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ABSTRACT. We consider the problem of choosing the location of a public facil-
ity either (a) on a tree network or (b) in a Euclidean space. (a) (1996) characterize
the class of target rules on a tree network by Pareto efficiency and population-
monotonicity. Using Vohra’s (1999) characterization of rules that satisfy Pareto
efficiency and replacement-domination, we give a short proof of the previous
characterization and show that it also holds on the domain of symmetric pref-
erences. (b) The result obtained for model (a) proves to be crucial for the ana-
lysis of the problem of choosing the location of a public facility in a Euclidean
space. Our main result is the characterization of the class of coordinatewise tar-
get rules by unanimity, strategy-proofness, and either replacement-domination or
population-monotonicity.
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get rules, Pareto efficiency, Population-monotonicity, Replacement-domination

1. INTRODUCTION

First, we consider the problem of choosing the location of a pub-
lic facility on a tree network, or tree,1 when agents have single-
peaked preferences. For the special case where the tree equals a
closed interval, the problem coincides with the problem of choosing
a level of a public good when agents have single-peaked prefer-
ences (Moulin, 1980).2 An example for the problems we consider
is the problem of locating a public facility, e.g., a library, on a tree
network that represents an infrastructure (the network of roads of
a neighborhood). Several solutions for this class of problems have
been proposed and characterized by desirable properties; see for
instance Ching and Thomson (1996), Danilov (1994), Foster and
Vohra (1998), Schummer and Vohra (2001), and Vohra (1999).

� A previous version of this paper was presented at the International Confer-
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For rules on tree networks, Ching and Thomson (1996) and Vohra
(1999) consider the solidarity properties population-monotonicity
and replacement-domination, respectively. Replacement-domination
states that if an agent’s preference relation is ‘replaced’ by some
other admissible preference relation, then this unilateral change af-
fects the remaining agents in the same direction, i.e., the remain-
ing agents all (weakly) gain or they all (weakly) lose. Population-
monotonicity requires that after the arrival of new agents all agents
initially present are affected in the same direction. It turns out that
the class of rules satisfying Pareto efficiency and population-mono-
tonicity is the class of ‘target rules’ (Ching and Thomson, 1996).3

Each target rule is determined by its target point. If the target point
is Pareto efficient, then the target point is chosen by the rule. If the
target point is not Pareto efficient, then the closest Pareto efficient
point to the target point is chosen by the rule. This target oriented
decision pattern is implicitly present in many decision processes in
our daily lives and in many public choice decision processes, target
oriented decisions prevail, particularly when the target point equals
a status quo point.

Vohra (1999) proves for tree networks that if the set of agents
is fixed, contains at least three agents, and has symmetric single-
peaked preferences, then the class of rules satisfying Pareto effi-
ciency and replacement-domination equals the class of target rules.
We show that this result remains true for the larger domain of single-
peaked preferences. In the first part of the paper, using Vohra’s
(1999) result and our result that Pareto efficiency and population-
monotonicity imply replacement-domination, we give a short proof
of Ching and Thomson’s (1996) characterization. Furthermore, we
prove that the characterization also holds on the smaller domain of
symmetric single-peaked preferences. This latter result turns out to
be crucial for the second part of the paper.

In the second part of the paper, we analyze the implications of
the solidarity properties population-monotonicity and replacement-
domination for the problem of choosing the location of a public
facility in a Euclidean space or allocating several public issues, e.g.,
budget-constrained investment divisions among several public pro-
jects or bundles of public goods. We assume that every agent has
an individual best point and his preferences decline according to the
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distance to this best point. Because agents might weigh coordinates
differently, we assume that preferences are induced by separable-
quadratic distance functions (Border and Jordan, 1983). Other pa-
pers that study solutions to the problem of choosing the location of
a public facility in a Euclidean space and their properties are Barberà
et al. (1993), Peremans et al. (1997), and Peters et al. (1992).

If we naturally extend target rules to Euclidean spaces, it is ob-
vious that none of these rules satisfies either one of the solidarity
properties. However the coordinatewise versions of the target rules,
which are not Pareto efficient, do satisfy replacement-domination,
population-monotonicity, and the weaker efficiency requirement of
unanimity. It follows from a result of Border and Jordan (1983) and
the previous results for rules on trees (or particularly the real line)
that, essentially, the class of coordinatewise target rules is char-
acterized by unanimity, strategy-proofness, and either population-
monotonicity or replacement-domination.

2. PUBLIC GOOD ECONOMIES ON TREE NETWORKS

2.1. The model

As in Ching and Thomson (1996) and Vohra (1999) we consider the
problem of choosing a location on a tree T . Since for our analysis
it only matters that for any two locations on T there exists a unique
path that connects these two locations, we omit a formal definition
of a tree; see for instance Demange (1982). Let x, y ∈ T . Then, by
[x, y] we denote the path connecting x and y. Note that according
to this notation, [x, y] = [y, x].

There is a population of ‘potential’ agents, indexed by P ⊆ N

where N denotes the set of natural numbers. We assume that P con-
tains at least three agents, i.e., |P| � 3. Note that P can be either
finite or infinite. Each agent i ∈ P is equipped with a continuous
and ‘single-peaked’ preference relation Ri defined on T (Demange,
1982). As usual, x Ri y is interpreted as ‘x is weakly preferred to y’,
and x Pi y as ‘x is strictly preferred to y’. Single-peakedness of Ri
means that Ri is single-peaked on every path of T ; i.e., there exists
a point p(Ri) ∈ T , called the peak of agent i, with the following
property: for all x, y ∈ T , x �= y, such that [y, p(Ri)] ⊂ [x, p(Ri)],
we have y Pi x. By R we denote the class of all continuous, single-
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peaked preference relations on T . By P we denote the class of
non-empty and finite subsets of P. For N ∈ P , RN denotes the
set of (preference) profiles R = (Ri)i∈N such that for all i ∈ N ,
Ri ∈ R. A rule ϕ is a function that assigns to every N ∈ P and
every R ∈ RN a location ϕ(R) ∈ T , i.e., ϕ : ⋃

N∈P RN → T .

2.2. Target rules and their properties

The first property of a rule we introduce is Pareto efficiency. Let
N ∈ P and x, y ∈ T . If for all i ∈ N , x Ri y and for some j ∈ N ,
x Pj y, then we call x a Pareto improvement of y.

Pareto efficiency: For all N ∈ P and all R ∈ RN , there exists
no Pareto improvement of ϕ(R).

Let N ∈ P and R ∈ RN . Then, by P (R) we denote the convex
hull of all agents’ peaks; i.e., the smallest connected subset of the
tree that contains all agents’ peaks.

Consider the ‘degenerate’ case where T equals an interval or the
real line. Then, P (R) = [mini∈N p(Ri),maxi∈N p(Ri)] and Pareto
efficiency is equivalent to ϕ(R) ∈ P (R). It is easy to show that this
condition also characterizes Pareto efficiency of rules on trees. We
call P (R) the Pareto set of R.

LEMMA 1. A rule ϕ is Pareto efficient if and only if for all N ∈ P
and all R ∈ RN , ϕ(R) ∈ P (R).

The following class of ‘target rules’ will play an important role
in the sequel. Any target rule is determined by its target point. If the
target point is Pareto efficient, then it is chosen by the rule. If the
target point is not Pareto efficient, then the (unique) closest Pareto
efficient point to it is chosen by the rule.

Target rules: Let a ∈ T .4 Then, by ϕa we denote the following
target rule with target point a: for all N ∈ P and all R ∈ RN ,

ϕa(R) =



a if a ∈ P (R),
x where x ∈ P (R) is the closest point to P (R)

otherwise.

Next, we introduce the ‘solidarity’ property replacement-domi-
nation. It incorporates a notion of solidarity among agents when a
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single agent changes his preference relation, e.g., if an agent’s pref-
erence relation is exchanged by another preference relation, then,
after this change, either all remaining agents are (weakly) better off
or they all are (weakly) worse off. In a recent paper, Thomson (1999)
surveys the literature on replacement-domination.

Let N,M ∈ P with N ⊆ M and R ∈ RM . We denote the
restriction (Ri)i∈N ∈ RN of R toN byRN . We also use the notation
R−i = RN\{i}. For example, (R̄i, R−i) denotes the profile obtained
from R by replacing Ri by R̄i .

Replacement-domination: For all N ∈ P , all R ∈ RN , all j ∈
N , and all R̄j ∈ R, either [for all i ∈ N\{j }, ϕ(R)Ri ϕ(R̄j , R−j )]
or [for all i ∈ N\{j }, ϕ(R̄j , R−j ) Ri ϕ(R)].

Thomson (1993) proved that if T is a closed interval and the set
of agents is fixed and contains at least three agents, then the class of
rules satisfying Pareto efficiency and replacement-domination equals
the class of target rules. For tree networks T , Vohra (1999) proves
the characterization for the subdomain of symmetric preferences
S ⊂ R. We state his result for the variable population setting at
hand.

THEOREM 1 (Vohra). Suppose ϕ : ⋃
N∈P
|N |�3

SN → T . Then ϕ sat-

isfies Pareto efficiency and replacement-domination if and only if
for every N ∈ P , |N | � 3, there exists aN ∈ T such that for all
R ∈ SN , ϕ(R) = ϕa

N
(R).

It is easy to show that the characterization of Theorem 1 also
holds on the domain

⋃
N∈P
|N |�3

RN .

COROLLARY 1. Suppose ϕ : ⋃
N∈P
|N |�3

RN → T . Then ϕ satis-

fies Pareto efficiency and replacement-domination if and only if for
every N ∈ P , |N | � 3, there exists aN ∈ T such that for all
R ∈ RN , ϕ(R) = ϕa

N
(R).

Proof. It is easy to prove that if for every N ∈ P , |N | � 3, there
exists aN ∈ T such that for all R ∈ RN , ϕ(R) = ϕa

N
(R), then ϕ

satisfies Pareto efficiency and replacement-domination.
Let ϕ satisfy Pareto efficiency and replacement-domination. Let

N ∈ P and |N | � 3. Then, by Theorem 1, there exists aN ∈ T such
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that for all R ∈ SN , ϕ(R) = ϕa
N
(R). We have to prove that for all

R̄ ∈ RN , ϕ(R̄) = ϕa
N
(R̄).

Let R̄ ∈ RN . If R̄ ∈ SN , then ϕ(R̄) = ϕa
N
(R̄) and we are done.

If R̄ /∈ SN , then there exists some j ∈ N such that R̄j /∈ S. Next,
we replace agent j ’s preference relation by a symmetric preference
relation with the original peak: let R̃ be such that R̃−j = R̄−j ,
p(R̃j ) = p(R̄j ), and R̃j ∈ S. Hence, at profile R̃ we increased
the number of agents with symmetric preferences by one. By Pareto
efficiency and replacement-domination, ϕ(R̃) = ϕ(R̄). Hence, if
R̃ ∈ SN , then ϕ(R̃) = ϕa

N
(R̃) = ϕa

N
(R̄). Thus, ϕ(R̄) = ϕa

N
(R̄).

If R̃ /∈ SN , then there exists some k ∈ N such that R̃k /∈ S. Simil-
arly as before, we can increase the number of agents with symmetric
preferences by one, etc. Since the number of agents in N is finite,
this procedure ends with a symmetric preference profile R̂ ∈ SN
such that for all i ∈ N , p(R̂i) = p(R̄i) and ϕ(R̂) = . . . = ϕ(R̃) =
ϕ(R̄) = ϕa

N
(R̄). �

The next solidarity property we discuss is population-mono-
tonicity. It incorporates a notion of solidarity among agents when
changes in the population occur, e.g., if a group of agents leave, then,
after this change, either all remaining agents are (weakly) better
off or they all are (weakly) worse off. For a survey on population-
monotonicity we refer to Thomson (1995).

Population-monotonicity: For all N,M ∈ P such that N ⊆ M

and all R ∈ RM , either [for all i ∈ N , ϕ(RN)Ri ϕ(R)] or [for all
i ∈ N , ϕ(R)Ri ϕ(RN)].

The following lemma will be useful later on. We leave the simple
proof to the reader.

LEMMA 2. Let ϕ satisfy Pareto efficiency and population-mono-
tonicity. Then, for all N,M ∈ P such that N ⊆ M , all i ∈ N , and
all R ∈ RM , ϕ(RN)Ri ϕ(R). Furthermore, if ϕ(R) ∈ P (RN), then
ϕ(RN) = ϕ(R). Particularly, if P (RN) = P (R), then ϕ(RN) =
ϕ(R).

Ching and Thomson (1996) proved that on the domain of single-
peaked preferences the class of rules satisfying Pareto efficiency and
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population-monotonicity equals the class of target rules. We state
this result for the domain of symmetric preferences.

THEOREM 2. Suppose ϕ : ⋃
N∈P SN → T . Then ϕ satisfies

Pareto efficiency and population-monotonicity if and only if ϕ = ϕa

for some a ∈ T .

The proof of Theorem 2 can be found in the Appendix. On one
hand, the proof establishes the validity of Ching and Thomson’s
(1996) result on the domain of symmetric preferences, on the other
hand, it is an alternative way to prove Ching and Thomson’s (1996)
characterization. Furthermore, Theorem 2 proves to be crucial for
the analysis of the problem of choosing the location of a public
facility in a Euclidean space in Section 3.

Next, we discuss the incentive property strategy-proofness for
rules on tree networks. Strategy-proofness requires that no agent
ever benefits from misrepresenting his preference relation.

Strategy-proofness: For allN ∈ P , all R ∈ RN , all j ∈ N , and
all R̄j ∈ R, ϕ(R)Rj ϕ(R̄j , R−j ).
It is easy to prove that any target rule is strategy-proof. Since

the names of the agents do not matter in the assignment of the loc-
ation, these rules also satisfy the well-known property anonymity.
Hence, the class of rules that satisfy Pareto efficiency and either
replacement-domination or population-monotonicity are selections
of the set of rules satisfying Pareto efficiency, strategy-proofness,
and anonymity. In his seminal paper, Moulin (1980) characterized
the latter class of rules for the case that T is a line or a closed interval
as the class of ‘generalized Condorcet-winner rules’ or ‘generalized
median-voter rule’: the outcome is the median of the peaks of the
|N | agents and |N | − 1 fixed ballots.5 In the case of a target rule, all
|N | − 1 fixed ballots are equal to the target point.

The last property for rules we consider is unanimity: If all agents
have the same preference relation, then the unanimous best point for
all, the common peak, is chosen by the rule.

Unanimity: For all N ∈ P and all R ∈ RN such that for all
i, j ∈ N , Ri = Rj , ϕ(R) = p(Ri).

It is easy to prove that unanimity and strategy-proofness together
imply Pareto efficiency. Hence, in Moulin’s (1980) characterization
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of generalized median-voter rules, Pareto efficiency can be weakened
to unanimity (Ching, 1997).6 This also implies that in Theorems 1
and 2, we can replace Pareto efficiency by unanimity and strategy-
proofness.

COROLLARY 2. Suppose ϕ : ⋃
N∈P
|N |�3

SN → T . Then ϕ satisfies

unanimity, strategy-proofness, and replacement-domination if and
only if for every N ∈ P , |N | � 3, there exists aN ∈ T such that for
all R ∈ SN , ϕ(R) = ϕa

N
(R).

COROLLARY 3. Suppose ϕ : ⋃
N∈P SN → T . Then ϕ satisfies

unanimity, strategy-proofness, and population-monotonicity if and
only if ϕ = ϕa for some a ∈ T .

Note that Corollaries 2 and 3 remain true on the larger domain
of single-peaked preferences. The properties in Corollaries 2 and
3 are independent: Any constant rule satisfies strategy-proofness,
replacement-domination, and population-monotonicity, but not un-
animity. Any dictatorial rule satisfies unanimity and strategy-proof-
ness, but neither replacement-domination nor population-monoton-
icity. The following rule ψa satisfies unanimity, population-mono-
tonicity, and replacement-domination, but not strategy-proofness.
Furthermore it is not Pareto efficient.

EXAMPLE 1. Let a ∈ T . Then, for all N ∈ P and all R ∈ RN ,

ψa(R) =
{
p(Ri) if for all i, j ∈ N , Ri = Rj,

a otherwise.

3. PUBLIC GOOD ECONOMIES IN EUCLIDEAN SPACES

3.1. The model

As Border and Jordan (1983) we consider the problem of choosing
a location in some Euclidean space E. We assume that E = R

m

where m ∈ N.
There is a population of ‘potential’ agents, indexed by P ⊆ N.

We assume that P contains at least three agents, i.e., |P| � 3. Note
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that P can be either finite or infinite. Each agent i ∈ P is equipped
with a separable-quadratic preference relation Ri over E (Border
and Jordan, 1983); that is: for each agent i ∈ N there exists a strictly
positive weight vector δi = (δi1, ..., δ

i
m) � 0 and a peak p(Ri) ∈

E such that for all x, y ∈ E, x Ri y if and only if
∑m
j=1 δ

i
j (xj −

p(Ri)j )
2 �

∑m
j=1 δ

i
j (yj − p(Ri))

2.

Note that every separable-quadratic preference relationRi is com-
pletely determined by a pair (δi, p(Ri)) where δi � 0,

∑
j∈M

(δij )
2 = 1, andp(Ri) ∈ E. By Q we denote the class of all separable-

quadratic preference relations on E. For each agent i ∈ P, we
identify the preference relation Ri ∈ Q with its characteristic pair
(δi, p(Ri)) and write Ri = (δi, p(Ri)) ∈ Q.

Single-peakedness of preference relations Ri on E means that
Ri is single-peaked on every line in E that contains p(Ri). It is
easy to check that all separable-quadratic preference relations are
single-peaked, i.e., for all Ri ∈ Q, all x ∈ E, x �= p(Ri), and all
λ ∈ (0, 1), p(Ri) Pi [λp(Ri)+ (1 − λ)x]Pi x. A geometric implic-
ation of Ri ∈ Q being separable-quadratic is that the corresponding
indifference sets are ellipsoids around the peak p(Ri) with main
diagonals parallel to the coordinate axes. The closer these ellipsoids
are to p(Ri) the better the points on it are.

For N ∈ P , QN denotes the set of (preference) profiles R =
(Ri)i∈N such that for all i ∈ N , Ri ∈ Q. A rule ϕ is a function that
assigns to every N ∈ P and every R ∈ QN a location ϕ(R) ∈ E;
i.e., ϕ : ⋃

N∈P QN → E.

3.2. Coordinatewise target rules and their properties

We are interested in the same properties as for rules on tree net-
works. The definitions of Pareto efficiency, replacement-domination,
population-monotonicity, strategy-proofness, and unanimity are ob-
tained from the previous definitions by simply replacing the domain
of each agent’s preferences R by Q.

Similarly as before, a target rule is defined as follows. For any
given target point in E and any preference profile the following
holds. If the target point is Pareto efficient, then the target point
is chosen by the rule. If the target is not Pareto efficient, then the
(unique) closest Pareto efficient point to the target point is chosen
by the rule.



22 BETTINA KLAUS

However, because now, agents report with their preference re-
lation a separable-quadratic distance function, it is easy to show
that none of the target rules satisfies strategy-proofness.7 Further-
more, none of the target rules satisfies replacement-domination or
population-monotonicity.

Therefore we consider the following variations of target rules: the
coordinatewise target rules. We need some extra notation.

Let j ∈ {1, . . . , m}, i ∈ P and Ri ∈ Q. Then, by Rji , we de-
note the restriction, or projection, of the preference relation to the
j th coordinate axes. Note that then Rji is a symmetric preference
relation defined on R where R represents the j th coordinate axes.
For N ∈ P and R ∈ QN , Rj = (R

j
i )i∈N denotes the restriction of

profile R to the j th coordinate axes. Let Ē ≡ (R ∪ {−∞,∞})m.

Coordinatewise target rules: Let a = (a1, . . . , am) ∈ Ē. Then,
by ϕa we denote the following coordinatewise target rule with
target point a: for allN ∈ P , allR ∈ QN , and all j ∈ {1, . . . , m},
ϕaj (R) = ϕaj (Rj ).

It is easy to prove that none of the coordinatewise target rules
satisfies Pareto efficiency. However, any coordinatewise target rule
satisfies unanimity, anonymity, strategy-proofness, replacement-
domination, and population-monotonicity. Hence, the class of co-
ordinatewise target rules is a selection of the set of rules satisfy-
ing unanimity, anonymity, and strategy-proofness. Recall that in the
one-dimensional case, this latter class is equal to the class of gener-
alized median-voter rules.

Border and Jordan (1983) showed that a rule that satisfies un-
animity and strategy-proofness can be decomposed into coordinate-
wise rules that are again unanimous and strategy-proof.

For N ∈ P and j ∈ {1, . . . , m}, the set of restricted preference
profiles to the j th coordinate axes is denoted by QN

j = {(Rji )i∈N |
R ∈ QN }.
THEOREM 3 (Border and Jordan). Let N ∈ P . A rule ϕ : QN →
E satisfies unanimity and strategy-proofness if and only if there are
m (coordinatewise) rules ϕj : QN

j → R, j ∈ {1, . . . , m}, which are

unanimous and strategy-proof such that for all N ∈ P , all R ∈ QN ,
and all j ∈ {1, . . . , m}, ϕj(R) = ϕj(Rj ).
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Hence, by Theorem 3, the class of rules that satisfy unanimity
strategy-proofness, and anonymity, similarly as for the one-dimen-
sional case (Moulin, 1980), consists of generalized median-voter
rules: the outcome is the coordinatewise median of the peaks of
the |N | agents and |N | − 1 fixed ballots. Again, in the case of a
coordinatewise target rule, all |N | − 1 fixed ballots are equal to the
target point a ∈ E.

3.3. Two characterizations

Since none of the target rules satisfies replacement-domination or
population-monotonicity, it is obvious that Theorems 1 and 2 do
not extend to rules on the set of separable-quadratic profiles. The
following theorems demonstrate that Corollaries 2 and 3 do extend
to the model at hand.

THEOREM 4. Suppose ϕ : ⋃
N∈P
|N |�3

QN → E. Then ϕ satisfies

unanimity, strategy-proofness, and replacement-domination if and
only if for every N ∈ P , |N | � 3, there exists aN ∈ E such that for
all R ∈ QN , ϕ(R) = ϕa

N
(R).

Proof. Let N ∈ P and |N | � 3 and assume that ϕ satisfies
unanimity, strategy-proofness, and replacement-domination. Then,
by Theorem 3, there exist m (coordinatewise) rules ϕj : QN

j → R,
j ∈ {1, . . . , m}, which are unanimous and strategy-proof, such that
for all R ∈ QN , and all j ∈ {1, . . . , m}, ϕj (R) = ϕj(Rj ).

Since all rules ϕj satisfy unanimity and strategy-proofness, they
also satisfy Pareto efficiency (with respect to dimension j ). Further-
more, it is easy to see that replacement-domination of the rule ϕ
implies replacement-domination (with respect to dimension j ) for
the rules ϕj .8 Since any of the rules ϕj satisfies Pareto efficiency
and replacement-domination, by Theorem 1,9 for all j ∈ {1, . . . , m}
there exist aNj ∈ R such that for all Rj ∈ QN

j , ϕj (Rj) = ϕ
aNj (Rj ).

Let aN ≡ (aN1 , . . . , a
N
m ). Then, for all R ∈ QN , ϕ(R) = ϕa

N
(R). �

THEOREM 5. Suppose ϕ : ⋃
N∈P QN → E. Then ϕ satisfies

unanimity, strategy-proofness, and population-monotonicity if and
only if ϕ = ϕa for some a ∈ E.

Proof. Let ϕ satisfy unanimity, strategy-proofness, and population-
monotonicity. So, by Theorem 3, there exist m (coordinatewise)
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rules ϕj : ⋃
N∈P QN

j → R, j ∈ {1, . . . , m}, which are unanimous

and strategy-proof, such that for all N ∈ P , all R ∈ QN , and all
j ∈ {1, . . . , m}, ϕj (R) = ϕj (Rj).

Since all rules ϕj satisfy unanimity and strategy-proofness, they
also satisfy Pareto efficiency (with respect to dimension j ). Fur-
thermore, it is easy to see that population-monotonicity of the rule
ϕ implies population-monotonicity (with respect to dimension j )
for the rules ϕj .10 Since any of the rules ϕj satisfies Pareto effi-
ciency and population-monotonicity, by Theorem 2,11 for all j ∈
{1, . . . , m} there exist aj ∈ R such that for allN ∈ P , allRj ∈ QN

j ,

ϕj(Rj ) = ϕaj (Rj). Let a ≡ (a1, . . . , am). Then, ϕ = ϕa . �
The rules that prove the independence of the properties in Corol-

laries 2 and 3 can be easily adjusted to demonstrate the independ-
ence of the properties in Theorems 4 and 5.

As one of the referees pointed out: ‘Theorems 4 and 5 can be
viewed as answers to the following questions: Which (sequences of)
generalized median voter schemes satisfy population-monotonicity
(or replacement-domination)?’

4. CONCLUSION

Samuelson and Zeckhauser (1988) prove that in many situations in-
dividuals disproportionally stick to the status quo. In other words,
a ‘target bias’ with the target equal to the status quo is present in
many decisions. Our main results imply that in public good econom-
ies Pareto efficiency and solidarity imply such a target bias. Target
rules with the target equal to the status quo are useful in economic
situations when agents have veto power over changes in the status
quo. A practical advantage of target rules is that they are simple
and can be implemented easily and quickly. Furthermore, they are
strategy-proof and to some extent fair if they use ‘fair’ target points.
Similar results for probabilistic rules are obtained in Ehlers and
Klaus (2001).
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APPENDIX

Proof of Theorem 2

First we show that Pareto efficiency and population-monotonicity
imply replacement-domination.

LEMMA 3. Let ϕ : ⋃
N∈P SN → T be Pareto efficient and popula-

tion-monotonic. Then ϕ satisfies replacement-domination.
Proof. Let ϕ be a Pareto efficient and population-monotonic rule.

Hence, we can apply Lemma 2 throughout the proof. Assume, by
contradiction, that ϕ does not satisfy replacement-domination. Then
there exist N ∈ P , j, k, l ∈ N , j �= k, l, and R, R̄ ∈ SN such that
R−j = R̄−j and

ϕ(R) Pk ϕ(R̄) and ϕ(R̄) Pl ϕ(R). (1)

Lemma 2 applied to R and R−j implies for all i ∈ N\{j },
ϕ(R−j ) Ri ϕ(R). (2)

Lemma 2 applied to R̄ and R−j = R̄−j implies for all i ∈ N\{j },
ϕ(R−j ) Ri ϕ(R̄). (3)

By (1) and (2), ϕ(R̄−j ) Pk ϕ(R̄). Hence, by (3) and Pareto efficiency,
ϕ(R̄) /∈ P (R̄−j ). By (1) and (3), ϕ(R−j ) Pl ϕ(R). Hence, by (2) and
Pareto efficiency, ϕ(R) /∈ P (R−j ).

Assume that agent l leaves profile R̄. Because ϕ(R̄) /∈ P (R̄−j ) it
follows that ϕ(R̄) ∈ [p(R̄j ), p(R̄k)] ⊆ P (R̄−l). Thus, by Lemma 2,
ϕ(R̄−l) = ϕ(R̄). Next, we add agent l with preference relation R̃l
such that p(R̃l) = ϕ(R̄) to profile R̄−l . SinceP (R̄−l) = P (R̄−l , R̃l),
by Lemma 2, ϕ(R̄−l , R̃l) = ϕ(R̄−l) = ϕ(R̄).

Now, agent j leaves profile (R̄−l , R̃l). Since ϕ(R̄−l , R̃l) ∈
P (R̄−j,l, R̃l), by Lemma 2, ϕ(R̄−j,l, R̃l) = ϕ(R̄−l , R̃l) = ϕ(R̄).
Then, we add agent j with preference relation R̃j such that p(R̃j ) =
ϕ(R) to profile (R̄−j,l, R̃l). Recall that ϕ(R) Pk ϕ(R̄)=ϕ(R̄−j,l, R̃l).
Hence, if ϕ(R̄−j,l, R̃j , R̃l) /∈ P (R̄−j,l, R̃l), then ϕ(R̄−j,l, R̃j , R̃l) ∈
[ϕ(R), p(R̄k)]. This implies that ϕ(R̄−j,l, R̃j , R̃l) Pk ϕ(R̄−j,l, R̃l).
This is a contradiction to Lemma 2. So, ϕ(R̄−j,l, R̃j , R̃l) ∈ P (R̄−j,l,
R̃l) and by Lemma 2, ϕ(R̄−j,l, R̃j , R̃l) = ϕ(R̄−j,l, R̃l) = ϕ(R̄).
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Next, agent k leaves profile (R̄−j,l, R̃j , R̃l). Since ϕ(R̄−j,l, R̃j ,
R̃l) ∈ P (R̄−j,k,l, R̃j , R̃l), by Lemma 2,

ϕ(R̄−j,k,l, R̃j , R̃l) = ϕ(R̄−j,l, R̃j , R̃l) = ϕ(R̄). (4)

Next, assume that agent k leaves profile R. Because ϕ(R) /∈
P (R−j ) it follows that ϕ(R) ∈ [p(Rj ), p(Rl)] ⊆ P (R−k). Thus,
by Lemma 2, ϕ(R−k) = ϕ(R). Next, we add agent k with pref-
erence relation R̂k such that p(R̂k) = ϕ(R) to profile R−k. Since
P (R−k) = P (R−k, R̂k), by Lemma 2, ϕ(R−k, R̂k) = ϕ(R−k) =
ϕ(R).

Now, agent j leaves (R−k, R̂k). Since ϕ(R−k, R̂k)∈P (R−j,k, R̂k),
by Lemma 2, ϕ(R−j,k, R̂k) = ϕ(R−k, R̂k) = ϕ(R). Then, we add
agent j with preference relation R̃j to profile (R−j,k, R̂k). Since
P (R−j,k, R̂k) = P (R−k, R̃j , R̂k), by Lemma 2, ϕ(R−k, R̃j , R̂k) =
ϕ(R−j,k, R̂k) = ϕ(R).

Next, agent k leaves profile (R−k, R̃j , R̂k). Since ϕ(R−k, R̃j ,
R̂k) ∈ P (R−k, R̃j ), by Lemma 2, ϕ(R−j,k, R̃j ) = ϕ(R−k, R̃j , R̂k) =
ϕ(R). Then, we add agent k with preference relation R̃k such that
p(R̃k) = ϕ(R̄) to profile (R−j,k, R̃j ). Recall that ϕ(R̄) Pl ϕ(R) =
ϕ(R−j,k, R̃j ). Therefore, if ϕ(R−j,k, R̃j , R̃k) /∈ P (R−j,l, R̃j ), then
ϕ(R−j,k, R̃j , R̃k) ∈ [ϕ(R̄), p(Rl)]. Thus, ϕ(R−j,k, R̃j , R̃k) Pl
ϕ(R−j,k, R̃j ). This would be in contradiction to Lemma 2. So,
ϕ(R−j,k, R̃j , R̃k) ∈ P (R−j,l, R̃j ). Then, by Lemma 2, ϕ(R−j,k, R̃j ,
R̃k) = ϕ(R−j,l, R̃j ) = ϕ(R).

Next, agent l leaves profile (R−j,k, R̃j , R̃k). Since ϕ(R−j,k, R̃j ,
R̃k) ∈ P (R−j,k,l, R̃j , R̃k), by Lemma 2 it follows that ϕ(R−j,k,l, R̃j ,
R̃k) = ϕ(R−j,k, R̃j , R̃k) = ϕ(R). Then, we add agent l with pref-
erence relation R̃l to (R−j,k,l, R̃j , R̃k). Since P (R−j,k,l, R̃j , R̃k) =
P (R−j,k,l, R̃j , R̃k, R̃l), by Lemma 2, ϕ(R−j,k,l, R̃j , R̃k, R̃l) =
ϕ(R−j,k,l, R̃j , R̃k) = ϕ(R).

Next, agent k leaves (R−j,k,l, R̃j , R̃k, R̃l). Since ϕ(R−j,k,l, R̃j ,
R̃k, R̃l) ∈ P (R−j,k,l, R̃j , R̃l) = p(R̃l), by Lemma 2,

ϕ(R−j,k,l, R̃j , R̃l) = ϕ(R−j,k,l, R̃j , R̃k, R̃l) = ϕ(R). (5)
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Since R̄−j,k,l = R−j,k,l and ϕ(R) �= ϕ(R̄), (4) and (5) constitute a
contradiction. �

Note that Lemma 3 remains true on the larger domain of single-
peaked preferences.

Applying Lemma 3 and Theorem 1, we provide a simple proof of
Theorem 2. Note that this proof remains valid on the larger domain
of single-peaked preferences.

Proof of Theorem 2. It is easy to prove that all target rules satisfy
Pareto efficiency and population-monotonicity.

Let |P| � 3 and let the rule ϕ satisfy Pareto efficiency and popula-
tion-monotonicity. By Lemma 3, ϕ satisfies replacement-domination.
Hence, by Theorem 1, for each N ∈ P such that |N | � 3, there
exists aN such that for all R ∈ SN , ϕ(R) = ϕa

N
(R).

First, we show that for all N,M ∈ P such that |N | , |M| � 3,
aN = aM ≡ a. Let x, y ∈ T and consider R1 ∈ SN , R2 ∈ SM ,
and R3 ∈ SN∪M such that R3

N = R1, R3
M = R2, and P (R1) =

P (R2) = P (R3) = [x, y].
Suppose M\N �= ∅. Adding all agents j ∈ M\N with R3

j

yields profile R3. Since P (R1) = P (R3), by Lemma 2, ϕa
N
(R1) =

ϕa
N∪M

(R3). Since x, y ∈ T were arbitrarily chosen and by the defin-
ition of ϕa

N
and ϕa

N∪M
, aN = aN∪M . Similarly, we can conclude

that aM = aN∪M . Hence, aN = aM ≡ a.
By Pareto efficiency, for all N ∈ P such that |N | = 1 and all

R ∈ SN , ϕ(R) = ϕa(R). Hence, it remains to be shown that for all
N ∈ P such that |N | = 2 and all R ∈ SN , ϕ(R) = ϕa(R).

Let N ∈ P be such that |N | = 2 and R ∈ SN . Let j ∈ N ,
k ∈ P\N , Rk = Rj , and consider (R, Rk) ∈ SN∪{k}. Since P (R) =
P (R,Rk), by Lemma 2, ϕ(R) = ϕ(R,Rk). Since |N ∪ {k}| = 3,
ϕ(R,Rk) = ϕa(R,Rk) = ϕa(R). Hence, ϕ(R) = ϕa(R). �
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NOTES

1. A tree is a connected graph that contains no cycles.
2. Preferences on an interval are single-peaked if up to a certain point, the peak

level, preferences are strictly increasing, and strictly decreasing beyond that
point. On a tree, preferences are single-peaked if preferences are single-peaked
on all paths of the tree.

3. Target rules are sometimes called status quo rules or status quo solutions.
4. Note that if T = R, then a ∈ R ∪ {−∞,∞}.
5. On tree networks, Schummer and Vohra (2001) characterize the class of

strategy-proof and onto rules. Any such rule equals an ‘extended general-
ized median voter rule’ that coincides with a generalized median voter rule
on any path of the tree.

6. Note that Moulin (1980) and Ching (1997) analyze the case where the tree
is a closed interval or the real line. However, the proof that for rules on tree
networks unanimity and strategy-proofness together imply Pareto efficiency is
similar to the case where the tree is a closed interval or the real line.

7. For certain preference profiles, an agent, by lying over his distance function,
can deform the Pareto set of the profile in such a way that the target rule
assigns a point that he prefers to the outcome when he is honest.

8. To see this, note that we can construct ϕj from ϕ as follows. Let Rj ∈ QN
j

and define R ∈ QN such that for all k �= j and all i ∈ N , p(Rki ) = 0.
Then, ϕj (Rj ) ≡ ϕj (R). Hence, if ϕ satisfies replacement-domination, then
ϕj satisfies replacement-domination.

9. Here, it is important that Theorem 1 is valid on the domain of symmetric,
single-peaked preferences.

10. Similarly as in the proof of Theorem 4, we can construct ϕj from ϕ and
show that if ϕ satisfies population-monotonicity, then ϕj satisfies population-
monotonicity.

11. Again, it is important that Theorem 2 is valid on the domain of symmetric,
single-peaked preferences.
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