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We present a numerically convenient procedure for computing Wald criteria
for nested hypotheses. Similar to Szroeter's (1983) generalized Wald
test, the suggested procedure does not require explicit derivation of the
restrictions implied by the null hypothesis and hence its use might elimi-
nate an intricate step in testing linear and nonlinear hypotheses.

We show that the traditional Wald test, Szroeter's (1983) generalized Wald
test and our procedure are asymptotically equivalent under Hg. A class of
nonlinear transformations of the restrictions for which the Wald statistic
is asymptotically invariant is discussed. Finally, we illustrate the use
of our procedure for testing the common factor restrictions in a dynamic
regression model.

1. INTRODUCTION

The Wald test (see Wald (1943)) is a very useful tool in empirical econo-
metrics. For computational convenience, a Wald test will be preferred to
a likelihood ratio test or a score test, when estimates of the
unrestricted parameters can be easily obtained. For instance, this is
frequently the case when a fairly general model is taken as the maintained
hypothesis throughout the modeiing process. Also, 2 Wald test can be used
when consistent but not fully efficient parameter estimates are available

whose asymptotic distribution is known (see e.g. Stroud (1971)).

In this paper, we present a procedure for the computation of the Wald cri-
teria when testing nested hypotheses. The suggested procedure does not
require explicit derivation of the restrictions implied by the null

hypothesis and hence its use might eliminate an intricate step in testing
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linear and nonlinear nested hypotheses. We show that the traditional wald
test, which can be computed if the restrictions are expressed in explicit
form, Szroeter's (1983) generalized Wald method and our procedure asymp-
totically yield the same value for the statistic under the null hypothe-
sis. For the three statistics, we discuss a general class of nonlinear
transformations of the restrictions, which yield the same value for the

Wald statistic in large samples.

The plan of the paper is as follows. In section 2, we present our proce-
dure for testing nested hypotheses. For the ease of reference, we briefly
describe Szroeter's (1983) generalized Wald test and we introduce some
basic notation. The asymptotic equivalence of the three statistics is
established in section 3. Then, a class of nonlinear transformations of
the restrictions for which the Wald statistic is invariant, is discussed.
In section 4, we consider the implications of a lack of global iden-
tification of the model under the null hypothesis for our procedure and
the generalized Wald method. Section 5 contains an example which
f1lustrates how the Wald statistic can be computed in a fairly straight-
forwafd way for common factor restrictions in a dynamic regression model.

Finally, in section 6 we briefly present some conclusions.

2. WALD CRITERIA FOR NESTED HYPOTHESES

Let us assume that we have a model defined in terms of n parameters forming
a vector 8, and that 8 is some consistent asymptotically normally distri-
buted estimate of 6g such that ¥ T(§ - B0), with T being the sample size
and 8g being the true value of 8, has a covariance matrix Qg which can be
consistently estimated by ﬁe. A nested null hypothesis Hp implies a set

of constraints on 8
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h(8) = 0, (2.1)

which form a vector of r independent, continuously differentiable func-
tions. Under the alternative hypothesis, the equality in (2.1) does not
hold true.

The Wald statistic for testing the set of restrictions is

W=Th(d) r‘z;l h(8), (2.2)
where
Qn = (Dgh) Qg (Dgh)'s (2.3)

with Dgh denoting the first derivative matrix of h with respect to 8!
which we evaluate at 8. In the sequel, we denote the first and second
partial derivatives of y with respect to a vector x' by Dyy, with y being

a scalar or a vector, and by D%xy respectively, when y is a scalar.

On the null hypothesis that all the constraints (2.1) are satisfied, W is
x2-distributed in large samples with r degrees of freedom, provided that
plim ﬁh is nonsingular and that Dgh is a continuous function of 8 at the

true parameter value 8p.

When the restrictions are given in the form (2.1), the Wald statistic is
easily computed. Derivation of the restrictions in the form (2.1),
however, can be tedious and intricate. We propose a method that simpli-
fies explicit formulation of the restrictions and we show how h(§) and Dgh
can be determined by implicitly using the restrictions. In empirical
work, the restrictions implied by Hp are usually given in the "mixed" form

(see e.g. Gouriéroux and Monfort (1987)) of
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f(B,8) = 0, (2.4)

where § is a vector of m parameters of the restricted model, f is a con-
tinuously differentiable mapping from an mtn dimensional space into an m+r
dimensional one. Under Hps Bp satisfies the impiicit restrictions (2.4)
and it does so for a unique value Bg of B (in the interior of the para-
meter space for B). The matrices Dgf and Dgf are assumed to have rank m
and m+r respectively (m+r < n).

From the system in (2.4), we now choose m equations, f1(B,8) = 0, such
that B can be solved explicitly as a function of 6, that is B = B(8).
When locally no solution exists to fl(B,é) = 0, our result still holds
true asymptotically if 8 converges in probability to 8g, because we assume
that f(B8,8g) = 0 has a solution. This solution s substituted in the r

remaining relations that we denote by f2(B,8) = 0 to give
h(8) = f2(B(8),0) = O. (2.5)

Next, we obtain an expression for the partial derivatives. For the sake
of simplicity, we define the following matrices Dgf = F, Dgf = Q, Dpfy =
Fj, Dgfy = Qj, 1 = 1,2, where the arguments B and 8 have been deleted.
When we evaluate these matrices at 8 and 8(6), we use the notation ?, 6,

?1 and 61 respectively. Assuming that fi has been chosen such that Fy is
continuous and nonsingular at (Bg,8p)}, we have as a result from the impli-
cit function theorem (see e.g. Rudin (1976)) that the solution of (2.5) is

continuous and differentiable in 6 with first derivative given by

DgB(8) = -FylQy. (2.6)

If the matrix Fy is nonsingular at (Bp,8p), there exists only one solution

to f1(B,B8) = 0 in some neighborhcod of (Bp,6p).
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Applying the chain-rule of differentiation to (2.5) and using expression
(2.6), the partia) derivatives of h become

Dgh = —FzFilQl + Q2 = HO, (2.7a)
with H = [—FzFi1 Ir]- As a result of the implicit function theorem, Dgh

is continuous in 6 at Bg.
When we evaluate (2.7a) at a consistent estimate of 8, we get (see e.g.

Billingsley (1968)) under Hg
Dgh = HQ + op(1), (2.7b)

with H and Q being evaluated at (Bg,Bp) and "op" denoting the order of
probability. Formulae (2.5) and (2.7) are suited for various kinds of
nested hypotheses. However, quite often the set of restrictions (2.4) has
the special form, f(B) - € = 0, so that expression (2.7a) can be
simpiified. For instance, the constraints implied by the common factor
structure (e.g. Sargan (1977),(1980a)), the polynomial distributed lags
(e.g. Almon (1965) and Sargan (1980b)) and the rational expectations
restrictions on the reduced form of a simultaneous equation model (e.g.
Hoffman and Schmidt (1981)) are of this special form. For this form of

the impiicit relations, Q = -In, so that we obtain

h(B) = f2(B) - 62 and Dgh

-H, (2.8)

with 6 being the appropriate subvector of 8.

A procedure for computing Wald tests for different kinds of nested
hypotheses consists in (1) chposing a set of m equations fy, solving them
for B for a given B and substituting B in f2 to obtain h(8) = f2(8(8).6),
(2) computing the matrices Fy and Q4, i = 1,2, to obtain ﬁgh in (2.7b),

and (3) calculating the value of W in (2.2). In the incidental case where
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Dgh in (2.7a) does not have full rank r, a consistent estimate of the
generalized inverse of Qp in (2.3) has to be substituted into (2.2).
The approach yields a convenient procedure to compute Wald criteria.
It also accommodates sequential testing when f2 s successively
extended, given the choice of fi and the parametrization 8, B.

The generalized Wald test proposed by Szroeter (1983) for the set of
restrictions (2.4) can be obtained as follows. Given 5, a consistent

estimator ﬁ is found by minimizing
£(8,8)'s £(8,8) (2.9)

with respect to B, where S is a postitive semi-definite symmetric matrix
such that F'SF has rank r. The requirement that rank F'SF = r is a
generalization of Szroeter (1983) since he chooses a matrix S with rank
msr. Notice that the estimate which minimizes (2.9) is the asymptotic
least squares estimate (see Gouriéroux et al. (1985) and Kodde, Palm and
pPfann (1987)). Applying the implicit function theorem to the first order
conditions for a minimum, F'Sf(B,é) = 0, we get

B - Bo = PQ(8- 8g) + op(T™), (2.10)

With P = -(F'S F)-1 F'S. The mean value theorem applied for f at the true
parameters yields

~a

[I + FPIQ(B - 8p),
[I + FPIQ(8 - 80) + op(T74), (2.11)
where a tilde "~" denotes evaluation at a suitable point between

(8(8),8)and (Bg,00)-

(8,0)

The generalized Wald test is now given by

Wg = T f(B,8) ' f(8,8), (2.12)
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where 0 denotes the matrix Q = (I+FP)Q Qg Q' (I+FP)' evaluated at (B(8),8).
As a result of the continuity of the derivatives of f and of Slutsky's

theorem, fi is 0g(1), and (2.12) can be expressed as
Wg = T £(8,8)'-f(8.8) + op(1)- (2.13)

Some comments on the implementation of Szroeter's (1983) procedure are in
order.

When S = [Q fig §']-1, the asymptotic covariance matrix of f(f,8) in

(2.11) 1is

[Q Rg Q' - F{F'(Q Rg Q")-IF}~1F'1], (2.14)

and S is a g-inverse of this covariance matrix evaluated at (ﬁ,é), 50 that

the generalized Wald test (2.12) becomes
Wg = T £(8.8)'[Q 8 Q'2-17(B.8) = T £(,8)'s #(5,6). (2.15)

wg is Szroeter's objective function (2.9) evaluated at the minimum for B
and multiplied by T. Expression {2.15) gives an alternative way of com-~
puting Wald criteria. Notice, however, that Q may depend on B so that a

consistent estimate of B 1s required for obtaining S in (2.15).

To summarize the practical 1implications, Szroeter's procedure requires
computing the global minimum of (2.9), whereas our procedure requires
obtaining the solutions of fl(B,é) = 0 and checking whether they satisfy
fz(B,ﬁ) = 0. Of course our procedure stops as soon as Hp is not rejected
for a given solution. Notice that solving fl(B,é) = 0 corresponds to

minimizing (2.9) for diagonal S with a one on the diagonal when the

corresponding equation of f is {ncluded in f1 and zero otherwise.



176

3. ASYMPTOTIC EQUIVALENCE RELATIONSHIPS

In this section, we investigate whether the value of the Wald statistic is
affected by choosing alternative formulations for the constraints. We
give a general class of nonlinear transformations of the restrictions for
which the value of the traditional and generalized Wald statistics is
asymptotically invariant under Hg. Furthermore, we consider the influence
of the choice of f1 and f2 on the Wald test. Finally, we show that our
procedure is asymptotically equivalent with the traditional and the

generalized Wald tests.

3.1 TRANSFORMING THE RESTRICTIONS

Consider the case where the set of restrictions h(8) = 0 is such that Qi
is nonsingular. As can be seen from (2.2) and (2.3), an alternative for-
mulation of the restrictions say g(8) = 0, for which there exists a non-
singutar matrix A such that Dgg = ADgh will asymptotically yield the same
value for the Wald statistic, both under Hp and under a sequence of local
alternative hypotheses. This result, which we call the equivalence con-
dition of the partial derivatives, directly follows from the lemma of
Holly and Monfort (1985), that we give in appendix I. That the identity
for the Wald statistic usually does not hold true when there exists no
matrix A that transforms Dgh into Dgg can be seen by showing that the plim

of the difference between the two Wald statistics is nonzero.

Given the set of restrictions h(8) = 0, we consider a transformation
g(h(8),6), with g(h(6),8) = 0 if and only if h(8) = 0, g having continuous
first and second derivatives, Dyg(y,8) being nonsingular and Dgg(y,6)
being zero at (0,8g). Then, h and g yield the same value for W in large

sampies. This result follows from the equivalence condition of the par-
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tial derivatives. The matrices of partial derivatives of h and g with

respect to 8 are given by

Dgh(8) and Dya(y,6)Dgy + Dga(y,8). (3.1)

But on Hp, as a result of Slutsky's theorem, we have

plim Dgg(y,8) = plim Dgg(0,8) = Dgg(0,8p) = O, (3.2)

where 8 is a consistent estimate of © and g = h(é). The second term of
the derivative of g with respect to 8 in (3.1) vanishes in large sampies
and we obtain the asymptotic invariance of the Wald statistic with respect

to transformations of the type g(h(8),8).

Next, we consider some equivalence properties of the generalized Wald
test. First, Szroeter (1983) shows that the asymptotic local power of his
test does not depend on the particular choice of S. The asymptotic effi-
ciency of , however, depends on S. In fact $ = [Q g '17} maximizes the
asymptotic efficiency of 5, which then is an optimal asymptotic Teast
squares estimate.

Second, we consider general transformations of f(8,8) = 0 which take the

form g(f(B,8),8,8), with
g(f(8,0),8,8) = 0 (3.3)

if and only if f(B,8) = 0. Furthermore, g has continuous first and second
derivatives, Dyg(y,B,8) 1is nonsinguiar, Dgg(y,B,6) = 0 and Dgg(y,B,8) = 0
at (0,Bp,0g). Again, we will show that in large samples f and g yield the
same value for the generalized Wald test. Without loss of generality, we
only consider the case where the optimal weighting matrix S is chosen.
When g is evaluated at the optimal asymptotic least squares estimator

8(5), the matrix of partial derivatives of g with respect to 8 is given by
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Dyg(y,B,0)[FDgB + Q1 + Dpa(y,B,8)DgB + Dgg(y,B,8). (3.4)

But on Hp, as a result of Slutsky's theorem and similar to the analysis in
(3.2), the second and third term of (3.4) converge to zero, when evaluated
at a consistent estimate 6. In addition, the difference between DgB based

on f and g respectively, vanishes in large samples (see also Gouriéroux et
al. (1985)).

Therefore,

~

[Dya(y,B,8)1-1Dga(f(£,6),8,8) = [I + FPIQ + op(1), (3.5)

and the lemma by Holly and Monfort (1985) establishes the asymptotic
invariance of the generalized Wald test for transformations of the type

mentioned above.

3.2 THE CHOICE OF fj

Next, we analyze the consequences af the partition of f into fj and fp
for the value of the Wald statistic. Without loss of generality, we only
consider two alternative choices for fi and f;. We partition the system
of constraints into four subsets, which consist of k, m-k, k and r-k rela-

tions respectively

f’;(s,e) =0, §=1,...4. (3.6)

To simplify the notation, we delete the arguments B and 8 and we denote

the subset of restrictions f? and f; by f:+J and 1ts partfal derivatives

with respect to B and 8 by Fj.j and Qj4+j respectively.

_ * N * . -
As our choice of f7 = 0, we use the sets f1+2 = 0 and f2+3 0 respective

1y to derive a solution for B. Using the result in (2.7a), the partial
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derivatives can be written as

-1
Dgh1 = [-F3+4 Fin Q142 + Q344] (3.7)
and
-1
Dghz = [-F1+4 Fpy s Q243 + Q1441, (3.8)

where the subscript 1 = 1,2 indicates the choice of fy.

The value of the Wald statistic will asymptotically not be affected by the
choice of f1, if there exists a nonsingular matrix A such that the partial
derivatives in (3.7) and (3.8) satisfy the equivalence condition, Dghy =

ADghy. A nonsingular matrix that gives the desired result is

Ok r-k ]

A = [-F1+4Bz Irek

(3.9)
rxr

where Op r_x is a zero-matrix of order k x (r-k) and Bp consists of the

last k columns of the matrix
(81 Bp] = [Fae31-1. (3.10)

After premultiplication of (3.7) by (3.9), we get an expression that is
identical with (3.8) (the details of the derivation are given in appendix
11). The choice of a subset of restrictions f; does not affect the value
of the Wald statistic, provided f1 is such that its solution g converges

to B and the matrix of partial derivatives is continuous at the true para-
meter values. Similar to our analysis in section 3.1, we can also show
that transformations of the implicit functions asymptotically have no

effect on the value of the Wald test in this case.
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3.3 EQUIVALENCE OF THE TRADITIONAL AND THE GENERALIZED WALD TESTS

We show that the traditional Wald test and the generalized Wald test yield

the same value in large samples. From (2.7), we obtain that

h(8) = HQ(8 - 8g) + op(T¥). (3.11)
The traditional Wald test and our procedure (2.2) can then be written as
W = T(B - 80)'Q'H'[HINGQ K I~ 1HQ(B - Bg) + 0p(1). (3.12)

Since HF = 0, from (2.11) one obtains that

HF(B,8) = HQ(8 - Bg) + op(T~%) =

h(8) + op(T~%), (3.13)

which establishes, using Holly and Monfort's lemma (see appendix I}, the
asymptotic equivalence of the generalized Wald test, the traditional Wald
test and our approach, as H has full rank so that rank(H) = rank(HQH').
When f(B,8) = 0 is linear in B and O, the three criteria are also equiva~

lent in finite samples.

4. MULTIPLE SOLUTIONS FOR B UNDER Hp

We consider the case where f(8,0) = 0, can have multiple solutions for
B.

First, the subset f1(B,8) = 0 we choose, possibly has muitiple solutions.
However, not every solution of f1(B,8) = 0 will also satisfy the remaining
jmplicit relations. As the sample size T increases, the Wald statistic
tends to infinity for those solutions for which f2(8,8) # 0.

Second, the complete system f(B,8) = 0 can admit several solutions for B.

We assume that the set of restrictions can be expressed in the form f(8)-8
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= 0 and that each solution for B is locally identified. Under these
assumptions, the various forms of the Wald test asymptotically yield the
same result for each solution B.

The traditional Wald test (2.2) is used to test the restrictions h{e) ='0.
These restrictions are expressed in terms of the parameters 8 only, which
are uniquely identified. Therefore, this statistic is not affected by the
presence of multiple solutions for the implicit parameters B. For an
example, we refer to section 5.

To test f(B)-8 = 0, the generalized Wald statistic equals

Wy = mgn T(f(B)vé)'Qél(f(B)-é). (4.1)

Let B* denote the value of B which minimizes expression (4.1) and let g*

be given by 8% = £(B*). Then we get

Wg = T(8*-8)'agl(e™-d). (4.2)

Now with multiple solutions to f(B) = 8*, we obtain the same value of Wg
for each solution.

In section 3.3, we have shown that the asymptotic equivalence of the three
Wald criteria hinges upon the fact that HF = 0. In the presence of
multiple solutions, this condition is satisfied too. To show this
directly, we use h(8) = 0 and f(B) = 8. By differentiating h{8) with

respect to B and applying the chain rule, we find
0 = Dgh(8) = Dgh(@)Dgf(B) = HF, (4.3)

which yields the desired result. The three statistics are asymptotically

equivalent in case of multiple solutions for B.
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It is interesting to note that the Lagrange muitipiier test, the likeli-
hood ratio test and the Wald test aiso asymptotically yield the same value
under Hg in case maximum likelihood estimates of 8 are used, even if 8 in

f(g)-8 = 0 is not glebally identified.

The practical implication of the existence of multiple solutions for
f1(B,8) = 0 is that one can only reject Hp if for each solution of f3 the
Wald statistic is significantly different from zero. In other words, once
we have a solution B to fl(B,é) = 0 for which the test is not significant,

we conciude that the null hypothesis is not rejected.

Therefore, one will preferably choose f; such that its solutions can be
easily obtained. For example, if there are at least m linear restrictions
in f, one may want to select fy as a 1inear system in B (one has to make
sure that it has a unique solution). The occurrence of multiple solutions

will be 11lustrated by an example of common factor restrictions in section

5.

5. AN EXAMPLE : COMMON FACTOR RESTRICTIONS

Common factor restrictions, which are widely used in regression models
with autocorrelated disturbances can easily be tested using the methods
presented in section 2. The main reason for which we discuss the common
factor approach here is to show how multiple solutions for the subset of
nonlinear restrictions fy arise and how alternative formulations for the
restrictions imply the same asymptotic values for the Wald statistic under

Hg.

Sargan (1980a) presents a method for testing common factor restrictions in

a dynamic single equation model. His method is based on a condition on
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the determinant of a given matrix. Sargan (1977) generalizes the method
to vector dynamic models. Mizon and Hendry (1980) give an application of

Sargan's (1980a) method. A single regression equation with common factors

can be written as

M=

¢(L)a(l)yt = o(L) Yi(L)xyt + et (5.1)

i=1

where yi is the endogenous variable, ey is a white noise error term with
zero mean and constant variance o2 and independent of the exogenous
variable xyt+, for all t and t' and 1 = 1,...,k. The polynomials ¢(L),
a(L) and vi(L), 1 = 1,...,k, have degree p, rg and ry respectively. The
roots of ¢(L)a(L) 1ie outside the unit circle. The medel (5.1) arises as
a special case of the dynamic regression model

K
Bg(L)yt = 1§1 B1(L)xqt + €t, (5.2)

when Bqg(L) = ¢(L)a(L) and 84(L) = ¢(L}vy(L), 1 = 1,...,ks The number of

k

of parameters in (5.1) and (5.2) ism=7p + 1§0 r{ + kand n = (1+k)p
k

+ 1§0 r{ + k respectively, so that the common factor structure in (5.1)

leads to pk restrictions on the parameters of (5.2). The restrictions are
of the form f(B)-8 = 0 and the computation of the Wald test is straight-

forward in this case.

For a given choice of fy, there might exist two or more solutions, not all
of them yielding the same asymptotic value for the Wald statistic under
Hp. However, all solutions to f yield the same value of W asymptotically.
A simple example given by Mizon and Hendry (1980) is illuminating in this

respect. They consider a special case of models (5.1) and (5.2) written
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as

yt = (¢+a)yg-1 - dayp-2 + Yoxt + (Y1-0YQ)Xt-1 - OViXt-2 + €t
with k =p = rg = ry = 1, ¢{L) = 1-¢L, a{l) = l-al,

Y1(L) = Yo + ViL, and yt = B1yt-1 + B2yt-2 + 63Xt + O4Xt-1 + O5Xt-2 +

€t.

When Hg is true, we have the following set of implicit relations between B

= (¢’G!YO’Y1)| and 8 = (91,--0,95)'

fi(,8)=0: ¢ + a - B = 0
-$a - 82 = 0
Yo~ 83 = 0
Y1-¢Yp - 64 = O
f2(8,8) = 0 - %Y1 - 65 = 0O . (5.3)

When e§ + 482 > 0, f1 = 0 has two real solutions. However, if Hg is true,

only one of these solutions aiso satisfies fp = 0, except when there
exists a functional relationship on B, namely ypa = -yi, in which case
both solutions satisfy fz = 0 and the model has two common factors. The
requirement that (1-91L-92L2) = 0 and (1-al)(1-¢L) = O have their roots
outside the unit circle does not resolve the problem of multiple solu-
tions. For instance, for 6' = (.5,.2,1,5,1), the characteristic roots of
the unrestricted model and the restricted model 1ie inside the unit

circle, whereas (5.3) still has two solutions.

The Wald statistic can be computed for both solutions using the formulae

in (2.8). The partial derivatives are then given by
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oeh = | Y19 + Yo$? SN Yob 2, -, o) (5.4
a-49 a-¢

Computation of the Wald test when (2.8) is evaluated in a solution of fq =
0 that also satisfies fz = 0 asymptotically yfelds the value of the test
statistic that ought to be used in testing. The value of the Wald sta-
tistic for the second solution of f; = 0 will tend to infinity as plim
h(é) = constant # 0 and plim ﬁh is a constant matrix.

In small samples, we may not be able to discriminate between these values,

but in large samples we can.

Mizon and Hendry (1980) derive the restrictions on 8 implied by (5.3)
explicitiy. They find

6185 - 6204

O5 + ¢64 + 6263 = 0 and ¢ =
5 #64 $°83 ¢ 8203 + 85

(5.5)
If the implicit relations (5.3) are substituted in (5.5), it is obvious
that the restriction on 0 implied by (5.5) must be valid under Hp.
However, the formulation of the restriction in (5.5) is not unique. After
some transformation of (5.3), we also find
’ -8283 - 65

85 + ¢6 863 =0and ¢ = ———— 5.6

5 + 684 + ¢483 ) 5165 7 63 (5.6)
as a restriction. According to Sargan (1980a), common factor restric-
tions emerge from conditions on the rank of a certain matrix y. For the

problem at hand,
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-1 81 82 0

rank (¥) = rank 03 84 65 0 = 3
0 -1 61 82
0 83 84 85

gives the restriction as can be verified by substituting (5.3).

The rank condition yields the determinantal condition
eg + 2070365 + 816405 + efe3e5 + e%eg - 6292 - 81620364 = O, (5.7)

which is equivalent to the relationship obtained from (5.5) or (5.6) after
eliminating ¢. This result shows the equivalence between the Mizon-Hendry
approach and the Sargan procedure. The equivalence with our procedure and
the generalized Wald test can be shown along the lines of section 3.3 as
(5.7) is equivalent to f(B(8),8) = 0 and for (5.3), Dgh = -H which is or-
thogonal to F.

If Y1 + ayg = 0, the matrix ¢ has rank 2 when Hp is true. Sequential
testing for the presence of twb common factor polynomials can be performed
along the lines proposed by Sargan (1980a) by first testing for rank (¥) =
3 and subsequently for rank (¥} = 2. Alternatively, in our method we

could extend fz in (5.3) by adding the restriction v{ + avg = 0.

6. SOME CONCLUDING REMARKS

In this paper, we presented a general procedure for computing Wald cri-
teria to test linear and nonlinear nested hypotheses. The procedure can
also be applied when the restrictions are in implicit form, as is often
the case in econometric modeling. Along with Szroeter's (1983) genera-

1ized Wald test, the proposed procedure avoids expressing the restrictions
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in explicit form, which can be intricate and time consuming.

We gave a class of nonlinear transformations of the restrictions to be
tested, for which the various Wald criteria are asymptotically finvariant.
We discussed the properties of the proposed procedure. In particular, we
showed the asymptotic equivalence between the proposed procedure, the tra-
ditional Wald test and the generalized Wald test. The problem of multiple
solutiens to a set of nonlinear constraints on the parameters under Hp has
been discussed. Some of the problems which may arise when testing nonlti-
near constraints have been illustrated using a dynamic regression model
with common factor restrictions. Finally, as mentioned in section 2, addi-
tional applications include the test of overidentifying restrictions and
the rational expectations constraints in a simuitaneous equations model
and polynomial distributed lags.

Also, B can be efficiently estimated by asymptotic nonlinear least squares
applied to the "asymptotic" medel f(B,8) = O provided a consistent esti-

mate of 8 is available.

APPENDIX 1

For the ease of reference, we give Jemma 2 obtained by Holly and Monfort

(1985).

Lemma : Let Y be a p-dimensional random vector such that Variance (V) = Q
is of rank r (< p) and EV = 4 € R(Q), the range of f.

Let Z = AV where A is a non-random matrix. Then, Z'(AQA')"Z = V'Q-V with
probabiiity one (for any choice of the generalized inverse (AQA')~ and Q~)
if, and only if, rank(ARA') = rank(R).

For the proof, see Holly and Monfort (1985).
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APPENDIX IT

In this appendix, we show that

AL-F344F71,0142 + Q3441 = [-F144F5150243 + Q144], (A1)
where A is defined in (3.9) and By is given in (3.10) and the formulae are
evaluated at (B,8).
The matrix multiplication in the 1.h.s. of (A.1) gives

k.n

x  Okmyy -1 x 0
[Fy4aB2F3 + (px0d Fraglige + T-FppgBaly + ()] (A-2)

From the definition (3.10} we have the following identity

BoFY = Iy - BFY,
AR m v,
which we substitute into the first term of (A.2) to yield, after some

algebraic transformations,

Iy Ok m-x
E*E-1 -F144B1 (Om-k Im-k) +
4 142
Okm 0
. Q142 - F144B20§ 4 | <" . (A.3)
el o
Expression (A.3) {s equivalent to
*
01 , Ok n
" FleaB1COmk n + Q%) - FrasBoQ3 4 | . (A.4)
Ork n Qq

Using (3.10) in (A.4), we find the desired result - FygFjls Qg3 +
Q+3 + Q144
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