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Abstract 

The goal of this paper is twofold. Firstly a short proof of the unicity of the reduced form of a normal form game is 
provided, using a technique to reduce a game originally introduced by Mertens. Secondly a direct combinatorial-geo- 
metric interpretation of the reduced form is described. This description is then used to derive an algorithm for the cal- 
culation of the reduced form of a game. © 1998 Elsevier Science B.V. 

1. Introduction 

Usually the strategy space of  the normal form 
of  an extensive form game contains a number  of  
'duplicate '  pure strategies. Such duplicate pure 
strategies arise when in the extensive form game 
a player has to specify his choices in a part  of  
the decision tree that is not reached in the eventual 
play of  the game (due to his own choices earlier in 
the tree). In the normal  form of  the game these du- 
plicates lead to the same pay off for every player, 
no matter  what the other players do. This specific 
property of  duplicate strategies is usually referred 
to as payoff equivalence. 

Before solving a game using the normal form, 
we are inclined to delete all but one of  such pay- 
off-equivalent pure strategies from the normal 
form, since the resulting game is easier to handle 

* Corresponding author. 

while the strategic possibilities of  the players are 
not changed. Thus also the eventual solution of 
the game should not be altered by this deletion 
process. The final result of  such a deletion process 
is referred to as the semi-reduced normal form of 
the (extensive form) game. The unicity of  this 
semi-reduced normal form up to changes in the 
names of  the pure strategies is intuitively clear 
since the elimination process only involves the pre- 
servation of exactly one element of  each collection 
of  payoff-equivalent pure strategies. 

Kohlberg and Mertens (1986) systematically in- 
vestigated as to what further extent payoff-equiva- 
lent strategies can be deleted from a normal form 
game. They argued that the process of  deletion 
should not only concern the removal of  duplicate 
pure strategies, but also in their opinion pure stra- 
tegies that are payoff equivalent to other (possibly 
mixed) strategies can be deleted from the normal 
form without harming the eventual solution. Thus 
they introduced the reduced normal form as the 
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game 'where all pure strategies that are (payoff 
equivalent with) convex combinations of other 
pure strategies have been deleted'. 

Although this description of  the reduced nor- 
mal form appeals to the intuition it also has some 
drawbacks. Unlike with the earlier definition of  the 
semi-reduced normal form, it is in this case not im- 
mediately clear that the process will lead to a (in 
some sense) uniquely defined game. t The main 
problem being the fact that the deletion process 
is necessarily performed successively, one after 
the other. Thus, the resulting game depends on 
the order in which pure strategies are deleted and 
a game may have different reduced normal forms. 
It is even not immediately clear that two exhaus- 
tive sequences of deletions require the same num- 
ber of deletions. People who have tried to 
.construct a direct proof  of the existence of  a un- 
ique reduced normal form in some sense may have 
noticed that a rigorous proof  can get quite in- 
volved indeed. 

Nevertheless, it will be shown that all reduced 
normal forms of a normal form game are identical 
up to what is called 'the relabeling of  pure strate- 
gies' in Mertens (1987). The proof  is based on 
the technique used by Mertens in his mimeo for 
the identification of games. This technique is in 
fact an elegant way to capture the process of dele- 
tion in mathematical terms, as well as the 'relabel- 
ing' of  pure strategies. Given this technique the 
proof  becomes fairly straightforward and quite 
short. 

The second problem with the description by 
Kohlberg and Mertens is that it is still not clear 
which game will eventually come out of the process 
of  deletion of  pure strategies, even if the existence 
of a unique reduced normal form of  a normal form 
game is taken for granted. 

Concerning this problem, most people automa- 
tically feel that, although two reduced normal 
forms of  a game may be different on a formal level 
as discussed above, they should be very much 
alike, simply because it must be possible to predict 
beforehand which pure strategies are going to be 

i This problem was pointed out to us by an anonymous 
referee and the editor in charge of a previous paper. 

deleted from the original game in the above pro- 
cess. We will show that this is indeed the case. Gi- 
ven an arbitrary (normal form) game, the results of 
the first part are used to derive a direct combina- 
torial-geometric interpretation of the reduced nor- 
mal form of  that game. On one hand, this 
interpretation may serve as an alternative defini- 
tion of the reduced normal form. On the other 
hand it accurately describes which pure strategies 
are superfluous and which are not. More precisely, 
exactly one pure strategy payoff equivalent with a 
given pure strategy remains in the reduced form if 
and only if the collection of  strategies that are pay- 
off equivalent with the given pure strategy is a face 
of  the strategy space of  the player involved. All 
other pure strategies vanish completely. Finally 
an algorithm based on this combinatorial-geo- 
metric interpretation is given for the actual com- 
putation of the reduced normal form. 

1.1. Content o f  the paper 

Section 2 is, save the preliminaries, concerned 
with the relation between the deletion of  a pure 
strategy of a given game F and the notion of re- 
ductions of F. In Section 3 the unicity of the re- 
duced form of F is proved using the language 
developed in Section 2, At the end of Section 3 a 
criterion is provided to check whether a given 
game actually is the reduced form of the game F. 
In Section 4 this criterion is used to show that a 
specific game constructed directly from F equals 
its reduced form. In Section 5 it is shown that this 
construction can be performed in finite time. 

Notation. For a finite set T, IT[ denotes the number 
of  elements of T. For  a convex set C, ext(C) de- 
notes the set of  extreme points of  C and for a set 
D, ch(D) denotes the convex hull of D. 

2. Reduction and deletion of pure strategies 

In this section we will establish the relation be- 
tween the deletion of a pure strategy and the no- 
tion of  a reduction of a game. (From now on we 
will omit the prefix 'normal form', since we will 
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work exclusively in the normal form context.) The 
latter notion of  a reduction is based on a technique 
introduced by Mertens (1987) and this will, in Sec- 
tion 3, turn out to be the ideal tool for stating pre- 
cisely in what sense reduced forms are identical. In 
order to put our arguments for these assertions on 
a sound basis we first need some notation. 

For  a natural number n, N := { 1 , . . . ,  n}. An (n- 
person) game is a pair F =  (A,u) such that 
A := Fig Ai is a product of  n non-empty, finite sets 
and u =  (ui)icN is an n-tuple of functions 
ui : A ---+ ~. Here Ag is the set of pure strategies of  
player i and ui is his payoff function. 

As usual, a game F will be identified with its 
mixed extension. For  this game, the mixed strate- 
gies of  player i are the elements of  the set A(Ag) 
of  probability distributions on Ag. By abuse of  no- 
tation we will identify a pure strategy a E Ai with 
the mixed strategy in A(Ai) that puts all weight 
on a. So, Ag will simply be viewed as a subset of 
A(A/). Also the pure strategy profiles will be de- 
noted by a E A. In case confusion might occur 
we will write ag E Ag instead of  simply a E Ag. For  
a (mixed) strategy profile x = (xi)icN E AA := 
Fij A(Aj), the (expected) payoff function of  player 
i is defined by ui(x) := ~aEA I]jxjajui(a). Two stra- 
tegies yj and zj of  player j are called payoff equiva- 
lent if for all i and all x_j E 1-Ih#j A(Ah) 

ug(x jlyy) = u,(x_ylzy). 

In the displayed strategy profile (x_jlyj)E AA 
player j uses the strategy yj E A(Aj) and his oppo- 
nents use the strategies in x_j E Fii#j A(A/). 

Now let F = (A, u) be a game. In order to for- 
malize the process of  (successive) deletions as de- 
scribed by Kohlberg and Mertens, let b E dj be a 
pure strategy that is payoff equivalent with some 
other (mixed) strategy zj E A(Aj). Then the game 
F' = (d', u'} induced by the deletion o f b  can be de- 
fined as follows: first take 

AI := else 

and then define u I as the restriction of  ui to 
A' := HeAl. 

Thus we can give a formal definition of  a re- 
duced form of  F as follows. First check whether 

there is a pure strategy of  some player that is pay- 
off equivalent with some other strategy. If there is 
no such strategy, F is called reduced. If there are 
such strategies, pick one and delete it. This yields 
a game F' as previously described. Repeat the pro- 
cess using F' instead of F, etc., until finally (after a 
finite number of  steps) a reduced game results. 
Such a game is called a reduced form of  F. The 
question now is in what sense reduced forms of 
F are equal to each other. In order to give a precise 
meaning to this sense, and to get a short proof, we 
need another way to represent the deletion of  a 
pure strategy, namely by means of so-called reduc- 
tion maps. This representation was introduced by 
Mertens (1987) and can also be found in van 
Damme (1994). 

A game F ' =  (B, v) is called a reduction of  the 
game F = (A, u) if there is a map f = (fg)iEN from 
AA to AB such that for every i E N: 
(1) j~: A(Ai) ~ A(Bi) is affine and onto, 
(2) Ui = Vio f . 
The function vg o f denotes the composition of vg 
and f .  In this situation f is called a reduction 
map from F to F .  Note that each fi preserves pay- 
off equivalence, i.e., for all xg and yi in A(Ag), xi is 
payoff equivalent with yg if and only iff.(xi) is pay- 
off equivalent with fdyg). 

Roughly speaking, reducing a game captures 
both the idea of deletion of  a pure strategy and 
the 'relabeling' of  strategies. This specific combina- 
tion makes it an ideal tool to tackle the problem at 
hand. However, first we need to establish the con- 
nection between deleting a single pure strategy and 
reducing a game. 

Lemma 1. Let F I be the game induced by the dele- 
tion of a pure strategy b of player j payoff equivalent 
with some other strategy zj E A(Aj). Then F ~ is a re- 
duction of F. 

ProoL We have to show that there is a reduction 
map f = (fii)iES from F to F'. Obviously for i ~ j 
we can choose f .  to be the identity id/: A(Ai) --~ 
A(Ai). For  j ,  we define ~ :  A(Aj) --~ A(A~.) as fol- 

! 
lows. For  xj E A(Aj) and a E A j, 

fj(Xj)a : =  xjo + z jo(1  --  zjb)-'xjb. 
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Note that this definition makes sense, since the 
assumption that zj ¢ b implies that 1 - Zjb is larger 
than zero. It is straightforward to check that 
fi(xj) E A(A~) and that f j  is affine and onto. The 
fact that ui = u' i o f can be seen as follows. First 
note that both ui and u' i o f are multi-affine maps 
on AA. So we only have to prove that they coincide 
on the set A of pure strategy profiles. Now note 
that, for each a C A with a~ ¢ b, we have that 
j0.(afl = aj. Furthermore,  u' i is the restriction of ui 
to the set A' of  pure strategy profiles a E A with 
aj ~ b. So in this case it is clear that 
ui(a) = (u I o f ) ( a ) .  Now take a pure strategy pro- 
file c C A with cj = b. Then for each i E N, 

(ui ° f ) ( c )  = Z r I  fh(ch).h u;(a) 
a6W h 

= ~ ,zj,,,(! - Zjb)-'ui(c_jlay ) 
a~EA' I 

= ( 1  - - ' i h )  ' { u i ( c  j l z j )  - z j au i ( c - j l b ) }  

= (1 - zjb) ' { u d c - j l b )  - z j au i ( c - j l b ) }  
= u i ( c ) .  

The penultimate equality follows from the fact 
that b and zj are payoff- equivalent. []  

Now we can also capture successive deletions of  
pure strategies in terms of  reduction maps. Sup- 
pose that a map  f is a reduction map from a game 
F to a game F' and that g is a reduction map from 
F' to F". Then it is easy to check that the composi- 
tion g o f o f f  and g is a reduction map from F to 
F". Thus it follows from Lemma 1 that any game 
F ~ obtained from F by the successive (not necessa- 
rily exhaustive) deletion of  pure strategies is a re- 
duction of  F. So, if we have a way to identify 
two reduced games that are both reductions of  
F, we also have a way to identify two reduced 
forms of F. 

3. Uniqueness of the reduced form 

After thus having translated the process of  dele- 
tion of strategies in terms of reductions of  F, we 
can again use reduction maps to describe in what 
way two reduced forms of  F are identical, Two 

games F* = (B, v) and F** = (C, w) are called iso- 
morphic if there is a reduction map f from F* to 
F** that is also one-to-one. It is equivalent to re- 
quire that each .~ induces a one-to-one and onto 
function between Bi and Ci. The well-known 
phrase ' the reduced form is determined up to the re- 
labeling of pure strategies' refers to the latter prop- 
erty of  isomorphic games. In the proof  of  the 
isomorphy of  two reduced forms of F we will need 
the following well-known lemma. For  a proof  we 
refer to Lemma 1 of  Vermeulen and Jansen (1996). 

Lemma 2. Let f be an affine and onto map f rom a 
polytope P to a polytope Q. Then ext(Q) is a subset 
oJ ' f (ext (P)) .  

Now suppose that f is a reduction map from F 
to F* and that g is a reduction map from F to F**. 

Theorem 1. I f  both F* and F** are reduced forms oj" 
F, then F* and F** are &omorphic. 

Proof. (a) In this part  we will only use the fact that 
F** is a reduced form of  F. We will first construct a 
reduction map  h from F* to F**. To this end, note 
that for a player i, f is an affine onto map  from 
A(Ai) to  A ( B i ) .  S o  Bi  C J~(Ai) by the previous lem- 
ma. Then there must exist a map  si: Bi ~ Ai with 
( f ~ o s i ) ( b ) = b  for all b E B i .  Let ti:  A(Bi) 
A(Ai) be the affine extension of  si, Then it is easy 
to check that fi o ti equals the identity idi on 
A(Bi). So, if we write t := (ti)icN, then f o t equals 
the identity on As. 

Now define h :  As---+ AA as h : =  (hi)ic N with 
hi := gi o ti. Clearly, hi is an affine map. Further- 
more, for all i E N and y E AB, 

vi(y ) : Vi((f 0 t)(y)) = (vi o f  o t)(v) 

= (ui o t)(y) = (wi o g  o t)(y) = (wi o h)(y) 

because f o r  is the identity and v i o f = u i =  
wi o g. So we only need to check that hi is onto. 
To this end, take a pure strategy c E Ci. Again 
by the previous lemma we know that there exists 
a pure strategy a E A i with g i ( a ) = c .  Write 
xi := (ti o f . ) (a)  E ti(A(Bi)). Then 

f~(xi) ~- (f~ o ti o f . ) (a)  = (id~ o j~)(a) : .£.(a). 
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So, since the strategies fi(xi) and J~(a) are identical, 
they are certainly payoff equivalent. Then Xg and a 
must also be payoff equivalent, since J~ preserves 
payoff equivalence. Thus, since gi also preserves 
payoff equivalence, gi(xi) and gi(a) = c are payoff 
equivalent. Hence, c and 

(hi oj~)(a) = (gi o tio fi)(a) = gi(xi) 

must also be payoff equivalent. However, since F** 
is a reduced form of  F, it is certainly a reduced 
game. So, since c is a pure strategy, we get that 
(hi o f .)(a) = c. Hence, Ci c hi(A(Ai)) and hi must 
be onto since it is affine. 
(b) Now since both F* and F** are reduced forms 
of F, part (a) yields a reduction map h from F* to 
F** and a reduction map h ~ from F** to F*. It is 
sufficient to prove that the onto map h is also 
one-to-one. By Lemma 2 we know that both 
Ci c hi(Bi) and Bi C hi(Ci ) hold. This however is 
only possible if [Cil = [Bi[. Hence, hi must be 
one-to-one. [] 

Conclusion. Thus we can interpret the reduced 
form of  a game F as follows. First note that any 
two reduced games obtained from F by the ex- 
haustive successive deletion of  pure strategies are 
isomorphic, and isomorphy induces an equiva- 
lence relation on the class of all normal form 
games. So, all reduced games that can be obtained 
from F by successive deletions are contained in the 
same equivalence class. Hence, the reduced form 
of  the game F can formally be seen as the equiva- 
lence class that contains all such reduced games. 
Practically speaking, any game in this equivalence 
class can be called the reduced form of  F and then 
this game is said to be unique up to isomorphisms. 
Hence we have the following theorem. 

Theorem 2. A game F* is the reduced form o f  F if  
and only i f  
(1) F* is a reduced game and 
(2) F* is a reduction of  F. 

4. Construction of the reduced form 

In this section we will show that for any game 
F = (A, u) the reduced form F* of F can be ob- 

tained directly from the game F by the identifica- 
tion of  the strategies within certain payoff- 
equivalence classes. First we will formally define 
this game F*. To that purpose consider the equiva- 
lence classes corresponding to the relation of pay- 
off equivalency in the strategy space A(Ai) of 
player i. Let ¢i denote the finite collection of  those 
equivalence classes, say E I , . . . , E s ,  in A(Ai) that 
contain some pure strategy in Ai. Let ~g be the 
collection of those sets in ~i that are a face of 
A(Ai) and write ~ : =  LiEN ~i.  Then, since for 
each player i and every E = (Eh)hEN E ~ the pay- 
off function ui is constant on the subset I-Ih Eh of A, 
we can define u~ : ~ ~ ~ by 

So at least F* : = / ~ - ,  u*) is a well-defined ob- 
ject. However, in order to show that F* is indeed 
a game, we need to know that ~,~, is not empty 
for each player i. In other words, we need to show 
that at least one of  these equivalence classes is such 
a face. In order to prove this, define 

Bi := {a E Aila E E, for some Es E ~ i} .  

Furthermore, let Es* be the collection of  pure 
strategies contained in the equivalence class Es 
and, for a strategy x~ E A(A~) of  player i, let 
C(xi) := {a E Ailxio > 0} be the carrier ofxi. First 
we need to show the following lemma. 

Lemma 3. I f  E,. is not a face o f  A(Ai) ,  then there is a 
strategy z(s)i E Es with C(Z(S)i ) C Bi. 

Proof. Suppose that we can prove the following 
proposition: for every subset •i of  ~x'~ i with 
ffi N ~ i  = 0 we have: for every Es E aJi there is a 
strategy z(s)i E Es whose carrier has an empty in- 
tersection with every E7 for which Et E aJi. 
Then this is in particular true for (~ = g g \ ~ .  
Thus, for every Esq~ ~ we get a strategy 
z(s), E Es whose carrier has an empty intersection 
with every E 7 for which Et q~ ~z ,  which means ex- 
actly that C(z(s)i ) is a subset of  B;. 

So, we have to show that the proposition P(k): 
for every subset ~i  of Ox~i with [ffi[ = k  and 
~ i  r"l ~ i  = ~ we have: for every Es E fgi there is a 
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strategy Z(S)i E Es whose carrier has an empty in- 
tersection with every E t for which E1 E c~i holds 
for every natural number  k. We will prove this by 
induction over k. To do this we need the following. 

(a) Assume that Es is not a face of  A(Ai). Then 
there is a strategy y(s)~ E Es whose carrier is not 
contained in E2. Now let z(s)~ be the strategy ob- 
tained by normalizing the non-zero vector ~,aCE; 
y(S)~aa. Then it is straightforward to check that 

z(s)i= [Zy (S ) ia ] - l { y ( s ) i - -Zy (s ) i aa l  
L~E: J aEE: ) 

is an affine combination of  the payoff-equivalent 
strategies y(s)i and a with a E E~. Therefore z(s)i 
is also payoff equivalent with these strategies and 
hence z(s)i E Es. Furthermore it is clear by con- 
struction that the carrier of  z(s)~ is a subset of  
the carrier of  y(s)~ and that it has an empty inter- 
section with E~. 

(b) Now we can show P(1) as follows. Note that 
P(1) is equivalent with: for every Es f~ o~i there is a 
strategy z(s)i E E~ whose carrier has an empty in- 
tersection with E*. This however is a direct conse- 
quence of part  (a). So, we only need to prove the 
induction step. To this end, assume that P(k) is 
true. We will show P(k + 1). 

Assume that there is a subset ~ff~ of  ~i  with 
]~i l  : k + l  and ~¢t°ino~i is empty. Take an 
E s E o ~ .  Since k + l _ > 2 ,  we can also take an 
E~ E ~ ,  with r Cs.  Then both ~i : :  ~ i \ { E r }  
and ~i::o~ffi \{Es} satisfy the conditions of  
P(k). So, there are strategies, let us call them 
x(s)i E Es and x(r)g E Er, with 

C(X(S)i ) n U Et = O, 
EtEftfi 

n l J  E; = O. C(x(r)i) 
E~ENt~ 

If  also C(x(s)i) n E~ is the empty set, then it is 
clear that the carrier ofx(s)i has an empty intersec- 
tion with every E t for which E t E ~ i  and we have 
a p roof  of  the statement for k -t- 1. So, assume that 
this is not the case, which implies that 
~aEE; X(S)ia > O. Define the strategy y(s)i E Es by 

y(s), := + Z x(s),a[x(r), - a]. 
aCE; 

Now suppose that the carrier ofy(s) ,  is a subset 
of  E~. Since }--~aEE* X(S)ia > 0 by assumption and 
the carrier of  x(r)i ~has an empty intersection with 
E~, it follows directly from the definition of y(s)i 
that the carrier of  x(r)i is a subset of  the carrier 
ofy(s)r  So, the carrier ofx(r)i must also be a sub- 
set of  E~. This would imply that x(r)i is an element 
of  Es, which is impossible since x(r)~ is an element 
of  Er and E r ¢  E,. 

Thus we know that the carrier of  y(s)~ E E, is 
not contained in E~.. So, we can apply the construc- 
tion described in part  (a) to y(s)~ to obtain a strat- 
egy z(s)i E Es whose carrier is contained in the 
carrier of  y(s)~ and has an empty intersection with 
E;. Now note that the carrier ofy(s)i has an empty 
intersection with E~ and every E t with 
Et E ~i n ~'i = ~ i \  {E~,Er}. Hence, the carrier of  
z(s)~ E Es has an empty intersection with every E~ 
for which Et E .¢gi. This concludes the proof  of  
the induction step. [] 

Now it is easy to show that ~g  is not empty. 
Suppose that it is empty. Then none of the ele- 
ments of  the non-empty set gi is a face of  A(Ag). 
So, we can take an E~ Egg that is not a face of 
A(Ai) and by Lemma 3 there is a strategy 
z(s)i c E~ such that 

C(z(s)i ) n Ai = C(z(s)i ) n UE ;  = O. 
tES 

Since this is impossible, we know that ~ i  is not 
empty. Hence, F* := (o~, u*) is indeed a game. Fi- 
nally we will show that F* is indeed the reduced 
form of  F. So, by Theorem 2, we need to prove 
that F* is a reduction of  F and that F* is a reduced 
game. First we will prove that F* is a reduction of 
F. It is convenient to split this p roof  into two 
parts. Consider the game F ' =  (B,d) wherein 
u'j: ~ IR is the restriction of ui to the subset 

B := 1--bEN Bi of A. 

Lemma 4. The game F' is a reduction of  F. 

Proof. We will show that there exists a reduction 
map f from F to F'. 
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To this end, take a player i and a pure strategy 
a ~ Bi. Then the equivalence class in ox'~i that con- 
tains a is not an element of  ~-~. So we can use 
Lemma 3 and choose a strategy z(a)i that is payoff 
equivalent with a while C(z(a)i ) c Bi. (Obviously 
we can coordinate these choices in such a way that 
z(a)i = z(b)i whenever a is payoff equivalent with 
b, but this is not necessary for our argument.) 
We introduce the map f : A(Ai) --* A(Bi) with, for 
every xi E A(Ai) and every b E Bi, 

: =  + 

aq~Bi 

Note that fi(xi) is an element of A(Bi) because of  
the fact that C(z(a)i ) C Bi for every z(a)r Further- 
more, it is easily verified that J~ is affine and onto. 

So, we only have to show that ui = u' i o f .  The 
exact proof  of  this, although not difficult, is a bit 
messy. Therefore we will only present one step of  
the proof. Take i , j E N  and xEAA. For  
b = (bi)i~N E B, write b-i = (bj)j# i and I-[b_, = 

Hh#ifh(Xh)bh" Then 

(UJ Os)(x)  : Z fi(Xi)b, H u;.(b) 
bEB b 

= U j ( b - d b D  • 

b tEB-i b-i biEBi 

Now take a fixed b_~ E B ~. Then we can com- 
pute that 

Z f i ( X i ) b ,  Uj(b-ilbi) 
biEBi 

= Z [ xibi At- ZXiaZ(a)ib,] uj(b-i[bi) 
bicBi a([Bi 

= Z Xib, uj(b-ilbi)+ Z X i a  Z z(a)ib, uj(b-ilbi) 
biEBi a~Bi bicBi 

= ~-~x~au/(b_~la) + ~-~x~uj(b_,[ z(a)~) 
aEBi aliBi 

-~- Z XiaUj(b-ila) -[- ZX iaUj (b - i l a )  = uj(b-,lxD. 
aEBs aliBi 

(u;.o s)(x) = 27 I I  u (b_,i x,/. 
bEB b i 

Thus, repetition of this computation eventually 
yields the equality (u~. o f ) (x )  = uj(x). Hence, f is 
a reduction map from F to F'. [] 

Secondly, we have the following lemma. 

Lemma 5. The game F* is a reduction of  the game 
F t" 

Proof. Define for player i the map 
~i " A(Bi) - - ,  m ( ~ i )  by, foryi  E A(Bi) and E E ~ i ,  

7~i(Yi) E := Z y i a  
aEE 

and it := (Zti)iEN. It is to be shown that n is a reduc- 
tion map from F t to F*. Evidently rt~ is an affine 
map onto A(~ i )  for every player i. So it remains 
to be shown that rt preserves pay offs. However, 
there is a simple argument why u~. = u~ o n. Take 
a pure strategy profile (b~)iES E B. Let E(b,) E ~ i  
denote the unique equivalence class that contains 
b,. Then 

, , ,) 
= Uj((bi)iEN) = ' uj((bD, N). 

So, both u~ o zt and u) are multi-affine maps from 
As to A~- that agree on the set of  extreme points 
of As. Then they are necessarily identical, which 
completes the proof. [] 

The last two lemmas together show that zco f is 
a reduction map from F to F*. So, F* is a reduc- 
tion of  F and, by Theorem 2, the only thing left 
to show is the following theorem. 

Theorem 3. F* & a reduced game. 

The third equality follows from the fact that the 
carrier of  z(a)i is contained in Bi and the fourth 
one from the payoff equivalence of a and z(a)i. 
Now the substitution of  the result of  the second 
displayed computation into the first one yields 

Proof. Suppose that it is not. Then for some player 
j there must be a pure strategy E E ~-j that is pay- 
off equivalent with a strategy zj E A(~j ) ,  while 
zj # E. Furthermore, since 7~ o f  is a reduction 
map from F to F* it is certainly onto. In particular, 
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there is a strategy xj E A(Aj) with (ztj o J))(xj) = zj. 
It is also easily checked that (ztj oJ))(b) = E given 
a pure strategy b E E. Then the fact that rcj o f j  
preserves payoff equivalence implies that xj is pay- 
off equivalent with b E E. So, xj must also be an 
element of E. However, E itself is an element of 
.N j, which means that E is a face of A(Aj). There- 
fore, xj must be a convex combination of the pure 
strategies b E E* in E. Since for all these strategies 
b E E* it can easily be checked that (Ttjo~) 
(b) = E, it follows from the affinity of rcj o J) that 
also (nj o fj)(xj) = E. This however contradicts 
the assumption that (rcj oJ))(xj) = zj ¢ E. Hence, 
F* must be a reduced game. [] 

5. Computational aspects 

The actual computation of the reduced form 
F* = (o ~ ,  u*) of the game F = {A, u) can be done 
in finite time. To see this we will first argue that 
for each player i the set o~i can be computed in fi- 
nite time. To this end, take a pure strategy b E A~ 
and let Es E gi be the unique equivalence class that 
contains b. Write A g : =  I-[h¢iAh . Then E~ is ex- 
actly the set of points x E N A' that satisfy the finite 
system of linear (in)equalities 

for all j E N and for all a-i E A_i: 

uj(a _ilx~) = uj(a_i[b) 

for all a E Ai : Xia >t O, E Xia = 1. 
aEAi 

Thus we have a polyhedral description of the poly- 
tope E, and the set ext(E,) of extreme points of E, 
can be calculated in finite time. Now note that 

E ~ E ~  if and only if ext(Es) CAi 

and that the second condition can also be checked 
in finite time. So, since there are only finitely many 
elements b E A~ and every element of Ni occurs at 
least once in the above procedure when b ranges 
through A~, we have a method to check within fi- 
nite time exactly which elements of gi are also ele- 

ments of o~i. Now select exactly one element in 
each set ext(E~) for which E, E ~ i .  This selection 
yields a subset Ci of Ai. Write C := I-L ci and let 
vi be the restriction of ui to C. Since both the selec- 
tion process and the evaluation of ug on C can also 
be done in finite time, we can construct the game 
F' = (C, v) from F in finite time. Finally note that 
F' and F* are isomorphic. Hence, F' is the reduced 
form of F and can be derived from F in a finite 
number of steps. 

Example. For the strategy space A4 of the second 
player of the 2 × 4-bimatrix game 

[0,1 0,2 0 , - 1  0,01 
F =  _0,-1  0 , - 2  0,1 0 ,0J '  

there are four equivalence classes containing a 
pure strategy: 

1 1 E, = ch{el,2e2 +3e3,Te2 + ½e4}, 

E2 = {e2}, E3 = {e3}, 
2 1 E4 = ch{e4, ~e2 + 5e3,ie, + ½e3}. 

Clearly ~ 2  = {E2,E3}. Hence, the reduced game 
of F is the game 

[0,2 0 , - , ]  
0 , - 2  0, 1 

obtained by deleting the first and last column. 
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