; ui be a problem. If there is excess demand we are done
by Corollary 6.2 and Theorem 5.1. For z�N ; e; u� � 0, Pareto optimality
implies u�N ; e; u� � Ur

�N ; e; u�. Therefore suppose z�N ; e; u� < 0. We prove
that u is bounded by endowments and peaks at hN ; e; ui. Then in view of
Theorem 5.1 we are done.

By same-sidedness for all k 2 N ,

uk�N ; e; u� � ûk :

Let j 2 S�N ; e; u�. Consider e0 2 RN
�

such that e0k � ek for all k 2 N ÿ f jg and
e0j � max fûj; ej ÿ s�N ; e; u� � d�N ; e; u�g. So, at hN ; e0; ui agent j is either a
non-trader or at e0 demand equals supply. Therefore, uj�N ; e0; u� � ûj. So,
Duj�N ; e0; u� � 0. By Lemma 6.1 we have

Duj�N ; e; u� � Duj�N ; e0; u� � 0:

So, ej � uj�N ; e; u� � ûj.
Let j 2 D�N ; e; u�. It is sufficient to prove that uj�N ; e; u� � ûj. Suppose,

to the contrary, that uj�N ; e; u� > ûj. Then, by feasibility, there is a supplier i.
So, Dui�N ; e; u� � 0 by the previous step of the proof. By bilateral con-
sistency
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uj fi; jg; e�i; j�; ujfi;jg
ÿ �

� uj�N ; e; u�:

Because Dui�N ; e; u� � 0; e�i; j�j < uj�N ; e; u�. Above, we proved that sup-
pliers obtain an allotment between their peak and their endowment. There-
fore, at fi; jg; e�i; j�; ujfi;jg


 �

j cannot be a supplier. So e�i; j�j � ûj. Now,
similarly as in the proof the Theorem 5.2, by introducing a sequence of non-
traders l1; l2; . . . ; lt; . . . we obtain a sequence of endowments e�i; lt�j con-

verging to uj fj; ltg; e�j; lt�j; ujfj; ltg

� �

� uj�N ; e; u� > ûj, where j cannot be a

supplier at fj; ltg; e�j; lt�; ujfj; ltg


 �

. This cannot be the case. h

For the second and last characterization of this section the condition of
reversibility is introduced.

A pre-rule w is said to be reversible if for all problems hN ; e; ui and
hN ; e0; u0i, such that ei ÿ ûi � ÿ�e0i ÿ û0i� for all i 2 N ,

Dwi�N ; e; u� � ÿDwi�N ; e0; u0� for all i 2 N :

So, if all agents demandnsupply at hN ; e; ui as much as they supplyndemand
at hN ; e0; u0i, then thier allotment change at hN ; e0; u0i is the reversal of that at
hN ; e; ui.

Clearly, by applying reversibility two times we obtain that a solution only
depends on the demands and the supplies. That is, if w is a reversible prerule
and hN ; e; ui and hN ; e0; u0i are two problems such that ei ÿ ûi � e0i ÿ û0i for all
i 2 N , then

Dwi�N ; e; u� � Dwi�N ; e0; u0� for all i 2 N :

In particular, this means that reversibility implies peaks-onliness.
In the next theorem we use the following equal-treatment condition.
A pre-rule w is said to be equally-treating if for all problems hN ; e; ui and

all i; j 2 N , such that ei ÿ ûi � ej ÿ ûj,

Dwi�N ; e; u� � Dwj�N ; e; u�:

The equal-treatment and the reversibility condition we introduce here are
stronger than the corresponding conditions introduced in Klaus, Peters and
Storcken [6] for reallocation rules.

By definition the uniform reallocation rule satisfies reversibility and
equal-treatment. The following theorem says that it is the only such rule
which in addition is strategy-proof.

Theorem 6.4. The uniform reallocation rule is the only reversible, equally-
treating and strategy-proof rule.

Proof. Let u be such a rule. By reversibility it is sufficient to consider only
problems with excess demand. Let hN ; �e; ui be a problem such that
z�N ; �e; u� > 0. We prove that u�N ; �e; u� � Ur

�N ; �e; u�.
Because u only depends on demands and supplies it is without loss of

generality to suppose that ûi � ûj for all i; j 2 N and 2ûi ÿ �ei � 0 for all i 2 N .
Without loss of generality suppose D�N ; �e; u� � f1; 2; . . . ;mg � : M .

Consider e 2 RN
�

such that ek � ûk for all k 2 M , and ek � �ek for all
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k 2 N ÿ M . Let k�e� � jfk 2 M j ek 6� 0gj. Let O�e� � fk 2 M j ek � 0g. By
induction on t we prove that for all such e with k�e� � t,

u�N ; e; u� � Ur
�N ; e; u�:�12�

Clearly, this is sufficient.
Because N and u are fixed, we suppress these symbols from notation in

the rest of this proof.
By Corollary 6.2

uj�e� � ûj � Ur
j �e� for all j =2M :�13�

Basis. k�e� � 0
Then equal-treatment and (13) yield (12).

Induction step. Let k�e� � t � 1 and suppose (12) holds for all ~e with k�~e� � t.
Suppose (12) does not hold for problem e. Then, by (13), there is a

demander, say i, such that ui�e� 6� Ur
�e�. We deduce a contradiction.

By equal-treatment, Ur
k �e� � Ur

l �e� and uk�e� � ul�e� for all k; i 2 O�e�.
Therefore, by feasibility, it is without loss of generality to suppose that
i =2O�e�. Now there are two cases; both yield a contradiction.
Case 1. ui�e� < Ur

i �e�.
Hence, ui�e� < ûi. Let e0 2 RN

�
such that e0k � ek for all k 2 N ÿ fig and

e0i � 0. By Lemma 6.1 Dui�e
0
� � Dui�e�. Because DUr

i �e
0
� � DUr

i �e�, it fol-
lows by our induction hypothesis that

DUr
i �e� � DUr

i �e
0
� � Dui�e

0
� � Dui�e�;

contradicting our starting point.
Case 2. ui�e� > Ur

i �e�.
Let e0 be as in Case 1. Then, Ur

i �e� < ûi. Hence, in this case DUr
i �e

0
� �

DUr
i �e�. Now, it is sufficient to prove that

Dui�e
0
� � Dui�e�;�14�

because then, similarly to Case 1, a contradiction is easily deduced. Let
�e; �e0 2 RN

�
such that

ûk ÿ �ek � ÿ�ûk ÿ ek� for all k 2 N

and

ûk ÿ �e0k � ÿ�ûk ÿ e0k� for all k 2 N :

Then, by reversibility, we have

Dui�e� � ÿDui��e� and�15�
Dui�e

0
� � ÿDui��e

0
�:�16�

If ui��e
0
� � ûi, then ui�e

0
� � ûi and clearly Dui�e

0
� > Dui�e�. If ui��e

0
� 6� ûi,

then by Lemma 6.1

Dui��e
0
� � Dui��e�:

Therefore by (15) and (16) we obtain (14). h
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7 Overview, sensitivity analysis, and independence of the conditions

In the preceding sections eight characterizations of the uniform reallocation
rule were presented. To illustrate the relation between these theorems, we
start this section with a schematic overview of all results. Combining some of
the results immediately yields an ninth characterization (Theorem 7.1) by
means of bilateral consistency, monotonicity and the dummy property. Next,
we discuss the sensitivity of the results with respect to variations of the model
assumptions. Finally, independence of the conditions in the characterizations
is demonstrated.

7.1 Overview of the results

The following diagram illustrates the logical connections between the results
of the foregoing sections.

In the sequel we use the following abbreviations.

PO Pareto optimality
PSO peaks-onliness
EF envy-freeness
PM population monotonicity
EM (endowment) monotonicity
DP dummy property
BEP boundedness by endowments and peaks
BC bilateral consistency
IR individual rationality
SP strategy-proofness
RE reversibility
ET equal-treatment

Theorem 7.111 (which is added to the diagram) is directly implied by
Lemma 4.3 and Theorem 5.1.

Theorem 7.1. The uniform reallocation rule is the only monotonic rule
satisfying bilateral consistency and the dummy property.

7.2 Sensitivity analysis

The table below indicates the effect of four different model variations on the
obtained results. The entries in the cells indicate whether the results remain
true. The details are discussed below.

(1) In the model presented here, initial endowments and allotments were
restricted to non-negative numbers. In other settings one might allow
agents to be in debt. In that case, negative endowments and, as a con-

11 We did not succeed in proving the independence of this characterization. More precisely, it is
an open problem whether Pareto optimality is independent of the other properties.
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sequence, negative allotments are admitted and preferences are defined
on the whole real line. Most of the results remain true with little changes
in the proofs. In case of bilateral consistency, mean leftover changes for
the remaining agents are no longer subject to a non-negativity restriction.
The same holds for envy-freeness. This does not affect the proofs.
However, the proof of Corollary 6.2 is not valid any more. It is an open
question whether Corollary 6.2 or Theorem 6.3 hold in this setting. For
Theorem 6.4 there is an alternative proof which is not presented here
because of space limitations.

(2) If we suppose that endowments, peaks and allotments are not only non-
negative but also bounded from above, all results except Theorem 6.4
remain valid. Of course, envy-freeness and bilateral consistency must be
adapted to this new situation similarly as in the original model, to

Figure 1

328 B. Klaus et al.



guarantee that the (adjusted) endowments, which are used in these con-
ditions, are well-defined. In the proof of Theorem 6.4 we cannot apply
reversibility because the reversed problems are not necessarily well-de-
fined in this setting.

(3) Up to now, we assumed that the set of potential agents is infinite. This
assumption is crucial for the proof of Theorem 3.2 where we duplicate
the number of agents to exploit population monotonicity. It is an open
problem whether the characterization of Theorem 3.2 holds for a finite
set of potential agents. All other results remain true because the proofs of
these theorems apply to a fixed number of agents.

Table 1
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(4) The last model variation we consider concerns the domain of the pre-
ferences. We have assumed throughout that the preferences of the agents
are single-peaked and continuous. In fact continuity is only needed to
prove Lemma 6.1. Whether the characterizations based on this lemma,
Theorem 6.3 and Theorem 6.4, hold true for the whole class of single-
peaked preferences is not yet clear. All other results remain valid.

7.3 Independence of the characterizing conditions

The logical independence of the characterizing conditions in all theorems
stated in the previous sections and earlier in this section is discussed by
means of seven reallocation (pre-)rules. These (pre-)rules are defined below.

The endowment pre-rule ue assigns to every individual at every problem
hN ; e; ui the initial endowment:

ue
�N ; e; u� : � e:

In case of excess demand (supply), the hierarchical rule uh satiates all
suppliers (demanders) and the demanders (suppliers) according to their
number. So in case of z�N ; e; u� � 0;

uh
i �N ; e; u� : � ûi

if i =2D�N ; e; u� and

uh
i �N ; e; u� : � minfûi; ei � s�N ; e; u� ÿ

X

j2D�N ;e;u�;j<i

Duh
j �N ; e; u�g

otherwise. In case of z�N ; e; u� � 0;uh
�N ; e; u� is defined similarly.

The following maximally satiating rule umax satiates as many agents as
possible. Let z�N ; e; u� � 0 and, without loss of generality, D�N ; e; u� �
f1; 2; . . . ; dkg such that d1�N ; e; u� � . . . � dt1�N ; e; u� < dt1�1�N ; e; u� � � � �

� dt2 < . . . < dtr�N ; e; u� � . . . � dk�N ; e; u�. Then,

umax
1 �N ; e; u� : � ûi

if i =2D�N ; e; u� and

umax
i �N ; e; u� : � minfûi; ei �

1
ts ÿ tsÿ1

�s�N ; e; u� ÿ
X

j�tsÿ1

Duj�N ; e; u��g

if i 2 D�N ; e; u�; tsÿ1 < i � ts. Hence, demanders are satiated according to
their claims. First minimal demands are satiated uniformly. If there is some
supply left, then the next smallest demands are satiated, and so on.

In case of z�N ; e; u� � 0;umax
�N ; e; u� is defined similarly with respect to

smallest supplies.
The following rule ûmax is a variant of umax. So in case of z�N ; e; u� � 0,

ûmax
�N ; e; u� : � umax

�N ; e; u�:
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If z�N ; e; u� < 0, then,

ûmax
�N ; e; u� : � Ur

�N ; e; u�:
The rule �u is equal to the uniform reallocation rule in case of excess

demand and balancedness. In case of excess supply the total endowment
E : �

Pn
i�1 ei is divided such that all agents have the same supply with re-

spect to their peaks. So, in case of z�N ; e; u� � 0,

�u�N ; e; u� : � Ur
�N ; e; u�:

If z�N ; e; u� < 0, then for all i 2 N

�u�N ; e; u� : � ûi � k; k � 0 solves
Xn

i�1

�ui�N ; e; u� � E:

The following rule �u is equal to the uniform reallocation rule in case of
excess demand and balancedness. In case of excess supply all agents except
the agent(s) with maximal supply are satiated. Feasibility is adjusted on the
account of the agent(s) with the maximal supply. So, if z�N ; e; u� � 0, then

�u�N ; e; u� : � Ur
�N ; e; u�

If z�N ; e; u� < 0, then

Table 2
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�ui�N ; e; u� : � ûi if i =2 F and
ei � k if i 2 F ,

�

where F � arg maxi2S�N ;e;u� si�N ; e; u� and k is determined by feasibility.
The following rule ~u is a rule which is not peaks-only. Let hN ; e0; u0i be a

problem with e0 � 5
2 ; 0; . . . ; 0

 �

; û0i � 0 for i > 2 and u01 � u02 such that
u01�x� � ÿ

3
2 ÿ x
�
�

�
� for x 2 �0;1�. Then, ~u is defined by

~ui�N ; e; u� : �
Ur

�N ; e; u� ifhN ; e; ui 6� hN ; e0; u0i and
1; 3

2 ; 0; . . . ; 0

 �

otherwise.

�

The following table shows which of the previous pre-rules satisfies which
of the characterizing conditions. The last nine rows of this table indicate for
each theorem and each pre-rule which condition is not satisfied by the pre-
rules while all other characterizing conditions are satisfied.

The last table below illustrates the trade-offs between the different char-
acterizations. Roughly speaking there are four groups of conditions; I con-
ditions present in all characterizations (and therefore not interesting with
respect to a trade-off discussion), II conditions of equity, III conditions re-
lating different problems, and IV conditions that bound the outcome.

Table 3
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Conditions of the first three groups appear in all characterizations. The
last group is only present, when bilateral consistency, which also belongs to
the second group, is one of the characterizing conditions. Clearly, the price
which has to be paid for using this hybrid condition of groups II and III is
either a relatively strong condition of group IV or the weaker dummy
property in combination with strategy-proofness or monotonicity. Com-
paring Theorems 6.3 and 6.4 we see that the trade-off of relaxing the equity
condition is compensated by the relatively strong reversibility condition of
group IV.
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