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Chapter 1

Introduction

A central issue for every company is to price the items for sale with the ob-
jective to maximize the revenue. If pricing decisions are made without suf-
ficient research and analysis, the company can loose a significant amount
of revenue. A low price can lead to a loss if interested customers are will-
ing to spend more to purchase the item. It will, however, also attract more
customers that would otherwise not buy the item. A high price generates
more revenue per sold item, but interested customers might decide not to
purchase the item simply because it is too expensive. Setting the price level
to maximize the revenue takes considerable market knowledge and algorith-
mic analysis.

1.1 Algorithmic pricing

The pricing problem is a two-level game between the company and the cus-
tomers. First, the company sets the prices for the items with the objective
to maximize the revenue. Then, regarding these prices, customers optimize
their own objective, which means that they decide which items they want to
purchase and whether they are willing to pay the price set by the company.
This two-level game, where the company is the leader and the customers are
the followers, is an instance of a Stackelberg game (von Stackelberg 1934).

Being the leader of the Stackelberg game, the company has to act first.
Obviously, it is a great advantage to the company if it already has access
to information about the preferences of the customers at the moment the
prices are to be determined. Obtaining a thorough knowledge about the
target market is nowadays easier and more distributed than in the past,



Chapter 1. Introduction

mainly through the use of the Internet (Rendleman 2001; Rusmevichien-
tong, van Roy, and Glynn 2006). A company can buy data about almost
every industry, product, trend and interest, in any manner that fits best to
the company’s specific needs. Because of this large availability and easiness
to spread information, companies know what customers buy, how much they
spend and how frequently a product is purchased. That information can be
worth a lot of money if it is used to the fullest. In algorithmic pricing, we
address the computational problem that a company encounters when deter-
mining the prices in order to maximize the revenue, using all information
about the preferences of the customers.

Algorithmic pricing problems are also motivated by their importance in
the field of algorithmic mechanism design1. In mechanism design problems,
the customers’ preferences are private information and thus unknown to
the company. The goal of the company is to create an incentive compatible
mechanism, which means that for all customers the best strategy is to truth-
fully reveal their private information. This particular problem is discussed
by Goldberg and Hartline (2001) and Goldberg et al. (2006). More specifi-
cally, they study competitive auctions, which are auctions that achieve a rev-
enue that is a constant fraction of the optimal solution on every input of the
problem. This optimal revenue can be found using algorithmic pricing. Par-
ticularly, a general approach for reducing incentive compatible mechanism
design problems to the underlying algorithmic pricing problems is suggested
by Balcan et al. (2005) and further explored in Balcan et al. (2008). Hence,
there is interest in purely algorithmic pricing problems from the perspective
of mechanism design, as in order to solve the algorithmic mechanism design
problem, it is useful to understand how items should be priced when the
preferences of the customers are known.

In this thesis we address two different algorithmic pricing problems; the
single item pricing problem and the affine pricing problem. The first part of
this thesis is dedicated to the single item pricing problem. In Chapters 2, 3
and 4, we address the complexity of this problem subject to several natural
constraints, and develop algorithms to solve or approximate these problems.
The second part is devoted to the affine pricing problem. We consider the
computational complexity of this problem in Chapter 5, and describe practi-

1For further reading on algorithmic mechanism design, we refer to Nisan and Ronen
(1999), Mu’alem and Nisan (2002), Archer et al. (2003), Abrams (2006), Aggarwal and Hart-
line (2006), Balcan, Blum, and Mansour (2007), and a recent survey by Hartline and Karlin
(2007).

12



1.2. Single item pricing

cal settings in which this problem can be applied in Chapters 6 and 7. Next
to the theoretical results, we conduct several computational studies in the
last three chapters of this thesis.

The single item pricing problem and the affine pricing problem are in-
troduced in the following two sections.

1.2 Single item pricing

In single item pricing, the company owns a set of items for sale and wants
to determine a price for each item. Every customer requests one or more
subsets of items, referred to as bundles. Each bundle contains at most one
copy of every item. For every bundle a customer requests, she has a valua-
tion, which is the maximum amount she is willing to pay for that particular
bundle. The total price of a bundle is equal to the sum of the prices for all
items contained in the bundle. A customer is only interested in a bundle if
its price does not exceed her valuation. The company’s goal is to maximize
the revenue, which is equal to the total sum of prices of all items sold.

Customer profiles, and thus the way the requests are established, can
be very different. The two most important customer profiles in algorith-
mic pricing problems are unit-demand and single-minded. A unit-demand
customer requests many different bundles and has a separate valuation for
each of those. Based on the prices set by the company, the customer de-
termines the bundle that she prefers most, namely the one that yields the
highest positive utility which is equal to her valuation minus the price of
that particular bundle. In contrast to a unit-demand customer, a single-
minded customer is interested in one particular bundle only. By definition,
a customer is single-minded if and only if she has a positive valuation for
one bundle, and values all other bundles equal to zero. She purchases the
bundle with positive valuation if the total price does not exceed her valua-
tion. Single-minded customers with private valuations are widely discussed
in combinatorial auction theory2. However, in algorithmic pricing problems,
single-minded customers are introduced only recently.

Items can be available to customers in unlimited or limited supply. Un-
limited supply means that there are either at least as many copies per item
as there are customers, or that the items can instantly be produced without
significant costs, which is for example generally the case for digital items.

2See e.g. Lehmann, O’Callaghan, and Shoham (2002), Mu’alem and Nisan (2002), Archer
et al. (2003), and Cramton, Shoham, and Steinberg (2006).

13
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Consequently, every customer that can afford to purchase a particular bun-
dle is able to do so. In contrast, if items are available in limited supply, the
allocation of bundles to customers is a much harder task. It might occur that
some customers want to purchase a bundle but are unable to do so by the
limitation of available items. The company determines the prices and allo-
cates bundles of items to customers, and can choose to do this envy-free. In
game theory, envy-freeness is a property of a fair allocation of items to cus-
tomers who may have different preferences (Walras 1954; Gul and Stacchetti
1999). An allocation is said to be envy-free if no customer prefers another
bundle to her own (Foley 1967). Envy-freeness is recently introduced in sin-
gle item pricing (Aggarwal et al. 2004; Guruswami et al. 2005) to obtain a
better algorithmic understanding of game theory. In an optimal envy-free
pricing, the company has no incentive to change the prices on the items and
the customers have no incentive to complain about the allocation, given the
pricing. In the unit-demand case, this means that every customer gets a
bundle that has the largest utility to her, or no bundle at all if all utilities
are negative. In the single-minded case, every customer who can afford to
purchase the requested bundle will do so. Although an envy-free allocation
seems fair for all players in the market, companies will definitely not always
strive towards this property as it might reduce the revenue. The following
example shows that different prices are required if items are available in
unlimited and limited supply, and if envy-freeness is required or not.

Example 1.2.1. Consider a bookstore selling books with titles A, B and C,
among others. Four customers currently in the bookstore are interested in a
subset of these books. Customer 1 wants to buy book A for at most 10 euro.
Customer 2 wants to buy books A and B and spend at most 35 euro on both.
Customer 3 is interested in books A and C but only if they cost at most 25
euro. And customer 4 wants to purchase books B and C for at most 30 euro.
This situation is schematically displayed in Figure 1.1.

Let us consider the case where there are sufficiently many books available
for all customers. An optimal pricing is to set a price of 10 euro for book A,
and 15 euro for each of the other books. Then, customer 1 buys book A for 10
euro, customers 2 and 3 get their requested books for 25 euro, and customer 4
pays 30 euro. All customers can afford to buy the books they like to purchase,
and the total revenue for the bookstore is 90 euro. Notice that if the items are
available in unlimited supply, any optimal solution is an envy-free solution.

Suppose that there is only one copy of each book left in the bookstore.
Then, the seller of the books can decide to set the same prices as before, but

14



1.2. Single item pricing

now not all customers are able to purchase the books they are interested in.
The optimal revenue of 40 euro is obtained when book A is sold to customer 1
and books B and C are sold to customer 4. Obviously, customers 2 and 3 will
not be happy with this allocation because they can afford the books they want,
but are not able to buy them. An optimal envy-free solution is to price book A
to 15 euro, book B to 20 euro and book C to 11 euro. Then, only customer 2
can afford to buy the books she requests, and the total revenue is 35 euro.

C

B

1

2

3

4

30

35

25

10

A

Figure 1.1: Example of the single item pricing problem.

1.2.1 Tollbooth and highway problem

A special case of the single item pricing problem with single-minded cus-
tomers is the tollbooth problem, introduced by Guruswami et al. (2005). The
problem is motivated by determining tolls to be charged for segments of a
highway system. The capacity on the segments is assumed unlimited. The
customers each request to travel several consecutive segments of the high-
way system. In this setting, we regard the valuation of the customers as
a monetary expression of the time saving achieved by traveling the high-
way as opposed to taking an alternative route. Then, these valuations are
naturally public knowledge as is assumed for algorithmic pricing problems.
The goal of the owner of the highway is to choose tolls for the segments to
maximize the total revenue. We can model this setting such that the high-
way segments are edges on a simple graph, which represents the complete
highway system. Customers request to travel a path in the graph. The prob-
lem to the company is to price all edges to maximize the revenue. Similarly
as before, the price of a path is equal to the sum of prices for the edges on
this path, the customers only travel the path if its price does not exceed the
valuation, and the revenue is equal to the total sum of prices for all edges
traveled by customers.

15
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An even further restricted problem is the highway problem. Here, we
determine tolls on the segments of a single highway. The underlying graph is
thus a path of which customers request subpaths. As this particular problem
is extensively discussed in the next three chapters, we present an example
to further clarify the problem.

Example 1.2.2. Consider a highway containing three segments, A, B and C.
There are several alternative roads next to the highway. They are displayed
on the left of Figure 1.2, together with the costs for the travelers for choos-
ing such an alternative road. Suppose there are four customers. The first
customer only wants to travel via segment A. Based on the alternative road
network, her valuation is 7. The second customer wants to travel B and C.
There is no direct alternative connection, so the valuation is 6+4 = 10. The
third customer only travels C and has valuation 4. The last customer travels
all three segments. The cheapest alternative road is to first pass A and B and
afterwards pass C, which gives a valuation of 11+4 = 15. The right figure
displays a schematic picture of this situation.

A B C

11

7 6 4

A B C

15

7

4

10

Figure 1.2: Example of the highway problem.

The maximum revenue of 34 can be obtained by charging 5, 6 and 4 at
tollbooths A, B and C, respectively. Notice that this same revenue can also be
received by setting the prices at the tollbooths to 7, 4, and 4.

1.3 Affine pricing

To introduce the affine pricing problem, we consider the following applica-
tion. A telephone operator faces the problem to set prices in order to maxi-
mize the total revenue. The operator has to determine prices for one minute
of calling, sending one text message, establishing a connection, monthly fee,
etc. Based on the phone usage of the customers, the operator is well aware of
how, how often and during what times the customers use their phones. That

16



1.3. Affine pricing

is, the company knows what contract a customer requests, and moreover,
how much she is willing to pay for it. The contract price is personal to every
customer because, next to the prices set by the operator, it includes her per-
sonal demand with respect to using her phone. Furthermore, the customer
may be charged a fixed cost for accepting the contract. Using the acquired
information, the operator can determine all prices to maximize the revenue
by solving the affine pricing problem. We clarify this problem in an example,
and formally define it afterwards.

Example 1.3.1. In a fixed period of time, four customers are interested in a
contract. One customer requests to call 250 minutes and send 25 text mes-
sages. Another customer wants to call 100 minutes and send 50 text messages.
The third customer requests to call 100 minutes and also send 100 text mes-
sages, and the last customer only wants to call 150 minutes. Their valuations
are 70, 35, 10 and 45, respectively. The fixed price for accepting the contract
is 5 for the first three customers, and 2.50 for the fourth customer.

The best pricing strategy is to charge 0.25 for one minute of calling and
0.10 per text message. Then, the contract price is 250 ·0.25+25 ·0.10+5= 70
for the first customer, 100 · 0.25+ 50 · 0.10+ 5 = 35 for the second customer,
50 ·0.25+100 ·0.10+5 = 27.50 for the third customer and 150 ·0.25+2.50 =
40 for the fourth customer. The third customer is not able to purchase her
requested contract, and consequently, she also does not pay the fixed price.
Therefore, the total revenue is 145.

More general, in the affine pricing problem the company wants to price
a set of distinct item types. These item types can be physical or digital prod-
ucts, but also services, shipping, or the start-up of a process. Every single-
minded customer requests one contract from the company based on her per-
sonal demand on the different item types available. This contract may con-
tain multiple copies of an item type. A customer accepts the contract if the
price of the contract does not exceed her valuation, which is the maximum
amount she is willing to pay for her contract. We might regard this as the
amount she has to pay for the same contract at any competing company,
which is naturally public knowledge. As a direct consequence hereof, the
customer will only accept the contract if it is the cheapest available in the
market. However, if the company is able to determine different valuations
through market research, this can obviously be used instead. The total price
of a customer’s contract is equal to a constant price per item type for every
unit she requests, and possibly a fixed, customer dependent amount for ac-
cepting the contract. In other words, given the prices set by the company, the

17
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price a customer pays for her contract is an affine function on her personal
request.

Affine pricing can be implemented as a pricing tool in many different
companies. Because of the general structure, the item types can be anything
from physical product to service, traveling or shipping. When determining
the price of a contract, the item types do not have to be comparable. For
example, if a customer travels by train, the price of the ticket depends on
the distance, the class, the time and day at which she travels, whether she
owns a frequent travel card, etc. In this example, the supply can be regarded
as unlimited. However, similarly as in single item pricing, the availability
of the item types might be limited. Also, the notion of envy-freeness can still
be applied in affine pricing.

1.3.1 Price regulation

Using affine pricing to determine the optimal prices for the company, we also
touch on the problem in which the company has to deal with price regula-
tions. A price regulation refers to the policy of influencing price strategies by
a government agency. Price regulations occur in many industries, for exam-
ple, environmental or pharmaceutical. In some industries, the government
sets price ceilings while in other industries there may be price floors, or the
regulation can be imposed through taxation. Reasons for the government to
interfere are for example that prices are misleading, there exists price dis-
crimination in a market, companies use predatory pricing to take advantage
of customers or price fixing in which several companies make arrangements
to artificially keep prices high. The government’s main purpose for using
price regulation is to protect the customers, without harming the market.
A recent example of price regulation is on roaming tariffs in the European
Union (European Commission, Information Society, Media Directorate Gen-
eral 2007). Roaming is using a mobile phone outside the geographical cov-
erage area of the home network, by means of using a visited network. The
price for roaming was on average four times higher than for domestic calls.
The repeated warnings to the operators to lower roaming charges voluntar-
ily were not taken seriously. National authorities felt powerless because
roaming is international calling. Therefore, the European Commission in-
terfered through price regulation. The goal of the regulation is to have fairer
prices charged to customers and among operators, and to improve the trans-
parency of the market.

18
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1.4 Related work

Although pricing is an extensively studied area in economics, algorithmic
pricing is a relatively new field of research. Motivated by the availability
of customer data, Rusmevicientong (2003) and Rusmevichientong, van Roy,
and Glynn (2006) define a pricing problem in which customers are charac-
terized by their valuations for different items and a selection rule describing
how a customer selects an item among those she can afford once prices are
determined. The problem described is the single item pricing problem with
unit-demand customers, as each customer buys at most one item among all
items she is interested in. Aggarwal et al. (2004) first considered approxi-
mation algorithms and the analysis of the computational complexity for this
problem. It is further discussed by Briest and Krysta (2007), Briest (2007),
Briest, Hoefer, and Krysta (2008) and Briest (2008).

The single item pricing problem as addressed in this thesis was intro-
duced by Guruswami et al. (2005). They show that the problem is APX-hard,
for both limited and unlimited supply. APX is the subclass of NP Optimiza-
tion problems that admit constant-factor approximation algorithms. APX-
hardness denies the existence of a polynomial time approximation scheme
(PTAS), which is an algorithm that, for any ε > 0, is guaranteed to find a
solution whose revenue is within a factor (1+ ε) of the optimum revenue,
in polynomial time depending on ε. In the same paper, the authors de-
rive an O(logn)-approximation algorithm for the limited supply problem
with unit-demand customers, and an O(log n+ logm)-approximation for the
unlimited supply problem with single-minded customers, where n is the
number of customers and m is the number of items. Hartline and Koltun
(2005) design near-linear and near-cubic time approximation schemes un-
der the assumption that the number of distinct items is constant. Briest
and Krysta (2006) show that the APX-hardness proof from Guruswami et al.
(2005) holds for even more restricted instances of the problem. Balcan and
Blum (2006) derive an O(k)-approximation for the instance where each cus-
tomer is interested in bundles containing at most k items, improving the
O(k2)-approximation of Briest and Krysta (2006). For the single item pric-
ing problem with unlimited supply and single-minded customers, Demaine
et al. (2006) prove semi-logarithmic inapproximability. More specifically,
they show that the problem is hard to approximate within a factor of O(logε n)
for some ε> 0, assuming that NP * BPTIME(2O(nδ)) for all δ> 0. In partic-
ular, because of this result it is unlikely that a constant-factor approxima-
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tion algorithm exists. There exist two fully polynomial time approximation
schemes by Briest and Krysta (2006) and Balcan and Blum (2006) for the
problem where the bundles are a laminar family, that is, for any two bun-
dles it holds that either one is a subset of the other or they do not intersect.
A fully polynomial time approximation scheme (FPTAS) for a maximization
problem assures that, for any ε > 0, we have an algorithm that computes a
solution with revenue at least (1− ε) times the optimum revenue, in time
polynomial in the input and 1/ε. Finally, Chawla, Hartline, and Kleinberg
(2007) describe the single item pricing problem in which the demands of
the unit-demand customers are drawn from an explicit probability distri-
bution, in contrast to the assumption that the demands are known to the
company. They show that if the valuations are drawn independently for dif-
ferent items, constant approximation guarantees are possible using concepts
from the theory of optimal auction design (Myerson 1981).

The tollbooth problem is introduced by Guruswami et al. (2005). This
problem is proven to be APX-hard, even if the underlying graph is a star,
all valuations are equal to one, and the customers’ paths contain at most
two edges. The complexity of the highway problem was left open at the in-
troduction by Guruswami et al. (2005). However, as all pricing problems
described here are instances of the Stackelberg game, they can be inter-
preted as a bilevel linear program as discussed by e.g. Vicente and Calamai
(1994) and Marcotte and Savard (2005). Specifically for the highway prob-
lem this means that if either the price vector or the set of winners is known,
the problem is polynomially solvable as shown in Section 4.2, even under
the requirement of integral prices. Bodlaender and Penninkx (2005) and
Briest and Krysta (2006) show independently that the seemingly innocent
highway problem is NP-hard. Guruswami et al. (2005) propose a polynomial
time dynamic programming algorithm when the valuations are bounded by
a constant, and a pseudo-polynomial time dynamic programming algorithm
when the lengths of the subpaths are bounded by a constant. Balcan and
Blum (2006) derive an O(log m)-approximation algorithm for the highway
problem, improving upon the previous O(log m+ logn)-approximation of Gu-
ruswami et al. (2005), where m is the number of highway segments and n
is the number of customers. Elbassioni, Sitters, and Zhang (2007) present
a quasi-polynomial time approximation scheme (QPTAS) for both the lim-
ited and unlimited supply case of the problem. A QPTAS is an approxi-
mation scheme whose running time is quasi-polynomial. The existence of
a QPTAS implies that the problem is not APX-hard, assuming that NP*
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DPTIME[npol ylog(n)]. Therefore, the existence of a QPTAS can be seen as a
strong indication for the existence of a PTAS.

Labbé, Marcotte, and Savard (1998) and Brotcorne et al. (2001) study the
problem of setting tolls on a specified subset of edges of a multi-commodity
transportation network. This study is different from the tollbooth problem
discussed above as the customers travel over the shortest path from their
origin to destination via tolled and non-tolled arcs instead of traveling ei-
ther only tolled edges on a pre-specified path or only non-tolled edges. A
similar problem, but focussed to setting tolls on a single highway, is dis-
cussed by Heilporn et al. (2007). For further reading on Stackelberg pricing
in networks, we refer to Dewez (2004), van der Kraaij (2004), Roch, Savard,
and Marcotte (2005), van Hoesel (2006) and Bouthou et al. (2007).

The affine pricing technique in algorithmic pricing is introduced by Grig-
oriev et al. (2007). The difference between affine pricing and single item
pricing is that in affine pricing customers can request multiple copies of one
item type and the price of the contract is personal. Consider again the ap-
plication of the telephone operator, and assume that the operator wants to
determine a price per minute calling. For every minute, the customer will
be charged this same price. If we would solve the same problem with sin-
gle item pricing, then we have to price every single minute separately. The
demand of every customer is similar as in the affine pricing problem, which
means that if a customer wants to call for x minutes at various time periods,
then she requests one copy of the item that models calling in a particular
minute, and her bundle contains x items. The problem is then to determine
a price for every single minute. Thus, the affine pricing problem is in fact
a generalization of the single item pricing problem because we can regard
every single copy of all item types in the affine pricing problem as separate
items in the single item pricing problem.

1.5 Outline

The single item pricing problem with single-minded customers is discussed
in the first part of this thesis. In Chapter 2 we consider this problem with
unlimited supply. We impose a natural monotonicity constraint enforcing
that larger bundles are at least as expensive as smaller ones. We show that
this problem is strongly NP-hard and derive a polynomial time approxima-
tion scheme, thereby breaking the semi-logarithmic inapproximability re-
sult by Demaine et al. (2006). As a special case we also address the highway
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problem. We show that this problem remains weakly NP-hard under the
monotonicity condition, and we derive a simple approximation algorithm
that is logarithmic in the largest valuation.

In Chapter 3, we address the single item pricing problem with unlimited
supply and we show that the problem is trivially solvable if all customers
have the same average valuation, that is, the valuation divided by the size
of the requested bundle. But, even for the slightest deviation in average val-
uation, the problem is strongly NP-hard immediately. These results remain
true also if we pose monotonicity constraints on the valuations and aver-
age valuations. That is, customers requesting a large bundle should have a
higher valuation but lower average valuation than customers interested in
a smaller bundle. Moreover, we present an approximation algorithm with a
performance guarantee that is logarithmic in the largest deviation between
any two customers’ average valuations. In the last part of this chapter, we
study the highway problem. The approximation algorithm we create for the
pricing problem with arbitrary bundles carries over to the highway problem.
Also, this problem is trivially solvable if the average valuations are equal for
all customers. Even the slightest deviation makes that this problem becomes
NP-hard.

We describe the algorithmic complexity of the single item pricing prob-
lem in capacitated, undirected networks in Chapter 4. The edges of an un-
derlying graph are regarded as the items for sale and the customers’ bundles
are paths in the graph. If the graph is a path (highway problem) and capac-
ity is unlimited then we derive an approximation algorithm that is logarith-
mic in the largest valuation. The problem with a constant upper bound on
the limited edge capacities can be solved using a dynamic programming al-
gorithm. Based on this dynamic program, we derive a fully polynomial time
approximation scheme. The problem with limited edge capacities and with
a cycle as underlying graph is NP-hard, and can be solved by an adjusted
dynamic program in pseudo-polynomial time. Finally, with unit edge capac-
ity, the pricing problem is polynomially solvable if the underlying graph is a
path, cycle or tree. The same problem on a grid is surprisingly much harder.

The second part of this thesis focuses on affine pricing. In Chapter 5
we present an algorithm to solve the affine pricing problem in polynomial
time, if the number of distinct item types is constant. This result holds for
the envy-free problem with unlimited supply of item types, both for single-
minded and unit-demand customers, and we derive a near-optimal solution
if the supply is limited. Moreover, we show that the affine pricing problem
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is a generalization of the single item pricing problem, which means that
for a non-constant number of item types available in unlimited supply, the
hardness results known for single item pricing also hold for affine pricing.
Moreover, if the availability of item types is limited, the problem is hard to
approximate within a factor of n1−ε for any ε > 0, where n is the number
of customers. After the theoretical results, we apply the affine pricing algo-
rithm in a practical study, where the number of item types is constant, the
customers are single-minded and the supply is unlimited. As the running
time of the algorithm is large for huge instances, we present a local search
algorithm that gives promising results on the tested instances.

In Chapter 6 we consider the situation in which a company wishes to
implement a price vector different from the current price vector. It is not al-
ways feasible to implement new prices instantly, because of the involvement
of public authorities, the strategy towards competitors or the customers’ per-
ception of the company. This forces the company to implement the new
prices gradually. We impose the restriction that for the customers that ac-
cept their contract in the optimal pricing, the contract price never increases
more than some predetermined percentage per time period. We determine
the minimum number of time periods necessary to implement the new prices
under this assumption. Furthermore, we describe how to maximize the total
revenue over time if a maximum number of time periods is given in which
the new pricing must be implemented.

Motivated by the current price regulation on roaming tariffs, we closely
look into the problem where the pricing strategy of the company is regu-
lated by a government in Chapter 7. We model the setting as a three-level
program, and present a polynomial time algorithm to solve this problem.
Furthermore, we analyze the current policy of the European Commission,
and compare different price regulative policies. We test our theoretical re-
sults on a data set.
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Single Item Pricing





Chapter 2

Monotonicity Constraint on
Prices

In this chapter we consider the single item pricing problem with unlim-
ited supply. We know that the problem is inapproximable within a semi-
logarithmic factor in the number of customers by Demaine et al. (2006).
Therefore, we suggest a natural monotonicity constraint, enforcing that the
price of larger bundles is at least as high as the price of smaller ones. We
show that this problem remains strongly NP-hard, and we derive a PTAS.
Finally, we also discuss the highway problem with monotonicity constraint.1

2.1 Introduction

We consider the situation where a company wants to sell a set of (digital)
items I = {1, . . . , m} to a set of single-minded customers J = {1, . . . ,n}. Every
item i ∈ I is available in unlimited supply. Each customer j ∈ J is interested
in exactly one subset of items I j ⊆ I, her bundle, and has a positive valua-
tion b j for this bundle, which is the maximum amount she is willing to pay.
Without loss of generality we assume that b j ≥ 1 for j ∈ J. Let B be the
highest valuation, that is, B = max j∈J{b j}. Let pi ≥ 0 be the price of item
i ∈ I. The price of a bundle I j is therefore

∑
i∈I j pi. A customer is a winner

if the total price of her bundle does not exceed her valuation, and a loser
otherwise. The set of winners is denoted by W ⊆ J.

1This chapter is based on Grigoriev, van Loon, Sviridenko, Uetz, and Vredeveld (2007)
and Grigoriev, van Loon, Sviridenko, Uetz, and Vredeveld (2008).
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Definition 2.1.1. A feasible solution consists of a positive price pi for every
item i ∈ I and a set of winners W ⊆ J such that all winners can afford their
bundle, that is,

∑
i∈I j pi ≤ b j for all j ∈ W, and the solution is envy-free, that

is,
∑

i∈I j pi > b j for all j ∈ J \W. The objective is to maximize the company’s
total revenue Π=∑

j∈W
∑

i∈I j pi.

Notice that any solution will be trivially envy-free, meaning that a cus-
tomer not receiving her bundle cannot afford it. This is an artifact of the
unlimited supply of items.

In a sequence of recent papers, several algorithms and complexity results
have been derived for such price optimization problems; see e.g. Aggarwal
et al. (2004), Guruswami et al. (2005), Hartline and Koltun (2005), Balcan
and Blum (2006), Briest and Krysta (2006), Elbassioni, Sitters, and Zhang
(2007). Many of the positive results achieve only logarithmic approximation
guarantees in the number of customers, the number of items or both, and
often somewhat trivial algorithms suffice to achieve such bounds, e.g. uni-
form prices for all items. Demaine et al. (2006) delivered a reason for this
observation on the performance of algorithms, showing that the problem
does not allow for semi-logarithmic approximation algorithms in general. In
this chapter, we introduce a very natural monotonicity constraint on bundle
prices that allows us to derive results that break this semi-logarithmic in-
approximability barrier. More specifically, we impose the condition that the
price of any bundle of size k must not exceed the price of a bundle of size k+1
or larger, for any k. That is, the monotonicity constraint that we impose on
the set of feasible price vectors is

∑
i∈I ′

pi ≤
∑
i∈I ′′

pi whenever |I ′| < |I ′′| , (2.1)

for any two subsets of items I ′ and I ′′. The condition has a meaningful eco-
nomic interpretation in settings where items are different, yet comparable
in the sense that their prices cannot differ too much. It only requires that
larger bundles are at least as expensive as smaller ones. Notice that we do
not require a monotonicity condition on bundles of the same size, as this
would immediately yield that all items must receive the same price. Yet, the
condition is quite strong, as it requires that most item prices are of the same
order of magnitude.

We show in Section 2.2 that the single item pricing problem is strongly
NP-hard even with the monotonicity constraint on bundle prices as defined
in (2.1). Moreover, we derive a polynomial time approximation scheme for
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that problem, with a time complexity of O(nm8/ε(logB)8/ε). The PTAS cru-
cially exploits the fact that the monotonicity condition (2.1) yields most item
prices to be of the same order of magnitude. In Section 2.3 we address the
highway problem, where items can be seen as edges on a simple path and
customers request a subpath. The monotonicity constraint is only imposed
on subpaths. We show that this problem remains weakly NP-hard under the
monotonicity constraint, and we derive an O(lnB)-approximation algorithm.

2.2 Arbitrary bundles

We settle the computational complexity of the single item pricing problem in
which customers requests arbitrary bundles and the prices satisfy the mono-
tonicity constraint, defined in (2.1). First, we prove that this particular prob-
lem is strongly NP-hard. Then, we derive a polynomial time approximation
scheme.

2.2.1 Complexity

We show that the pricing problem with monotonicity constraint is strongly
NP-hard by using a reduction from INDEPENDENTSET, which is known to
be NP-hard (Garey and Johnson 1979) and defined as follows. Given a graph
G = (V ,E) and integer s ≤ |V |, does there exist a set of vertices V ′ ⊆ V such
that no two vertices in V ′ are joined by an edge in E, with cardinality |V ′| ≥
s?

We define an instance I of the pricing problem in the following way. Let
M be an integer such that M ≥ 2|E|2 +4|E| +2. For every vertex v ∈ V we
create a vertex-item, and for every edge e ∈ E we introduce an edge-item, that
is, I =V ∪E. For every item i ∈ I, there are M+2 customers that request the
bundle consisting of only this item. One of these customers has valuation
M, and all other customers have valuation M +1. Moreover, for every edge
e = {u,v} ∈ E, there are four more customers. One customer requests bundle
{u, e}, one requests bundle {v, e}, and two customers request bundle {u,v}.
These four customers each have valuation 2M+1.

Figure 2.1 displays how an edge e = {u,v} ∈ E of graph G is represented
in instance I . The bundle of one customer is represented by a dashed line,
and this customer has valuation M for that particular bundle. Every solid
line represents a bundle of M+1 customers who have valuation M+1. Each
dotted line represents a bundle of one customer who has valuation 2M+1.
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u v

e

Figure 2.1: Instance I for edge e = {u,v} ∈ E from the reduction of INDEPENDENT-
SET.

We prove strong NP-hardness of the single item pricing problem with
monotonicity constraint in Theorem 2.2.5. In this proof, we need the prop-
erty that in an optimal solution to the above created instance I of the pric-
ing problem with monotonicity constraint all prices are either M or M +1.
Therefore, we first collect some preliminary observations.

Lemma 2.2.1. In the optimal solution to the pricing problem on I , all prices
are within the interval [M, M+1].

Proof. Assume the claim is not true, and let p be an optimal solution that
violates it. If all items have prices pi ≤ M +1 and there exists at least one
item with price pi < M, then it can easily be verified that the price vector p′,
defined by p′

i = max{pi, M}, yields the same set of winners and the revenue
has increased compared to p. Hence, p cannot be optimal.

Therefore, assume that at least one item, h, has a price ph > M +1 and
consider the price vector p′ defined by p′

i = pi for i 6= h and p′
h = M+1. Since

item h belongs to at most 3|E| bundles containing two items, the decrease in
revenue of these bundles due to the price change is at most 3|E|M. This is
because, without loss of generality, the price of an item is at most 2M+1 in an
optimal solution, that is, at most equal to the largest valuation. On the other
hand, M+1 customers can now afford bundle {h}. Therefore, the increase in
revenue due to these customers is (M+1)2. Thus, the total revenue increases
by at least M2+ (2−3|E|)M+1 which is positive since M > 2|E|2. Hence, the
price vector p cannot be optimal.
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Lemma 2.2.2. In an optimal solution to the pricing problem on I , all cus-
tomers requesting a bundle that contains two items are winners.

Proof. Suppose that there exists a bundle containing two items, say I j =
{i1, i2}, that is priced higher than 2M+1 and let the prices of the two items
be pi1 = M + d1 and pi2 = M + d2. Combining this with the result of the
previous lemma, we know that 0< d1,d2 ≤ 1. As each item is in at most 3|E|
bundles of size two, decreasing the price of item i1 to M increases the total
revenue by at least

−((M+1)+ (3|E|−1))d1 +M+2M+d2 ≥ 2M−3|E|,

which is positive since M > 3|E|/2.

Lemma 2.2.3. In an optimal solution to the pricing problem on I , all prices
are integral.

Proof. By Lemma 2.2.1, we know that each item has a price pi = M + di,
for 0 ≤ di ≤ 1. Suppose that there exists an item i with 0 < di < 1 and that
this item corresponds to an edge e = {u,v}. If both du = dv = 0, then we can
change the price of the edge-item e to p′

e = M +1 without affecting the set
of winners and increasing the total revenue. Therefore, assume that du > 0
and, without loss of generality, du ≥ dv. By Lemma 2.2.2, we know that
du +dv ≤ 1 and thus dv ≤ 1/2. Consider the prices p′ defined by p′

e = M +1,
p′

u = p′
v = M, and p′

i = pi for all other items i. The increase in revenue due
to this price change for the bundles containing two items corresponding to
the edge e = {u,v} is 1− (du+de)+1− (dv+de)−2(du+dv), whereas the total
decrease in revenue for all other bundles containing two items is bounded by
3(|E|−1)(du+dv). The increase in revenue caused by the bundles {e} and {u}
is (1−de)(M+1)+M−du(M+1), whereas the increase in revenue for bundle
{v} is M − (M +1)dv ≥ 0 if dv > 0 and 0 otherwise. Hence, the total increase
in revenue due to this price change is at least

1− (du +de)+1− (dv +de)−2(du +dv)−3(|E|−1)(du +dv)

+(1−de)(M+1)+M−du(M+1)

≥ M− (3|E|−1)(du +dv)+ (1−de −du)(M+1)≥ M− (3|E|−1)> 0,

as M > 3|E|−1. Hence, any solution in which an edge-item e has a fractional
price cannot be optimal.

On the other hand, suppose that all edge-items e ∈ E have price pe ∈
{M, M +1} and there exists a vertex-item u with M < pu < M +1. Then by
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Lemma 2.2.2 we know that there exists an item u such that all its neighbors
v with {u,v} ∈ E have price pv ≤ M+1/2. Moreover, we may assume that there
exists a neighbor v such that pv > M as otherwise we may set pu = M +1
without affecting the set of winners, but increasing the total revenue. Let
d = max{dv : {u,v} ∈ E}, then 0 < d ≤ 1/2. Consider the prices p′ defined by
p′

u = M +1, p′
v = M for v such that {u,v} ∈ E and p′

i = pi for all other items
i. Then the revenue for each bundle containing two items is decreased by
at most 2d and as there are in total 4|E| of these bundles the total decrease
in revenue due to this price change is bounded by 4|E|(2d) ≤ 4|E|. As there
was at least one neighbor of u that had a price pv > M, the change in prices
leads to an increase of revenue of at least

(1−du)(M+1)+M−d(M+1)≥ (1−du −d)(M+1)+M ≥ M,

as du + d ≤ 1 by Lemma 2.2.2. Hence the total increase in revenue due to
this price change is at least M −4|E| > 0 as M > 4|E|. Hence, no solution
with at least one fractional price can be optimal.

Lemma 2.2.4. An optimal solution to instance I satisfies the monotonicity
constraint.

Proof. We know that pi is either M or M+1 for all i ∈ I by Lemma 2.2.1 and
Lemma 2.2.3. Consequently, for any two set I ′, I ′′ ⊆ I for which holds that
|I ′| < |I ′′| we have

∑
i∈I ′

pi ≤ |I ′|(M+1)< (|I ′|+1)M ≤ |I ′′|M ≤
∑
i∈I ′′

pi,

where the second inequality holds because M ≥ 2|E|2 +4|E|+2 > |V |+ |E| =
|I| > |I ′|.

We use the above four lemmas to prove that the single item pricing prob-
lem with arbitrary bundles satisfying the monotonicity constraint is strongly
NP-hard.

Theorem 2.2.5. The single item pricing problem with monotonicity con-
straint is strongly NP-hard.

Proof. Consider instance I . We claim that there exists an independent set
of size s in G if and only if there is a solution to the single item pricing
problem with revenue at least f (s)= (M2 +2M)|V |+ (M2 +10M+3)|E|+ s.
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Given an independent set V ′ ⊆ V with |V ′| ≥ s. Let E0 = {e = {u,v} ∈ E :
u,v ∉ V ′}. Let pv = M +1 if v ∈ V ′ and M otherwise. Let pe = M +1 if e ∈ E0
and M otherwise. By Lemma 2.2.4 we know that this pricing satisfies the
monotonicity constraint. The revenue of this solution is

Π = (M+1)(M|V |+ |V ′|+M|E|+ |E0|)+M|V \V ′|+M|E \ E0|
+8M|E|+2|E0|+3|E \ E0|

= (M2 +2M)|V |+ (M2 +10M+3)|E|+ |V ′|,
which is greater than or equal to f (s).

For the converse, assume there is an optimal solution to the pricing prob-
lem that satisfies the monotonicity constraint with revenue at least f (s). We
know by Lemma 2.2.1 and Lemma 2.2.3, that the price for any item is ei-
ther M or M +1. Let V ′ = {v ∈ V : pv = M +1}, then V ′ is an independent
set in G, as by Lemma 2.2.2 we know that for any e = {u,v} ∈ E with u ∈ V ′,
pv ≤ M. Define E0 = {e = {u,v} ∈ E : pe = M+1}. Then for any e = {u,v} ∈ E0,
we have that pu = pv ≤ M by Lemma 2.2.2. The revenue for the four bun-
dles containing two items corresponding to an edge e ∈ E \ E0 is bounded by
3(2M+1)+2M = 8M+3. The total revenue is bounded from above by

|V ′|(M+1)2 +|V \V ′|(M2 +2M)+|E0|(M+1)2 +|E \ E0|(M2 +2M)

+|E0|(2(2M+1)+2(2M))+|E \ E0|(8M+3)

= (M2 +2M)|V |+ |V ′|+ (M2 +10M+3)|E|.
As the total revenue is at least f (s), we conclude that |V ′| ≥ s.

2.2.2 Approximation scheme

In this section we show that the pricing problem with monotonicity con-
straint admits a polynomial time approximation scheme (PTAS). A PTAS is
an algorithm which takes an instance of an optimization problem and, for
any ε> 0, produces a solution that is within a factor (1+ε) of being optimal,
in polynomial time depending on ε.

Assume, without loss of generality, that p1 ≤ p2 ≤ ·· · ≤ pm. Then by
the monotonicity constraint, we know 2p2 ≥ p1 + p2 ≥ pm. Similarly, 3p3 ≥
p1 + p2 + p3 ≥ pm−1 + pm ≥ 2pm−1, etc.

Lemma 2.2.6. Suppose p1 ≤ p2 ≤ ·· · ≤ pm. Any pricing of the items satisfy-
ing the monotonicity constraint also satisfies

k pk ≥ (k−1)pm−k+2, k = 2, . . . ,
⌈m

2

⌉
. (2.2)
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The idea for the PTAS is now the following. First, we restrict the prices
to powers of (1+ δ) for some δ > 0. Then, Lemma 2.2.6 says that except
for a constant number of the cheapest and most expensive items, all items
have prices in roughly the same range. Therefore we can price all except a
constant number of items uniformly with the same price, without loosing too
much in terms of the total revenue. We therefore enumerate over all possible
uniform prices for the bulk of the items, and over all possible combinations
of prices for the remaining (constant number of) items.

Theorem 2.2.7. The pricing problem with monotonicity constraint admits a
PTAS. The time complexity is O(nm8/ε(logB)8/ε), where ε> 0 is the precision
of the PTAS.

Proof. Given an instance of the pricing problem and an ε > 0, let δ = ε/4,
and for convenience assume that 1/δ is integral. Let p1 ≤ ·· · ≤ pm be the
prices in an optimal solution, satisfying the monotonicity constraints. Define
the subsets of items S = {i ∈ I : i ≤ 1

δ
}, M = {i ∈ I : 1+ 1

δ
≤ i ≤ m+ 1− 1

δ
}

and L = {i ∈ I : i ≥ m+2− 1
δ

}, as shown in Figure 2.2. Note that M = ; if
ε≤ 8/(m+1), in which case the number of items is in O(1/ε).

p1 p 1

δ

p
1+

1

δ

p
m+1−

1

δ

p
m+2−

1

δ

pm

S = {i ∈ I : i ≤
1

δ
} M = {i ∈ I : 1+

1

δ
≤ i ≤ m+1−

1

δ
} L = {i ∈ I : i ≥ m+2−

1

δ
}

Figure 2.2: Subsets of items S, M and L.

We round down the prices of all items in S and L to powers of (1+δ).
Moreover, we price all items in M uniformly at price p1+1/δ, rounded down
to a power of (1+δ). Let us call the new prices p′, and let us call p′

M the
price of items in M. First observe that the order of prices does not change.
We next argue that we do not loose too much by this rounding. Clearly, since
we round down, the set of winners can only increase. Moreover, we loose at
most a factor (1+δ) on items in S and L. Finally, consider the items in M.
By inequality (2.2), we have

(
1+ 1

δ

)
p1+1/δ ≥

1
δ

pm+1−1/δ⇔ (1+δ)p1+1/δ ≥ pm+1−1/δ .

In other words, the price for the most expensive item in M differs from the
cheapest item in M by a factor of at most (1+δ). Hence, on items in M we
loose a factor of at most (1+δ)2.
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2.3. Highway problem

Now we have a structured solution, but it may violate the monotonicity
constraint. In case of a violation, we divide the highest prices by a factor
of (1+δ), so that the new price vector satisfies the monotonicity constraint.
Note that in this case, we loose at most a factor of (1+δ)3 compared to the
optimal pricing vector. The question remains is which prices need to be
divided by (1+ δ). To this end, we define s = max{0, i : p′

i < p′
M} as the

number of small prices and ` = max{0, i : p′
m+1−i > p′

M} as the number of
high prices. If s > `, then the new prices are defined by p′′

i = p′
i for 1 ≤ i ≤ s

and for s+1 ≤ i ≤ m by p′′
i = p′

i/(1+δ). Otherwise, if s ≤ `, then the new
prices are defined by p′′

i = p′
i for 1 ≤ i ≤ m−` and for m−`+1 ≤ i ≤ m by

p′′
i = p′

i/(1+ δ). Let k = max{s− 1,`}. Then, if there is a violation of the
monotonicity constraint in the new pricing, sets {1, . . . ,k + 1} and {m+ 1−
k, . . . , m} are the two most violating sets, as p′′

k+2 = p′′
m−k = p′

M . Therefore,
we only need to verify that for these two sets the monotonicity constraint
holds true. First notice that by the way of defining k and the prices p′′, we
have that p′′

i = p′
i for 1 ≤ i ≤ k+1 and p′′

i = p′
i/(1+δ), for m+1− k ≤ i ≤ m.

Hence, we have that

k+1∑
i=1

p′′
i =

k+1∑
i=1

p′
i ≥

k+1∑
i=1

pi

1+δ ≥
m∑

i=m+1−k

pi

1+δ ≥
m∑

i=m+1−k

p′
i

1+δ =
m∑

i=m+1−k
p′′

i ,

where the second inequality is due to the monotonicity of the original set of
prices p. From this it follows that the structured solution p′′ satisfies the
monotonicity constraint.

The PTAS now consists of enumerating all possible structured solutions,
which is sufficient to obtain a feasible solution that differs from the optimal
solution by a factor of at most (1+δ)3 < (1+ ε). There are

( m
−1+2/δ

)
possible

choices for S∪L. Since all prices are powers of (1+δ), there are logB possible
prices. Given that all items in M have the same price, there are at most
(logB)2/δ structured solutions for each choice of S ∪L. Computation of the
revenue for any such solution takes O(nm) time. This together with δ= ε/4
yields the claimed time complexity, where the constant hidden in the O-
notation depends on ε.

2.3 Highway problem

A particularly intriguing special case of the general pricing problem con-
sidered so far is the highway problem as introduced by Guruswami et al.
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(2005). Let I = {1, . . . , n} represent the highway segments, which we can re-
gard as consecutive edges on a simple path. Every customer j ∈ J requests
a subpath of the highway, denoted by I j ⊆ I, and we assume that each I j is
of the form I j = {k,k+1, . . . ,`}, where 1 ≤ k ≤ ` ≤ m. We may assume that
the valuation b j of customer j ∈ J for subpath I j is a monetary expression
for the time saving that can be realized by using the highway instead of the
next-fastest alternative route. Similarly as in the single item pricing prob-
lem with arbitrary bundles, the company determines prices pi ≥ 0 for the
items i ∈ I. The price of bundle I j is

∑
i∈I j pi. A customer is a winner if the

total price of her bundle is not more than her valuation, and a loser other-
wise. The goal of the company is to maximize the revenue Π=∑

j∈W
∑

i∈I j pi,
where W ⊆ J is the set of winners.

In the highway problem, it is most natural to assume that the mono-
tonicity constraint holds for any two subpaths only, but not necessarily for
arbitrary subsets of items. Because of the consecutiveness of the items, the
strong NP-hardness result and the PTAS for the single item pricing prob-
lem with monotonicity constraint and arbitrary bundles, established in the
previous section, do not carry over to the highway problem with price mono-
tonicity on subpaths. Also notice that the weak NP-hardness for the gen-
eral highway problem by Briest and Krysta (2006) does not automatically
yield weak NP-hardness for the problem with price monotonicity, as optimal
prices in that completeness proof are not monotone in the length of the sub-
paths. We next derive weak NP-hardness for the problem with monotonicity
constraint, and we present an O(lnB)-approximation algorithm.

2.3.1 Complexity

We prove NP-completeness of the highway problem with monotonicity con-
straint by a reduction from EQUALCARDINALITYSUBSETSUM defined in the
following way.

Definition 2.3.1 (EQUALCARDINALITYSUBSETSUM). Given a set of positive
integers a1,a2, . . . ,a2L and nonnegative integer A such that a1 ≤ a2 ≤ . . . ,≤
a2L, a2L > ∑2L−1

`=1 a` and 0 < A < a2L. Does there exist a set S ⊆ {1, . . . ,2L}
such that

∑
`∈S a` = A and |S| = L?

In Theorem 2.3.2, we show that this problem is NP-complete by a re-
duction from SUBSETSUM; see Garey and Johnson (1979). This problem is
defined as follows. Given a set of positive integers x1, x2, . . . , xK and nonneg-
ative integer X . Does there exist a set T ⊆ {1, . . . ,K} such that

∑
k∈T xk = X?
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2.3. Highway problem

Theorem 2.3.2. EQUALCARDINALITYSUBSETSUM is NP-complete.

Proof. Consider an instance of the NP-complete problem SUBSETSUM. As-
sume without loss of generality that x1 ≤ x2 ≤ . . . ≤ xK . We create an in-
stance of EQUALCARDINALITYSUBSETSUM as follows: let L = K + 1, A =
X +∑K

k=1 xk, a` = 0 for all ` ∈ {1, . . . ,K = L−1}, a` = x`−K for all ` ∈ {K +1 =
L, . . . ,2K = 2L−2}, a2L−1 =

∑K
k=1 xk and a2L = 2

∑K
k=1 xk+1. This instance sat-

isfies the properties of EQUALCARDINALITYSUBSETSUM in Definition 2.3.1.
We claim that there exists a solution to SUBSETSUM if and only if there ex-
ists a solution to EQUALCARDINALITYSUBSETSUM.

Given a set T ⊆ {1, . . . ,K} such that
∑

k∈T xk = X . Define S = {K + k : k ∈
T}∪ {1, . . . ,L−1−|T|}∪ {2L−1}. Then,

∑
`∈S

a` =
∑
k∈T

xk +
L−1−|T|∑
`=1

a`+a2L−1 = X +0+
K∑

k=1
xk = A,

and |S| = |T| + (L−1− |T|)+1 = L. For the converse, given set S such that∑
`∈S a` = A and |S| = L. First, note that 2L ∉ S as a2L = 2

∑K
k=1 xk +1 > A

and 2L−1 ∈ S as
∑2L−2
`=1 a` =

∑K
k=1 xk < A. Define T = S∩ {L, . . . ,2L−2}, with

∑
k∈T

xk =
∑
`∈S

a`−
∑

`∈S∩{1,...,L−1}
a`−a2L−1 =

(
X +

K∑
k=1

xk

)
−0−

K∑
k=1

xk = X .

Thus T is a solution to SUBSETSUM.

Consider an instance of EQUALCARDINALITYSUBSETSUM as in Defini-
tion 2.3.1. We now create an instance H of the highway problem as follows.
For every ` = 1, . . . ,2L, we define a′

`
= a`+ a2L, and we introduce a gadget.

Every gadget ` consists of four items i`,1, i`,2, i`,3, i`,4. Furthermore, there
are 4+8L customers in every gadget `, one customer requests bundle {i`,1}
with valuation 2M− 1

2 a′
`
, one customer requests bundle {i`,2} with valuation

a′
`
, 8L customers request bundle {i`,2, i`,3} with valuation 2M + (1

2 + 1
8L )a′

`
,

one customer requests {i`,3} with valuation 2M− 1
2 a′

`
, and one customer re-

quests bundle {i`,4} with valuation M, where M is a sufficiently large integer.
For gadget 2L, there is one additional customer who is interested in bundle
{i2L,1, i2L,2, i2L,3, i2L,4} with valuation 5M. Finally, there is one big customer
requesting all items with valuation 10ML+ 1

8 a2L + 1
8L A. Thus, the instance

of the highway pricing problem has 2L(4+8L)+2 customers and 8L items,
and is displayed in Figure 2.3.
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2M−
1

2
a
′

`

a
′

`

2M+

(

1

2
+

1

8L

)

a
′

`

2M−
1

2
a
′

`

M

Gadget 1

10ML+
1

8
a2L +

1

8L
A

i1,1 i1,2 i1,3 i1,4

Gadget 2L−1

i2L−1,1i2L−1,2i2L−1,3i2L−1,4

8L

Gadget 2L

i2L,1 i2L,2 i2L,3 i2L,4

5M

Figure 2.3: Instance H of the highway problem.

To prove NP-hardness, we claim that there exists a set S ⊆ {1, . . . ,2L}
such that

∑
`∈S a` = A and |S| = L if and only if there is a feasible solution

to the highway problem, satisfying the monotonicity constraint, with a total
revenue Π ≥ (20+ 32L)ML + 5M + 4L

∑2L
`=1 a` + (8L2 + 1

8 )a2L + 1
8L A. In the

NP-hardness proof of Theorem 2.3.5, we use for every gadget one out of two
following price vectors.

p1
` =

(
2M− 1

2
a′
`,a′

`,2M− 1
2

a′
`, M

)
(2.3)

p2
` =

(
2M− 1

2
a′
`, (1+ 1

8L
)a′

`,2M− 1
2

a′
`, M

)
. (2.4)

To prove the necessary condition of the claim, we show in Lemma 2.3.3 that
each gadget will be priced at p1

`
or p2

`
.

Lemma 2.3.3. Suppose that there exists a solution to instance H of the high-
way problem with revenue at least (20+32L)ML+5M +4L

∑2L
`=1 a`+ (8L2 +

1
8 )a2L + 1

8L A. Then, the items in gadget ` ∈ {1, . . . ,2L} are priced according to
either price vector p1

`
or p2

`
.

Proof. Let us denote the total revenue by Π =Πbig +
∑2L
`=1Π`, where Πbig is

the revenue obtained from the big customer and Π` is the revenue obtained
from selling the items in gadget ` ∈ {1, . . . ,2L}.

Consider a gadget 1 ≤ `< 2L. If p`,2 + p`,3 > 2M + 1
2 a′

`
then at most one

of the customers requesting bundle {i`,2} or {i`,3} is a winner. In this case,
we can bound the revenue on gadget ` from above by

Π` ≤ 2M− 1
2

a′
`+2M− 1

2
a′
`+8L

(
2M+

(
1
2
+ 1

8L

)
a′
`

)
+M = 5M+(16M+4a′

`)L.
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2.3. Highway problem

On the other hand, if the customer requesting bundle {i`,2} and the cus-
tomer requesting bundle {i`,3} are both winners, then each of the customers
requesting {i`,2, i`,3} cannot contribute more than 2M + 1

2 a′
`

to the revenue.
Therefore, also in this case the revenue due to the items in this gadget can
be bounded by Π` ≤ 5M+ (16M+4a′

`
)L.

With similar arguments, we can bound the revenue on gadget 2L by
Π2L ≤ 10M+(16M+4a′

`
)L, and the big customer contributes at most 10ML+

1
8 a2L + 1

8L A. Hence, the total revenue

Π=Πbig +
2L∑
`=1

Π` ≤ 10ML+ 1
8

a2L + 1
8L

A+
2L∑
`=1

(5M+ (16M+4a′
`)L)+5M

≤ (20+32L)ML+5M+4L
2L∑
`=1

a`+ (8L2 + 1
8

)a2L + 1
8L

A.

Therefore, to have a revenue of at least (20+32L)ML+5M +4L
∑2L
`=1 a`+

(8L2 + 1
8 )a2L + 1

8L A, the revenues on each of the gadgets and the big bundle
need to be equal to the before mentioned upper bounds. It is easy to verify
that only the price vectors p1

`
and p2

`
satisfy this constraint.

We show that these price vectors p1
`

and p2
`

always lead to a pricing
strategy that satisfies the monotonicity constraint.

Lemma 2.3.4. Any pricing strategy that only uses price vectors p1
`

and p2
`

for
each gadget in instance H of the highway problem satisfies the monotonicity
constraint.

Proof. We know that 0 ≤ a1 ≤ a2 ≤ . . . ≤ a2L. Notice that both p1
`

and p2
`

consist of four item prices, and the sum of the item prices in p1
`

is 5M and
in p2

`
it is 5M + 1

8L a′
`
. Now consider an arbitrary bundle of size K , where

K ≤ n = 8L. Since only prices p1
`

and p2
`

are used for the gadgets, depending
on the value of K modulo 4, we can easily determine lower and upper bounds
on the price of any bundle of size K . To find the lower (upper) bound for
the bundle price, it is sufficient to consider only prices in p1

`
(p2

`
), because

p1
`,i ≤ p2

`,i for every i ∈ {1, . . . ,4}. Consider the following extensive case study,
in which we determine the bounds for different values of K modulo 4.

K ≡ 0 mod 4: If the bundle starts at item i`,1 in some gadget ` then the
total bundle price is at least 5M K

4 and at most (5M+ 1
8L a′

2L) K
4 . If the bundle

starts at item i`,2 in some gadget ` then the total bundle price is at least
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5M K
4 + 1

2 a′
1 − 1

2 a′
2L and at most (5M + 1

8L a′
2L) K

4 + 1
2 a′

2L − 1
2 a′

1. If the bundle
starts at item i`,3 in some gadget ` then the total bundle price is at least
5M K

4 + 1
2 a′

1 − 1
2 a′

2L and at most (5M + 1
8L a′

2L) K
4 + 1

2 a′
2L − 1

2 a′
1. If the bundle

starts at item i`,4 in some gadget ` then the total bundle price is at least
5M K

4 and at most (5M + 1
8L a′

2L) K
4 . Concluding, for a bundle of size K ≡ 0

mod 4, the bundle price is at least 5M K
4 + 1

2 a′
1 − 1

2 a′
2L and at most (5M +

1
8L a′

2L) K
4 + 1

2 a′
2L − 1

2 a′
1.

K ≡ 1 mod 4: If the bundle starts at item i`,1 in some gadget ` then the to-
tal bundle price is at least 5M K−1

4 +2M−1
2 a′

2L and at most (5M+ 1
8L a′

2L) K−1
4 +

2M − 1
2 a′

1. If the bundle starts at item i`,2 in some gadget ` then the total
bundle price is at least 5M K−1

4 +a′
1 and at most (5M+ 1

8L a′
2L) K−1

4 +(1+ 1
8L )a′

2L.
If the bundle starts at item i`,3 in some gadget ` then the total bundle price
is at least 5M K−1

4 +2M− 1
2 a′

2L and at most (5M+ 1
8L a′

2L) K−1
4 +2M− 1

2 a′
1. If

the bundle starts at item i`,4 in some gadget ` then the total bundle price
is at least 5M K−1

4 +M and at most (5M+ 1
8L a′

2L) K−1
4 +M. Concluding, for a

bundle of size K ≡ 1 mod 4, the bundle price is at least 5M K−1
4 +a′

1 and at
most (5M+ 1

8L a′
2L) K−1

4 +2M− 1
2 a′

1 (as M is large enough).

K ≡ 2 mod 4: If the bundle starts at item i`,1 in some gadget ` then
the total bundle price is at least 5M K−2

4 + 2M + 1
2 a′

1 and at most (5M +
1

8L a′
2L) K−2

4 + 2M + (1
2 + 1

8L )a′
2L. If the bundle starts at item i`,2 in some

gadget ` then the total bundle price is at least 5M K−2
4 +2M + 1

2 a′
1 and at

most (5M + 1
8L a′

2L) K−2
4 +2M + (1

2 + 1
8L )a′

2L. If the bundle starts at item i`,3

in some gadget ` then the total bundle price is at least 5M K−2
4 +3M− 1

2 a′
2L

and at most (5M + 1
8L a′

2L) K−2
4 +3M − 1

2 a′
1. If the bundle starts at item i`,4

in some gadget ` then the total bundle price is at least 5M K−2
4 +3M− 1

2 a′
2L

and at most (5M + 1
8L a′

2L) K−2
4 +3M − 1

2 a′
1. Concluding, for a bundle of size

K ≡ 2 mod 4, the bundle price is at least 5M K−2
4 +2M + 1

2 a′
1 and at most

(5M+ 1
8L a′

2L) K−2
4 +3M− 1

2 a′
1.

K ≡ 3 mod 4: If The bundle starts at item i`,1 in some gadget ` then the
total bundle price is at least 5M K−3

4 +4M and at most (5M + 1
8L a′

2L) K−3
4 +

4M+ 1
8L a′

2L. If The bundle starts at item i`,2 in some gadget ` then the total
bundle price is at least 5M K−3

4 +3M + 1
2 a′

1 and at most (5M + 1
8L a′

2L) K−3
4 +

3M + (1
2 + 1

8L )a′
2L. If The bundle starts at item i`,3 in some gadget ` then

the total bundle price is at least 5M K−3
4 + 5M − a′

2L and at most (5M +
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1
8L a′

2L) K−3
4 + 5M − a′

1. If The bundle starts at item i`,4 in some gadget `
then the total bundle price is at least 5M K−3

4 +3M+ 1
2 a′

1 and at most (5M+
1

8L a′
2L) K−3

4 +3M+ (1
2 + 1

8L )a′
2L. Concluding, for a bundle of size K ≡ 3 mod 4,

the bundle price is at least 5M K−3
4 +3M+ 1

2 a′
1 and at most (5M+ 1

8L a′
2L) K−3

4 +
5M−a′

1.

We summarize the resulting lower and upper bounds in Table 2.1. We
use the lower and upper bound on the prices for a bundle of size K to deter-
mine whether the monotonicity constraint holds. To do this, the difference
between the lower bound of a bundle of size K +1 and the upper bound on
a bundle of size K , that is, LB(K +1)−UB(K), should be positive for any
bundle of size K ≤ 8L.

Bundle size LB UB
K ≡ 0 mod 4 5M K

4 + 1
2 a′

1 − 1
2 a′

2L 5M K
4 − 1

2 a′
1 + (1

2 + K
4 · 1

8L )a′
2L

K ≡ 1 mod 4 5M K−1
4 +a′

1 5M K−1
4 +2M− 1

2 a′
1 + K−1

4 · 1
8L a′

2L
K ≡ 2 mod 4 5M K−2

4 +2M+ 1
2 a′

1 5M K−2
4 +3M− 1

2 a′
1 + K−2

4 · 1
8L a′

2L
K ≡ 3 mod 4 5M K−3

4 +3M+ 1
2 a′

1 5M K−3
4 +5M−a′

1 + K−3
4 · 1

8L a′
2L

Table 2.1: Smallest and largest bundle prices for bundles with size K .

K ≡ 0 mod 4: LB(K +1)−UB(K)=

5M
(K +1)−1

4
+a′

1 −
(
5M

K
4
− 1

2
a′

1 +
(

1
2
+ K

4
1

8L

)
a′

2L

)

= 3
2

a′
1 −

(
1
2
+ K

4
1

8L

)
a′

2L ≥ 3
2

a′
1 −

(
1
2
+ 8L

4
1

8L

)
a′

2L

= 3
2

(a1 +a2L)− 3
4

(a2L +a2L)= 3
2

a1 +
(

3
2
− 6

4

)
a2L = 3

2
a1 ≥ 0.

K ≡ 1 mod 4: LB(K +1)−UB(K)=

5M
(K +1)−2

4
+2M+ 1

2
a′

1 −
(
5M

K −1
4

+2M− 1
2

a′
1 +

K −1
4

· 1
8L

a′
2L

)

= a′
1 −

K −1
4

1
8L

a′
2L > a′

1 −
8L
4

1
8L

a′
2L

= (a1 +a2L)− 1
4

(a2L +a2L)= a1 +
1
2

a2L ≥ 0.
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K ≡ 2 mod 4: LB(K +1)−UB(K)=

5M
(K +1)−3

4
+3M+ 1

2
a′

1 −
(
5M

K −2
4

+3M− 1
2

a′
1 +

K −2
4

· 1
8L

a′
2L

)

= a′
1 −

K −2
4

1
8L

a′
2L > a′

1 −
8L
4

1
8L

a′
2L

= (a1 +a2L)− 1
4

(a2L +a2L)= a1 +
1
2

a2L ≥ 0.

K ≡ 3 mod 4: LB(K +1)−UB(K)=

5M
(K +1)

4
+ 1

2
a′

1 −
1
2

a′
2L −

(
5M

K −3
4

+5M−a′
1 +

K −3
4

· 1
8L

a′
2L

)

= 3
2

a′
1 −

(
1
2
+ K −3

4
· 1
8L

)
a′

2L > 3
2

a′
1 −

(
1
2
+ 8L

4
· 1
8L

)
a′

2L

= 3
2

(a1 +a2L)− 3
4

(a2L +a2L)= 3
2

a1 +
(

3
2
− 6

4

)
a2L = 3

2
a1 ≥ 0.

We verified that this difference is positive in all four cases, hence the mono-
tonicity constraint is satisfied.

Theorem 2.3.5. The highway problem with monotonicity constraint is NP-
hard.

Proof. For the first part of the proof assume there is a set S ⊆ {1, . . . ,2L} such
that

∑
`∈S a` = A and |S| = L. Let the price vector of gadget ` be p1

`
if ` ∉ S,

and p2
`

if ` ∈ S. The revenue of every gadget ` is (5+16L)M +4L(a`+a2L),
independent of which price vector is used, and there is an additional revenue
in gadget 2L of 5M. Given the pricing strategy for all items, the big customer
contributes

∑
`∈S

(
5M+ 1

8L
(a`+a2L)

)
+

∑
`∉S

(5M)=
2L∑
`=1

5M+
∑
`∈S

(
1

8L
(a`+a2L)

)

= 10LM+ 1
8L

A+ 1
8

a2L.

This yields a total revenue of

2L∑
`=1

(5M+16LM+4L(a`+a2L))+5M+10LM+ 1
8L

A+ 1
8

a2L

= (20+32L)ML+5M+4L
2L∑
`=1

a`+
(
8L2 + 1

8

)
a2L + 1

8L
A.
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2.3. Highway problem

For the converse, assume there is a feasible solution to the highway pric-
ing problem with a total revenue of at least (20+32L)ML+5M+4L

∑2L
`=1 a`+

(8L2 + 1
8 )a2L + 1

8L A. By Lemma 2.3.3, we know that we use either p1
`

or p2
`

for each gadget `. Notice that to obtain the maximum revenue on gadget 2L,
we use pricing p1

2L. Let set S = {` ∈ {1, . . . ,2L} : p` = p2
`
}. Then, the actual

payment of the big customer can also be written as

∑
`∈S

(
5M+ 1

8L
(a`+a2L)

)
+

∑
`∉S

(5M)= 10ML+ 1
8L

|S|a2L + 1
8L

∑
`∈S

a`.

From the arguments in the proof of Lemma 2.3.3, we know that this should
be equal to her valuation 10ML+ 1

8 a2L+ 1
8L A. That is,

∑
`∈S a` = (L−|S|)a2L+

A. We claim that |S| = L. To prove this, suppose it is not true. First, as-
sume that |S| < L, then

∑
`∈S a` = (L− |S|)a2L + A > ∑2L−1

`=1 a`+ A, which is
not possible as 2L ∉ S, so |S| ≥ L. Now, assume |S| > L, then

∑
`∈S a` =

(L− |S|)a2L + A < −a2L + A < 0, as A < a2L. This is also not possible as all
integers a` are nonnegative. Therefore, we can conclude that |S| = L and
consequently, A =∑

`∈S a`.

2.3.2 Approximation algorithm

We cannot apply the PTAS from Theorem 2.2.7 to the highway problem,
as this crucially requires the monotonicity constraint for arbitrary subsets
of items. Nevertheless, we derive an O(lnB)-approximation algorithm for
the highway pricing problem with monotonicity constraint. We denote by
a ρ-approximation algorithm an algorithm that produces a solution with
value at least 1/ρ times the optimal solution value. Before we present the
algorithm, we present approximation guarantees for two special cases. First,
for the case in which all bundles contain at least two items. Second, we
consider the case in which all bundles contain only one item, and there is a
bound on the ratio of the valuations between any two customers.

Lemma 2.3.6. The highway problem with monotonicity constraint in which
all bundles have size at least two is approximable within a factor of 3 by
optimal uniform pricing.

Proof. Consider an optimal solution with revenue Π∗ and let p∗
max be the

highest item price in this solution. We claim that pricing all items at p∗
max/3,

yields a revenue of at least Π∗/3. Clearly, an optimal uniform pricing is at
least as good as the uniform p∗

max/3 pricing.
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Chapter 2. Monotonicity Constraint on Prices

We claim that any winner j ∈W in the optimal pricing remains a winner
for the uniform pricing at level p∗

max/3. Let |I j| = `. Then the valuation for
customer j is at least b j ≥ b`/2cp∗

max, as by the monotonicity constraint the
total price of any two consecutive items in an optimal solution is at least
p∗

max and customer j can afford the corresponding bundle I j. In the uni-
form p∗

max/3 pricing, the total bundle price is `p∗
max/3, which is not more

than b`/2cp∗
max, for `≥ 2. In an optimal pricing, bundle I j is priced at most

at `p∗
max, whereas in our uniform pricing, we get `p∗

max/3. Hence, pricing
all items to p∗

max/3 yields a revenue of at least Π∗/3. The optimal uniform
pricing yields at least the same revenue, which proves the claim.

The above lemma shows that whenever all bundles contain at least two
items, we have a constant approximation. Now, we consider only instances
in which bundles consist of exactly one item. Moreover, we restrict ourselves
to instances in which b j/bk ≤β, for any two customers j and k. The value of
β≥ 1 will be defined later.

Lemma 2.3.7. The highway problem with monotonicity constraint, restricted
to instances in which each bundle contains exactly one item and b j/b j′ ≤β for
any two customers j, j′ ∈ J, admits a linear time β-approximation algorithm.

Proof. We price each item uniformly at p = min j∈J{b j}. Since for any two
customers j and j′ it holds that b j/b j′ ≤ β and every bundle contains one
item, we lose at most a factor of β on the contribution of every customer.
Hence, pricing all items at p yields a revenue of at least Π∗/β.

Theorem 2.3.8. The best uniform pricing yields a solution with revenue at
least Π∗/(3+ e lnB) for the highway problem with monotonicity constraint.
The time needed to find this solution is O(n2m).

Proof. Consider an optimum solution satisfying the monotonicity constraint.
Let Π∗

L denote the revenue of customers whose bundles are of size at least
two. Furthermore, for any r ∈ R = {1, . . . ,dlogβBe+1}, let Π∗

r denote the rev-
enue of customers whose bundles are of size one with valuation βr−1 ≤ b j <
βr in this solution. Then Π∗ =Π∗

L +∑
r∈RΠ

∗
r .

Let Π̃L denote the revenue obtained by the best uniform pricing and Π̃r
denote the revenue obtained by the best uniform pricing strategy for the
customers in Jr = { j ∈ J : |I j| = 1 and βr−1 ≤ b j < βr }, for all r ∈ R. By
Lemma 2.3.7, we have that Π̃r ≥Π∗

r /β and thus

max
r∈R

{Π̃r}≥
∑
r∈R

Π∗
r

β logβB
.
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2.4. Conclusion

Moreover, from Lemma 2.3.6, it follows that Π̃L ≥Π∗
L/3. Hence, the solution

yields a revenue of

max{Π̃L,Π̃r : r ∈ R}≥ Π∗

3+β logβB
.

The revenue from the approximation algorithm is maximized for the value
of β for which the derivative of the approximation ratio (3+β logβB)−1, with
respect to β, is equal to 0. This is true for β= e and therefore we get

max{Π̃L,Π̃r : r ∈ R}≥ Π∗

3+ e lnB
.

To see the claim on the time complexity, note that to find an optimal uni-
form pricing, we need to consider at most n different prices, namely b j/|I j|
for all j ∈ J. For each price, we need to compute the set of winning customers
and the revenue obtained on this price, which can be done in O(nm) time.
So, the best uniform price can be computed in O(n2m) time.

2.4 Conclusion

The monotonicity constraint introduced in this chapter forces prices to be of
the same magnitude for all items, thus it can very well be applied for compa-
nies that sell comparable items. With the introduction of this monotonicity
constraint on the bundle prices, the single item pricing problem is strongly
NP-hard. Also, we show that a polynomial time approximation scheme ex-
ists for this particular problem, breaking the semi-logarithmic inapproxima-
bility result by Demaine et al. (2006).

In contrast, the prices are not forced to be of the same magnitude in the
highway problem, and as proven in this chapter, this problem remains NP-
hard. Being unable to close the gap between (weak) NP-hardness on the
one hand and only logarithmic polynomial-time approximation algorithms
on the other hand, we search for a different approach in the next chapter.
There, we use the average valuations of the customers to obtain an approxi-
mation algorithm, and introduce a monotonicity constraint on the valuations
instead of on the prices as was done in this chapter.
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Chapter 3

Inhomogeneity of Average
Valuations

In this chapter1 we consider the single item pricing problem with unlimited
supply. Customers request arbitrary subsets of a given set of items that are
sold by a company. This problem is in general known to be inapproximable
by a semi-logarithmic factor in the number of customers n as shown by De-
maine et al. (2006). We relate the tractability of the problem to structural
properties of customers’ valuations. Then, the inapproximability result is no
longer valid as soon as the inhomogeneity is bounded by a constant. More-
over, we show that the problem becomes strongly NP-hard as soon as the
average valuations of customers are not homogeneous, even under further
restrictions such as monotonicity of valuations.

We address the highway problem afterwards. This problem asks for
prices to be determined for segments of a single highway such as to maximize
the revenue obtainable from a given set of customers with known valuations.
The problem is (weakly) NP-hard and a recent quasi-polynomial time ap-
proximation scheme by Elbassioni, Sitters, and Zhang (2007) suggests that
a PTAS might be in reach. We show that also this problem becomes NP-hard
as soon as the average valuations of customers are not homogeneous, even
under further restrictions such as monotonicity of valuations. Moreover, we
apply the efficient approximation algorithm, parameterized along the inho-
mogeneity of customers’ average valuations, that is derived for the single
item pricing problem with arbitrary bundles.

1This chapter is based on Grigoriev, van Loon, and Uetz (2008b).



Chapter 3. Inhomogeneity of Average Valuations

3.1 Introduction

Let I = {1, . . . ,m} represent the set of items for sale, where each item is avail-
able in unlimited supply. Let J = {1, . . . ,n} denote the set of potential single-
minded customers. Every customer j ∈ J requests a subset of the items,
the bundle, denoted I j ⊆ I. The maximum amount customer j wants to
pay for subset I j, her valuation b j, is publicly known. We assume b j > 0,
for otherwise that customer can be deleted from the instance. Given a vec-
tor of prices p = (p1, . . . , pm), containing one price for each item, denote by
W = { j ∈ J :

∑
i∈I j pi ≤ b j} the set of winners.

Definition 3.1.1. The single item pricing problem with arbitrary bundles
asks for a vector of prices p = (p1, . . . , pm) ∈ Rm

+ , one for each item, such that
the total revenue Π extracted from the set W of winners is maximal, where
Π=∑

j∈W
∑

i∈I j pi.

In this chapter we determine the maximum deviation between customers’
average valuations, referred to as the inhomogeneity of average valuations.

Definition 3.1.2 (Inhomogeneity of average valuations). For any instance of
the single item pricing problem, define b̄ j = b j/|I j| as the average (per item)
valuation of customer j, and define the inhomogeneity of valuations as

α= max
j, j′∈J

{
b̄ j

b̄ j′

}
.

Notice that α ≥ 1, and that the problem becomes trivial as soon as the
valuations are homogeneous, that is, α = 1, since this corresponds to the
case where all customers’ valuations per segment are identical; see also Sec-
tion 3.2.1.

Our first result shows that, in contrast to the trivially solvable homoge-
neous case, the problem with inhomogeneity of valuations is strongly NP-
hard. While this does not sound very surprising, the main point is that this
NP-hardness result holds even if the inhomogeneity α is bounded from above
by any constant 1+ε. In some sense, we thereby delineate the borderline be-
tween triviality and NP-hardness for the single item pricing problem.

Furthermore, the NP-hardness result remains true even if we impose
further restrictions on customers’ valuations, such as monotonicity, that is,

b j ≤ b j′ for all I j ⊆ I j′ ,
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3.2. Arbitrary bundles

and monotonicity of average valuations, that is,

b̄ j =
b j

|I j|
≥ b j′

|I j′ |
= b̄ j′ for all I j ⊆ I j′ .

Our second result is a parametric approximation algorithm for the single
item pricing problem that complements the NP-hardness result. The pro-
posed algorithm has performance guarantee O(lnα) and computation time
O(n(logn+m)), where the constant hidden in the O-notation of the perfor-
mance bound is not more than e. More specifically, it is easy to see that
an α-approximation exists, and for large values of α we show how to im-
prove this bound to 1+ lnα+ ε for any ε > 0. In this context, notice that
if there exists any constant upper bound on the inhomogeneity α then the
semi-logarithmic inapproximability result of Demaine et al. (2006) for that
problem is not longer valid. We believe that such a constant bound is not
unreasonable in practical applications, especially if the company sells com-
parable items. Also, note that α≤ m for the case of monotone and decreasing
average valuations.

Finally, we briefly comment on the fact that the O(lnα)-approximation
result also holds for the highway problem. Here, the items represent con-
secutive segments of a single highway, which can be regarded as edges on
a simple path. Customers are interested in subpaths of this path. Notice
that as soon as the inhomogeneity α of customers’ valuations is bounded by
some constant, we have a constant-factor approximation algorithm. Sim-
ilarly as for the problem with arbitrary bundles, we delineate the border
between triviality if α = 1 and (weak) NP-hardness if the inhomogeneity α

is bounded from above by 1+ε.

3.2 Arbitrary bundles

In this section, we discuss the complexity of the single item pricing problem
with arbitrary bundles. Furthermore, we propose a O(lnα)-approximation
algorithm.

3.2.1 Complexity

We start with the short argument that the single item pricing problem with
homogeneous average valuations is trivially solvable: consider the average
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Chapter 3. Inhomogeneity of Average Valuations

valuation b̄, which is, by homogeneity, the same for each customer, and de-
fine the price pi = b̄ for every item i ∈ I. Clearly, each customer contributes
her entire valuation to the revenue, and the obtained solution is optimal.

Surprisingly enough, even if we allow only arbitrarily small deviations
from homogeneous average valuations, the single item pricing problem be-
comes NP-hard. More specifically, in Theorem 3.2.2 we show that the prob-
lem with inhomogeneous average valuations is strongly NP-hard under the
following three conditions.

Condition 3.1. The inhomogeneity α ≤ 1+ ε, where ε > 0 is an arbitrary
constant.

Condition 3.2. The valuations of the customers are monotone, that is, b j ≤
b j′ for any j, j′ ∈ J such that I j ⊆ I j′ .

Condition 3.3. The average valuations of the customers are monotone de-
creasing, that is, b̄ j′ ≤ b̄ j for any j, j′ ∈ J such that I j ⊆ I j′ .

To prove this, we use a reduction from the NP-hard problem INDEPEN-
DENTSET (Garey and Johnson 1979). Given a graph G = (V ,E) and inte-
ger s ≤ |V |, does there exist a set of vertices that are pairwise non-adjacent
with cardinality at least s? We define an instance I of the pricing prob-
lem as follows. Given an ε > 0, let M ≥ max{1/ε, s+1/2}. For every vertex
v ∈ V we create two vertex-items, v1 and v2, and for every edge e ∈ E we
introduce two edge-items, e1 and e2. Thus, I = V ∪E. Every vertex- and
edge-item is requested by 2M2 + 2M − 1 customers with valuation M + 1.
For every vertex v ∈ V , there is one customer interested in bundle {v1,v2}
and similarly, for every edge e ∈ E, there is one customer interested in bun-
dle {e1, e2}. These customers have valuation 2M + 2− 1/M. There is one
customer interested in item x with valuation M +1, and there are two cus-
tomers interested in bundle {y} of size M with valuation M2. Also, there
are two customers requesting bundle {x, y} (of size M + 1) with valuation
M2 + M. Then, for every edge e = {u,v} ∈ E, there is one customer inter-
ested in bundle {u1,u2,v1,v2, e1, e2}∪ {x} with valuation 7M +6−2/M. And
finally, one customer requests all vertex-items and item x, that is, bundle
{v1,v2 : v ∈V }∪ {x}, with valuation (2M+2−1/M)|V |+M+ (1/M)s. An exam-
ple of an instance of the single item pricing problem with arbitrary bundles
is displayed in Figure 3.1, where graph G has vertices {u,v,w} and edges
e = {u,v} and f = {v,w}.

Let us give a short intuition as to why we need these particular bundles.
The bundles on the vertex- and edge-items determine which vertices are in
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Figure 3.1: Example of instance I of the single item pricing problem with arbi-
trary bundles reduced from graph G = ({u,v,w}, {e = {u,v}, f = {v,w}}).

the independent set of G and bundle {u1,u2,v1,v2, e1, e2}∪ {x} assures later
that a feasible solution to the single item pricing problem corresponds to an
independent set in G. Bundle {v1,v2 : v ∈V }∪{x} assures that a feasible solu-
tion to the pricing problem corresponds to an independent set of cardinality
s. Finally, bundles {x}, {y} and {x, y} are present to fulfill the three conditions
required in this theorem.

Lemma 3.2.1. Instance I satisfies Conditions 3.1, 3.2 and 3.3.

Proof. The single-item bundles have the largest average valuation of M+1,
and bundles {y} and {x, y} have the smallest average valuation of M, thus
α = 1+1/M ≤ 1+ ε, as M ≥ 1/ε. It is fairly easy to see that Condition 3.2
holds as the valuation of a customer for some bundle is strictly smaller than
the valuation of a customer requesting a superset of this particular bundle.
The verification of Condition 3.3 is a little more troublesome. First note that
for bundle {i1} or {i2} the condition holds regarding bundle {i1, i2} as M+1>
M+1− 1

2M , for all i ∈ I. Also, for bundles {i1, i2} and {u1,u2,v1,v2, e1, e2}∪{x}
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we have

2M+2− 1
M

2
= M+1− 1

2M
≥ M+ 6

7
− 2

7M
=

7M+6− 2
M

7
,

where the inequality holds as M ≥ s+1/2 ≥ 3/2. Furthermore, for bundles
{i1, i2} and {v1,v2 : v ∈V }∪ {x} we have

2M+2− 1
M

2
= M+1− 1

2M
≥

(2M+2− 1
M )|V |+M+ 1

M s
2|V |+1

,

as M ≥ s+1/2. The average valuation of bundle {x} is M+1, thus as a conse-
quence of the above calculation, the condition holds for bundle {x} in either
{v1,v2 : v ∈ V }∪ {x} or {u1,u2,v1,v2, e1, e2}∪ {x}. Finally, the average valua-
tion of {x} is M+1 which is clearly greater than the average valuation M for
{x, y}, and as this is equal to the average valuation for {y} we have verified
that Condition 3.3 holds.

In the following proof, we defineΠi as the revenue obtained from the cus-
tomers requesting a bundle from set {{i1}, {i2}, {i1, i2}} for all i ∈ I =V ∪E. We
defineΠe as the revenue from the customers requesting {u1,u2,v1,v2, e1, e2}∪
{x} for some e = {u,v} ∈ E. We define Πxy as the revenue received from
customers requesting a bundle from set {{x}, {y}, {x, y}}, and finally, ΠV rep-
resents the revenue obtained from the customers requesting {v1,v2 : v ∈
V }∪ {x}. Obviously, the total revenue is Π = ∑

i∈IΠi +
∑

e∈EΠe +Πxy +ΠV .
Let C be a constant equal to (|V | + |E|)(4M3 +8M2 +2M −2)+ |E|(7M +6−
2/M)+|V |(2M+2−1/M)+4M2 +4M.

Theorem 3.2.2. The single item pricing problem with arbitrary bundles is
strongly NP-hard, even when restricted to the instances satisfying Condi-
tions 3.1, 3.2 and 3.3.

Proof. We claim that there exists an independent set V ′ ⊆ V of size |V ′| = s
if and only if there exists a feasible solution to instance I of the single item
pricing problem with arbitrary bundles with revenue at least C+ (1/M)s.

Given an independent set V ′ ⊆ V of size |V ′| = s. Define E0 = {e = {u,v} ∈
E : u,v ∉ V ′}. Let pi = (pi1 , pi2) be defined by pi = (M+1, M+1) if i ∈ V ∩V ′

or i ∈ E∩E0 and pi = (M+1− 1
2M , M+1− 1

2M ) if i ∈V \V ′ or i ∈ E \ E0. Also,
let px = M and py = M2, where py denotes the sum of all M item prices in
bundle {y}. Under this pricing strategy, we see that Πi = 4M3+8M2+2M−2
for all i ∈ I = V ∪ E, irrespective of which pricing is used for item i, and
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Πxy = M+2M2+2(M2+M)= 4M2+3M. Every edge e = {u,v} ∈ E contains one
item priced at (M+1, M+1) and two at (M+1− 1

2M , M+1− 1
2M ) by definition

of the pricing and set E0. As px = M, we have

Πe = 2(M+1)+4
(
M+1− 1

2M

)
+M = 7M+6− 2

M
.

The customer requesting all vertex-items and item x spends
(
2M+2− 1

M

)
|V \V ′|+ (2M+2)|V ′|+ px =

(
2M+2− 1

M

)
|V |+M+ 1

M
s.

Then, the total revenue is

Π= (|V |+ |E|)Πi +|E|Πe +Πxy +ΠV = C+ 1
M

s.

For the converse, we are given a solution to instance I with revenue at
least C+ (1/M)s. First, we consider Πxy. If the customer requesting bundle
{x, y} is not a winner, the maximum revenue is M +1+2M2. Otherwise, let
px be the price for item x. Then, the maximum revenue is px +2(M2 +M −
px)+2(M2 +M), where px ∈ [M, M+1] such that all customers are winners.
Then, Πx,y ≤ 4M2+3M, which is obtained if px = M. For every item i ∈ I, we
have

Πi =max{2(2M2 +2M−1)(M+1), (2M2 +2M−1+1)(2M+2−1/M)}.

This is equal to Πi = 4M3+8M2+2M−2. Clearly, for every e ∈ E, the revenue
Πe is at most the valuation 7M +6−2/M. Now, we know that the revenue
from the customer requesting bundle {v1,v2 : v ∈V }∪ {x} is

ΠV =Π− (|V |+ |E|)Πi −|E|Πe −Πxy ≥ (2M+2−1/M)|V |+M+ (1/M)s.

Thus, the minimum revenue is at least equal to the valuation. As this
customer cannot contribute more than the valuation, it should be equality
throughout. This also means that all other revenues described above at-
tain their maximum, thus px = M and py = M2. Now, let V ′ = {v ∈ V : pv =
(M+1, M+1)} and E0 = {e ∈ E : pe = (M+1, M+1)}. As Πe = 7M+6−2/M and
px = M for all e = {u,v} ∈ E, we know that either u ∈ V ′ and v ∉ V ′, e ∉ E0,
or v ∈ V ′ and u ∉ V ′, e ∉ E0, or e ∈ E0 and u,v ∉ V ′. Thus, for each edge,
either one vertex is in V ′ or both are not in. Hence, V ′ is an independent set.
Furthermore, the customer requesting bundle {v1,v2 : v ∈V }∪ {x} pays

(2M+2−1/M)|V \V ′|+ (2M+2)|V ′|+ px = (2M+2−1/M)|V |+M+ (1/M)|V ′|.
As this payment is equal to the revenue, which in turn has to be equal to the
valuation, we know that |V ′| = s.
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3.2.2 Approximation algorithm

The idea for the approximation algorithm is as follows. We partition the set
of customers J into O(lnα) subsets S1, . . . ,SK , such that in each subset any
two customers have average valuations different from each other by at most
a constant factor δ > 1. Denote by Π∗

k the maximum revenue for the single
item pricing problem restricted to the set of customers Sk, referred to as
Sk-restricted problem. Then

∑K
k=1Π

∗
k is clearly an upper bound for the opti-

mum Π∗ of the original problem. Therefore, the highest maximum revenue
maxk=1,...,K {Π∗

k} over all restricted problems is at least Π∗/K . Next, from the
fact that the inhomogeneity of the average valuations in Sk is bounded by at
most a factor of δ, we derive that for the Sk-restricted problem there exist
a price vector generating revenue of at least Π∗

k/δ. Thus, taking the pricing
vector yielding the highest revenue over all restricted problems, we gener-
ate a total revenue of at least Π∗/δK . Finally, we optimize the performance
guarantee over parameters K and δ, in Lemma 3.2.3 and Theorem 3.2.5,
respectively.

Consider Algorithm 3.1 in which we create sets S1, . . . ,SK and determine
a price vector p yielding revenue Π̃.

Lemma 3.2.3. For any δ> 1, the number of subsets K is at most 1+lnα/ lnδ.

Proof. By definition of the inhomogeneity α, we have b̄ j ≤αb̄ j′ for every pair
of customers j, j′ ∈ J. We show by induction that for any k = 1, . . . ,K the ratio
between the highest and lowest average valuation of customers in Jk, b̄max

k
and b̄min

k respectively, is at most α/δk−1. This holds trivially for k = 1. Now,
suppose that the claim is true up to k−1 for some k = 2, . . . ,K . Then, we have

b̄max
k

b̄min
k

<
b̄max

1

δk−1b̄min
1

≤ α

δk−1 ,

where the first inequality holds because b̄min
k > δk−1b̄min

1 by definition of Sk
and b̄max

k = b̄max
1 by definition of Jk, and the second inequality holds by the

induction hypothesis. Consequently, K ≤ 1+ logδα= 1+ lnα/ lnδ.

Lemma 3.2.4. In the Sk-restricted problem, price vector pk yields a revenue
Π̃k ≥Π∗

k/δ.

Proof. For any k = 1, . . . ,K , pricing pk determined in Algorithm 3.1 assures
that all customers in Sk are winners. By definition of set Sk, max j∈Sk b̄ j/
min j∈Sk b̄ j ≤ δ, therefore the revenue of the solution is at least Π∗

k/δ.
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3.2. Arbitrary bundles

Algorithm 3.1: Approximation algorithm
Initialize J1 = J, Π̃= 0, W = J;
Order the customer with respect to their average valuation in an
increasing fashion;
b̄min =min j∈J{b̄ j};
foreach k = 1, . . . ,K do

Sk = { j ∈ Jk : b̄ j ≤ δk b̄min};
Jk+1 = Jk \ Sk;
Πk = 0;
foreach i = 1, . . . ,m do

Sik = { j ∈ Sk : i ∈ I j};
if Sik 6= ; then

pk
i =min j∈Sik {b̄ j};

else
pk

i is chosen arbitrarily;
end
Πk+= |Sik|pk

i ;
end
if Πk > Π̃ then

Π̃=Πk, p = pk and W = Sk;
end

end

Combining Lemma 3.2.3 and Lemma 3.2.4 and optimization of δ yields
the following result.

Theorem 3.2.5. Price vector p yields a total revenue of at least Π∗/(e lnα+ e)
for the single item pricing problem, and it can be computed in O((n+m) logn)
time.

Proof. The total revenue generated by the best price vector p from {pk : k =
1, . . . ,K} is

Π̃= max
k=1,...,K

{Π̃k}≥ max
k=1,...,K

{
Π∗

k

δ

}
≥ Π∗

δK
≥ Π∗

δ
(
1+ lnα

lnδ

) .
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Chapter 3. Inhomogeneity of Average Valuations

This is maximized if

lnδ= − lnα+
√

(lnα)2 +4lnα
2

=
− lnα+2lnα

√
1
4 + 1

lnα

2
=

(
1
2
+

√
1
4
+ 1

lnα

)−1

thus for δ= exp
((

1
2 +

√
1
4 + 1

lnα

)−1)
. Now, as e lnα+ e ≥ δ(1+ lnα

lnδ ) for all α> 1,

the total revenue is at least Π∗/(e lnα+ e).
We arrive at the computation time as follows. First, we order the cus-

tomers according to their average valuation increasingly, which can be done
in O(n logn) time. Then, for all k = 1, . . . ,K , we use binary search to create
set Sk in O(logn) time, and for all items i = 1, . . . ,m we determine the set
of customers that request the item in O(n) time, and the item price and the
revenue in constant time. So, the total runtime is O(n logn+K(logn+nm)),
which is in O(n(logn+m)), as K depends on α.

There are several directions for improvement of the obtained approxi-
mate solution to the single item pricing problem. First, instead of the con-
structed price vectors pk,k = 1, . . . ,K , we can use price vectors maximizing
the revenue in the Sk-restricted problems, with given set of winners W = Sk.
Notice that, for any set of winners W ⊆ J, the price vector maximizing the
revenue obtained from W can be found in polynomial time by solving a sim-
ple linear program; see Lemma 4.2.2. Unfortunately, this approach does not
necessarily lead to any provable improvement of the performance guarantee.

Second, we can improve the performance guarantee when using a more
careful analysis of the revenue generated by price vector p when applied to
the entire set J instead of Sk only. By construction of the partition of J, for
any two subsets Sk and Sk′ , k ≤ k′, the average valuation of any customer
in Sk is at most the average valuation of a customer from Sk′ . Therefore, for
any k = 1, . . . ,K , and for all k′ ≥ k, if Sk ⊆W then Sk′ ⊆W as well. By defini-
tion of the subsets, the maximum average valuation in set Sk+1 is at most δ
times the maximum average valuation in set Sk. By combining this insight
with Lemma 3.2.4, we have that the revenue generated by price vector pk

applied to the set of customers J is at least

Πk =
1
δ
Π∗

k +
1
δ2Π

∗
k+1 + . . .+ 1

δK−k+1Π
∗
K , ∀k = 1, . . . ,K .

These equalities can be equivalently represented by the following recurrent
equation

Πk =
1
δ
Π∗

k +
1
δ
Πk+1, ∀k = 1, . . . ,K −1, (3.1)
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3.2. Arbitrary bundles

with an additional equality

ΠK = 1
δ
Π∗

K . (3.2)

Summing up all Equations (3.1) and (3.2) and dividing both sides by K , we
derive

Π̄= 1
K

K∑
k=1

Πk = 1
Kδ

K∑
k=1

Π∗
k +

1
Kδ

K∑
k=1

Πk −
1

Kδ
Π1.

Let Π1 =φΠ̄. Since
∑K

k=1Π
∗
k ≥Π∗, we derive

Π̄≥ 1
Kδ

Π∗+ 1
δ
Π̄− 1

Kδ
φΠ̄⇔ Π̄≥ Π∗

K(δ−1)+φ .

Taking the maximum revenue over all price vectors pk,k = 1, . . . ,K , we ob-
tain

Π̃= max
k=1,...,K

{Πk}≥max{Π1,Π̄}≥max
{

φΠ∗

K(δ−1)+φ ,
Π∗

K(δ−1)+φ

}
.

This latter maximum is minimized for φ= 1, yielding

Π̃= max
k=1,...,K

{Πk}≥ Π∗

δ(1+ lnα
lnδ )− lnα

lnδ

,

Clearly, the best price vector yields a total revenue of at least Π∗/(δ(1+ lnα
lnδ )−

lnα
lnδ ). Now, we know that

δ

(
1+ lnα

lnδ

)
− lnα

lnδ
< δ lnα+δ.

To see this, consider function f (δ)= lnδ+1/δ. As the derivative f ′(δ)= δ−1−
δ−2 > 0 for all δ> 1, function f (δ) is monotone increasing, and consequently,
f (δ)> f (1)= 1 for all δ> 1. Then,

lnδ+ 1
δ
> 1 ⇔ δ lnδ> δ−1⇔ δ lnα> δ lnα

lnδ
− lnα

lnδ

⇔ δ lnα+δ> δ
(
1+ lnα

lnδ

)
− lnα

lnδ
.

Given ε> 0, let δ= 1+ε/(lnα+1). Then,

δ lnα+δ=
(
1+ ε

lnα+1

)
lnα+

(
1+ ε

lnα+1

)
= 1+ lnα+ε,

and we arrive at the following theorem.

Theorem 3.2.6 (Improved Bound). Price vector p yields a total revenue of at
least Π∗/(1+ lnα+ε) for the single item pricing problem for any ε> 0 , and it
can be computed in O(n(logn+m)) time.
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Chapter 3. Inhomogeneity of Average Valuations

3.3 Highway problem

We consider the highway problem, introduced by Guruswami et al. (2005).
Let I = {1, . . . ,m} represent the highway segments, and regard them as con-
secutive edges on a simple path with unlimited capacity. Let J = {1, . . . ,n}
denote the set of potential customers. Every customer j ∈ J requests a sub-
path of the highway, denoted I j ⊆ I, and we assume that each I j is of the
form I j = {k,k+1, . . . ,`}, where 1 ≤ k ≤ ` ≤ m. The valuation b j for travel-
ing subpath I j is publicly known. This is quite reasonable when assuming
that the valuation is a monetary expression for the time saving that can be
realized by using the highway instead of the next-fastest alternative route.
We assume b j > 0, for otherwise that customer can be deleted from the in-
stance. Given a vector of prices p = (p1, . . . , pm), containing one price for each
highway segment, denote by W = { j ∈ J :

∑
i∈I j pi ≤ b j} the set of winners.

Definition 3.3.1. The highway problem asks for a vector of prices p ∈ Rm
+ ,

one for each segment of the highway, such that the total revenue Π extracted
from the set W of winners is maximal, where Π=∑

j∈W
∑

i∈I j pi.

Intrigued by the gap between (weak) NP-hardness on the one hand, and
only logarithmic polynomial-time approximation algorithms on the other
hand, we apply the inhomogeneity and monotonicity conditions to the high-
way problem. We illustrate the setting by Example 3.3.2 below.

Example 3.3.2. Figure 3.2 shows an example with three segments, I = {1,2,3},
and six customers J = {1, . . . ,6}. The left part of this figure shows the underly-
ing highway with its alternative roads and costs for traveling, and the right
part shows the corresponding instance of the highway problem.

7

b1 = 7

b2 = 10

b3 = 8

b4 = 12

b5 = 18

b6 = 15

15

10 8

12

Figure 3.2: An instance of the highway problem.

There is no direct alternative road between the second and third segment,
therefore, the valuation of customer 5 is equal to the sum of the costs for the
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3.3. Highway problem

alternative roads of both segments separately. This instance has inhomogene-
ity α= 2; comparing the average valuations for {1,2,3} and {2}.

The approximation result derived in Section 3.2.2 holds for the single
item pricing problem with arbitrary bundles. Obviously, it also holds for the
highway problem.

Corollary 3.3.3. Given ε > 0, the highway problem admits an approxima-
tion algorithm that yields a revenue at least (1+ lnα+ε)−1 times the optimal
revenue, with computation time O(n(logn+m)).

3.3.1 Complexity

Similarly as for the single item pricing problem with arbitrary bundles, the
highway problem with homogeneous average valuations is trivially solvable.
However, if we allow only arbitrarily small deviations of homogeneous valua-
tions, the highway problem becomes intractable. In Theorem 3.3.6, we show
that the highway problem with inhomogeneous average valuations remains
NP-hard even if it is further restricted to Conditions 3.1, 3.2 and 3.3.

The reduction is from the PARTITION problem, and extends an idea by
Briest and Krysta (2006). We use the PARTITION problem with an additional
restriction, defined as follows.

Definition 3.3.4. Given positive integers a1, . . . ,a2L and A, does there exist
a set S ⊆ {1, . . . ,2L} such that

∑
`∈S a` =

∑
`∉S a` = A and |S| = L?

This problem is known to be NP-hard; see Garey and Johnson (1979). We
may assume that L > 3/ε, for otherwise the number of integers is bounded by
a constant and therefore PARTITION is solvable in polynomial time. Without
loss of generality, we also assume that 0≤ a1 ≤ . . .≤ a2L and a` ≤ A for all `=
1, . . . ,2L. Let a′

`
= a`+(4L+2)A for all `= 1, . . . ,2L, and A′ = (4L2+2L+1)A.

Note that
∑2L
`=1 a′

`
= 2A′.

We create an instance H of the highway problem with 7L+3 segments.
The segments are partitioned in 2L+1 gadgets. Gadget ` = 1, . . . ,2L con-
sists of two segments, i = 2`− 1 and i = 2`. Each of these two segments
are requested by 2L−1 customers with valuation a′

`
. The combination of

two segments, 2`−1 and 2`, is requested by one customer with valuation
(2− 1

L )a′
`
. Gadget 2L+1 contains 3L+3 segments, where the first three seg-

ments, 4L+1,4L+2,4L+3, are requested by one customer with valuation
12

4L+3 A′ and the last 3L segments, 4L+4, . . . ,7L+3, are requested by three
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Chapter 3. Inhomogeneity of Average Valuations

customers with valuation 12L
4L+3 A′. Three customers request all segments in

gadget 2L+1 and each has valuation 12L
4L+3 A′. Finally, there is one big cus-

tomer, who requests the first 4L+3 items with valuation (4− 1
L )A′. Instance

H is displayed in Figure 3.3, where the number of customers interested in
a subpath is presented by d.

1 2

Gadget 1

a
′

1
a
′

1

(2−
1

L
)a

′

1

4L 4L+1

Gadget 2L

a
′

2L

(2−
1

L
)a

′

2L

4L+3 4L+4

Gadget 2L+1

12

4L+3
A
′ 12L

4L+3
A
′

a
′

2L

7L+3

(4−
1

L
)A

′

d = 2L−1 d = 3

d = 3d = 1d = 1

d = 1

d = 1d = 2L−1 d = 2L−1d = 2L−1

4L−1

12L

4L+3
A
′

4L+2

Figure 3.3: Instance H .

In the following lemma, we show that this instance of the highway prob-
lem satisfies the three above mentioned conditions, that is, the inhomogene-
ity of average valuations is bounded from above by 1+ ε for some constant
ε> 0, the valuations are monotone, and the average valuations are monotone
decreasing. Then, using this lemma, we prove that the problem is NP-hard.

Lemma 3.3.5. Instance H of the highway problem satisfies Conditions 3.1,
3.2 and 3.3.

Proof. The customers requesting item 4L−1 or 4L have the largest average
valuation of a′

2L, and the customers requesting bundle {4L + 1, . . . ,7L + 3}
have the lowest average valuation of 12L

12L2+21L+9 A′. Then for Condition 3.1
we have

α =
a′

2L
12L

12L2+21L+9 A′ =
12L2 +21L+9

12L
·
a′

2L
A′ =

(
L+ 21

12
+ 3

4L

)
a2L + (4L+2)A
(4L2 +2L+1)A

≤
(
L+ 21

12
+ 3

4L

)
4L+3

4L2 +2L+1
=

4L2 +10L+ 33
4 + 9

4L

4L2 +2L+1

< 1+ 2
L
+ 13

16L2 < 1+ 3
L

< 1+ε.

Condition 3.2 follows straightforwardly by just verifying that the valu-
ation on a bundle is at least as high as the valuation on any of its subsets.
Now, it is easy to see that Condition 3.3 holds for the subpaths containing
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3.3. Highway problem

one or two items. Also, for the customers requesting {4L+4, . . . ,7L+3} and
{4L+1, . . . ,7L+3} it is obvious as their valuations are equal but the size of
their bundles differ. We perform a case study to verify that Condition 3.3
also holds for all other customers j, j′ ∈ J for which I j ⊆ I j′ . The average val-
uation of the bundles of size 1 is greater than the average valuation of the
bundles of size 2, for all `= 1, . . . ,2L, thus for the single item bundles the con-
dition holds trivially. If I j = {2`−1,2`} for 1 ≤ `≤ 2L and I j′ = {1, . . . ,4L+3}
then we have

(
1− 1

2L

)
a′
` >

(
1− 1

2L

)
(4L+2)A = 4L−1

4L2 +3L

(
4L2 +4L− 3

4L−1

)
A

> 4L−1
4L2 +3L

A′.

For I j = {4L+1, . . . ,4L+3} and I j′ = {1, . . . ,4L+3} we have

4
4L+3

A′ = 4L
4L2 +3L

A′ > 4L−1
4L2 +3L

A′.

Finally, for I j = {4L+1, . . . ,4L+3} and I j′ = {4L+1, . . . ,7L+3} we have

4
4L+3

A′ = 12L
12L2 +9L

A′ > 12L
12L2 +21L+9

A′.

Consequently, instance H of the highway problem satisfies all three condi-
tions.

Theorem 3.3.6. The highway problem is NP-hard even when restricted to
Conditions 3.1, 3.2 and 3.3.

Proof. We claim that there exists a feasible solution to PARTITION (see Def-
inition 3.3.4) if and only if there is a feasible solution to instance H of the
highway problem with a total revenue of at least

(
8L+ 72L

4L+3 − 1
L
)

A′.
Given a set S ⊆ {1, . . . ,2L} such that

∑
`∈S a` =

∑
`∉S a` = A and |S| = L.

For all ` ∈ {1, . . . ,2L}, let p2`−1 = p2` = a′
`

if ` ∈ S and p2`−1 = p2` = (1−
1

2L )a′
`

if ` ∉ S. Furthermore, we set p4L+1 = . . . = p7L+2 = 0 and p7L+3 =
12L

4L+3 A′. Applying this price vector, the revenue without contribution of the
big customer is equal to (4L − 2)a′

`
in each gadget ` = 1, . . . ,2L. The big

customer contributes her entire valuation (4− 1
L )A′. In gadget 2L+1, the

customer requesting segments 4L+1, 4L+2 and 4L+3 gets this path for free.
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The other customers in this gadget contribute their complete valuations.
The total revenue generated with this pricing vector equals

(4L−2)
2L∑
`=1

a′
`+

(
4− 1

L

)
A′+6 · 12L

4L+3
A′ =

(
8L+ 72L

4L+3
− 1

L

)
A′.

For the converse, we are given an optimal solution to instance H with a
total revenue of at least (8L+ 72L

4L+3 − 1
L )A′. First, we observe that in such an

optimal solution, segments 4L+1, 4L+2 and 4L+3 are necessarily priced to
0 and the total price of the remaining segments in gadget 2L+1 is 12L

4L+3 A′,
yielding a revenue of 72L

4L+3 A′. To see this, we notice that the total demand
on the first three segments in this gadget is 5 and on the latter 3L segments
the demand is 6. Therefore, if the total price on the first three segments of
gadget 2L+1 is 0 < x ≤ 12

4L+3 A′, the total revenue obtained in the gadget is
at most 72L

4L+3 A′− x. That is, we receive x from the big customer and at most

x+3
(

12L
4L+3

A′− x
)
+3

(
12L

4L+3
A′

)

from the customers in gadget 2L+1. The above suggested pricing, where
segments 4L+1, 4L+2 and 4L+3 are priced to 0, does not decrease revenue
generated in gadgets 1, . . . ,2L, and the total revenue in gadget 2L+1 is equal
to 72L

4L+3 A′.
Second, in the optimal solution to the highway problem, there could be

only two alternative pricing strategies in gadgets `= 1, . . . ,2L:

either p2`−1 = p2` = a′
` or p2`−1 + p2` = (2− 1

L
)a′

`,

where both prices do not exceed a′
`
. In both pricings, the contribution of the

gadget (without big customer) to the total revenue is (4L−2)a′
`
. Therefore,

in the optimal solution to instance H with revenue at least (8L+ 72L
4L+3− 1

L )A′,
the big customer must contribute at least

(
8L+ 72L

4L+3
− 1

L

)
A′− 72L

4L+3
A′−

2L∑
`=1

(4L−2)a′
` =

(
4− 1

L

)
A′,

that is, at least her valuation. As she cannot spend more, she spends her
total valuation. This amount is to be spent on the first 4L segments as the
price of segments 4L+1, 4L+2 and 4L+3 is set to 0.
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Define set S = {` ∈ {1, . . . ,2L} : p2`−1 = p2` = a′
`
}. The payment of the big

customer is

∑
`∈S

2a′
`+

∑
`∉S

(
2− 1

L

)
a′
` =

2L∑
`=1

(
2− 1

L

)
a′
`+

∑
`∈S

1
L

a′
` =

(
4− 2

L

)
A′+

∑
`∈S

1
L

a′
`.

As this must be equal to the valuation of the big customer, we know that∑
`∈S a′

`
= A′. Also, as

∑2L
`=1 a′

`
= 2A′, we have

∑
`∉S a′

`
= A′. Rewriting the

first equality gives
∑
`∈S

a′
` = A′ ⇔

∑
`∈S

(a`+ (4L+2)A)= (4L2 +2L+1)A

⇔
∑
`∈S

a` = (4L2 +2L+1)A−|S|(4L+2)A

= A+ (L−|S|)(4L+2)A.

We claim that |S| = L. To prove this, suppose it is not true. First, assume
that |S| < L, that is, |S| ≤ L−1. Then we have

∑
`∈S

a` = A+ (L−|S|)(4L+2)A ≥ A+ (4L+2)A > 2A,

which is not possible as
∑2L
`=1 a` = 2A, so |S| ≥ L. Now, assume |S| > L, that

is, |S| ≥ L+1. Then we have
∑
`∈S

a` = A+ (L−|S|)(4L+2)A ≤ A− (4L+2)A < 0.

This is also not possible as all integers a` are nonnegative. Therefore, we
can conclude that |S| = L and consequently,

∑
`∈S a` =

∑
`∉S a` = A.

3.4 Conclusion

As a main contribution of this chapter, we show that the highway problem as
well as the single item pricing problem with arbitrary bundles is NP-hard
(weakly and strongly, respectively) if the inhomogeneity is bounded from
above by 1+ ε, for any ε > 0. As it is easy to show that both problems are
straightforwardly solvable if all average valuations are equal, we delineate
the borderline between triviality and NP-hardness.

Unfortunately, the study of the natural version of the highway pricing
problem in this chapter did not lead to closing the gap between logarithmic
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Chapter 3. Inhomogeneity of Average Valuations

approximation and weak NP-hardness. However, for instances where the
average valuation between customers does not vary a lot, we present a good
approximation algorithm. Clearly, the existence of a quasi-PTAS for the
highway pricing problem by Elbassioni, Sitters, and Zhang (2007) suggests
that a PTAS might be in reach. Yet, we leave it as an open problem to derive
a PTAS, even for bounded inhomogeneity of valuations.
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Chapter 4

Pricing in Capacitated
Graphs

In this chapter we address the algorithmic complexity of a single item pri-
cing problem in capacitated, undirected graphs. A company wants to deter-
mine the prices of capacitated edges to serve a set of potential customers.
Each customer is interested in purchasing a simple path in the graph and
has a maximum valuation that we assume to be known to the company. The
goal is to decide which customers to serve, and to determine prices for all
edges in order to maximize the company’s total revenue. We address this
single item pricing problem in different graph topologies. More specifically,
we derive several results on the algorithmic complexity of this single item
pricing problem, given that the graph is either a path, cycle, tree, or grid.1

4.1 Introduction

We consider a single item pricing problem that is defined on a capacitated,
undirected graph, referred to as the tollbooth problem and introduced by Gu-
ruswami et al. (2005). Given is a simple undirected graph G = (V ,E) with
|E| = m edges, and given are integral edge capacities ce, e ∈ E. Each edge can
be thought of as a network link, and the edge capacity determines the max-
imum number of customers the link can accommodate. We mainly, but not
exclusively, discuss problems where edge capacities ce are finite, in contrast

1This chapter is based on Grigoriev, van Loon, Sitters, and Uetz (2006) and Grigoriev, van
Loon, Sitters, and Uetz (2009).
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to the original tollbooth problem. Given is a set of n potential customers
J = {1, . . . ,n} each of which is interested in purchasing a network connection
between two vertices of the graph. In contrast to many classical network
problems, we assume that each customer wants one specific simple path,
her bundle, denoted E j ⊆ E, rather than any path that connects the two ver-
tices. Each single-minded customer j ∈ J has an integral valuation b j, which
is the largest amount that a customer is willing to pay for her path E j. Let
B = max j∈J{b j} be an upper bound on the valuations. The company deter-
mines prices for all edges, and the price of path E j is equal to the sum of
the prices of all edges in this path. A customer is a winner if the total price
of her requested path does not exceed her valuation. The set of winners is
denoted by W ⊆ J.

Definition 4.1.1. A feasible solution consists of a set of winners W ⊆ J and
a vector of prices p = (p1, . . . , pm) ∈ Rm

+ , such that each edge e ∈ E accommo-
dates no more than ce winners, and all winners can afford their path, that
is,

∑
e∈E j pe ≤ b j for all j ∈ W. The optimization problem consists of find-

ing a feasible solution such that the total revenue Π(W , p) =∑
j∈W

∑
e∈E j pe is

maximized.

One usually distinguishes between solutions that are envy-free and those
that are not. In the setting with single-minded customers considered here,
envy-freeness requires that if a customer j is not a winner then the total
price of path E j must exceed her valuation. However, we mostly address
problems without requiring envy-freeness in this chapter. In Example 4.1.2,
we present a situation where the underlying graph is a path, customers
request a subpath and an optimal solution is not required to be envy-free.

Example 4.1.2. Consider the rental of a set of similar houses in holiday
parks on the basis of weekends and midweeks, that is, non-overlapping dis-
crete periods. Customers are interested in renting a house in consecutive pe-
riods. Since all houses are identical, in any time period they need to have the
same price. But prices may vary from period to period. We can thus interpret
a time period as an edge in a path, with edge capacity equal to the number of
houses available in that period. Notice that envy-freeness is not necessarily
an issue, since the owner of the houses can freely decide to whom to rent them.

In Section 4.2, we address the problem where the underlying graph G is
a path, known as the highway problem. This problem is introduced by Gu-
ruswami et al. (2005) and motivated by setting tolls on a single highway. If
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the edge capacities are unlimited, we derive an exact dynamic programming
algorithm for the case of uniform valuations, leading to a logarithmic ap-
proximation algorithm for the problem with non-uniform valuations. Then,
we regard the problem on a path with an upper bound C on the capacity of
any edge, that is, ce ≤ C for all e ∈ E. We propose a dynamic programming
algorithm that computes an optimal solution in time O(n2CB2Cm). Based
on our dynamic programming algorithm, we moreover derive a fully polyno-
mial time approximation scheme (FPTAS) for the highway problem, given
that the maximum capacity of any edge, C, is a constant. In contrast to pre-
vious results in this direction (see e.g. Hartline and Koltun (2005), Balcan
and Blum (2006) and Briest and Krysta (2006)), our FPTAS does neither
require a constant number of edges in the subpaths, nor an upper bound on
the valuations or that the bundles are a laminar family. The NP-hardness
proof for the highway problem can easily be adapted to prove NP-hardness
for the same problem on a cycle, as shown in Section 4.3. Moreover, in
this section, we not only regard the problem on a cycle with limited edge
capacities in which each customer j ∈ J requests a path E j ⊆ E, but also
the problem where customers only specify two vertices to be connected. For
both problems, we show how to adapt the dynamic programming approach
of Section 4.2.3 in order to solve them to optimality in time O(n3CB3Cm) and
O(n3CB3C4Cm), respectively.

In Section 4.4 we address the problem where the capacity of any edge is
exactly one. For the case that graph G is a path (highway problem), the prob-
lem reduces to finding a maximum weight independent set in an interval
graph, which is polynomially solvable (Möhring 1985). When we generalize
from a path to a cycle, the problem reduces to finding a maximum weight in-
dependent set in a circular arc graph, which is also known to be solvable in
polynomial time (Golumbic and Hammer 1988). Furthermore, if the under-
lying graph G is a tree, we can show that the problem remains polynomially
solvable. When the underlying graph G is a grid, however, we show that it
is NP-hard to approximate the maximum revenue within a factor n1−ε, for
any ε> 0. Recall that n is the number of customers.

4.2 Highway problem

In this section, we restrict the underlying graph G = (V ,E) to be a path,
thus we address the highway problem. We first discuss the complexity of
this problem. Thereafter, we present a dynamic programming algorithm for
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the case with unlimited edge capacities and uniform valuations, which leads
to a logarithmic approximation algorithm for the case with non-uniform val-
uations. Finally, we present a dynamic programming algorithm and a fully
polynomial time approximation scheme for the case where edge capacities
are bounded by some constant C.

4.2.1 Complexity

It is not hard to see that the highway problem is polynomially solvable if
either the set of winners W ⊆ J is given, or the vector of prices p is given.

Lemma 4.2.1. The highway problem is polynomially solvable if the vector of
prices p = (p1, . . . , pm) is given.

Proof. Given the vector of prices p = (p1, . . . , pm), we only need to find a
feasible set of winners that maximizes the total revenue. Whenever the
edge capacities are unlimited, this is trivial and the set of winners is just
W = { j ∈ J :

∑
e∈E j pe ≤ b j}.

For the case of limited capacity, let W ′ be the set of customers for whom
the requested path is affordable, given the price vector p. For any edge e,
we can not accommodate more than ce customers. Let ae j be equal to 1 if
edge e ∈ E j for customer j, and 0 otherwise. We find a revenue-maximizing
feasible subset of winners by solving linear program (4.1), where x j = 1 if and
only if customer j is a winner. Note that x j = 0 for all customers j ∈ J \W ′.

max
∑

j∈W ′

(
∑

e∈E j

pe

)
x j

s.t.
∑

j∈W ′
ae jx j ≤ ce ∀e ∈ E (4.1)

0≤ x j ≤ 1 ∀ j ∈W ′

The constraint matrix {ae j}e∈E, j∈J of this linear program has the consec-
utive ones property, which was introduced by Fulkerson and Gross (1965).
A matrix has the consecutive ones property if there is a permutation of its
rows that places the 1’s consecutively in every column. The constraint ma-
trix in linear program (4.1) has this property because the requested path
E j of any customer j consists only of consecutive edges. A consecutive ones
matrix is totally unimodular (Nemhauser and Wolsey 1988), which means
that every square non-singular matrix has determinant -1 or +1. Hence, the
corresponding polyhedron only has integral vertices (Hoffman and Kruskal
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1956; Papadimitriou and Steiglitz 1998). Therefore, linear program (4.1)
yields an integral optimal solution, and W = { j ∈ J : x j = 1}.

If a feasible set of winners W ⊆ J is given, we find an optimal price vector
p = (p1, . . . , pm) by solving linear program (4.2). In the case with limited edge
capacities, the maximum capacity of the edges is taken into account.

max
∑

j∈W

∑
e∈E j

pe

s.t.
∑

e∈E j

pe ≤ b j ∀ j ∈W (4.2)

pe ≥ 0 ∀e ∈ E

Since this constraint matrix has the consecutive ones property, too, we ob-
tain the following.

Lemma 4.2.2 (Guruswami et al. (2005, Lemma 5.1)). The highway problem
is polynomially solvable if a feasible set of winners W ⊆ J is given. Moreover,
if the valuations b j are integral, there exists an optimal, integral price vector.

Briest and Krysta (2006) show that the highway problem is NP-hard. For
their reduction from PARTITION it suffices, but it is also necessary, that the
capacity of some edge is at least 3. If the capacity of any edge is at most 2,
the complexity status of the problem remains open.

4.2.2 Approximation algorithm

Consider the problem with unlimited edge capacities, referred to as the high-
way problem by Guruswami et al. (2005). First let us assume that every cus-
tomer has the same positive valuation b, that is, all customers have uniform
valuations.

Theorem 4.2.3. The highway problem can be solved in O(m3n) time if it has
unlimited edge capacities and uniform positive valuations.

Proof. Consider the problem with b j = 1 for all j ∈ J. There exists an opti-
mal solution in which all prices are 0 or 1, because given a set of winners
W in an optimal solution, the optimal prices can be found by solving linear
program (4.2) with an integral vector (b1, . . . ,bn), and the constraint matrix
satisfies the consecutive ones property. We obtain this solution using a poly-
nomial time dynamic program.
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Without loss of generality, we assume that the edges on the path (high-
way) are indexed consecutively. In the dynamic programming algorithm for
the problem with b j = 1, for every customer j ∈ J, let s j denote the edge
in path E j with the smallest index and t j the edge in E j with the largest
index. For all edges k,` ∈ E with k < `, let R(k,`) be the total optimal rev-
enue obtained by the customers for whom t j ≤ `, given that pk = p` = 1
and pk+1 = ·· · = p`−1 = 0. Furthermore, let R(k,m + 1) be the total op-
timal revenue obtained by all customers given that pk = 1 and, if k < m,
pk+1 = ·· · = pm = 0. We define R(0,`) = |{ j ∈ J : t j = `}| for all ` = 1, . . . ,m.
Then, given R(e,k) for all e = 0, . . . ,k−1 and k < ` ≤ m+1, we compute the
revenue R(k,`) by finding the maximum sum of R(e,k) and the contribution
of all customers j ∈ J whose path E j contains either edge k or ` (not both),
but not edge e. Formally,

R(k,`)= max
0≤e<k

{
R(e,k)+

∑
j∈J

r j(e,k,`)

}
, where

r j(e,k,`)=




1 if e < s j ≤ k and k < t j < `
1 if k < s j and t j = `
0 otherwise.

The optimal revenue is equal to maxk∈E{R(k,m+1)}. The computation
time of this dynamic program is O(m3n). Note that Guruswami et al. (2005)
introduce yet another O(BB+2nB+3) time dynamic program to solve the same
problem with a constant upper bound B on the valuations. This complexity
is O(n4) in case b j = 1 for all j ∈ J.

After we solve the problem with b j = 1 for all j ∈ J, we multiply pe by
b for every edge e ∈ E, to obtain the optimal solution for the problem with
original valuation b.

If we consider the problem in which every customer’s valuation b j is in
[b,δb] for some δ> 1, then we can round down all valuations to b and lose at
most a factor of δ in the optimal revenue. Therefore, the following corollary
follows straightforwardly from Theorem 4.2.3.

Corollary 4.2.4. Consider the highway problem with unlimited edge capac-
ities. If for every customer j ∈ J, the valuation b j is such that b ≤ b j ≤ δb for
b ≥ 0 and δ≥ 1, then there exists a polynomial time δ-approximation.

For the same problem with arbitrary valuations, we can derive a poly-
nomial time O(lnB)-approximation algorithm. To achieve this, let us define

70



4.2. Highway problem

subproblems such that the `th subproblem contains customers { j ∈ J : δ`−1 ≤
b j < δ`}. Using Corollary 4.2.4, we find a δ-approximate solution for each of
these logδB subproblems and we derive a (δ logδB)-approximation algorithm
for the highway problem with unlimited edge capacities. The approximation
ratio δ logδB is minimized by letting δ = e, and we arrive at the following
corollary.

Corollary 4.2.5. There exists an (e lnB)-approximation algorithm for the
highway problem with unlimited edge capacities.

In the remainder of this section, we consider the highway problem with
limited edge capacities. That is, each edge e ∈ E can accommodate no more
than ce customers. Let C ≥ maxe∈E ce be an upper bound on the capacity of
any edge. We show that we can solve this problem in time O(n2CB2Cm) by
finding a longest path in an acyclic digraph. Afterwards, we derive a fully
polynomial time approximation scheme for this problem.

4.2.3 Dynamic program

We create an m-layered digraph D with an additional source s and sink t,
layers 0 and m+1, respectively. There are arcs only from layer e to e+1,
for e = 0, . . . ,m. Hence, in any s− t path, there are exactly m+2 nodes. In
every node in layer e, corresponding to edge e, we store all winners j that are
accommodated by edge e. Moreover, we store the respective total amounts
all these winners spend on all edges (network links) in their respective path
E j up to and including edge e. For any node x, the path s− x in the digraph
represents a feasible partial solution. Arcs from node x of layer e to node y of
layer e+1 are only introduced if the path s−y represents a feasible extension
of the partial solution represented by the path s− x. The length of an arc
that connects a node of layer e to a node of layer e+1 is equal to the revenue
earned on edge e+1, that is, the total amount that the corresponding winners
pay for edge e+1. Therefore, the length of the longest s− t path in digraph
D is equal to the maximum total revenue. Moreover, the set of winners can
be reconstructed from the longest s− t path. Algorithm 4.1 shows a more
formal description.

Theorem 4.2.6. The dynamic programming algorithm solves the highway
problem in O(n2CB2Cm) time, where C is an upper bound on the edge capac-
ities.
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Algorithm 4.1: Dynamic Programming Algorithm
Input: The highway problem with maximum capacity of any edge at

most C
Output: Accommodation of customers to edges and edge prices pe
begin (construction of digraph D)

nodes: For each edge e ∈ E, we introduce a layer of nodes:
Denote by J e the set of customers with e ∈ E j;
By K e = ( j1, j2, . . . , jk) we denote any (sorted) subset of J e of
cardinality k, where k ≤min{ce, |J e|}≤ C;
Define H j := {0,1, . . . ,b j} as the possible total amount customer
j ∈ K e can spend on edges {1, . . . , e}∩E j;
Let he ∈ H j1 ×H j2× ·· ·×H jk be a vector denoting how much each
customer j spends on edges {1, . . . , e}∩E j, for each j ∈ K e. If
K e =;, we let he = 0;
Let all such pairs (K e,he) be the nodes in layer e of D, for
e = 1, . . . ,m;
Let s and t denote source and sink. To unify notation, assume
s = (;,0) and t = (;,0);
arcs: Insert an arc ae from node (K e−1,he−1) to node (K e,he), for
e = 2, . . . ,m, if:
(1) For all j ∈ K e−1 with e ∈ E j, j ∈ K e, and for all j ∈ J e−1 \ K e−1

with e ∈ E j, j 6∈ K e.
(2) There exists a unique integral value d ≥ 0 such that
d = he

j −he−1
j for all j ∈ K e−1 ∩K e, and d = he

j for all j ∈ K e \ K e−1.
We furthermore connect source node s to all nodes (K1,h1), and we
connect all nodes (Km,hm) to sink node t.
arc lengths: For an arc ae that connects (K e−1,he−1) and (K e,he):
If K e =;, we let the length of arc ae be `(ae)= 0, and if K e 6= ;, we
let the length of arc ae be `(ae)= d|K e|, where d is the (unique)
value from condition (2) above.

end
Solution: Compute the longest s− t path P in digraph D. Whenever
for customer j we have that j ∈ K e with (K e,he) ∈P , edge e
accommodates customer j. The price pe for edge e equals `(ae)/|K e|,
where ae is the arc from path P that connects nodes (K e−1,he−1) and
(K e,he).

72



4.2. Highway problem

Proof. Consider an arbitrary s− t path P in digraph D. Abusing notation,
let (W e,he) be the nodes on P . Set W e is thus the set of customers that are
accommodated by edge e, and he is the vector of the total amounts these
customers pay up to and including edge e. By definition of the nodes and
arcs of the digraph, no customer j will be accommodated by an edge outside
her requested path E j. For any customer j, consider an edge e ∈ E j such that
j ∈W e. That is, edge e accommodates customer j. By condition (1) of the arc
definition, all other edges of path E j must accommodate customer j as well.
Next, by definition we have for any node (W e,he) that |W e| ≤ ce. Hence, the
edge capacities are satisfied. Finally, let us consider the valuation constraint
of customer j. We know that E j = {k, . . . , l} for some edges k ≤ l. We have that

∑
e∈E j

pe =
l∑

e=k
pe =

l∑
e=k

`(ae)
|W e| = hk

j +
l∑

e=k+1
(he

j −he−1
j )= hl

j ≤ b j .

The third equality holds due to condition (2) of the arc definition, and the
last inequality holds because hl

j ∈ H j = {0,1, . . . ,b j}.
Now we know that any s− t path P in D defines a feasible solution to

the highway problem with limited edge capacities, and W =⋃
e∈E W e denotes

the set of winners in that solution. The length of path P is

∑
ae∈P

`(ae)=
∑
e∈E

pe|W e| =
∑
j∈W

∑
e∈E j

pe .

In other words, the path length defines the revenue of the corresponding
solution, thus the longest path yields an optimal solution.

To arrive at the computation time of O(n2CB2Cm), we estimate the size
of digraph D. For every edge e ∈ E, there are at most O(nC) different sets
K e and at most O(BC) different vectors he. Thus, per edge e ∈ E, we have
at most O(nCBC) nodes (K e,he). For any e ∈ E, every node (K e,he) is con-
nected to at most O(nCBC) nodes (K e+1,he+1). So, per layer e, there are
at most O(n2CB2C) arcs to layer e+1, which means that there are at most
O(n2CB2Cm) arcs in D. The computation time to find the longest path in
D is linear in the number of arcs, since D is acyclic (Ahuja, Magnanti, and
Orlin 1993).

Notice that the solution constructed by the dynamic programming algo-
rithm is not necessarily envy-free.
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4.2.4 FPTAS

We next show how to turn the dynamic programming algorithm into a fully
polynomial time approximation scheme (FPTAS); that is, for any ε > 0, we
have an algorithm that computes a solution with revenue at least (1− ε)
times the optimum revenue, in time polynomial in the input and 1/ε. To
that end, we just apply the dynamic programming algorithm to a rounded in-
stance in which the customers’ valuations are b′

j = bb j/βc where β= εB/(2n2)
for ε > 0. Note that without loss of generality, we may assume that β is
integer.

Lemma 4.2.7. For every solution (W , p) to the original instance, there exists a
solution (W , p′′) to the rounded instance with revenue Π(W , p′′) > 1

β
Π(W , p)−

mn.

Proof. Let (W , p) be a feasible solution to the original instance with revenue
Π(W , p). Let p′′

e = bpe/βc for all edges e ∈ E. Note that (pe/β)−1< p′′
e ≤ (pe/β).

For the original instance we have for every winner j ∈W ,
∑

e∈E j pe ≤ b j, and
it follows that

∑
e∈E j

p′′
e =

∑
e∈E j

⌊
pe

β

⌋
≤

⌊∑
e∈E j pe

β

⌋
≤

⌊b j

β

⌋
= b′

j .

Hence, the solution (W , p′′) is feasible to the rounded instance. Finally, we
have

Π(W , p′′)=
∑
j∈W

∑
e∈E j

p′′
e >

∑
j∈W

∑
e∈E j

(
pe

β
−1

)
≥ 1
β
Π(W , p)−mn.

Lemma 4.2.8. For every solution (W ′, p′) to the rounded instance, there exists
a solution (W ′, p̃) to the original instance with Π(W ′, p̃)=βΠ(W ′, p′).

Proof. Let (W ′, p′) be a solution to the rounded instance yielding revenue
Π(W ′, p′). Let p̃e = p′

eβ be prices in the original instance for all edges e ∈ E.
This is integer because p′

e and β are integer. Then the valuation constraint
for every customer j ∈W ′ is satisfied, because

∑
e∈E j

p̃e =β
∑

e∈E j

p′
e ≤βb′

j =β
⌊b j

β

⌋
≤ b j .
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Hence, the same set of customers W can get their requested path, and solu-
tion (W ′, p̃) is feasible to the original instance. The revenue can be written
as

Π(W ′, p̃)=
∑

j∈W ′

∑
e∈E j

p̃e =
∑

j∈W ′

∑
e∈E j

(p′
eβ)=β

∑
j∈W ′

∑
e∈E j

p′
e =βΠ(W ′, p′).

We now combine Lemma 4.2.7 and Lemma 4.2.8 to obtain an FPTAS.

Theorem 4.2.9. There exists an FPTAS for the highway problem in which
edge capacities are bounded by a constant.

Proof. Let (W , p) and (W ′, p′) be the optimal solutions to the original and
rounded instances, respectively. Consider solution (W ′, p̃) to the original
instance, where p̃e = βp′

e for all edges e ∈ E, and solution (W , p′′) to the
rounded instance, where p′′

e = bpe/βc for all edges e ∈ E. An application of
the previous two lemmas now yields

Π(W ′, p̃)=βΠ(W ′, p′) ≥ βΠ(W , p′′)

> β

(
1
β
Π(W , p)−mn

)
=Π(W , p)−εB

mn
2n2 ,

where the first inequality holds due to optimality of solution (W ′, p′) to the
rounded instance. Note that for n customers there are at most 2n distinct
endpoints of their requested paths. Without loss of generality, we identify a
set of edges between two consecutive endpoints with a single edge. There-
fore, the number of distinct edges m is at most 2n − 1. Since the maxi-
mum revenue Π(W , p) is at least the maximum valuation B, we have that
Π(W ′, p̃)> (1−ε)Π(W , p).

Concerning the time to compute the optimal solution (W ′, p′), observe
that the upper bound on the valuation is now

max
j∈J

{b′
j}=max

j∈J

{⌊
b j(2n2)
εB

⌋}
≤ B(2n2)

εB
= 2n2

ε
.

Thus, the number of nodes per layer e ∈ E is at most O(n3C/εC) and conse-
quently there are O(n6C/ε2C) arcs between any two consecutive layers. Now,
as m ≤ 2n−1, the total number of arcs in the digraph is O(n6C+1/ε2C). As the
computation time to find the longest path in an acyclic digraph D is linear
in the number of arcs (Ahuja, Magnanti, and Orlin 1993), the computation
time is polynomial in terms of n and 1/ε.
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4.3 Pricing in a capacitated cycle

The complexity result and the dynamic program we obtained for the highway
problem with capacitated edges can be extended to the pricing problem on a
capacitated cycle.

Corollary 4.3.1. The single item pricing problem on a cycle is NP-hard.

In fact, the NP-hardness proof for the highway problem by Briest and
Krysta (2006) immediately results in NP-hardness for the problem on a cy-
cle, as the two ends of the path can be connected. Customers still request
the same subpaths after this transformation.

Theorem 4.3.2. The single item pricing problem on a capacitated cycle can
be solved in time O(n3CB3Cm).

Proof. We adapt the dynamic program of Algorithm 4.1. Choose any edge
e ∈ E to start the procedure. Other than in the previous algorithm we now
start in layer 1, and include all possible nodes (K e,he) in this layer; these
nodes are created similarly as in Algorithm 4.1, where K e is a subset of
the customers for which e ∈ E j, and he represents the total amount spent
on edges up to and including edge e. For example, for a customer j with
E j = {e−2, e−1, e, e+1}, he represents the amount this customer spends on
edges e−2, e−1 and e, regardless of the fact that we do not yet know how
much exactly she spends on edges e−2 and e−1.

Arcs between layers e and e+1 exist if the conditions (1) and (2) of Al-
gorithm 4.1 are satisfied. In the final layer, m+ 1, there are exactly the
same nodes as in layer 1 to complete the cycle. For every node (K e,he) in
layer 1, we find the longest path to the same node (K e,he) in layer m+1.
Among all longest paths, we select the one with the highest total value. This
value is equal to the maximum total revenue, and the set of winners can be
reconstructed from this longest path as well.

The size of the digraph is similar as before, that is, there are O(nCBC)
nodes per layer, O(n2CB2C) arcs between any two consecutive layers, and
therefore a total of O(n2CB2Cm) arcs. Finding a longest path in the digraph
is linear in the number of arcs since the digraph is acyclic (Ahuja, Magnanti,
and Orlin 1993). As we have to find the longest path for each of the O(nCBC)
nodes in the first layer, all longest paths can be found in O(n3CB3Cm), which
is the total time needed to find the optimal solution to the problem on a cycle
with limited edge capacities.
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An interesting extension is the problem in which each customer requests
a connection between two vertices instead of a specific path. In this case,
the company has the freedom to decide in which direction of the cycle the
connection is established in order to maximize the revenue.

Theorem 4.3.3. The single item pricing problem on a capacitated cycle is
NP-hard, even if customers are indifferent to the direction used for the con-
nection.

Proof. We reduce from the highway problem. First, we include an additional
edge that connects the two end vertices of the original path to create a cycle.
Then, we introduce one extra customer that requests a connection between
the two original end vertices and has a valuation that is larger than the sum
of all other customers’ valuations. This forces the price on the new edge to
be expensive enough in the optimal solution such that no other customer can
afford using this edge. Therefore, all customers will still request the same
paths as in the instance on a path.

To solve this problem, we further adapt the previous dynamic program-
ming approach to include the direction of the connection between the re-
quested vertices for every customer. Therefore, given set K e = ( j1, . . . , jk) of
customers with e ∈ E j, we introduce vector dire ∈ {0,1}k to denote for each
customer j ∈ K e the direction of the connection between the requested ver-
tices; 0 for clockwise, 1 for counter-clockwise. Thus, in layer 1, corresponding
to chosen edge e ∈ E, we have all possible nodes (K e,he,dire).

Arcs are again created if conditions (1) and (2) of Algorithm 4.1 are met.
However, yet another condition should be satisfied, which assures that the
connection for each customer has only one direction. Thus, for all j ∈ K e ∩
K e+1, there is an arc if also dire

j = dire+1
j . In the final layer, m+1, there

are again the same nodes as in layer 1. Finally, after the complete digraph
is created, we find for every node (K e,he,dire) in layer 1 the longest path
to the corresponding node (K e,he,dire) in layer m+1. Among all longest
paths, we select the one with the highest total value. This value is equal
to the maximum total revenue, and the set of winners can be reconstructed
from this longest path as well.

Theorem 4.3.4. The single item pricing problem on a capacitated cycle in
which customers are indifferent to the direction used for the connection can
be solved in time O(n3CB3C4Cm).
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Proof. By a similar reasoning as in the proof of Theorem 4.3.2, and the extra
condition that each customer that gets a connection between the requested
vertices has a connection oriented in only one direction, the longest of all
longest paths between similar nodes defines the revenue of the optimal so-
lution.

For every edge e ∈ E, there are at most O(nC) different sets K e, at most
O(BC) different vectors he, and at most O(2C) different vectors dire. Thus,
per edge e ∈ E, we have at most O(nCBC2C) nodes (K e,he,dire). For any
e ∈ E, every node (K e,he,dire) is connected to at most O(nCBC) nodes of the
form (K e+1,he+1,dire+1), as there only exists an arc when the values dire

j
and dire+1

j are the same for all customers j ∈ K e ∩K e+1. So, there are at
most O(n2CB2C2C) arcs between layers e and e+1, which means that there
are at most O(n2CB2C2Cm) arcs in the digraph. The computation time to
find the longest path in the digraph is linear in the number of arcs since the
digraph is acyclic (Ahuja, Magnanti, and Orlin 1993). We have to find the
longest path for each node in layer 1, which takes O(n3CB3C4Cm) time.

4.4 Unit supply

In this section we assume that the capacity of any edge is one, that is, ce = 1
for all e ∈ E. We consider four types of graphs, namely paths, cycles, trees
and grids.

4.4.1 Highway problem

The instance on a path can be represented as an interval graph. An interval
graph is the intersection graph of a set of intervals on a path. It has one
vertex for each interval, or subpath, in the instance, that is, one vertex per
customer. There is an edge between every pair of vertices corresponding to
intervals that intersect, that is, customers for which the intersection of their
requested subpaths is not empty. The valuations of the customers are rep-
resented as weights on the corresponding vertices. As the edge capacities
are one in this case, we are searching for a maximum weight independent
set, that is, a subset of the vertices such that no two vertices in this subset
are adjacent in the interval graph. The result of Theorem 4.4.1 is not sur-
prising, since the problem of finding a maximum weight independent set in
an interval graph is known to be solvable in quadratic time according to a
result by Möhring (1985).
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4.4. Unit supply

Theorem 4.4.1 (Rothkopf, Pekec, and Harstad (1998, Theorem 10)). The
highway problem with unit edge capacities can be solved in O(n2) time.

4.4.2 Cycle

The instance on a cycle can be represented as a circular arc graph, which
is the intersection graph of a set of intervals on a cycle. It has one vertex
for each interval, or subpath, in the instance, and an edge between every
pair of vertices corresponding to intervals that intersect. Again, the weight
of a vertex is equal to the corresponding customer’s valuation. Once more,
we search for a maximum weight independent set in this circular arc graph,
which is known to be solvable in cubic time according to a result by Golumbic
and Hammer (1988).

Theorem 4.4.2 (Rothkopf, Pekec, and Harstad (1998, Corollary 11)). The
single item pricing problem on a cycle with unit edge capacities can be solved
in O(n3) time.

The problem in which the customers are indifferent to the direction of
their requested connection can be solved by straightforward Algorithm 4.2,
also in O(n3) time.

Algorithm 4.2: Single item pricing problem on a cycle with unit ca-
pacity and customers requesting a connection

Let
−→
E j be the edges contained in the clockwise connection for

customer j, and
←−
E j the edges in the counterclockwise connection.

foreach j = 1, . . . ,n do
Assign

−→
E j to j, and solve the problem on path E \

−→
E j with

customers J \ j. Let
−→
Π j be the revenue;

Assign
←−
E j to j, and solve the problem on path E \

←−
E j with

customers J \ j. Let
←−
Π j be the revenue;

Let Π j =max{
−→
Π j,

←−
Π j};

end
Π=max j∈J{Π j}.
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4.4.3 Tree

Guruswami et al. (2005) show that the problem with unlimited edge capac-
ities is APX-hard even on star graphs. Contrasting this complexity result,
we prove that if the capacity of each edge is exactly one, the problem on a
tree can be solved in polynomial time. Again, recall that we do not require
the solution to be envy-free.

Theorem 4.4.3. The single item pricing problem on a tree can be solved in
O(n4) time.

Proof. Consider the graph H = (J,E′) where ( j,k) ∈ E′ if and only if E j∩Ek 6=
;, for two customers j,k ∈ J. Since {E j : j ∈ J} is a collection of simple paths
in a tree, graph H is an edge intersection graph of paths in a tree, or EPT
graph, as defined by Golumbic and Jamison (1985); see also Brandstädt, Le,
and Spinrad (1999). The underlying graph G is a tree and the capacity of
each edge is exactly one, thus the maximum weight independent set in H
with vertex weights b j, j ∈ J, corresponds to the optimal set of winners W ,
and the weight of this independent set is equal to the maximum revenue.
The vector of optimal prices can be obtained straightforwardly by setting
the price of one arbitrary edge of E j to b j, and setting the prices of all other
edges in E j to 0, j ∈ W . The remaining edges in the tree can be priced
arbitrarily.

A polynomial time algorithm to compute a maximum weight indepen-
dent set in an EPT graph was described by Tarjan (1985). The algorithm
is a recursive procedure that decomposes the problem on the basis of clique
separators. The polynomial computation time is a consequence of the fact
that the atoms, that is, the non-decomposable subgraphs of EPT graphs, are
line graphs. A line graph of an undirected graph G is a graph that represents
the adjacencies between edges of G. The line graph has a vertex for every
edge in G. Two vertices of the line graph are adjacent if and only if their cor-
responding edges are adjacent in G. For line graphs, the maximum weight
independent set problem is just the maximum weight matching problem,
which can be solved in O(n3) time by Edmonds’ algorithm (Edmonds 1965).
As the total number of atoms is O(n), the total time complexity is bounded
by O(n4).
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4.4.4 Grid

Demaine et al. (2006) show that the single item pricing problem with un-
limited capacities, where the customers request arbitrary subsets of the net-
work links, is hard to approximate within a semi-logarithmic factor. If we re-
strict the requested subsets of links to be a path of edges in a general graph,
then the problem is APX-hard even under strong restrictions as shown by
Guruswami et al. (2005) and Briest and Krysta (2006)

Here we show that if the capacities of the edges are bounded by one, then
we can derive an even stronger inapproximability result for a very restricted
class of graphs and customers’ requests.

Theorem 4.4.4. For all ε> 0, approximating the single item pricing problem
on a grid with unit supply within a factor n1−ε is NP-hard, even with unit
valuations, and when each edge is an element of at most two requested paths.
The same result holds if the solution is required to be envy-free.

Proof. We construct an approximation preserving reduction from INDEPEN-
DENTSET. In the latter problem, given a graph H = (V ′,E′), the problem is
to find a maximum cardinality subset S ⊆V ′ such that no two vertices from
S are adjacent. It is NP-hard to approximate INDEPENDENTSET within a
factor |V ′|1−ε as shown by Zuckerman (2006).

Let V ′ = {v1, . . . ,vn} and E′ = {a1, . . . ,am}. We construct the instance of
the single item pricing problem as follows. We create an (n+1)× (2m+2)
grid, that is, a simple graph with 2nm+2n+2m+2 vertices {( j, e) : 1 ≤ j ≤
n+1,1 ≤ e ≤ 2m+2}, where ( j, e) and ( j′, e′) are adjacent if | j′− j|+ |e′− e| =
1. Let horizontal layer j ∈ {1, . . . ,n} correspond to vertex v j ∈ V ′, and let
the edge ((n+ 1,2e), (n+ 1,2e + 1)) in the grid correspond to edge ae ∈ E′.
Next, for each vertex v j ∈ V ′, we introduce a customer in the single item
pricing problem with a requested path defined by the following simple path
in the grid graph. The path starts at point ( j,1) and ends at point ( j,2m+
2) following the layer j everywhere except for the edges (( j,2e), ( j,2e+ 1))
such that v j ∈ ae. These edges are substituted by vertical detours, passing
through edges ((n+1,2e), (n+1,2e+1)). See Figure 4.1 for an example. We
complete the construction by setting the valuation of each customer to 1.

We claim that there exists an independent set of cardinality K in H if and
only if there exists a solution to the single item pricing problem on the grid
with unit edge capacities with total revenue K . By construction, two paths in
the grid corresponding to adjacent vertices in H must share some edge a ∈ E′

in layer (n+1). Since the capacity of edge a is 1, only one of these paths can
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v1

v2

...

vk

...

edges

(v1,vk) (v2,vn)
...

vn

(vk,vn)

Figure 4.1: Grid graph from the reduction of INDEPENDENTSET.

be present in a feasible solution. Hence, the total revenue in the single item
pricing problem is at most the maximum cardinality independent set in H.

For the converse, consider an independent set S in H and any two ver-
tices in this independent set. By construction, the two corresponding paths
in the single item pricing problem are edge disjoint. Therefore, there is a so-
lution to the single item pricing problem where S defines the set of winners
and each edge e ∈ E accommodates at most one customer. For each v j ∈ S
we set the price of the grid edge (( j,1), ( j,2)) to 1, for each v j ∉ S we set the
price of (( j,1), ( j,2)) to 2, and for all other edges of the grid we set the prices
to 0. In the constructed solution to the single item pricing problem the total
revenue equals |S|. Thus, the reduction preserves the objective value.

Since the number of customers n in the single item pricing problem ex-
actly equals |V ′|, we derive that the single item pricing problem is hard to
approximate within a factor n1−ε. It remains to notice that the constructed
solution is envy-free since the price of the bundle of each non-winning cus-
tomer equals 2, which is greater than her valuation. Therefore, the theorem
holds also if we require the solution to be envy-free.
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4.5 Conclusion

For the highway problem with capacitated edges, we derive an FPTAS based
on a pseudo-polynomial time dynamic program. These results are extended
to the problem where the underlying graph is a cycle. For the problem where
the capacity is equal to one, we show that the problem is polynomially solv-
able if the underlying graph is a path, cycle or tree. However, on a grid, the
problem becomes difficult to approximate within n1−ε for any ε> 0.
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Chapter 5

Algorithms for Affine Pricing

We consider a revenue maximization problem where a company sells a set
of items to a set of customers. Every customer has one request for a contract
based on the different types of items available. We assume that the requests
and the valuations of the customers are known to the company. The company
determines a price for every type of item. Given these prices, the price of
a contract is calculated on the basis of an arbitrary affine function on the
request of the customer. We show that this model generalizes the single item
pricing problem, and we derive a fixed-parameter polynomial time algorithm
for the affine pricing problem.1

5.1 Introduction

A telephone operator offers various types of phone usage to its customers,
for example, calling one minute domestically or abroad, sending a text mes-
sage or multimedia objects, but also establishing a connection. The operator
has to determine a price for each type of phone usage. The question is how
to set the prices so as to maximize the total revenue. Through market re-
search, an operator can acquire the exact details of phone usage for each of
its customers, that is, data is available on the date and time of the usage, the
duration, and the used network. Every customer requests a contract based
on her specific phone usage. Given the prices for the different types of phone
usage set by the operator, the price of the contract of a particular customer
is an affine function on her request.

1This chapter is based on Grigoriev, van Loon, Sviridenko, Uetz, and Vredeveld (2007).
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Affine pricing is a pricing strategy where there is a fixed, customer de-
pendent cost for accepting the contract, and a constant per-item price for
every item type. Affine pricing is different from the single item pricing prob-
lem described in Part I, as there customers request subsets of the available
set of items. Single item pricing is semi-logarithmic inapproximable, that
is, hard to approximate within a factor of O(logε n) for some ε> 0, assuming
that NP* BPTIME(2O(nδ)) for all δ> 0, as was generally shown by Demaine
et al. (2006). In this chapter, we show that the affine pricing model gener-
alizes the single item pricing problem and give complexity results in case
the dimension of the affine pricing problem, that is, the number of distinct
item types, is not constant. If the dimension of the problem is constant, we
present a polynomial time algorithm to solve the problem. In Section 5.4,
we apply the affine pricing algorithm in a practical study using data from
a telephone company that resemble reality. Moreover, we present a local
search algorithm that yields solutions very close to optimal for the practical
data at hand.

The affine pricing problem is defined as follows. Let J = {1, . . . ,n} denote
the set of customers requesting a contract from a company. Every customer
j ∈ J has a valuation b j, which is the maximum amount j is willing to pay for
the contract. The customers are single-minded, that means that a customer
requests one contract which she accepts only if its price does not exceed
her valuation. Let set K = {1, . . . ,m} be the set of distinct item types, each
influencing the price of the contract, and we call m the dimension of the
affine pricing problem. Note that an item is not necessarily a physical or
digital product; it can for example also be a service or shipping cost. The
price of item type k ∈ K is denoted by pk ≥ 0. The price p( j) of the contract
requested by customer j is defined by affine price function

p( j)= d j0 +d j1 p1 +·· ·+d jm pm , j ∈ J . (5.1)

Positive coefficient d jk represents the demand of customer j ∈ J for item
type k ∈ K . Coefficient d j0 is the cost charged to customer j ∈ J for accepting
the contract. Without loss of generality, we assume that d j0 ≤ b j. The coef-
ficients may in general depend on the item types requested in the contract,
but also on customer j or the requested contract itself. For example, if k rep-
resents one minute of calling then the number of minutes customer j wants
to call is equal to d jk. Or, if k represents shipping then d jk is equal to 1 if
customer j requests shipping and 0 otherwise. Thus every customer gets a
personal offer for the contract she requests.
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The problem consists of determining nonnegative prices pk for the item
types k ∈ K . A solution to the problem is a price p( j) for the contract re-
quested by customer j ∈ J. A customer is called a winner if she accepts and
receives the contract, and a loser otherwise. The set of winners is denoted
by W = { j ∈ J : p( j)≤ b j}.

Definition 5.1.1. A solution is feasible if the contracts of all winners can be
afforded, that is, the price of the contract is at most the customer’s valuation,
and if no item type is oversold in case of limited supply. The objective of the
company is to maximize the total revenue, Π=∑

j∈W p( j).

Definition 5.1.2 (Envy-free). A solution is envy-free if it is feasible and in
addition the losers’ contracts are each priced higher than their valuations.

In this chapter, we only consider envy-free solutions. This is a property
of an optimal solution to the pricing problem with unlimited supply of item
types, but has to be assured if the supply is limited.

5.2 Affine pricing algorithm

We present an algorithm to solve the affine pricing problem. The running
time of this algorithm is polynomial as long as the dimension of the affine
pricing problem m is constant. We describe the algorithm with unlimited
supply of the item types, and extend it to obtain a near-optimal solution for
the case with limited supply in Section 5.2.1. In the final part of this sec-
tion, we describe the unlimited supply problem with unit-demand customers
instead of single-minded customers.

Definition 5.2.1 (Arrangement of linear inequalities). An arrangement of
linear inequalities is a set of linear inequalities in m dimensional space.

Definition 5.2.2 (Vertex). A vector p = (p1, . . . , pm) ∈ Rm
+ is a vertex of the

arrangement of valuation and nonnegativity inequalities if it is characterized
by m out of the following n+m equalities

d j0 +d j1 p1 +·· ·+d jm pm = b j , j ∈ J

pk = 0, k ∈ K ,

such that the coefficient matrix of these m equalities has rank m.
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The affine pricing algorithm that we propose in this chapter, enumerates
all vertices of the arrangement of valuation inequalities p( j) ≤ b j, j ∈ J,
and nonnegativity inequalities pk ≥ 0, k ∈ K . We select the vertex for which
the price vector yields the highest revenue. We show in Lemma 5.2.3 that
there exists a vertex that is an optimal solution to the affine pricing problem,
which proves that enumerating all vertices suffices to solve the problem.

Lemma 5.2.3. There exists a vertex that is an optimal pricing strategy to the
affine pricing problem.

Proof. Given an optimal solution p∗ = (p∗
1 , . . . , p∗

m) ∈ Rm
+ . Let W∗ = { j ∈ J :

p∗( j)≤ b j} be the set of winners. Consider the following linear program.

max (
∑

j∈W∗ d j0)+ (
∑

j∈W∗ d j1)p1 +·· ·+ (
∑

j∈W∗ d jm)pm

s.t. d j0 +d j1 p1 + . . .+d jm pm ≤ b j ∀ j ∈W∗

pk ≥ 0 ∀k ∈ K .

Let p̄ = ( p̄1, . . . , p̄m) ∈Rm
+ be an optimal solution to this linear program. Now,

the generated revenue with vector p̄ is at least as high as the generated
revenue with vector p∗, as p̄ is an optimal solution to the linear program
and they both have the same set of winners. By optimality of p∗, the revenue
should be equal for both price vectors. By definition, vector p̄ is a vertex.

Details of the affine pricing algorithm are presented in Algorithm 5.1.
The algorithm is applied to a simple instance in Example 5.2.4 to further
clarify the procedure.

Algorithm 5.1: Affine pricing algorithm.
Let Π∗ = 0, p∗ = (0, . . . ,0) and W∗ = J;
foreach vertex p ∈Rm

+ do
Let p( j)= d j0 +d j1 p1 +·· ·+d jm pm be the price of the contract
requested by customer j ∈ J;
Let W = { j ∈ J : p( j)≤ b j} be the set of winners;
Let Π=∑

j∈W p( j) be the total revenue;
if Π>Π∗ then

Let Π∗ =Π, p∗ = p and W∗ =W ;
end

end
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Example 5.2.4. Assume the company has two different item types for sale,
and three customers request a contract. The fixed cost d j0 = 0 for all cus-
tomers j. One customer wants 4 copies of the first item, and 1 of the second.
One customer is interested in 6 copies of the first and 1 of the second item.
And one customer requests 1 copy of both items. Their valuations are 4, 3
and 2, respectively. The valuation inequalities are 4p1 + p2 ≤ 4, 6p1 + p2 ≤ 3
and p1+p2 ≤ 2. Figure 5.1 shows a graphical representation of this situation.
The bullets represent the price vectors that are vertices. For each such price
vector we determine the revenue Π. The optimal revenue of 73

5 is attained
at p = (1

5 ,14
5 ). Graphically, we can see that W = J because this price vector

lies in the feasible region defined by the valuation inequalities p( j)≤ b j of all
customers j ∈ J.
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Figure 5.1: Example of an instance of affine pricing.

Theorem 5.2.5. The affine pricing problem can be solved in polynomial time
if the number of item types m is constant. The computation time is O((n+
m)m(m3 +nm)) ∈ O(nm+1).

Proof. Correctness of Algorithm 5.1 immediately follows from Lemma 5.2.3.
We consider

(n+m
m

) ∈ O((n+ m)m) systems of m equalities each. In each of
these iterations, we solve a linear system in m variables and m constraints
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to determine the price vector, which takes O(m3) time. Checking whether
all prices are positive takes O(m) time. Computation of the contract prices,
winners, and the revenue takes O(nm) time. The claimed time complexity
follows.

In contrast, if the dimension m of the affine pricing problem is not con-
stant, the problem is much harder. In fact, if m is not constant, the single
item pricing problem is just a special case of the affine pricing problem: For
all k ∈ K and j ∈ J, let d jk = 1 whenever item type k is contained in j’s
bundle and d jk = 0 otherwise, and let d j0 = 0. Then, each item price corre-
sponds to one variable pk, thus the affine pricing problem generalizes the
single item pricing problem. Combining this with a result by Demaine et al.
(2006), we obtain the following.

Corollary 5.2.6. The affine pricing problem with an unbounded number of
item types is inapproximable within a semi-logarithmic factor.

5.2.1 Limited supply

In this section, we consider the envy-free affine pricing problem with limited
availability of item types. Let ck ≥ 0 be the availability of item type k ∈ K .
Now, we consider all solutions p = (p1, . . . , pm) ∈ Rm

+ for which the following
three inequalities are satisfied.

p( j) ≤ b j, ∀ j ∈W (5.2)

p( j) > b j, ∀ j ∈ J \W (5.3)∑
j∈W

d jk ≤ ck, ∀k ∈ K (5.4)

Since (5.3) is a strict inequality, we cannot simply find the optimal solu-
tion at a vertex of a linear program as we did in the affine pricing problem
with unlimited supply. Furthermore, there might exist no envy-free vertex
at all. To see this, consider the following example.

Example 5.2.7. Consider the situation where J = {1,2,3}, K = {1,2} and c1 =
c2 = 1. The valuation constraints are p(1) = p1 ≤ 1 = b1, p(2) = p2 ≤ 1 = b2
and p(3) = p1 + p2 ≤ 2 = b3. Figure 5.2 displays this setting, where all price
vectors p ∈Rm

+ in and on the boundary of the gray area are not envy-free. No
vertex, represented by the bullets, yields an envy-free solution. However, for
some ε > 0, vectors p = (1,1+ε) and p = (1+ε,1) are optimal solutions with
revenue 1.
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p1

p2

p1+ p2 ≤ 2

p2 ≤ 1

p1 ≤ 1

1

1 2

2

Figure 5.2: Example of an instance of affine pricing with limited supply where
there is no envy-free vertex.

Using the insight of the above example, we show how to get a near-
optimal envy-free solution by exploring an “ε-environment” of the vertices
as defined in Definition 5.2.2, in case this environment contains envy-free
solutions.

Definition 5.2.8 (Near-optimal solution). A vector p ∈ Rm
+ is a near-optimal

solution if, for a given δ > 0, the revenue obtained by this price vector is at
least (1−δ) times the revenue obtained by any feasible, envy-free vector p̃ ∈Rm

+ .

Definition 5.2.9 (Envy-free vertex with limited supply). A vector p ∈ Rm
+

is an envy-free vertex of the arrangement of valuation and nonnegativity in-
equalities if, for some ε> 0, it is characterized by m out of the following 2n+m
equalities

d j0 +d j1 p1 +·· ·+d jm pm = b j , j ∈ J

d j0 +d j1 p1 +·· ·+d jm pm = b j +ε , j ∈ J

pk = 0, k ∈ K ,

such that the coefficient matrix of these m equalities has rank m, and satisfies
inequalities (5.2), (5.3) and (5.4).

Given δ> 0, set ε= δ/(nm). Now, applying Algorithm 5.1 on the envy-free
vertices from Definition 5.2.9, we derive a near-optimal solution to the envy-
free affine pricing problem with limited supply. Here, we consider

(2n+m
m

) ∈
O((n+ m)m) systems of m equalities each. In each of these iterations, we
solve a linear system in m variables and m constraints to determine the
price vector, which takes O(m3) time. Checking whether all prices are pos-
itive takes O(m) time. Computation of the contract prices, winners and the
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revenue, and checking whether no item type is oversold takes O(nm) time.
We obtain the following corollary.

Corollary 5.2.10. For a given δ > 0, we can find a near-optimal solution to
the envy-free affine pricing problem with limited availability of item types in
polynomial time if the number of item types m is constant. The computation
time is O((n+m)m(m3 +nm)) ∈ O(nm+1).

On the negative side, it turns out that for non-constant m the problem
with limited supply seems even harder to approximate than the same prob-
lem with unlimited supply.

Theorem 5.2.11. Consider the affine pricing problem with limited supply
and non-constant dimension. For any ε > 0, it is NP-hard to approximate
the maximum revenue within a factor n1−ε. This result holds even if all
customers have a valuation of one, the availability of each item type is one,
and each item type is requested once by at most two customers.

Proof. We use an approximation preserving reduction from INDEPENDENT-
SET. Given a graph G = (V ,E), we want to find a maximum cardinality
subset V ′ ⊆ V such that no two vertices in V ′ are adjacent. Zuckerman
(2006) shows that it is NP-hard to approximate the maximum independent
set within a factor |V |1−ε, for any ε> 0.

We construct the following instance of the pricing problem. Each vertex
v ∈V corresponds to a customer and each edge e ∈ E corresponds to an item
type. For every customer v, let dv0 = 1 and dve = 1 if edge e is incident to
vertex v, and 0 otherwise. The valuation bv is equal to 1. Each item type
e is available once. The company determines the prices of the item types
e ∈ E, and the price of the contract requested by customer v ∈ V is equal to
p(v)= dv0 +

∑
e∈E dve pe.

We claim that an independent set of cardinality s exists in G if and only
if there exists a pricing for the above defined instance with total revenue s.
Suppose V ′ ⊆ V is an independent set in G with |V ′| = s. Then let pe = 0 for
all edges e ∈ E incident to a vertex v ∈ V ′, and pe > 0 otherwise. This way
the set of winners equals the independent set V ′, and therefore no item type
is oversold. No customer is envious, as the price of a contract exceeds the
valuation for every loser, and we extract a total revenue of s.

Conversely, assume a solution to the pricing problem with total revenue
s. Since only one copy of any item type is available, the set of winners must
define an independent set in G. As the maximum revenue received from any
customer is 1, there exists an independent set of size s in G.
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5.2.2 Unit-demand customers

So far, we assumed that customers are single-minded, which means that
they request one contract and either accept or reject it. However, in this
subsection we claim that, for unlimited supply, we can apply the same algo-
rithm for the case with unit-demand customers. That is, each customer can
request several different contracts, each with a separate valuation. Every
customer accepts at most one of the requested contracts. We assume that
the customer selects the contract with the highest utility, which is the valu-
ation minus the price, if this utility is nonnegative. For the example in which
customers request contracts from a telephone company, we can imagine that
customers are interested in different contracts offered by the company, but
in the end, they need only one contract to use their telephone.

Let L j be the set of contracts requested by customer j ∈ J, such that
|L j| ≥ 1 and L j ∩Lk =; for all j 6= k ∈ J, and let L = ⋃

j∈J L j. Notice that if
two customers request the same contract, we store both copies in L, for ease
of notation. Customer j ∈ J is interested in at most one contract from subset
L j ⊆ L, and has valuation b` for contract ` ∈ L j. Let positive coefficient d`k
be the demand of customer j ∈ J for item type k ∈ K in contract ` ∈ L. The
price for the contract ` ∈ L is

p(`)= d`0 +d`1 p1 + . . .+d`m pm.

In this section, we redefine a vertex as follows.

Definition 5.2.12 (Vertex with unit-demand customers). A vector p ∈ Rm
+

is a vertex of the arrangement of linear inequalities with unit-demand cus-
tomers if it is characterized by m equalities out of the following |L|+m equal-
ities

d`0 +d`1 p1 +·· ·+d`m pm = b` , ` ∈ L

pk = 0, k ∈ K ,

such that the coefficient matrix of these m equalities has rank m.

As a direct consequence of the definition of a vertex with unit-demand
customers and Lemma 5.2.3, we obtain the following corollary.

Corollary 5.2.13. There exists a vertex as defined in Definition 5.2.12 that is
an optimal pricing strategy to the affine pricing problem with unit-demand
customers.
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For every vertex with unit-demand customers, we do the following. We
determine the price of every contract ` ∈ L. The demand set D j for customer
j ∈ J is the set of contracts she prefers most, thus D j = {` ∈ L j : b`− p(`) ≥
b`′ − p(`′), ∀`′ ∈ L j}. We assume that customer j ∈ J selects a contract ` j ∈
D j with highest price, as otherwise the company could reduce the prices
of this contract with a very small amount, making this the contract with
the highest utility for the customer. Then, W = { j ∈ J : p(` j) ≤ b` j } and
Π = ∑

j∈W p(` j). Finally, we select the maximum among all values Π, with
optimal parameters p1, . . . , pm, and set of winners W .

Theorem 5.2.14. The affine pricing problem with unit-demand customers
and unlimited supply can be solved in polynomial time if the number of item
types m is constant. The computation time is O((|L|+m)m(m3 +|L|m+|L|n)
∈ O(n|L|m+1).

Proof. We consider
(|L|+m

m
) ∈ O((|L| +m)m) systems of m equalities each. In

each of these iterations, we solve a linear system in m variables and m con-
straints, which takes O(m3) time. It takes O(m) time to verify whether all
prices are positive. Computation of the contract prices takes O(|L|m) time,
selection of the most preferable contract for every customer takes O(|L|n)
time, and computation of the winners and the revenue takes O(n) time.
Thus, the time complexity is O((|L| + m)m(m3 + |L|m + |L|n), which is in
O(n|L|m+1) for constant m.

Similarly as before, if the number of item types m is not constant, this
problem is a generalization of the single item pricing problem with unit-
demand customers. As the problem with unit-demand customers is in fact
a generalization of the problem with single-minded customers, we have the
following corollary.

Corollary 5.2.15. The affine pricing problem with an unbounded number
of item types and unit-demand customers is inapproximable within a semi-
logarithmic factor.

5.3 Local search

The computation time of the affine pricing algorithm (Algorithm 5.1) is ex-
ponential in the number of item types. Therefore, we suggest a local search
algorithm that finds a near-optimal pricing strategy in polynomial time even
if the number of item types m is not constant.
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For notational purposes, let I = {1, . . . ,n,n+1, . . . , n+m} be the index set
of inequalities. For all i ∈ I, let p(i) = p( j) and bi = b j if i = j ∈ J, and
p(i)=−pk and bi = 0 if i−n = k ∈ K . We consider the arrangement of linear
inequalities p(i) ≤ bi for all i ∈ I. For this section, we redefine a vertex, and
also give a definition of an edge in the arrangement of linear inequalities.

Definition 5.3.1 (Vertex). A vertex v is defined by a price vector p(v) ∈ Rm
+

that is described by a subset Iv ⊂ I such that |Iv| = m and the coefficient
matrix of the equalities p(v)(i)= bi for all i ∈ Iv has rank m.

For every vertex v, we define the contract price for customer j ∈ J as
p(v)( j) = d j0 + d j1 p(v)

1 + ·· · + d jm p(v)
m . The set of winners is W (v) = { j ∈ J :

p(v)( j)≤ b j}. The revenue of vertex v is denoted by Π(v)=∑
j∈W (v) p(v)( j).

Definition 5.3.2 (Edge). An edge e = {v,w} between two vertices v and w
exists if |Iv ∩ Iw| = m−1. Then, we call vertices v and w adjacent, and both
are incident to edge e.

In the local search algorithm, we travel from one vertex to another along
the edges of the arrangement of linear inequalities. In this sense the algo-
rithm resembles the simplex algorithm for linear programming. The simplex
algorithm was proposed by George Dantzig2 in 1947. This algorithm begins
at a vertex of a polytope that represents a feasible region, defined by a series
of linear inequalities. Then, it moves along the edges of the polytope until
it reaches the vertex of the optimum solution. For further reading, we refer
to Dantzig (1963), Papadimitriou and Steiglitz (1998) and Vanderbei (2001).

Although all inequalities are linear, the pricing problem is not a linear
program, and therefore we cannot apply the simplex method. The idea of
the local search algorithm is to travel along edges of the arrangement of
linear inequalities in a steepest ascent fashion. We first give an intuitive
description of the algorithm and present the details in Algorithm 5.2. Then,
we clarify the procedure in Example 5.3.3.

We start in an arbitrary vertex, say A, described by some set IA ⊆ I of
cardinality m as defined in Definition 5.3.1. We select an arbitrary index
iA ∈ IA. Then, we explore all vertices v adjacent to A such that iA ∈ Iv. In
other words, we explore all vertices adjacent to A for which equality p(iA)=
biA holds. Among these vertices we pick the one that yields the highest

2George Bernard Dantzig (1914-2005) was an American mathematician, and the Professor
Emeritus of Transportation Sciences and Professor of Operations Research and of Computer
Science at Stanford.
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Algorithm 5.2: Local search algorithm
Let I = {1, . . . ,n,n+1, . . . ,n+m} and Λ=;. Let p(i)= p( j) and bi = b j
if i = j ∈ J, and p(i)=−pk and bi = 0 if i−n = k ∈ K ;
Select a vertex v described by set Iv ⊆ I with |Iv| = m, and select
iv ∈ Iv;
Let p(i)= bi, ∀ i ∈ Iv and calculate the price vector p(v), contract prices
p(v)( j) for all j ∈ J, the set of winners W (v), and the revenue Π(v);
Let p∗ = p(v), W∗ =W (v) and Π∗ =Π(v);
while |I| ≥ m do

Iw = Iv;
foreach set I ′ ⊂ (Iv \ iv) with |I ′| = m−2 do

foreach i ∈ I \ Iv do
Iu = iv ∪ I ′∪ i;
Let p(i′)= bi′ , ∀ i′ ∈ Iu and determine p(u), W (u) and Π(u);
if Π(u)>Π∗ then

p∗ = p(u), W∗ =W (u), Π∗ =Π(u) and Iw = Iu;
end

end
end
Λ=Λ∪ {iv} and iw = Iw \ Iv;
if iw ∈ I then

Iv = Iw and iv = iw;
foreach i ∈Λ do

if i ∉ Iv then
I = I \ i and Λ=Λ\ i;

end
end

else
I = I \Λ, Λ=;;
if |I| ≥ m then

Select some set Iv ⊆ I and pick iv ∈ Iv;
Determine p(v), W (v) and Π(v);
if Π(v)>Π∗ then

p∗ = p(v), W∗ =W (v) and Π∗ =Π(v);
end

end
end

end
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revenue, that is, we locally optimize the revenue. If this revenue is higher
than the revenue generated in vertex A, we accept this vertex as the new
solution, say B, and let iB = IB \ IA. Now, we find the vertex with highest
revenue adjacent to B that satisfies p(iB) = biB but is not incident to edge
{A,B}. If we arrive at a vertex for which no adjacent vertex yields a higher
revenue, we stop the procedure. However, if there are at least m equalities
left that we did not explore before, characterized by indices in set I ′ ⊆ I
with |I ′| ≥ m, we restart the algorithm at an arbitrary vertex defined by m
equalities for which the indices are chosen from set I ′.

Example 5.3.3. Consider the instance with four customers and three item
types, as displayed in Figure 5.3. The customers’ valuation inequalities are
given by p(1)= 3

2 p1+ 3
2 p2+p3 ≤ 36= b1, p(2)= 4p1+p2+p3 ≤ 32= b2, p(3)=

3
2 p2 + p3 ≤ 24 = b3, and p(4) = 1

2 p1 + 2
5 p2 + p3 ≤ 16 = b4. Moreover, p(5) =

−p1 ≤ 0 = b5, p(6) = −p2 ≤ 0 = b6 and p(7) = −p3 ≤ 0 = b7, and therefore
I = {1, . . . ,7}.

We start the procedure in vertex A with p(A) = (0,0,36) described by IA =
{1,5,6} and we select element iA = 1 ∈ IA. The revenue is Π(A) = 36. We
explore all vertices v adjacent to A satisfying constraint p(1) = b1. In the
figure, this is displayed by the arrows on edges leaving vertex A. Vertex B
described by IB = {1,4,5} with p(B) = (0,18 2

11 ,8 8
11 ) has the highest revenue of

Π(B)= 7810
11 among all adjacent vertices, and is thus the local optimum if we

start in A. We travel from A to B, and update Λ = {1} and iB = IB \ IA = 4.
As all customers in Λ are also in IB, we keep set I as it is. Now, we find all
vertices v adjacent to B with p(4) = b4, thus explore all edges incident to B
except the edge we came from. Again, this is displayed by arrows on edges
leaving vertex B. Vertex C with p(C) = (0,7 3

11 ,13 1
11 ) has the highest revenue of

Π(C) = 84 4
11 , and as Π(C) >Π(B), we travel to vertex C with IC = {3,4,5}. We

update Λ= {1,4} and iC = IC \ IB = 3. However, as 1 ∉ IC we have I = {2, . . . ,7}
and Λ = {4}. Similarly, we travel from C to D with p(D) = (3 7

83 ,856
83 ,1082

83 ),
ID = {2,3,4} and iD = 2, and update Λ to {2,3,4} whereas I does not change.
There is no vertex adjacent to D that has a higher revenue thanΠ(D)= 10052

83 .
Therefore, we remove Λ from I which leaves us with I = {5,6,7}, and empty
set Λ. As |I| = m, we explore vertex E with IE = {5,6,7}. This vertex nor its
adjacent vertices have a higher revenue than Π(D), thus the algorithm stops
and outputs the prices p(D).
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Figure 5.3: Graphical representation of the local search algorithm on an instance
with m = 3.

Theorem 5.3.4. Algorithm 5.2 runs in O(nm5+n2m4+n3m2) time, which is
in O(n3) if the number of item types is constant.

Proof. Every index i ∈ I is selected at most once to be iv, as after the selec-
tion it is added to Λ; that is O(n+m). Then, we select every subset I ′ from
Iv\iv of size m−2 once. As |Iv\iv| = m−1, there are exactly

(m−1
m−2

)= m−1 dif-
ferent subsets I ′ possible. Moreover, |I \ Iv| ≤ n. In each iteration, we solve a
linear system of m constraints and m variables to find price vector p, which
takes O(m3) time. Checking if all prices are positive takes O(m) time. Com-
putation of contract prices, winners and the revenue takes O(nm). Then, we
update iv, Λ and I. If the new iv is an element of I then we check at most
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|Λ| ≤ m times whether the equality with index iv in Λ partly defines the
current vertex. Otherwise, we select a new vertex and determine its price
vector in O(m3) time, and revenue and winners in O(nm) time. Thus, the
total running time is O(nm5+n2m4+n3m2), which is in O(n3) if the number
of item types m is constant.

5.4 Computational study

We apply the affine pricing algorithm and the local search algorithm to de-
termine a pricing strategy for a telephone operator. The data we use re-
semble reality. The item types are available in unlimited supply, as we are
selling digital goods. We assume customers to be single-minded, that is, each
customer either accepts the offer for the contract or she leaves to a competi-
tor. In this practical application, we determine the start-up tariff, a price
per minute for calling within the country and abroad, and a price per sent
text message.

The data we use contain detailed information about the phone usage of
many customers. For each customer, we can exactly determine the demand
for the different item types and therefore the contract she requests. Let p1
be the start-up price for a call, p2 the price per minute for calling domesti-
cally, p3 the price per text message, and p4 the price per minute for calling
abroad. Then, the price for the contract of customer j ∈ J is defined as

p( j)= d j1 p1 +d j2 p2 +d j3 p3 +d j4 p4,

where d j1 is the number of calls customer j wants to make, d j2 is the num-
ber of minutes she calls within the country, d j3 is the number of text mes-
sages she sends, and d j4 is the number of minutes she calls abroad.

We assume that customers are rational, and therefore select the cheap-
est offer for their contract. Thus, a customer only accepts our offer for her
contract if we offer the cheapest price in the market. Therefore, we calcu-
late the valuation of a customer as follows. First, we consider all existing
pricing strategies of the company we observe, and of some large compet-
ing telephone companies. Then, we calculate for every customer what the
price of her contract would be for each of the current pricing strategies. The
cheapest of these prices will be the valuation. However, any other valuation
determined by market research can be used as well. The goal of this practi-
cal research is: Given that the competing operators keep their prices fixed,
find the pricing strategy that maximizes the revenue.
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5.4.1 Results

We conduct several tests on the data we received on a computer with an
Intel Core2Duo CPU running at 2.40GHz and 3.25 GB of Ram. Besides
optimizing all four item type prices as described above (m = 4), we also op-
timize prices while having the start tariff of a call for free (m = 3), thus
p( j) = d j2 p2 + d j3 p3 + d j4 p4, and moreover, keeping the price for calling
abroad at the original tariff of the telephone company of 0.75 euro (m = 2),
that is p( j)= d j2 p2+d j3 p3+0.75d j4. For these three tests with an extensive
data set containing data of 6160 customers, the local search algorithm gives
the optimal solution. The running time of this algorithm is significantly
smaller than the running time of the affine pricing algorithm, as shown in
Table 5.1. For the case with m = 4 the exact running time of the affine pric-
ing algorithm is not presented, as the running time is extremely large which
is not practically useful.

m = 2 m = 3 m = 4
Current revenue 21940.97 25888.40 25888.40
Optimal revenue 33515.80 38648.50 44917.60
Runtime affine pricing 1554 sec. 975453 sec. > 4 months
Runtime local search 2 sec. 2 sec. 13 sec.

Table 5.1: Results in euro for instance with 6160 customers in dimension m.

In the above test on the complete data set, the local search algorithm
performed perfectly as it always resulted in the optimal solution. Unfortu-
nately, there is no guarantee that the local search algorithm will produce
the optimum. However, Algorithm 5.2 is a practically powerful tool as its
running time is significantly smaller than the running time of the exact al-
gorithm, and by construction, will produce a fairly good solution. To stress
this, we perform nine tests on several random samples of the data set with
m = 4. We use samples of 100, 200, and 300 customers. The results of the
affine pricing algorithm (A), the local search algorithm (L) and the current
revenue (C) are presented in Table 5.2, where the runtime is in seconds.
Figure 5.4 presents the relative deviation from the optimal revenue.

These results indicate that the revenue obtained by the local search al-
gorithm is not always optimal, but it is not far from it either. The running
time of the local search algorithm is a lot shorter than the running time of
the affine pricing algorithm, especially for large samples.
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Test1 - n = 100 Test2 - n = 100 Test3 - n = 100
Method Revenue Sec. Method Revenue Sec. Method Revenue Sec.

A 11945.10 22 A 8365.76 22 A 173.22 21
L 11945.10 0 L 7906.89 0 L 172.91 0
C 4905.02 C 5316.53 C 136.96

Test4 - n = 200 Test5 - n = 200 Test6 - n = 200
Method Revenue Sec. Method Revenue Sec. Method Revenue Sec.

A 3405.37 416 A 8018.33 415 A 3530.61 414
L 3405.37 2 L 7853.29 0 L 3482.65 0
C 2263.08 C 4162.48 C 2337.43

Test7 - n = 300 Test8 - n = 300 Test9 - n = 300
Method Revenue Sec. Method Revenue Sec. Method Revenue Sec.

A 5054.56 2467 A 6448.82 2432 A 5681.08 2450
L 4934.63 1 L 6436.11 0 L 5681.08 0
C 2636.76 C 4015.67 C 3691.81

Table 5.2: Results for samples compared to the optimal revenue.

Affine

Local

Current

Revenue

Search

Pricing

100%

75%

50%

25%

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

Figure 5.4: Relative deviation from the optimal solution of affine pricing, local
search and current solution from the optimum.

5.5 Conclusion

Affine pricing can be applied in many different types of companies because
of its very general structure. Also, as long as the number of different item
types is constant, we can solve the pricing problem with unlimited supply in
polynomial time, irrespective of the profile of the customers (single-minded
or unit-demand), and we derive a near-optimal solution if the supply is lim-
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ited. However, if the number of item types is not constant, the hardness
results from single item pricing apply to affine pricing as well. Moreover,
the envy-free problem with limited supply is even harder to approximate
than the problem with unlimited supply.

Challenged by the large amount of data received from a telephone op-
erator, we have the opportunity to practically test our algorithms. In the
computational study, the customers are single-minded and the supply is un-
limited. The theoretical computation time for the algorithm is O(nm+1) for a
constant number of item types m. Although the affine pricing algorithm al-
ways finds the optimal pricing strategy for the given instances, the running
time appeared to be too high for practical purposes. Therefore, we introduce
a local search algorithm that runs in O(n3) time for constant number of item
types m. We were not able to prove any bound on the performance of the
algorithm, but on the complete and sampled instances, the results are very
promising and the running time is very low in practice.
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Chapter 6

Price Strategy
Implementation

Consider a situation in which a company sells several different item types to
a set of customers. Every customer requests a contract, based on the types of
items for sale and her personal demand. Currently, the company is not sat-
isfied with the pricing strategy and wants to implement new prices. Imple-
menting these new prices in one single time step might not be desirable, for
example, because of the change in contract prices for the customers. There-
fore, the company changes the prices gradually, such that the prices charged
to a subset of the customers, the target market, do not differ too much from
one period to the next. We propose a polynomial time algorithm to imple-
ment the new prices in the minimum number of time periods needed, given
that the prices charged to the customers in the target market increase by at
most a factor 1+δ, for some δ> 0. Furthermore, we address the problem to
maximize the revenue when a maximum number of time periods is predeter-
mined. For this problem with integer price vectors, we describe a dynamic
program. We extend this result and present an approximation algorithm
for the problem with continuous prices. Moreover, we propose a local search
algorithm. Also, we present the integer program that models this problem
and conduct a practical study.1

1This chapter is based on Berger, Grigoriev, and van Loon (2008).
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6.1 Introduction

A company owns a set of different item types for sale, K = {1, . . . ,m}. We
assume that every item type is available in unlimited supply. The set of
potential customers is denoted by J = {1, . . . ,n}. Every customer j ∈ J has a
personal demand d jk ≥ 0 for every item type k ∈ K . The combination of the
demand for all item types is called a customer’s contract. Every customer
j ∈ J is single-minded and has a valuation b j for the contract, which is the
maximum amount she is willing to pay. Let B = max j∈J{b j} be an upper
bound on the valuations.

In this chapter, we regard the problem that the company faces when im-
plementing a new price vector p∗ ∈ Rm

+ . This price vector might be the opti-
mal price vector obtained by solving the affine pricing algorithm as discussed
in Chapter 5, but can also be any other vector that the company wishes to
implement. We assume that the current price vector is p0 6= p∗. Imme-
diate introduction of the new prices in the next period (e.g. week, month)
might not be desirable. For example, a sudden huge difference in prices may
change the perception of customers or the position in the market in compar-
ison to the competing companies. Therefore, the company wants to change
prices gradually. Let T = {0, . . . , tmax} be the set of time periods, where t = 0
is the current time and t = tmax is the end time of the implementation. For
notational purposes, let T+ = T \{0}.

For every time step t ∈ T, the company has to set price vector pt =
(pt

1, . . . , pt
m) ∈Rm

+ . Given these prices, the contract price for customer j ∈ J is
an affine function on her personal demand

pt( j)= d j0 +d j1 pt
1 +·· ·+d jm pt

m.

We call a customer a winner if she can afford her contract and receives it.
We denote the set of winners by W t = { j ∈ J : pt( j) ≤ b j}. The company’s
revenue in time period t is Πt =∑

j∈W t pt( j). The company’s total revenue is
equal to

Π=
∑
t∈T

Πt =
∑
t∈T

∑
j∈W t

pt( j).

Given price vector p∗ ∈Rm
+ , we can easily determine for which customers

the price of the contract does not exceed valuation, that is, W∗ = { j ∈ J :
p∗( j) ≤ b j}. We call W∗ the target market. When implementing the optimal
pricing strategy, we have to satisfy the restriction that for these customers
the price of the contract may increase at most a factor of (1+ δ) between
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two consecutive periods for some positive δ, which will be predetermined by
the company. That is, given price vectors p0, p∗ and δ, the company has to
satisfy the following two constraints.

Constraint 6.1. pt( j)≤ (1+δ)pt−1( j), ∀ j ∈W∗, t ∈ T+.

Constraint 6.2. ptmax
k = p∗

k, ∀k ∈ K.

We address two different problems in this chapter, which are formally
defined below.

Problem 6.1. Given p0, p∗ and δ> 0, find price vectors pt for all t ∈ T+, so
as to minimize tmax subject to Constraints 6.1 and 6.2.

Problem 6.2. Given p0, p∗, δ > 0 and tmax that is large enough to satisfy
Constraints 6.1 and 6.2, find price vectors pt for all t ∈ T+ subject to Con-
straints 6.1 and 6.2 so as to maximize

∑
t∈TΠ

t.

For Problem 6.1, we show how to calculate the minimum number of time
periods and we present an algorithm to find the price vectors with compu-
tation time O(nm+m logB). For Problem 6.2 with integer price vectors, we
describe a dynamic program that runs in pseudo-polynomial time if the num-
ber of item types m is constant. For the problem with continuous price vec-
tors, the dynamic program gives an approximate solution with performance
guarantee (1+ε) for any ε> 0, and a computation time of O(t2

max(B/ε)2mnm).
Then, we introduce a local search algorithm that, in every time period t > 0,
selects a pricing strategy that yields the highest total revenue to the com-
pany, but also satisfies the above constraints. Although we were not able
to estimate the performance guarantee on the solution of this algorithm,
computational studies show that the obtained revenue is not far from the
optimal total revenue calculated by solving an integer linear program.

6.2 Implementation in minimal time

We assume that the price of any item type in the current solution is at least
equal to some very small ε> 0, that is, p0

k ≥ ε for all k ∈ K . Let q j denote the
ratio between customer j’s contract price in the optimal and current pricing
strategy and let q be the maximum ratio among all customers in the target
market, that is,

q =max
j∈W∗

{q j}=max
j∈W∗

{
p∗( j)
p0( j)

}
.
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Theorem 6.2.1. Given current price vector p0, the minimum number of steps
to implement price vector p∗ is tmax = tq, where tq =max{1,dlog1+δ qe}.

Proof. Since p0 6= p∗, tmax ≥ 1, that is, we need at least one step to implement
the new prices. By Constraint 6.1 we know that

p∗( j)≤ (1+δ)tmax p0( j), ∀ j ∈W∗.

By definition of q, there exists some customer j′ ∈W∗ such that

q = p∗( j′)
p0( j′)

≤ (1+δ)tmax ⇔ tmax ≥ log1+δ q. (6.1)

Combining inequality (6.1) with the facts that the minimum number of time
periods needed is integer and at least equal to one, we have that tmax ≥ tq =
max{1,dlog1+δ qe}.

We construct a sequence of price vectors located on the straight line in
Rm
+ between p0 and p∗. For every such price vector pt, t ∈ T, we know that

pt =µt p∗+ (1−µt)pt−1, (6.2)

for some µt ∈ [0,1]. For every customer j ∈ J we have

pt( j) = d j0 +d j1
(
(p∗

1 − pt−1
1 )µt + pt−1

1
)+ . . .+d jm

(
(p∗

m − pt−1
m )µt + pt−1

m
)

= pt−1( j)+ (p∗( j)− pt−1( j))µt. (6.3)

Now, for every t ∈ T+, we define a set W∗
t = { j ∈W∗ : p∗( j)> pt−1( j)} and

µt =min
{

min
j∈W∗

t

{
δpt−1( j)

p∗( j)− pt−1( j)

}
,1

}
. (6.4)

Notice that if W∗
t = ; then µt = 1 and we are able to reach solution p∗ at

time t, as

pt( j)= pt−1( j)+ (p∗( j)− pt−1( j))= p∗( j)≤ pt−1( j), ∀ j ∈W∗.

Otherwise, combining Equations (6.3) and (6.4), we have for every t ∈ T+

and j ∈W∗
t that

pt( j)≤ pt−1( j)+ (
p∗( j)− pt−1( j)

) δpt−1( j)
p∗( j)− pt−1( j)

= (1+δ)pt−1( j),
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and for all j ∈W∗ \W∗
t we have that

pt( j)≤ pt−1( j)< (1+δ)pt−1( j),

thus Condition 6.1 is satisfied for all j ∈W∗.
We know that

arg min
j∈W∗

t

{
δpt−1( j)

p∗( j)− pt−1( j)

}
= argmax

j∈W∗
t

{
p∗( j)

pt−1( j)

}
= argmax

j∈W∗

{
p∗( j)

pt−1( j)

}
,

where the last equality holds by definition of W∗
t . We claim that, for every

t ∈ T+, the customer that minimizes µt also maximizes q, that is,

argmax
j∈W∗

t

{
p∗( j)

pt−1( j)

}
= argmax

j∈W∗

{
p∗( j)
p0( j)

}
.

This claim is trivially true for t = 1, again by definition of W∗
t . Assume the

claim is true for all time periods 1, . . . , t−1. Then, for period t we have

argmax
j∈W∗

t

{
p∗( j)

pt−1( j)

}
= argmax

j∈W∗
t

{
p∗( j)

µt−1 p∗( j)+ (1−µt−1)pt−2( j)

}

= argmax
j∈W∗

t

{
p∗( j)

pt−2( j)

}
= argmax

j∈W∗

{
p∗( j)
p0( j)

}
,

where the last equality holds due to the induction hypothesis. Thus, the
claim holds for all t ∈ T+.

Consequently, at step tq = max{1,dlog1+δ qe} we reach p∗. Thus, tmax ≤
tq. As we also showed that tmax ≥ tq, the claim is proven.

Using the steps in the proof above, we define the straight line algorithm
as follows. Given δ > 0 and price vectors p0 and p∗, let j′ ∈ W∗ be the cus-
tomer with q = p∗( j′)/p0( j′). Then, we have

µt =min
{

δpt−1( j′)
p∗( j′)− pt−1( j′)

,1
}

,

for all time steps t = 1, . . . , tq, where tq = max{1,dlog1+δ qe}. Let pt
k = (p∗

k −
pt−1

k )µt + pt−1
k be the price of item type k ∈ K in time period t = 1, . . . , tq −1.

Finally, in time period tq, we implement price vector p∗.

Theorem 6.2.2. The straight line algorithm finds a price implementation
from p0 to p∗ in O(nm+m logB) time.
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Proof. The price implementation generated by the straight line algorithm
satisfies Condition 6.1 as shown in the proof of Theorem 6.2.1 and Condi-
tion 6.2 by definition of the final step in the algorithm. Also, it uses tq
steps to implement the new price vector, which is minimal. Thus, the algo-
rithm solves Problem 6.1. Finding customer j′ ∈W∗ who maximizes q takes
O(nm) time, as we calculate the ratio between the contract prices for the
new and current price vectors, for every customer in the target market. For
all t = 1, . . . , tq−1, where tq =max{1,dlog1+δ qe}, we need to find µt which can
be done in O(m) time, as we need to calculate pt−1( j′). Then, implementing
the price vector pt takes O(m) time, which results in a total running time
of O(nm+ tqm). Integer tq is bounded from above by the logarithm of the
largest valuation, as q = max j∈W∗{p∗( j)/p0( j)} only depends on the contract
prices of the winners given price vector p∗. Consequently, the computation
time of the straight line algorithm is O(nm+m logB).

6.3 Maximize total revenue

Let tmax be the number of time periods the company wants to use to imple-
ment pricing strategy p∗, and let T = {0,1, . . . , tmax}. In Problem 6.2 we want
to find the strategy that maximizes the total revenue over tmax periods, that
is, Π=∑

t∈TΠ
t =∑

t∈T
∑

j∈W t pt( j). Notice that W t, t ∈ T, is a subset of J, not
just of the target market W∗.

In this section, we first address Problem 6.2 restricted to integer prices.
We present a dynamic programming algorithm that solves this problem in
pseudo-polynomial time if the number of item types m is constant. Then,
using a straightforward scaling argument, we transform the algorithm to a
(1+ε)-approximation algorithm for the same problem with continuous prices,
for any desired precision ε> 0. Finally, we present a local search algorithm.

6.3.1 Dynamic program

Given δ > 0 and integer price vectors p0 and p∗, we find the integer price
vectors to optimize the total revenue by a dynamic program that runs in
pseudo-polynomial time if the number of item types m is constant. This
dynamic program determines the longest path from source u to sink v in an
acyclic digraph D = (N, A). We construct digraph D consisting of tmax + 1
layers as follows. A node is of the form (t, pt), where t is the time period, or
layer, and pt is an integer price vector. Arcs are only created between two
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consecutive layers. In layer 0, there is only node u = (0, p0), and in layer
tmax there is only node v = (tmax, ptmax), where ptmax = p∗. There exists an arc
between node (t−1, pt−1) and node (t, pt) if

• t ∈ T+,
• pt−1 and pt are integer price vectors,
• pt( j)≤ (1+δ)pt−1( j) for all j ∈W∗.

The length of the arc is Πt. The longest u−v path corresponds to the pricing
strategy that yields maximum total revenue. Note that the length of this
path, plus Π0, is equal to the total revenue.

Theorem 6.3.1. The dynamic programming algorithm solves Problem 6.2
with integer price vectors in time O(t2

maxB2mnm).

Proof. Correctness of the dynamic program follows from the fact that we
enumerate over all possible integer price vectors. The number of nodes in
layer t is O(Bm), which means that in total we have O(tmaxBm) nodes in
the digraph. The number of arcs is O(t2

maxB2m). Determining the length of
an arc, Πt, takes O(nm) time. Finding the longest u− v path in a digraph
is linear in the number of arcs (Ahuja, Magnanti, and Orlin 1993). So the
claimed complexity follows.

In order to solve the problem with continuous price vectors, we allow
prices that are integer multipliers of ε, for some ε> 0. We derive the follow-
ing corollary.

Corollary 6.3.2. The dynamic programming algorithm is a (1+ε)-approxi-
mation algorithm running in O(t2

max(B/ε)2mnm) time, for any ε> 0.

6.3.2 Local search

In this section, we assume that price vector p∗ is the optimal price vector for
the given instance of the affine pricing problem. The idea of the local search
algorithm is to implement the optimal price vector in every time period such
that for every customer the contract price is at most equal to the minimum of
the valuation and (1+δ) times the contract price in the previous time period.
To find this optimal price vector, we execute the affine pricing algorithm
(Algorithm 5.1) in every time period t ∈ T+. A formal description is presented
in Algorithm 6.1, which is further clarified in Example 6.3.3.
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Algorithm 6.1: Local search algorithm
Given p0, p∗ and δ> 0. Let Π∗ =Π0;
foreach t ∈ T+ do

Let Πt = 0, pt = 0 and W t = J;
foreach set of m equalities out of the |W∗|+m equalities
pt( j)=min{b j, (1+δ)pt−1( j)}, j ∈W∗, and pt

k = 0, k ∈ K, such that
the coefficient matrix of these m equalities has rank m do

Determine price vector p that is characterized by these m
equalities;
if pk ≥ 0 for all k ∈ K then

Let p( j)= d j0 +d j1 p1 +·· ·+d jm pm be the price of the
contract requested by customer j ∈ J;
Let W = { j ∈ J : p( j)≤ b j} be the set of winners;
Let Π=∑

j∈W p( j) be the total revenue;
if Π>Πt then

Let Πt =Π, pt = p and W t =W ;
end

end
end
Π∗+=Πt;

end

Note that this algorithm assures that as soon as we are able to reach the
optimal price vector p∗, we will stay at this level as there is obviously no
better price vector in reach.

Example 6.3.3. Consider a setting with three customers and two item types,
and δ= 1. The valuation constraints p( j)≤ b j are p(1)= 16p1+32p2 ≤ 512=
b1, p(2) = 20p1 + 20p2 ≤ 400 = b2 and p(3) = 28p1 + 16p2 ≤ 448 = b3, dis-
played by the solid lines in Figure 6.1. Using the affine pricing algorithm,
we know that the optimal pricing is p∗ = (8,12). The current price vector is
p0 = (2,1). With this current price vector, customer 1 pays 64, customer 2 pays
60 and customer 3 pays 72. We create an arrangement of linear inequalities

16 p1
1 + 32 p1

2 ≤min{512,(1+δ)64}= 128
20 p1

1 + 20 p1
2 ≤min{400,(1+δ)60}= 120

28 p1
1 + 16 p1

2 ≤min{448,(1+δ)72}= 144
p1

1 ≥ 0
p1

2 ≥ 0.
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The first three constraints are represented by the dotted lines in the figure.
The optimal price vector is p1 = (4,2). Repeating this procedure, in which the
constraints are represented by the dashed lines, leads to p2 = (8,4). Then,
we get 16p2

1 +32p2
2 ≤ min{512,(1+δ)256} = 512, 20p2

1 +20p2
2 ≤ min{400,(1+

δ)240} = 400, and 28p2
1 +16p2

2 ≤ min{448,(1+δ)288} = 448. Thus, this gives
the arrangement defined by the valuation constraints. The optimal solution
p∗ is reachable, so the algorithm selects this price vector and keeps selecting
it for all periods t ≥ 3, t ∈ T.
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Figure 6.1: Graphical representation of an instance for m = 2.

Theorem 6.3.4. Local search algorithm 6.1 runs in O(tmax(n+ m)m(m3 +
nm)) time, which is in O(tmaxnm+1) if the number of item types m is constant.

Proof. In the affine pricing algorithm that is applied during the local search,
we consider

(|W∗|+m
m

) ∈ O((n+m)m) systems of m equalities each. In each of
these iterations, we solve a linear system in m variables and m constraints
to determine the price vector, which takes O(m3) time. Checking if all prices
are positive takes O(m) time and the computation of the contract prices,
winners, and the revenue takes O(nm) time. We perform these steps for all
t ∈ T+, so the claimed complexity follows.
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6.4 Computational results

We apply the straight line algorithm and the local search algorithm to imple-
ment the optimal pricing strategy for a telephone operator. The item types
are available in unlimited supply, as we are selling digital goods. We as-
sume customers to be single-minded, that is, each customer either accepts
the offer for the contract or she leaves to a competitor. In this practical ap-
plication, we determine the start-up price for a call, p1, the price per minute
for calling domestically, p2, the price per text message, p3, and the price per
minute for calling abroad, p4. The data we use contain detailed information
about the phone usage of many customers, thus we are able to determine
the contract requested by each customer. The price for the contract of cus-
tomer j ∈ J is defined as p( j) = d j1 p1 +d j2 p2 +d j3 p3 +d j4 p4, where d j1 is
the number of calls customer j wants to make, d j2 is the number of minutes
she calls within the country, d j3 is the number of text messages she sends,
and d j4 is the number of minutes she calls abroad. Notice that d j0 = 0. We
assume that customers are rational, and therefore select the cheapest offer
for their contract. Thus, a customer only accepts our offer for her contract if
we offer the cheapest price in the market. Therefore, we define the valuation
of a customer as the cheapest price for her contract at any competitor. We
apply the described algorithms to three different samples of the data set.
Every sample contains ten customers. The current price vector in euro is
p0 = (0.01,0.06,0.01,0.75) and δ= 0.05.

In this section we determine the minimum number of time periods, and
the number of periods used by the local search algorithm to implement the
optimal prices. Then, we set tmax = 40 and find the optimal pricing strategy.
This strategy is calculated by the integer program described below.

max
T∑

t=0

∑
j∈J

(
πt

j − xt
jb j

)

s.t. pt( j) ≤ (1+δ)pt−1( j) ∀ t ∈ T+, ∀ j ∈W∗

πt
j ≤ b j ∀ t ∈ T, ∀ j ∈ J

πt
j ≤ pt( j) ∀ t ∈ T, ∀ j ∈ J

pt( j) ≤ (1+δ)Bxt
j +b j ∀ t ∈ T, ∀ j ∈ J

ptmax
k = p∗

k ∀k ∈ K
pt

k ≥ 0 ∀ t ∈ T, ∀k ∈ K
πt

j ≥ 0 ∀ t ∈ T, ∀ j ∈ J
xt

j ∈ {0,1} ∀ t ∈ T, ∀ j ∈ J
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In an optimal solution at time t ∈ T, we know that variable πt
j = pt( j) if

j ∈W t and πt
j = b j otherwise. Binary variable xt

j is equal to 0 if j ∈W t and 1
otherwise.

Sample 1 In the first sample, the optimal price vector is p∗ = (0.175136,
0.170037, 0.087114, 0.766734). The minimum number of time steps needed
to implement p∗ starting from p0 is 31. The total revenue generated by the
straight line algorithm is 64230.64. The optimal revenue for implementing
p∗ in 31 steps is 70936.90, which means that the revenue of the straight
line algorithm is 90.55% of the optimal revenue. The local search algorithm
needs at least 34 steps to implement p∗. However, running this algorithm
for 31 steps generates a total revenue of 70968.47, which is even larger than
the optimal revenue when we do implement p∗.

For the second problem, we set tmax = 40. The optimal revenue is equal to
99020.27, and the optimal price vector is implemented from step 33 onwards.
The local search algorithm yields a revenue of 98898.67, which is 99.88%
of the optimal revenue. The straight line algorithm outputs a revenue of
92192.83, which is 93.11% of optimal. Both these algorithms instantly give
the optimal solution. Solving the integer program takes 2 seconds.

Sample 2 Price vector p∗ = (0.109423, 0.173030, 0.216197, 0.666756) is
optimal for the second sample. The minimum number of time steps needed
to implement p∗ starting from p0 is 29. The total revenue generated by the
straight line algorithm is 35339.58. The optimal revenue for implementing
p∗ in 29 steps is 37449.57, which means that the revenue of the straight
line algorithm is 94.37% of the optimal revenue. The local search algorithm
needs at least 32 steps to implement p∗. Running this algorithm for 29
steps generates a total revenue of 37244.64, which is 99.45% of the optimal
revenue when we do implement p∗.

For the second problem, we set tmax = 40. The optimal revenue is equal to
56229.31, and the optimal price vector is implemented from step 29 onwards.
The local search algorithm yields a revenue of 56004.24, which is 99.60%
of the optimal revenue. The straight line algorithm outputs a revenue of
54121.09, which is 96.25% of optimal. Both these algorithms instantly give
the optimal solution. Solving the integer program takes 338 seconds.

Sample 3 In the last sample, the optimal price vector is p∗ = (0.112089,
0.188362, 0.102176, 1.467432). The minimum number of time steps needed
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to implement p∗ starting from p0 is 33. The total revenue generated by the
straight line algorithm is 24293.19. The optimal revenue for implementing
p∗ in 33 steps is 27825.56, which means that the revenue of the straight line
algorithm is 87.31% of the optimal revenue. In this sample, the local search
algorithm also needs 33 steps to implement p∗, and generates a revenue of
27736.29, which is 99.68% of the optimal revenue.

For the second problem, we set tmax = 40. The optimal revenue is equal to
36833.93, and the optimal price vector is implemented from step 33 onwards.
The local search algorithm yields a revenue of 36744.66, which is 99.76%
of the optimal revenue. The straight line algorithm outputs a revenue of
33301.56, which is 90.41% of optimal. Both these algorithms instantly give
the optimal solution. Solving the integer program takes 3 seconds.

Sample 1 Sample 2 Sample 3
min tmax 31 29 33
MIP 70936.90 37449.57 27825.56
Straight 64230.64 90.55% 35339.58 94.37% 24293.19 87.31%
LS till tmax 70968.47 100.04% 37244.64 99.45% 27736.29 99.68%
tmax 40 40 40
MIP 99020.27 56229.31 36833.93
Straight 92192.83 93.11% 54121.09 96.25% 33301.56 90.41%
LS 98898.67 99.88% 56004.24 99.60% 36744.66 99.76%

Table 6.1: Summary of computational results where p0 = (0.01,0.06,0.01,0.75) and
δ= 0.05.

6.5 Conclusion

Regarding Problem 6.1, we can easily calculate the minimum tmax, and find
price vectors pt for all t ∈ T+ in polynomial time using the straight line algo-
rithm. The local search algorithm might need more steps to implement p∗,
but using this algorithm might be more profitable to the company than us-
ing the integer program, as there we have the requirement that ptmax should
be equal to p∗.

For Problem 6.2 restricted to integer prices, we present a dynamic pro-
gramming algorithm that runs in pseudo-polynomial time if the number
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of item types m is constant. We extend this result and derive a (1+ ε)-
approximation algorithm for the same problem with continuous prices, for
any desired precision ε > 0. The local search algorithm seems very useful
in practice, and yields close-to-optimal revenues according to our computa-
tional results.
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Chapter 7

Algorithms for Optimal Price
Regulations

Since summer 2007, mobile phone users in the European Union (EU) are
protected by a ceiling on the roaming tariff when calling or receiving a call
abroad. We analyze the effects of this price regulative policy, and compare it
to alternative implementations of price regulations. The problem is a three-
level program: The EU determines the price regulative policy, the telephone
operator sets profit maximizing prices, and customers choose to accept or
decline the operator’s offer. The first part of this chapter contains a polyno-
mial time algorithm to solve such a three-level program. The crucial idea
is to partition the polyhedron of feasible price regulative parameters into a
polynomial number of smaller polyhedra such that a certain primitive de-
cision problem can be written as a linear program on each of those. Then
the problem can be solved by a combination of enumeration and linear pro-
gramming. In Section 7.3, we analyze an instance of this problem more
extensively, namely the price regulation problem that the EU encounters.
Using customer data from a large telephone operator that resemble reality,
we compare different price regulative policies with respect to their social
welfare. On the basis of a specific social welfare function, we observe that
other price regulative policies or different ceilings can improve the total so-
cial welfare on this particular data set.1

1This chapter is based on Grigoriev, van Loon, and Uetz (2008a).
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7.1 Introduction

It is of major importance to the European Union (EU) that European com-
panies, governments and citizens play an important role at the realization
of a world-economy based on knowledge. The EU tries to stimulate the de-
velopment and use of new information and communication technology, and
to enlarge the level of competition of the EU compared to other markets, e.g.
the United States and Japan. An important element of the European pol-
icy is to assure that ICT-services are available and affordable for everyone.
This contains for example telephony, fax, internet and free emergency num-
bers. However, especially the prices for making and receiving calls abroad,
referred to as roaming, have been extremely high in the EU. A warning did
not lead to a decrease in prices, and therefore the European Commission
uses price regulation to force lower prices and more transparency in the mar-
ket (European Commission, Information Society, Media Directorate General
2007). Currently, the EU considers the same instrument for data roaming,
since the situation mirrors the one for voice roaming back in 2007. We an-
alyze the effects of the current price regulation on the social welfare, both
algorithmically and practically, and compare it to alternative regulations.

We regard a general model in which a government tries to maximize
social welfare through price regulation. This regulation should bound the
company (not necessarily a telephone operator) in setting the prices so as
to protect the customers, without harming the market. The company deter-
mines the price of item types. An item type represents a physical product or a
service, for example, a minute calling, internet connection, shipping, etc. We
use a model in which there is only one company that determines the pricing
strategy, under given and known market competition. Obviously, there ex-
ist markets in which multiple companies operate and need to share a set of
customers. However, for this research we make the simplifying assumption
that, under given market regulations, companies reach an optimal market
price, so we identify them with just one single company.

Similarly as in Chapter 5, we introduce the following notation. Let K =
{1, . . . ,m} be the set of distinct item types a given company wants to price.
Let pk ≥ 0 be the price of items of type k ∈ K . Let J = {1, . . . ,n} be a set of
single-minded customers. Every customer j ∈ J has positive demand d jk for
item type k ∈ K , which is the number of times customer j wants to purchase
item type k. For example, if k represents calling abroad for one minute then
d jk is the number of minutes j wants to call abroad. Or, if k is the start-up
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of a process then d jk is 1 if j prefers to start the process and 0 otherwise.
Every customer j requests a contract from the company, which is specified
by the total demand vector (d j1, . . . ,d jm). The valuation b j is the maximum
amount customer j ∈ J is willing to pay for her contract. Once the prices of
the item types are determined, the price of the contract, p( j), is defined by
the following affine function

p( j)= d j0 +d j1 p1 +·· ·+d jm pm , j ∈ J . (7.1)

Note that the price of a contract is personal, due to a potential ‘entrance
fee’ d j0, and because it depends on the demand (d j1, . . . ,d jm) of a single cus-
tomer. We assume that, through market research, we know the customers’
demands d jk for all item types k ∈ K and the valuation b j, for all customers
j ∈ J. Therefore, we are faced with a purely algorithmic problem in contrast
to mechanism design problems where the valuations are private information
to the customers.

The pricing regime as defined in (7.1) is referred to as affine pricing in
the economic literature, which is extensively discussed in Chapter 5. A so-
lution to the problem is a price p( j) for every customer j ∈ J, which is de-
termined through a vector of prices p = (p1, . . . , pm) as given in (7.1). Every
customer decides whether to accept this contract or not. Hereto, she sets
binary variable w j to 1 if she accepts, and 0 otherwise, in order to maxi-
mize her personal objective, denoted by f j(p) ·w j. In this chapter, we as-
sume a linear function f j(p), for example, think of f j(p) = b j − p( j). Let
w = (w1, . . . ,wn) denote the strategies of all customers. Customers that ac-
cept the contract are referred to as winners, and the set of winners is defined
by W = { j ∈ J : w j = 1}. We assume that all item types are available in unlim-
ited supply, which is true for digital items for example. Thus any solution
will be trivially envy-free.

7.1.1 Three-level program

The government protects the customers by means of regulative constraints.
Let R = {1, . . . , r̂} denote the set of constraints imposed by the government.
Throughout this chapter, we assume that the number of regulations r̂ is
constant. Every constraint r ∈ R is defined by gr(p,αr) ≤ 0, where α =
(α1, . . . ,αr̂) ∈Rr̂

+ is a vector of price regulative parameters determined by the
government. For example, a ceiling on price pk is implemented by letting
gk(p,αk) = pk −αk. We restrict gr(p,αr) to be a linear function in p and
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α. We introduce a bilevel program in which the company maximizes his
objective f C(p,w), for example revenue minus production costs, such that
price vector p = (p1, . . . , pm) satisfies the price regulative constraints. Every
customer maximizes her objective f j(p) ·w j. For further reading on bilevel
programs, we refer to Vicente and Calamai (1994) and Marcotte and Savard
(2005).

2LEVP : max
p

f C(p,w)

max
w j

f j(p) ·w j ∀ j ∈ J

s.t. gr(p,αr)≤ 0 ∀ r ∈ R

pk ≥ 0 ∀k ∈ K

w j ∈ {0,1} ∀ j ∈ J

In the above mathematical program, the vector of price regulative pa-
rameters α and constraints gr(p,αr), r ∈ R, are assumed to be given. We
propose a three-level program2, where, on top of the two levels given by
company and customers, the government maximizes social welfare. In this
three-level program, the government acts first, the company decides given
the government’s action, and the customers make their decision based on
the company’s prices. The government influences social welfare by mod-
ifying the price regulative parameters αr, r ∈ R. Also, instead of simply
forbidding the violation of price regulative constraints, we introduce taxes
τ = (τ1, . . . ,τr̂) ∈ [0,1]r̂. That is, if the company’s prices violate regulation
gr(p,αr) ≤ 0 then a penalty must be paid over the additional revenue re-
ceived by this violation. The actual penalty for violating regulation r is de-
noted by

f TAX
r (p,w,α,τ)= gr(p,αr)+ ·τr · ḡr(w),

where gr(p,αr)+ = max{0, gr(p,αr)} is the amount of violation, τr is the tax,
and function ḡr(w) needs to be specified for each type of price regulative
constraint r. For example, if the regulation is a ceiling on p1, that is,
gr(p,αr) = p1 −αr, it sounds reasonable to ask tax τr for each euro earned
by violating the ceiling. Then ḡr(w) would have to be defined as the total
demand for item type 1 of all winners,

∑
j∈J d j1w j.

Let us denote the total tax payment of the company by

f TAX(p,w,α,τ)=
∑
r∈R

f TAX
r (p,w,α,τ)=

∑
r∈R

gr(p,αr)+ ·τr · ḡr(w) . (7.2)

2This three-level program is loosely based on Courcoubetis and Weber (2003, Section
5.4.1), but there the model does not include price regulation.
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The mathematical program (3LEVP) below shows the general structure
of the three-level program that we consider.

3LEVP : max
α,τ

f G(p,w)

max
p

f C(p,w)− f TAX(p,w,α,τ)

max
w j

f j(p) ·w j ∀ j ∈ J

w j ∈ {0,1} ∀ j ∈ J

pk ≥ 0 ∀k ∈ K

0≤ τr ≤ 1 ∀ r ∈ R

αr ≥ 0 ∀ r ∈ R.

We impose the following conditions on the functions.

Condition 7.1. The government’s objective function f G(p,w) is a polynomi-
ally computable function.

Condition 7.2. For every customer j ∈ J, the function f j(p) is linear in p.

Condition 7.3. Given w, α and τ, function f C(p,w)− f TAX(p,w,α,τ) is pos-
itive, piecewise linear and monotone in p.

Condition 7.4. Price regulative constraint gr(p,αr) is linear in p and αr for
all r ∈ R.

The objective of the government could be to maximize the social welfare.
This objective is modeled by function f G(p,w) in the above three-level pro-
gram. If the above conditions are satisfied then we show that we can solve
this program in polynomial time, given that the number of item types m and
the number of regulative constraints r̂ are constant.

Note that the lower two levels of 3LEVP can be seen as the Lagrangian
of the bilevel program 2LEVP. Moreover, a strict price regulation as in the
bilevel model, that is, forbidding to violate the regulative constraints, can
still be implemented by letting τr be arbitrarily large for all r ∈ R. In this
case, τ is not strictly a tax, but just an indication that we forbid to violate
the price regulation constraints.

It is known, as shown by Demaine et al. (2006), that problem 2LEVP

with a non-constant number of item types m is hard to approximate within
a semi-logarithmic factor in the number of customers n. This means that
solving the three-level program 3LEVP has the same complexity already if
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the government’s objective is equal to the company’s objective. Similarly
as in Chapter 5, we make the assumption that the number of distinct item
types m is constant. These are reasonable assumptions particularly for the
applications that we aim at, since there the number of item types is very
small, for example, price per minute for a call received, a call placed, and
price per text message. For a small number of item types, the number of
regulations is also naturally assumed to be small.

For a constant number of item types m and regulative constraints r̂, we
present a polynomial time algorithm to solve three-level program 3LEVP,
under the four conditions described above.

In Section 7.3, we explicitly define all functions in three-level program
3LEVP to optimize the social welfare for the specific problem faced by the
European Union in regulating the roaming charges. We present polynomial
time algorithms to find the optimal social welfare for the current EU policy,
optimization of the tax level only, and optimization of the regulative param-
eters only. After the theoretical results and description of the algorithms, we
perform an extensive computational study in Section 7.4 to verify practical
feasibility of the approach and to evaluate the results of different scenar-
ios for implementing price regulations. Here, we use the actual price reg-
ulations set by the European Commission and investigate the EU policy in
terms of social welfare.

7.2 Parameter and tax level optimization

Consider three-level program 3LEVP for which the functions satisfy the con-
ditions stated before. In this section, we propose an algorithm to solve this
program.

Definition 7.2.1 (Vertex). A vertex v ∈V is defined by a price vector p(v) ∈Rm
+

that is characterized by m equalities out of the n+m equalities f j(p(v)) = 0,
j ∈ J, and p(v)

k = 0, k ∈ K, such that the coefficient matrix of these m equalities
has rank m.

Lemma 7.2.2. For given vectors w ∈ {0,1}n, α ∈Rr̂
+ and τ ∈ [0,1]r̂, the optimal

price vector p = (p1, . . . , pm) for the company can only be at a vertex as defined
in Definition 7.2.1.

Proof. The lemma follows from the fact that, for given vectors α and τ, the
company’s objective function is locally linear in the prices. Here, locally
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linear means linear on any minimal polyhedral subdivision as defined by
the n+ m+ r̂ equations f j(p) = 0, j ∈ J, pk = 0, k ∈ K , and gr(p,αr) = 0,
r ∈ R. Thus, any price vector p that is not a vertex either has an improving
direction since τr ≤ 1 for all r ∈ R and therefore is not optimal, or it lies on a
face of the arrangement of the m linear equations that is orthogonal to the
linear objective. Moreover, since τr ≤ 1 for all r ∈ R, moving in the improving
direction will never decrease the company’s profit, no matter what α is.

We propose an algorithm that solves problem 3LEVP by optimizing price
regulative parameters α and the taxes τ simultaneously. Thereto, we parti-
tion the polyhedron of the price regulative parameters α into a polynomial
number of smaller polyhedra, and solve a linear programming problem in
each of those. These linear programs are defined in such a way that we
can verify if a given price vector constitutes the company’s optimum prices.
This decision problem is in general non-linear. The trick here is to define
the partition such that this decision problem becomes linear inside each of
the small polyhedra. The optimum solution of a three-level mathematical
program is eventually obtained by enumeration over all polyhedra and ver-
tices, and evaluating the social welfare in each of them. We first describe
the algorithm formally, and then illustrate our approach in Example 7.2.4.

Consider the following decision problem.

Problem 7.1. Are there price regulative vectors α and τ such that vertex
v ∈V with price vector p(v) maximizes the objective function f C− f TAX for the
company?

The main idea for the solution to Problem 7.1 is as follows. Consider
some arbitrary vertex v ∈ V , we would like to write constraints expressing
the fact that vertex v maximizes the objective, namely for all vertices u ∈V ,

f C(p(v),w(v))− f TAX(p(v),w(v),α,τ)≥ f C(p(u),w(u))− f TAX(p(u),w(u),α,τ).

By definition, f TAX(p(v),w(v),α,τ) is nonlinear in the price regulative para-
meters. To linearize f TAX we introduce a subdivision of Rr̂

+ into polyhedra
A`, ` ∈ L. Thus, L is the set of polyhedra. For a given vertex v ∈ V and by
linearity of gr(p(v),αr), there is a unique value for αr, say av

r , where the sign
of gr(p(v),αr) changes from ≤ 0 to > 0. Doing this for all vertices v ∈ V and
all regulative constraints r ∈ R, we define a rectangular subdivision in Rr̂

+
for possible α’s by αr = av

r . On each such defined α-rectangle A`, we may
now compare the company’s objective in vertex v ∈ V to the objective in all
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other vertices u ∈ V \ v. Therefore, we split the tax function f TAX
r , r ∈ R,

into two parts for every vertex v ∈ V and polyhedron A` such that x(v,`)
r

incorporates all terms in the regulative constraint not multiplied with αr
and y(v,`)

r incorporates all terms multiplied with αr. More precisely, let α̌(`)
r

and α̂(`)
r be the lower and upper bound for αr in polyhedron A`. For every

vertex v ∈V , polyhedron A`, ` ∈ L, and regulation r ∈ R, we do the following.
If gr(p(v), α̂(`)

r )≤ 0 then let coefficients x(v,`)
r = y(v,`)

r = 0. Otherwise, that is, if
gr(p(v), α̂(`)

r )> 0 then

x(v,`)
r = gr(p(v),0) · ḡ(w(v)) and y(v,`)

r = ∂gr

∂αr
(p(v),αr) · ḡ(w(v)).

Note that these definition of x(v,`)
r and y(v,`)

r are correct because gr(p(v),α) is
linear in α. Consequently,

f TAX
r (p(v),w(v),α,τ)= gr(p(v),αr)+ ·τr · ḡr(w(v))= x(v,`)

r τr + y(v,`)
r αrτr, ∀ r ∈ R.

We can derive a solution to Problem 7.1 on A` by solving the following math-
ematical program for every vertex v ∈V .

f C(p(v),w(v))−
( ∑

r∈R
x(v,`)

r τr + y(v,`)
r αrτr

)

≥ f C(p(u),w(u))−
( ∑

r∈R
x(u,`)

r τr + y(u,`)
r αrτr

)
∀u ∈V

α̌(`)
r ≤αr ≤ α̂(`)

r ∀ r ∈ R

0≤ τr ≤ 1 ∀r ∈ R.

This quadratic program can be linearized by simple variable substitution,
where φr = αrτr for all r ∈ R. Therefore, for every vertex v ∈ V and polyhe-
dron A`, Problem 7.1 becomes a linear program (LP1) with variables τr and
φr for all r ∈ R.

LP1 :
∑

r∈R

(
x(v,`)

r − x(u,`)
r

)
τr +

(
y(v,`)

r − y(u,`)
r

)
φr

≤ f C(p(v),w(v))− f C(p(u),w(u)) ∀u ∈V

α̌(`)
r τr ≤φr ≤ α̂(`)

r τr ∀ r ∈ R

0≤ τr ≤ 1 ∀r ∈ R.

On any polyhedron A` this linear program is either infeasible, suggesting
that there are no price regulative parameters in A` that makes v the so-
lution that maximizes the company’s objective, or we obtain corresponding
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price regulative parameters in A`. Eventually, a straightforward algorithm
enumerating all vertices v ∈ V , checking feasible solutions for α’s in A`,
` ∈ L, and picking the one that achieves the maximal social welfare, pro-
vides an optimal solution to the three-level program. Since the number of
item types m is constant, we have a polynomial number of vertices. As the
number of regulative constraints r̂ is constant, we have only a polynomial
number of polyhedra in Rr̂

+. For every polyhedron and every vertex, we solve
linear program LP1, deriving the following theorem.

Theorem 7.2.3. Three-level program 3LEVP, satisfying the imposed condi-
tions, admits a polynomial time algorithm if the number of item types m and
the number of regulative constraints r̂ are constant.

Example 7.2.4. Consider the problem in which m = 2 with f j(p) = b j − p( j)
for all j ∈ J. Figure 7.1 displays a possible picture for this setting, where
solid lines (1), (2) and (3) represent the equalities f j(p)= 0 of three customers.

p1

(1)

(2)

(3)

p2

p
(1)

p
(2)

p
(3)

p
(4)

p
(5)

p
(6)

p
(7)

p
(8)

p
(9)p

(10)

Figure 7.1: Linear arrangement of the valuation and nonnegativity inequalities.

The vertices p(1), . . . , p(10) generated by m out of these equalities and
the equalities pk = 0, k ∈ K, are displayed by the bullets. We define three
price regulative constraints by g1(p,α1) = p1 −α1, g2(p,α2) = p2 −α2 and
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g3(p,α3)= p1−α3 p2, and let ḡr(w)= 1 for all r = 1,2,3. There is no economic
interpretation for ḡr(w) = 1, so this is purely for simplicity of the example.
These constraints are presented by the dotted lines in Figure 7.1, created by
solving gr(p,αr)= gr(p(v),αr)= 0 for all v ∈V and r ∈ R. That is, the vertical,
horizontal and diagonal lines represent regulative constraint g1, g2 and g3,
respectively, through the different vertices. There are 7 vertical regions, that
is, from p1 = 0 to p1 = p(1)

1 , from p1 = p(1)
1 to p1 = p(2)

1 , etcetera, all the way
up to p1 ≥ p(9)

1 . Similarly, there are 7 horizontal regions, and 4 diagonal
regions. Consequently, we need 7 ·7 ·4 = 196 polyhedra in the subdivision of
the regulative parameter space R3

+.
Figure 7.2 represents the subdivision of the regulative parameter space

R3
+ into polyhedra A`, `= 1, . . . ,196. On the axes, there are the values for the

α’s on the vertices.

α1

α2

α3

p
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1
/p

(2)

2

p
(3)

1
/p

(3)

2

p
(3)

2
p
(2)

2
p
(8)

2
p
(1)

2
p
(6)

2
p
(4)

2

p
(1)

1

p
(2)

1

p
(5)

1

p
(3)

1

p
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1

p
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1

Figure 7.2: Subdivision in R3
+.

As an example, consider the gray colored polyhedron A`. This polyhedron
is defined by

p(1)
1 = α̌(`)

1 ≤ α1 ≤ α̂(`)
1 = p(2)

1

p(3)
2 = α̌(`)

2 ≤ α2 ≤ α̂(`)
2 = p(2)

2

p(1)
1 /p(1)

2 = α̌(`)
3 ≤ α3 ≤ α̂(`)

3 = p(2)
1 /p(2)

2 .
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Now, let us consider vertex p(3). As g1(p(3), α̂(`)
1 ) > 0, we have x(3,`)

1 = p(3)
1

and y(3,`)
1 = −1. For the second regulation we have g2(p(3), α̂(`)

2 ) < 0, thus
x(3,`)

2 = y(3,`)
2 = 0. And finally, since g3(p(3), α̂(`)

3 ) > 0 we have x(3,`)
3 = p(3)

1 and
y(3,`)

1 =−p(3)
2 . We perform these steps for every polyhedron A`, ` ∈ L, and every

vertex v ∈ V. After straightforward computation of f C(p(u),w(u)), u ∈ V, we
solve linear program LP1 and select the vertex that yields the highest social
welfare among all vertices v ∈V for which LP1 is feasible.

In this section, we use price regulative constraints in which there is one
particular αr and τr for every constraint r ∈ R. However, the above described
algorithm can easily be adapted for other cases, that is, there might be mul-
tiple α parameters or tax levels τ in one constraint, or multiple constraints
can be subjected to the same tax level τ or contain the same α.

7.3 Optimization of European regulation

In this section, we explicitly define functions f G, f C, f TAX and f j, j ∈ J, to
address the problem faced by the European Union regarding the regulation
on roaming. First of all, the customers accept a contract if its price does
not exceed the valuation, that is, the objective of customer j ∈ J is defined
as (b j − p( j))w j. If p( j) ≤ b j this function is maximized by setting w j = 1
and thus accepting the contract, and 0 otherwise. Furthermore, the EU sets
ceilings on the prices. That is, R = K , and gk(p,αk) = pk −αk with αk ≥ 0
for all item types k ∈ K . The objective of the company is to maximize the
profit, defined as revenue minus costs. The revenue is the total payment by
all winning customers. As for the costs, let ck be the cost of providing one
unit of k to a customer. The company’s cost to serve customer j is denoted
by c( j)= d j1c1 +·· ·+d jmcm.

In the simplest setting, the government regulates the prices by forbid-
ding to violate the constraint pk ≤ αk for every item type k ∈ K . We model
this by the following bilevel program.

max
p

∑
j∈J

(p( j)− c( j))w j

max
w j

(b j − p( j))w j

s.t. 0≤ pk ≤αk ∀k ∈ K

w j ∈ {0,1} ∀ j ∈ J.
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To find the prices that will lead to the optimal profit for the company,
we use the affine pricing algorithm introduced in Chapter 5, in which we
incorporate the price regulative constraints, and the costs of the company.

Theorem 7.3.1 (Theorem 5.2.5). For given price regulative constraints pk ≤
αk which must not be violated, profit maximizing prices can be computed in
polynomial time, given that the number of distinct item types m is constant.

As already discussed in the introduction, we study whether there are
other price regulative strategies that might lead to an increase in social wel-
fare. Thus, let us first proceed with a definition of the social welfare func-
tion we believe is appropriate for modeling the roaming regulation problem.
According to utilitarians such as Jeremy Bentham3 and John Stuart Mill4,
society should aim to maximize the total utility of individuals, aiming for
“the greatest happiness for the greatest number”. Thus, the government
strives to set the price regulative parameters so as to maximize the social
welfare, defined as the sum of utilities. The utility of the company is the
total revenue minus costs. We assume that the company is risk-neutral, and
thus the marginal utility is equal for every extra euro earned. On the con-
trary, consumers have a concave utility function in general, which means
that they are assumed to be risk-averse. A concave utility function induces
that a gain in wealth conveys a smaller increase to utility than the reduction
in utility imparted by a loss in wealth of equal magnitude, that is, dimin-
ishing marginal utility. Another property of a concave utility function is
that a customer with a low valuation values one unit of money more than
a customer with a high valuation. In other words, the marginal utility of a
euro to a ‘poor’ customer is likely to exceed the marginal utility of a euro to a
‘rich’ customer (Shavel 2004, Chapter VII). Bernoulli (1738)5 first proposed a
utility function that is equal to the natural logarithm of wealth. A logarith-
mic function is monotonically increasing and the marginal utility function
is monotonically decreasing, which are the two basic mathematical proper-
ties that consumer utility functions have to satisfy, as described by Baz and
Chacko (2004). In the words of Savage (1972), “no other function has been

3Jeremy Bentham (1748-1832) was an English jurist, philosopher, and legal and social
reformer.

4John Stuart Mill (1806-1876) was a British philosopher, political economist, civil servant
and Member of Parliament.

5Daniel Bernoulli (1700-1782) was a Swiss mathematician. He is particularly remem-
bered for his applications of mathematics to mechanics, especially fluid mechanics, and for
his pioneering work in probability and statistics.
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suggested as a better prototype for Everyman’s utility function”. Based on
this discussion, we model the utility of customer j ∈ J as ln((b j−p( j))w j+1),
where the addition of 1 is solely to have a positive function. Conclusively,
the social welfare, and thus the government’s objective function, is defined
as

f G =
∑
j∈J

ln
(
(b j − p( j))w j +1

)+ (p( j)− c( j))w j.

In Section 7.3.1, we furthermore include a tax payment for violating the
price regulative constraints, similar as in Section 7.2. However, this does
not change the social welfare function, as the tax is paid by the company
to the government. Thus, the company’s utility is decreased by the same
amount as the government’s utility is increased, also known as transferable
utility. This assumption is justified when the company and the government
have a common currency that is valued equally by both.

7.3.1 Price regulation by tax

In this section, the price regulative constraints pk ≤ αk are not enforced by
law, but their violation is penalized via tax τ1. We define ḡk(w)=∑

j∈J d jkw j
for all item types k ∈ K . The tax function is defined as

f TAX
k (p,w,α,τ1)= gk(p,αk)+ ·τ1 · ḡk(w)=

∑
j∈J

d jk(pk −αk)+τ1w j, ∀k ∈ K .

Thus, given vector α, the government determines tax level τ1 to maximize
social welfare.

max
τ1

f G = ∑
j∈J

ln
(
(b j − p( j))w j +1

)+ (p( j)− c( j))w j

max
p

f C − f TAX = ∑
j∈J

(
p( j)− c( j)− ∑

k∈K
d jk(pk −αk)+τ1

)
w j

max
w j

f jw j = (b j − p( j))w j

s.t. pk ≥ 0 ∀k ∈ K

w j ∈ {0,1} ∀ j ∈ J

0≤ τ1 ≤ 1.

Notice that all functions in this three-level program satisfy the conditions
stated in the introduction of this chapter.

For any given αk, k ∈ K , consider the arrangement of linear inequalities
defined in Rm

+ by the valuation inequalities p( j) ≤ b j for every customer j ∈
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J, that is, f j(p) ≥ 0, nonnegativity inequalities pk ≥ 0 and price regulative
constraints pk ≤αk for every item type k ∈ K .

Definition 7.3.2 (Vertex). A vertex v ∈ V is defined by a price vector p(v) =
(p(v)

1 , . . . , p(v)
m ) ∈ Rm

+ that satisfies m equalities out of the n + 2m equalities
p(v)( j) = b j, j ∈ J, p(v)

k = αk, and p(v)
k = 0, k ∈ K, such that the coefficient

matrix of these m equalities has rank m.

To optimize the social welfare function we use nonlinear programming.
For further reading on nonlinear programming, we refer to Bazaraa, Sherali,
and Shetty (1993). For notational purposes, let I = {1, . . . ,n+2m} be the index
set of inequalities. For all i ∈ I, we do the following:

• If i = j ∈ J then dik = d jk for all k ∈ K ∪0 such that p(i) = p( j) and
bi = b j.

• If i−n = k ∈ K then dik = 1 and dik′ = 0 for all k′ ∈ (K ∪0)\ k such that
p(i)= pk, and bi = 0.

• If i−n−m = k ∈ K then dik = 1 and dik′ = 0 for all k′ ∈ (K ∪0)\ k such
that p(i)= pk, and bi =αk.

Furthermore, we define

S(p)=
∑
j∈W

ln(b j − p( j)+1)+ p( j)− c( j),

for some given price vector p ∈Rm
+ , where W = { j ∈ J : p( j)≤ b j}.

Consider the arrangement of linear inequalities p(i)≤ bi. This arrange-
ment consists of multiple polyhedra. A polyhedron P is defined by a sub-
set of inequalities Ui(p) ≥ 0, where Ui(p) = p(i) − bi for some i ∈ I and
Ui(p)= bi − p(i) for others.

Example 7.3.3. Consider an instance with n = 3 customers and m = 2 item
types, thus I = {1, . . . ,7}. The arrangement of linear inequalities p(i) ≤ bi
displayed in Figure 7.3. The gray polyhedron is defined by U2(p)= b2−p(2)≥
0, U3(p)= p(3)−b3 ≥ 0 and U6(p)= p(6)−b6 = p1 −α1 ≥ 0.

The Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient
for a solution to be optimal. The necessary conditions for inequality con-
strained problems were first published by Karush (1939), although they
became renowned after a seminal conference paper by Kuhn and Tucker

132



7.3. Optimization of European regulation

p(4)= p1 = 0= b4

p(5)= p2 = 0= b5

p(1)= b1

p(2)= b2

p(3)= b3

p(6)= p1 =α1 = b6

p(7)= p2 =α2 = b7

Figure 7.3: A polyhedron in the arrangement of linear inequalities.

(1951). Let p̄ = ( p̄1, . . . , p̄m) be a feasible solution and let I= = {i ∈ I : Ui( p̄)=
0}. If p̄ is a local optimum then for i ∈ I= unique scalars µi exist such that

∇S( p̄)+ ∑
i∈I=

µi∇Ui( p̄)= 0

µiUi( p̄)= 0 ∀i ∈ I=

µi ≥ 0 ∀i ∈ I=.

Using the above discussion, we now explicitly show that the optimal pric-
ing strategy is attained at a vertex.

Theorem 7.3.4. For any given αk ≥ 0, k ∈ K, there exists a revenue maximiz-
ing price vector p ∈Rm

+ corresponding to a vertex as in Definition 7.3.2.

Proof. Consider an arbitrary chosen polyhedron P of the arrangement of
linear inequalities. We show that for any such polyhedron, the optimal solu-
tion can only be attained at a vertex. First, we assume there exists a feasible
price vector p̄ = ( p̄1, . . . , p̄m) in the interior of polyhedron P . As p̄ is in the
interior, we know that I= =;. The set of winners is denoted by W ⊆ J. For
any price vector in the interior of polyhedron P , the set of winners W is the
same. The KKT conditions therefore hold if

∇S( p̄)= 0 ⇔
∑
j∈W

−d jk

b j − p̄( j)+1
+d jk = 0, ∀k ∈ K ,

where p̄( j)= d j0 +d j1 p̄1 + . . .+d jm p̄m. As p̄ is in the interior, we know that
b j > p̄( j) for all j ∈W . Thus ∇S( p̄)> 0, and p̄ is not a local optimum.

Now we check whether a price vector on the boundary of the polyhedron
can be a local optimum, where we exclude the vertices. We consider two
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cases as the inequality Ui(p) ≥ 0 describing the polyhedron can be either
Ui(p)= p(i)−bi or Ui(p)= bi − p(i), for some i ∈ I.

Case 1: For some i ∈ I, we assume that p̄(i) = bi and p̃(i) > bi for any
p̃ in the interior of polyhedron P . That is, inequality Ui(p) = p(i)− bi ≥ 0
partially describes the polyhedron. Obviously, I= = {i}. Then, vector p̄ is a
local optimum if ( p̄(i)−bi)µi = 0, µi ≥ 0 and

∑
j∈W

−d jk

b j − p̄( j)+1
+d jk +µidik = 0. (7.3)

If i = j ∈ W then for this particular customer we have b j = p( j). Note that
we may assume that |W \ I=| ≥ 1 as if the only winner is i = j then we can
choose any point on p( j)= b j and get revenue b j, so we will obtain the same
revenue at a vertex of the polyhedron that is partly defined by p( j)= b j. For
all j ∈ W \ I=, it holds that b j > p̄( j). Coefficient dik is equal to d jk ≥ 0 if
i = j ∈ J, or 1 if i−n = k ∈ K or i−n−m = k ∈ K . Also, we know that µi is
positive for all i ∈ I and k ∈ K . Thus, the left hand side of Equality (7.3) is
strictly positive, and therefore the equality cannot hold, which means that
vector p̄ is not a local optimum.

Case 2: For some i ∈ I, we assume that p̄(i) = bi and p̃(i) < bi for any
p̃ in the interior of polyhedron P . That is, inequality Ui(p) = bi − p(i) ≥
0 partially describes the polyhedron. Again, I= = {i}. By definition, there
exists some item type k′ ∈ K such that dik′ > 0 and therefore we have

p̄k′ = bi −di0

dik′
−

∑
k∈K\k′

dik

dik′
p̄k.

Now, we rewrite social welfare function S( p̄) by replacing p̄k′ such that the
function only contains prices p̄k, k ∈ K \k′. Consequently, the partial deriva-
tive of S( p̄) with respect to p̄k′ is equal to 0. Vector p̄ is a local optimum
if

∂S( p̄)
∂p̄k′

+µi
∂Ui( p̄)
∂p̄k′

= 0−µidik′ = 0, and (7.4)

∂S( p̄)
∂p̄k

+µi
∂Ui( p̄)
∂p̄k

= 0, ∀k ∈ K \ k′. (7.5)
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Equation (7.4) can only hold if µi = 0 as dik′ > 0 by definition. Equation (7.5)
can be written as

∑
j∈W


d jk′ dik

dik′
−d jk

b j − p̄( j)+1
−d jk′

dik

dik′
+d jk


−µidik = 0,

for all k ∈ K \ k′. Similarly as before, we may assume that |W \ I=| ≥ 1. As
b j > p̄( j) for all j ∈ W \ I=, the left hand side of the this latter equality is
strictly negative. Thus vector p̄ cannot be a local optimum. Concluding, a
local optimum can only exists at a vertex of the linear arrangement.

Notice that a vertex v ∈V is most preferable to the company if the profit
after tax at this vertex, f C(p(v),w(v))− f TAX(p(v),w(v),α,τ1), is at least as high
as at any other vertex. Let W (v) = { j ∈ J : w(v)

j = 1}. More precisely, for every
vertex u ∈V \ v, the tax level τ1 must be such that

∑
j∈W (v)

p(v)( j)− c( j)− ∑
k∈K

d jk(p(v)
k −αk)+τ1 ≥

∑
j∈W (u)

p(u)( j)− c( j)− ∑
k∈K

d jk(p(u)
k −αk)+τ1. (7.6)

Note that all terms except τ1 in the above inequality are known, as αk is
given and p(v)

k is defined for all k ∈ K and v ∈V . Let us denote

T(v) =
∑

j∈W (v)

∑
k∈K

d jk(p(v)
k −αk)+.

We rewrite inequality (7.6) and solve the following feasibility linear program
(LP2) for each vertex v ∈V .

LP2 : (T(v) −T(u))τ1 ≤
∑

j∈W (v)

(
p(v)( j)− c( j)

)− ∑
j∈W (u)

(
p(u)( j)− c( j)

) ∀u ∈V \ v

0≤ τ1 ≤ 1.

Let V∗ ⊆ V be the set of vertices for which the above linear program has
a feasible solution. Then, among all vertices in V∗ we select the vertex v∗

with the highest social welfare
∑

j∈W (v∗)

ln(b j − p(v∗)( j)+1)+ p(v∗)( j)− c( j).

The tax level τ1 is obtained as a solution to the linear program for this par-
ticular vertex v∗. So we have proved the following theorem.
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Theorem 7.3.5. For given price regulative constraints pk ≤αk, the tax level
τ1 ∈ [0,1] that maximizes the total social welfare, and the corresponding
profit maximizing prices can be computed in polynomial time, given that the
number of distinct item types m is constant.

7.3.2 Parameter optimization

So far we assumed given values of the price regulative parameters α1, . . . ,αm.
In this section we optimize these parameters under the regulation that the
company sets the price pk ≤ αk for all item types k ∈ K . Hereto, we use the
following model.

max
α

∑
j∈J

(
ln((b j − p( j))w j +1

)+ (p( j)− c( j))w j

max
p

∑
j∈J

(p( j)− c( j))w j

max
w j

(b j − p( j))w j ∀ j ∈ J

s.t. 0≤ pk ≤αk ∀k ∈ K

w j ∈ {0,1} ∀ j ∈ J

αk ≥ 0 ∀k ∈ K .

Since parameters αk, k ∈ K , are not given, let V denote the set of vertices
as defined in Definition 7.2.1. For every vertex v ∈ V , let αk = p(v)

k for all k ∈
K . Let U = {u ∈ V : pk ≤ αk, ∀k ∈ K}. Then, vertex u ∈U is most preferable
to the company if the profit

∑
j∈W (u)

p(u)( j)− c( j)≥
∑

j∈W (u′)
p(u′)( j)− c( j) ∀u′ ∈U \ u.

Among all vertices that are most preferable given set U , we select the one
with the highest social welfare and set the α-parameters accordingly.

Theorem 7.3.6. For the regulation that forbids the company to violate the
constraints, the parameter vector α that maximizes the total social welfare,
and the corresponding profit maximizing prices can be computed in polyno-
mial time, given that the number of distinct item types m is constant.

136



7.4. Computational results

7.4 Computational results

In the summer of 2007, the European Commission decided to implement
an EU-wide ceiling on the international roaming tariffs. In Table 7.1 we
present the prices as they were, are and will be implemented (European
Commission, Information Society, Media Directorate General 2007), where
the inter-operator tariff is the maximum amount an operator may charge
another operator for using the network. These are the costs for the operator
for providing roaming service to the customers to call abroad.

Summer Summer Summer
2007 2008 2009

Calls made abroad 0.5831 0.5474 0.5117
Calls received abroad 0.2856 0.2618 0.2261
Inter-operator tariff 0.3570 0.3332 0.3094

Table 7.1: Ceiling on prices in euro by the European Commission, including value
added tax.

The goal of this practical study is to analyze the effect of properly cho-
sen parameters on social welfare, and the advantage of using taxes instead
of forbidding to violate the price regulation. We use data from a telephone
operator that resemble reality. These data contain the phone usage of cus-
tomers with a prepaid subscription during one month, March 2007, thus this
data set was generated in a period before the introduction of the price regu-
lation. For each customer, the data contain the number of minutes and times
the mobile phone is used for different actions, for example, calling within the
home country or abroad, sending a text message, etc. We determine for every
customer which operator in the telephone market offers the cheapest possi-
ble total price for her complete contract. This price determines her valuation
b j. For this study, even though the data contains more information, we focus
on optimizing the prices for roaming only, namely calling and receiving a call
abroad. This is to say, we consider a problem in dimension 2, with prices p1
for calling abroad, and p2 for receiving a call abroad. We also impose the
constraint that the price for receiving a call should not exceed the price for
placing a call, that is, p1 ≥ p2. If customer j ∈ J requests to call d j1 minutes
from abroad and receives calls abroad for d j2 minutes, within a month, the
price customer j has to pay is p( j)= d1 j p1 +d2 j p2.
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7.4.1 Experiments

We apply the model and techniques from Section 7.3 to a data set contain-
ing 1366 customers. Also, we create one random sample out of this data
set containing 500 customers. In the application of the first algorithm, we
use the current price regulations imposed by the European Commission as
described in Table 7.1. The costs for calling from abroad (the inter-operator
tariff), c1, is also retrieved from the table, and the cost for the operator for
a customer to receive a call is half of this. First, we forbid the operator to
violate this price regulation by law (LAW), that is, a penalty τ1 =∞. Second,
we keep the price regulative parameters αk as they are, but now we find a
tax level τ1 ∈ [0,1] which maximizes social welfare (TAX). Note that there
can be a range of feasible tax levels achieving the maximal social welfare by
definition of LP2. This effect was also observed in our results. Third, we
compute the optimal social welfare by optimizing over the price regulative
parameters αk (OPT). The computational study is conducted on a computer
with an Intel Core2Duo CPU running at 1.86GHz and 2.0 GB of Ram.

Here, p1 denotes the price per minute in euro for calling from abroad,
and p2 denotes the price per minute in euro for receiving a call abroad. The
tables below give the complete results for all algorithms, that is,

• pricing strategy p1 and p2,
• regulative parameters α1, α2 and τ1,
• revenue R =∑

j∈W p( j),
• paid cost C =∑

j∈W c( j),
• amount subject to taxes T =∑

j∈W
∑

k∈K d jk(pk −αk)+,
• profit Π= R−C,
• total valuation B =∑

j∈W b j,
• total customer utility U =∑

j∈W ln(b j − p( j)+1), and
• social welfare S =U +Π,

where for the tax level we present the computed lower and upper bound that
lead to this result. Finally, we present the runtime in seconds. Tables 7.2, 7.3
and 7.4 display the results for the regulation as implemented in 2007, 2008
and 2009, respectively.
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Complete data set Sample
LAW TAX OPT LAW TAX OPT

p1 0.5830 0.7448 0.7448 p1 0.5830 1.2545 1.2309
p2 0.2856 0.5459 0.5459 p2 0.2856 0.4049 0.1946
α1 0.5831 0.5831 0.7448 α1 0.5831 0.5831 1.2324
α2 0.2856 0.2856 0.5492 α2 0.2856 0.2856 0.3020
τ1 ∞ 12.42% ∞ τ1 ∞ 4.35% ∞

∞ 61.79% ∞ ∞ 71.69% ∞
R 3866.09 4101.72 4101.72 R 758.02 969.83 981.00
C 2370.82 1917.16 1917.16 C 464.95 283.91 308.25
T 0.00 973.87 0.00 T 0.00 506.86 0.00
Π 1495.27 2184.56 2184.56 Π 293.07 685.92 672.74
B 8248.06 7422.67 7422.67 B 2096.46 1668.07 1726.61
U 1338.93 1131.21 1131.21 U 585.62 344.71 365.92
S 2834.20 3315.77 3315.77 S 878.69 1030.63 1038.66

sec 133 125 125 sec 1 1 1

Table 7.2: Results for regulation in 2007.

Complete data set Sample
LAW TAX OPT LAW TAX OPT

p1 0.5474 0.7448 0.7448 p1 0.5474 1.2545 1.2309
p2 0.2618 0.5459 0.5459 p2 0.2317 0.2397 0.1946
α1 0.5474 0.5474 0.7448 α1 0.5474 0.5474 1.2324
α2 0.2618 0.2618 0.5492 α2 0.2618 0.2618 0.3020
τ1 ∞ 3.78% ∞ τ1 ∞ 52.40% ∞

∞ 61.48% ∞ ∞ 72.51% ∞
R 3650.63 4101.72 4101.72 R 742.33 978.15 981.00
C 2228.86 1789.35 1789.35 C 458.79 277.30 287.70
T 0.00 1169.08 0.00 T 0.00 528.36 0.00
Π 1421.77 2312.37 2312.37 Π 283.54 700.85 693.29
B 8275.30 7422.67 7422.67 B 2136.18 1698.15 1726.61
U 1375.74 1131.21 1131.21 U 603.60 354.08 365.92
S 2797.51 3443.59 3443.59 S 887.15 1054.92 1059.21

sec 136 136 134 sec 2 1 1

Table 7.3: Results for regulation in 2008.
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Complete data set Sample
LAW TAX OPT LAW TAX OPT

p1 0.5117 0.7448 0.7448 p1 0.5117 1.2545 1.2309
p2 0.2261 0.5459 0.5459 p2 0.2213 0.2397 0.1946
α1 0.5117 0.5117 1.5004 α1 0.5117 0.5117 1.2324
α2 0.2261 0.2261 1.4854 α2 0.2261 0.2261 0.3020
τ1 ∞ 0.00% ∞ τ1 ∞ 33.67% ∞

∞ 61.13% ∞ ∞ 73.83% ∞
R 3567.25 4101.72 4101.72 R 714.42 978.15 981.00
C 2176.63 1661.54 1661.54 C 437.80 257.50 267.15
T 0.00 1371.31 0.00 T 0.00 557.35 0.00
Π 1390.62 2440.19 2440.19 Π 276.62 720.65 713.84
B 8456.72 7422.67 7422.67 B 2155.85 1698.15 1726.61
U 1418.53 1131.21 1131.21 U 618.39 354.08 365.92
S 2809.15 3571.40 3571.40 S 895.02 1074.73 1079.76

sec 133 133 306 sec 1 1 1

Table 7.4: Results for regulation in 2009.

We summarize our conclusions regarding the computational study from
these results as follows. Introducing a tax (TAX) instead of enforcing the
price regulation by law (LAW) leads to an increase in the social welfare. This
suggests that a more liberal price regulative policy might have the potential
to improve social welfare. The tax levels that are obtained using the algo-
rithm are not trivial. In extreme cases, not observed here though, a company
might be able to participate in the market where it would not be profitable
to do so if violation of price regulations was forbidden. Not surprisingly, the
social welfare is maximal when the α-parameters are optimized (OPT). In
the sample, the social welfare is strictly larger in the latter case. For the
complete data set, both algorithms yield the same social welfare. Conclud-
ing, it seems that the current EU practice does not yield the optimum, at
least not with the data set and experimental setup that we use here.

7.5 Conclusion

First, we think it is an interesting result in its own that the given three-level
program can indeed be solved in polynomial time by making use of linear
programming techniques. Even though techniques are comparably simple
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and crucially use the fact that the dimension m is constant, we believe it is
not straightforward to come up with a polynomial time algorithm.

Second, on the more economic side, our computational results suggest
that a more liberal price regulative policy, namely taxation instead of regu-
lation by law, might lead to an increase in social welfare. But of course, this
conclusion cannot be made hard as it depends very much on the choice of the
social welfare function.
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Voor ieder bedrijf is het bepalen van prijzen een zeer belangrijke, maar ook
gecompliceerde taak. Het doel is immers om zoveel mogelijk opbrengst te
genereren. Wanneer beslissingen over prijzen worden genomen zonder on-
derzoek en analyse kan een bedrijf een groot deel van de opbrengst mislopen.
Een te lage prijs kan voor verlies zorgen als geïnteresseerde consumenten
meer hadden willen betalen voor het product. Maar, het zorgt er wel voor
dat er meer consumenten worden aangetrokken die met een hogere prijs het
product misschien niet zouden aanschaffen. Een te hoge prijs levert meer op
per verkocht product, maar wellicht kopen sommige consumenten het pro-
duct niet omdat het simpelweg te duur is. Kortom, een goede marktkennis
en algoritmische analyse zijn van wezenlijk belang bij het bepalen van de
juiste prijzen om de opbrengst te maximaliseren.

Het prijsprobleem is een spel tussen het bedrijf en de consumenten.
Eerst bepaalt het bedrijf de prijzen voor de producten. Vervolgens, deze prij-
zen beschouwend, kiezen de consumenten welke producten ze willen kopen
en of ze bereid zijn om de gezette prijzen te betalen. Dit spel op twee niveaus,
waar het bedrijf de leider is en de consumenten de volgers zijn, is een in-
stantie van een Stackelberg spel.

Als leider van dit spel moet het bedrijf de eerste stap zetten. Als het
bedrijf al toegang heeft tot informatie over de voorkeuren van de consumen-
ten op het moment dat de prijzen bepaald moeten worden, is dat vanzelf-
sprekend een groot voordeel. Het verkrijgen van fundamentele kennis over
de doelgroep is tegenwoordig makkelijker dan ooit tevoren, voornamelijk
vanwege het gebruik van internet. Een bedrijf kan gegevens kopen over
bijna elk product, iedere industrie, trend en interesse, op een manier die
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het beste past bij de specifieke behoeften van het bedrijf. Vanwege dit grote
aanbod en het gemak om informatie te verspreiden, weten bedrijven wat
consumenten kopen, hoeveel ze uitgeven en hoe vaak een product wordt
gekocht. Die informatie kan veel geld waard zijn als ze ten volste wordt
gebruikt. Algoritmische prijsbepaling is de studie waarin het wiskundige
probleem wordt bekeken dat een bedrijf ondervindt tijdens het bepalen van
de prijzen met als doel de opbrengst te maximaliseren, gebruik makend van
alle informatie over de voorkeuren van de consumenten. Bovendien is het al-
goritmische prijsprobleem niet alleen van belang in een situatie waarin veel
informatie beschikbaar is. Ook wanneer de voorkeur van een consument
persoonlijke informatie is, en dus niet vooraf bepaald kan worden door het
bedrijf, is het zeer belangrijk om een goed algoritmisch begrip te hebben over
hoe de prijzen de opbrengst beïnvloeden.

In dit proefschrift worden twee algoritmische prijsproblemen bekeken,
namelijk het productsgewijze prijsprobleem en het affiene prijsprobleem.

In het productsgewijze prijsprobleem beschikt het bedrijf over een verza-
meling producten en voor elk individueel product moet de prijs worden be-
paald. Elke consument vraagt een of meerdere deelverzamelingen van pro-
ducten, die bundels worden genoemd. Elke bundel bevat hoogstens één
kopie van elk product. Voor iedere bundel die een consument vraagt, heeft
ze een waardebepaling. Dit is het maximale bedrag dat ze voor die speci-
fieke bundel wil betalen. De totale prijs van een bundel is gelijk aan de som
van de prijzen van alle producten in de bundel. Een consument koopt de
producten in een gekozen bundel alleen als de prijs niet hoger is dan haar
waardebepaling. Het doel van het bedrijf is om de opbrengst te maximali-
seren, waarbij de opbrengst gelijk is aan de totale som van prijzen van alle
verkochte producten.

Een specifieke instantie van het productsgewijze prijsprobleem is het
zogenaamde tolhuisjes probleem. Dit probleem vindt zijn oorsprong in het
bepalen van tolprijzen op delen van een snelwegennetwerk. Consumenten
reizen over verscheidene, opeenvolgende delen van het netwerk. De waarde-
bepaling wordt berekend als zijnde de kosten van het reizen over alter-
natieve wegen. Het doel van de eigenaar van het wegennetwerk is om de
opbrengst te maximaliseren. Meer specifiek is het snelweg probleem, waar
de tolprijzen worden bepaald op delen van één enkele snelweg.

Het algemene productsgewijze prijsprobleem en het snelweg probleem
worden beschreven in het eerste deel van dit proefschrift. In Hoofdstukken 2
en 3 worden deze problemen bekeken onder verschillende natuurlijke mono-
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toniciteitsrestricties. In Hoofdstuk 4 is het aanbod van producten beperkt.
Hierdoor wordt het bepalen van een allocatie van producten aan consumen-
ten een uitdaging.

In het affiene prijsprobleem bepaalt het bedrijf de prijs van verschei-
dene producttypes. Een producttype kan tastbaar of digitaal zijn, maar ook
een dienst, transport, het starten van een proces of het aangaan van een
abonnement. Elke consument vraagt een contract dat is gebaseerd op haar
persoonlijke wensen betreffende de beschikbare producttypes. Dit contract
mag meerdere kopieën van een type bevatten. Een consument accepteert het
contract als de prijs niet hoger is dan haar waardebepaling. Deze waarde-
bepaling kan worden gezien als het bedrag dat een consument voor het-
zelfde contract moet betalen bij een concurrerend bedrijf. Hierdoor koopt
de consument het contract als het het goedkoopste is in de markt. Mocht het
bedrijf in staat zijn om een andere waardebepaling te verkrijgen, kan deze
natuurlijk worden gebruikt. De prijs van een contract is gelijk aan een con-
stante prijs per producttype voor elke eenheid die een consument vraagt, en
mogelijk een vast bedrag voor het accepteren van het contract. Dit bedrag
is afhankelijk van de consument zelf. Anders gezegd, gegeven de prijzen
bepaald door het bedrijf, de prijs die een consument moet betalen voor haar
contract is een affiene functie van haar persoonlijke vraag.

Dit probleem wordt beschreven in Hoofdstuk 5. Vervolgens, in Hoofd-
stuk 6, wordt het probleem bekeken dat een bedrijf tegenkomt bij het im-
plementeren van nieuwe prijzen. Het is namelijk niet altijd mogelijk om dit
in maar één tijdstap te doen vanwege de bemoeienis van autoriteiten, de
strategie ten opzichte van concurrenten of de perceptie van consumenten.
Dit alles kan het bedrijf dwingen om de nieuwe prijzen geleidelijk te intro-
duceren. In Hoofdstuk 7 wordt de huidige prijsregulatie op roamingtarieven
bekeken. Roaming is het gebruik maken van een mobiele telefoon buiten de
geografische dekking van het thuisnetwerk. Deze regulatie is in de zomer
van 2007 ingesteld door de Europese Commissie. Het doel van de regula-
tie is om eerlijkere prijzen te verkrijgen en om de markt transparanter te
maken. Naast het bekijken van de huidige situatie, worden ook alternatieve
regulaties aangedragen en oplossingsmethoden beschreven.
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