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Abstract

In this paper, the existence of unemployment is partly explained as being the result of coordina-
tion failures. It is shown that as a result of self-fulfilling pessimistic expectations, even at Walrasian
prices, a continuum of equilibria results, among which an equilibrium with approximately no trade
and a Walrasian equilibrium. These coordination failures also arise at other price systems, but then
unemployment is the result of both a wrong price system and coordination failures. Some properties
of the set of equilibria are analyzed. Generically, there exists a continuum of non-indifferent equi-
librium allocations. Under a condition implied by gross substitutability, there exists a continuum of
equilibrium allocations in the neighborhood of a competitive allocation, when prices are Walrasian.
For a specialized economy, a dynamic illustration is offered. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

This paper is motivated by the recent renewal of interest in equilibria with price rigidities,
an interest stemming from motivations quite different from those which spurred the work on
that topic in the seventies, see the survey by Drazen (1980). The earlier interest reflected the
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premise that equilibria with quantity rationing are due to “wrong” prices, at which markets
cannot clear. The more recent interest originates with the work of Roberts (1987a,b, 1989a,b)
who established the existence of a continuum of equilibria with quantity rationing of supply
at competitive prices, for a class of economies characterized by homothetic preferences
(or household replication) and constant returns to scale. These equilibria do not reflect
price distortions, but rather coordination failures; they are sustained, but not “caused”, by
downward rigidity of (some) prices. In this new framework, the extent of rationing is not
linked to the size of price distortions and multiple equilibria are the rule.

The work of Roberts invites generalization in several directions:

1. relaxing the special assumptions on the primitives;
2. allowing for the possibility of non-competitive prices;
3. allowing for the combination of fixed and flexible prices;
4. explaining the persistence of downward (real) price rigidities;
5. understanding the nature and the sources of the coordination failures.

Several authors have contributed partial generalizations. In the framework of pure ex-
change economies, Herings (1992, 1996a,b, 1998) addresses (1) and (2), whereas Drèze
(1997), building upon Dehez and Drèze (1984) and inspired by Roberts and Herings ad-
dresses (1)–(3) in the framework of an economy with production. His result establishes
existence of equilibria with arbitrarily severe rationing, but not a continuum of equilibria.
Drèze (2001) addresses in addition (4) and (5) by arguing—outside the formal model—
that uncertainty and incomplete markets help explain both downward price rigidities for
selected commodities (labor and capacities) and the volatility of aggregate demand (invest-
ment) which sustains the self-fulfilling expectations.

The present paper considers a general equilibrium model with production and the com-
bination of fixed/flexible prices, thereby treating the general model specification. Our paper
extends the result of Drèze to existence of a continuum of underemployment equilibria. It
thus, addresses (1)–(3) in a general framework. The equilibrium concept is a generalization
of supply-constrained equilibrium as used by Kurz (1982), Van der Laan (1980, 1982), De-
hez and Drèze (1984), here labeled “underemployment equilibrium” (see Definition 2.1).
The existence of a continuum of underemployment equilibria can be explained intuitively as
follows. We fix the prices of a subset of commodities,LII in number. This freezesLII−1 rel-
ative prices. But we allow rationing of the supply of theseLII commodities. This leaves one
degree of freedom, corresponding to the overall level of rationing for theseLII commodities
and to the level of flexible prices relative to the LII fixed prices.

Our interpretation of underemployment equilibria is in line with the interpretation by
Hahn (1978) of non-Walrasian equilibria as the result of self-fulfilling beliefs. Drèze (2001)
interprets underemployment equilibria in temporal economies as resulting from a com-
bination of constraints inherited from the past or experienced currently, and constraints
expected to prevail in the future. We do not spell out below alternative interpretations and
refer systematically to “expectations of supply possibilities”. Suppose prices are Walrasian,
but neither firms nor households have the structural knowledge to verify this fact, and are
therefore, justified in forming expectations on supply possibilities. If firms expect that the
total demand for their output is low, then they will hire only a limited amount of labor. This
has a negative impact on income of workers and thereby indeed leads to a low demand for
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outputs. Workers, expecting to be (partially) unemployed, supply limited amounts of labor
and express low demands for commodities, thereby confirming the firms’ expectations. The
game-theoretic models developed by Roberts make clear that this reasoning is consistent
with rationality, and even with the absence of deviating firms that sell at a lower price.
Moreover, since coordination failures exist at non-Walrasian prices as well, but are then
compounded by the effects of distorted prices, lowering prices need not improve the situa-
tion. These considerations touch (4), even though much remains to be better understood.

We also deal with the issue of whether underemployment equilibria are genuinely distinct,
i.e. whether they lead to different utilities for the consumers. Moreover, in game theory and
macroeconomics, coordination failures have the connotation of Pareto ranked equilibria.
Pareto ranked equilibria are present in the seminal work on coordination failures of Bryant
(1983) and Cooper and John (1988), see Cooper (1999) for an excellent overview of this
literature, where a continuum of equilibria ranging from a no-trade equilibrium to a compet-
itive equilibrium is found. We give sufficient conditions in our general model specification
to obtain this property.

Finally, we interpret the static general equilibrium model as an intertemporal economy. To
do so, we specialize the general setting to an exchange economy in which consumers have
logarithmic preferences and are endowed only in one commodity. The intertemporal inter-
pretation of these specialized economies results in an intriguing inflation-unemployment
trade-off: when prices increase, unemployment also increases. When we posit that prices
adjust over time through a Walrasian non-tâtonnement process, we observe that this pro-
cess monotonically approaches Walrasian prices. Moreover, it does not require demand
rationing at any time and does not necessarily reduce the overall underemployment level in
the economy.

2. The Model

Form ∈ N,Rm+ is the non-negative orthant ofRm, andRm++ is the strictly positive orthant
of Rm. Vector inequalities will be denoted by ≤, <,�,≥, >, and�.

An economy is denoted by E = ((Xh,
h, eh)h∈H , (Y f , (θ fh)h∈H )f∈F , p̃II, α, β). There
are H households, indexed by h ∈ H , F firms, indexed by f ∈ F , and L commodities,
indexed by l ∈ L. 1 Every household h has a consumption set Xh, a preference relation

h on Xh, and an initial endowment eh ∈ RL. The Cartesian product of the sets Xh is
denoted by X̃, so X̃ = ∏

h∈HXh. Every firm f has a production possibility set Yf . The
set of total production possibilities,

∑
f∈F Y f , is denoted by Y . The Cartesian product of

the production possibility sets is denoted by Ỹ , so Ỹ = ∏f∈F Y f . Household h receives a

share θ fh of the profits of firm f .
The commodities are split into two a priori given groups, labeled I and II. Whenever

such a label is attached to a symbol, it refers to the group of commodities indicated by the
label. For instance, LI will denote the number and the set of group I commodities. Without
loss of generality, group I consists of the first LI commodities. The prices of commodities

1 The use of H , F , and L for the number and the set of households, firms and commodities, respectively, will
not create ambiguities.
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in group I are assumed to be completely flexible, even in the short run. The markets for
these commodities are organized in such a way that prices will immediately react to small
changes in supply or demand. Examples are auctions (as for fish) or organized (commodity
or stock) exchanges. The markets for these commodities are therefore, never cleared by
rationing in an equilibrium. The prices of commodities in group II on the contrary are
fixed in the short run. Like on many markets in the real world, small changes in supply or
demand are not immediately accompanied by a change in the price. Hence, there is scope
for rationing in the markets for these commodities, and agents in the economy may indeed
expect rationing to occur in these markets. For real world examples of this phenomenon,
we refer to the existence of persistent unemployment and to the presence of excess capacity
in many sectors.

The prices of the commodities in group II are given by p̃II ∈ RLII

++. We will normalize the
prices such that

∑
l∈LII p̃II

l = 1. Nothing precludes to take for p̃II the values corresponding
to a Walrasian equilibrium price system, if such a price system exists. If group I is empty,
then all prices are fixed in the short run. We will assume that group II is non-empty, since
otherwise we are back in the standard competitive framework.

Both for households and for firms, restrictions on supply seem to occur much more
frequently in western economies than restrictions on demand, as remarked by Van der
Laan (1980) and Kurz (1982). Therefore, in this paper attention will be restricted to cases
with rationing on the supply of households and firms, while the demand side will never be
rationed. In the case of excess supplies, one needs a distributional rule to determine the final
allocation that will result. Such a distributional rule is called a rationing system. In this paper
we will consider the case where each household and each firm has a fixed predetermined
market share, which allows for several interesting special cases like uniform or proportional
rationing systems. Our existence results hold a fortiori for more general rationing schemes
admitting fixed predetermined market shares as a special case.

The vector α ∈ RHLII

++ determines the market shares of the households (its components

are denoted by αhl ) and the vector β ∈ RFLII

++ (with components denoted by βfl ) those of the
firms. This rationing system implies that for every commodity l ∈ LII there exists rl ∈ R+
such that the supply possibilities for every household h of commodity l are given by αhl rl
and the supply possibilities for every firm f of commodity l are equal to βfl rl .

In Sections 4 and 5, we will extensively study the case of an economy with households
facing a proportional rationing system. In a proportional rationing system, αh = eh, h ∈
H , a so that for every h and l, supply possibilities are given by rlehl . In this case rl can be
interpreted as the proportion of good l endowment which is sellable on the market according
to the rationing system, and r is said to be a vector of rations. This mechanism is justified
when rationing is determined by the size of effective demand relative to total resources and
households are treated symmetrically.

The vectors α and β only determine the supply possibilities of households and firms.
Households and firms are completely free to demand a commodity and not to make use at
all of the supply possibilities. The rationing system is treated like a black box. In reality
these market shares are determined by all kind of factors that we will ignore in our model,
like the ability of suppliers to sell their products, the location of households and firms, or
the existing relationships between them.
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The expectations of available supply opportunities for a household h (firm f ) on the
various markets are described by a vector zh ∈ −RLII

+ (yf ∈ RLII

+ ), called the expected
opportunities for household h (firm f ). The vector of expected opportunities (z, y) =
(z1, . . . , zH , y1, . . . yF ) describes the constraints expected in the economy. In equilibrium
the expected opportunities are required to be rational. These expectations should therefore,
match the amounts allocated by the rationing system. For the case of the rationing system
with fixed predetermined market shares, the set of all expected opportunities that are relevant
is given by the LII-dimensional set ZY (fully determined by r for given α and β), where

ZY= {(z, y) ∈ −RHLII

+ × RFLII

+ | ∃ r ∈ RLII

+ ,∀h ∈ H,∀f ∈ F, zhl
=−αhl rl, yfl = β

f
l rl, l ∈ LII}.

Firms are assumed to be profit maximizers. For every firm f , given expected opportunities
yf ∈ RLII

+ , the set of feasible production plans, sf (yf ), is defined by

sf (yf ) = {yf ∈ Yf |yf,II ≤ yf }.

Similarly, for every firm f , given a price system p ∈ RL and expected opportunities
yf ∈ RLII

+ , the set of production plans maximizing profit, ηf (p, yf ), is defined by

ηf (p, yf ) = {ŷf ∈ sf (yf )|p · ŷf ≥ p · yf ,∀yf ∈ sf (yf )}.

If the set ηf (p, yf ) is non-empty, then the profit of firm f is defined byπf (p, yf ) = p ·yf ,

for yf ∈ ηf (p, yf ). If the set ηf (p, yf ) is non-empty for every firm f , then the wealth

of a household h, wh, is determined by the value of its initial endowments and the shares
in the profits of the firms, wh = p · eh +∑f∈F θ fhπf (p, yf ). The opportunity set of a

household h facing a price system p ∈ RL, having expected opportunities zh ∈ −RLII

+ , and
having wealth wh ≥ p · eh is denoted by γ h(p, zh,wh), so

γ h(p, zh,wh) = {xh ∈ Xh|p · xh ≤ wh and xh,II − eh,II ≥ zh},
and its demand set δh(p, zh,wh) is defined by

δh(p, zh,wh) = {xh ∈ γ h(p, zh,wh)|xh 
h xh,∀xh ∈ γ h(p, zh,wh)}.
The total excess demand in the economy, given p ∈ RL and expected opportunities (z, y) ∈
ZY, is defined by

ζ(p, z, y) =
∑
h∈H

δh


p, zh, p · eh +∑

f∈F
θ fhπf (p, yf )


−∑

h∈H
eh −

∑
f∈F

ηf (p, yf ).

We are now in a position to give a definition of an underemployment equilibrium.

Definition 2.1 (Underemployment equilibrium). An underemployment equilibrium of the
economy E = ((Xh,
h, eh)h∈H , (Y f , (θ fh)h∈H )f∈F , p̃II, α, β) is an element (p∗, x∗,
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y∗, z∗, y∗) ∈ RL × X̃ × Ỹ × ZY satisfying

1. for every household h ∈ H , x∗h ∈ δh
(
p∗, z∗h, p∗ · eh +∑f∈F θ fhp∗ · y∗f

)
,

2. for every firm f ∈ F , y∗f ∈ ηf (p∗, y∗f ),
3.
∑
h∈Hx∗h −

∑
h∈Heh −

∑
f∈F y∗f = 0,

4. p∗II = p̃II.

The set of all underemployment equilibria of an economy E is denoted by E. Notice that
the definition of an underemployment equilibrium implies that the expected opportunities
(z∗, y∗) belong to ZY. The expectations match the amounts determined by the rationing
system.

The notion of Walrasian equilibrium fits easily in our framework. This is important since
in many of our results we will be focussing on the possibility of coordination failures, and
therefore, non-Walrasian equilibria, at Walrasian prices.

Definition 2.2 (Walrasian equilibrium). An underemployment equilibrium (p∗, x∗, y∗,
z∗, y∗) ∈ RL×X̃×Ỹ×ZY of the economyE = ((Xh,
h, eh)h∈H , (Y f , (θ fh)h∈H )f∈F , p̃II,

α, β) is a Walrasian equilibrium if

1. for every household h ∈ H , z∗h < x∗h − eh,
2. for every firm f ∈ F , y∗f < y∗f .

In Example 4.2 and Section 5 we will focus on the subset of economies with no production,
LII = L, i.e. prices are fixed for all goods, and with proportional rationing. We denote this
subset of economies by A. These economies are particularly suited to further discuss our
existence results and to illustrate some properties of equilibria in our model when there is
coexistence of underemployment with rationing and Walrasian prices, i.e. p̃II is Walrasian.

Definition 2.1 applied to this class of economies can be easily stated relative to the
underemployment equilibrium vector (p∗, x∗, r∗) ∈ RL++ × RHL++ × RL+, rather than to
(p∗, x∗, z∗). For economies inA, we use the equilibrium ration r∗ rather than the rationing
scheme z∗, as it is more natural in this context. Of course, the two representations are totally
equivalent.

It should be noted that in this special case and when p∗ = p̃II is Walrasian, it makes little
sense to consider cases with rl > 1 for some l, since then households are not constrained
at all in their sales of good l. Indeed, we can state an even stronger property of equilibria in
this special case. Hence without loss of generality we can assume that r ∈ [0, 1]L.

For l ∈ L, we define

r̄l (E, p
∗) = max

1≤h≤H

(
1− xhl

ehl

)
,

where x = (x1, . . . , xH ) is the Walrasian allocation associated to the economy E with
prices p∗. The vector r̄(E, p∗) gives the ration needed to attain the Walrasian allocation.

Proposition 2.3. For any economy E ∈ A given a Walrasian equilibrium price p∗, all
rations r ≥ r̄(E, p∗) are non-binding equilibrium rations, i.e. the associated equilibrium
allocations are Walrasian.
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The proof is immediate from the definition of equilibrium.

3. Existence of a continuum of underemployment equilibria

3.1. Assumptions

In this section, we show the existence of a continuum of underemployment equilibria.
We will make use of the following assumptions, or subsets thereof, with respect to the
economy E .

Assumption 1. For every household h ∈ H , the consumption setXh is non-empty, closed,
convex, and Xh ⊆ RL+.

Assumption 2. For every household h ∈ H , the preference relation
h is complete, transi-
tive, continuous, convex, and for every xh ∈ Xh there exists x̂h ∈ Xh such that xh,II = x̂h,II
and xh ≺h x̂h, and there exists x̃h ∈ Xh such that xh,I = x̃h,I, xh,II < x̃h,II, and xh ≺h x̃h.

Assumption 3. For every household h ∈ H , there is xh ∈ Xh such that xh,I � eh,I and
xh,II = eh,II, and for all l′ ∈ LII there is xh ∈ Xh such that xh,I ≤ eh,I, xh

l′ < eh
l′ , and

xhl = ehl , ∀l ∈ LII \ {l′}.

Assumption 4. For every firm f ∈ F , the production possibility set Yf is closed, convex,
−RL+ ⊆ Yf , θ fh ≥ 0, ∀h ∈ H , and

∑
h∈Hθ fh = 1. Moreover, Y ∩ −Y ⊆ {0}.

Assumption 5. The price system and the rationing system satisfy p̃II ∈ RLII

++ with∑
l∈LII p̃II

l = 1, α ∈ RHLII

++ , and β ∈ RFLII

++ .

Assumption 6. For every household h ∈ H , the consumption setXh = RL+, the preference
relation 
h can be represented by a utility function uh, where uh is twice differentiable on
R
L++, ∂uh � 0, ∂2uh is negative definite on (∂uh)⊥, 2 and uh(eh) ≥ uh(xh), for every

xh ∈ RL+\RL++. For every firm f ∈ F , the production possibility set is described by a twice
continuously differentiable function gf : RL→ R, so Yf = {yf ∈ RL|gf (yf ) ≤ 0}, and
for any yf on the production frontier {yf ∈ Yf |gf (yf ) = 0} it holds that ∂2gf is positive
definite on (∂gf )⊥.

Assumption 7. The set of group I commodities is empty, and for every l ∈ L, there exists
h ∈ H such that eh /∈ δh(p̃II, 0−l , p̃II·eh)or there existsf ∈ F such that 0 /∈ ηf (p̃II, 0−l ). 3

2 “⊥” denotes the orthogonal complement.
3 By 0−l′ for some l′ ∈ L we denote expectations of no supply opportunities in the market for every commodity

inL different from l′, and no rationing in the market for commodity l′. In particular, zh = 0−l′ implies that zh
l
= 0,

∀l ∈ L \ {l′}, and zh
l′ = “−∞”, and yf = 0−l′ implies that yfl = 0, ∀l ∈ L \ {l′}, and yf

l′ = “+∞”.
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Assumption 8. The economy E has a well-defined aggregate excess demand function z :
R
L++ × ZY → R

L. If (p′,−z′, y′) ≤ (p,−z, y) with p′
l′ = pl′ , z′l′ = z

l′ , and y′
l′ = y

l′ ,
then zl′(p′, z′, y′) ≤ zl′(p, z, y).
The often made assumption in the fixed-price literature thatXh = RL+ or thatXh+RL+ ⊆ Xh
is replaced by the weaker Assumption 1. 4 Assumption 2 implies that there is non-satiation
with respect to the group I commodities and with respect to the group II commodities, a
weaker requirement than monotonicity of preferences, though stronger than non-satiation.

A preference relation 
h is said to be convex if xh, x̂h ∈ Xh and xh ≺h x̂h implies
xh ≺h λxh + (1− λ)x̂h, ∀λ ∈ [0, 1).

The somewhat clumsy statement of Assumptions 2 and 3 guarantees that for the case
LII = 0 we make the same assumptions as Debreu (1959). For the case LII ≥ 1, our
assumptions coincide with those of Debreu on the first LI commodities.

Assumption 6, which will only be needed for part of the results, states the standard
differentiability requirements on the primitive concepts, see for instance Mas-Colell (1985).

Assumption 7, which is also only needed for part of the results, is satisfied if house-
holds and firms are fully rationed in all markets, except the market for commodity l′, and
households receive no profit income, yet at least one household or firm prefers supply-
ing commodity l′ over remaining inactive. Requiring this only at Walrasian prices would
considerably weaken the assumption, since Walrasian prices are already balanced in some
sense. Moreover, we only need the assumption in the case households or firms expect to
be fully restricted in the supply of all other commodities, where supplying the commodity
under consideration is the only way to achieve a positive income.

In addition to these primitive assumptions about individual agents, we shall need for our
strongest result (Theorem 3.1(3)) an assumption akin to gross substitution. The assumption
used in our proof of that result is a weaker form of the more intuitive Assumption 8. In
the case of exchange economies, Assumption 8 could be stated for individual demands and
would be preserved under aggregation. For this case, Movshovich (1994) gives assumptions
on primitive concepts implying a stronger form of Assumption 8. The specialized economies
to be considered in Section 5 can also be shown to satisfy Assumption 8.

Assumption 8 states that the net demand for any one good does not increase when the
prices and/or supply possibilities of other commodities are decreased. It is not required that
the net demand for the other commodities increases. Actually, we only use that assumption
starting from a competitive equilibrium, and still in weaker form. But we are unable to
illustrate meaningfully what is gained by the weakening. For instance, the assumptions on
individual primitives required to guarantee gross substitution at a competitive equilibrium
imply gross substitution everywhere.

We could state Assumption 8 for correspondences, following Polterovich and Spivak
(1983), but we use it in conjunction with Assumption 6, hence for functions, and therefore,
state it for functions.

4 Examples where the usual assumptions are not satisfied but ours are, concern group II commodities for which
there is a clear physical upper bound on consumption in a given time interval, or commodities that can only be
consumed together with a sufficient amount of another commodity. For instance, consumption at a remote place
can only take place together with certain transportation services. Some labor services cannot be supplied without
sufficient education.
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3.2. The existence theorem

Consider two underemployment equilibria (p∗, x∗, y∗, z∗, y∗), (p̂∗, x̂∗, ŷ∗, ẑ∗, ŷ∗) of
an economy E . These two underemployment equilibria are said to be different if there
exists a household h such that x∗h �= x̂∗h. There is at least one household receiving a
different consumption bundle. The way in which the production of the consumption bundles
takes place or the prices against which trade takes place are of no concern for the notion
of different underemployment equilibria. A stronger criterion for the distinction between
two underemployment equilibria is given by the consideration of the utility tuples of the
households. Two underemployment equilibria (p∗, x∗, y∗, z∗, y∗) and (p̂∗, x̂∗, ŷ∗, ẑ∗, ŷ∗)
are said to be strongly different if there exists a household h such that x∗h �h x̂∗h or x̂∗h �h
x∗h. Notice that two strongly different underemployment equilibria are also different. Our
first aim is to provide conditions for the existence of a continuum of (strongly) different
underemployment equilibria.

By Debreu (1959), (1) and (2) p. 77, it follows that the set of attainable allocations
of the economy E , A = {(x, y) ∈ X̃ × Ỹ |∑h∈Hxh −

∑
h∈Heh −

∑
f∈F yf = 0}, is

compact. Let b > 0 be such that ‖(x, y)‖∞ < b, ∀(x, y) ∈ A. Since A is compact,
such a b exists, and since (e, 0) ∈ A it follows that b > maxh∈H,l∈Lehl . Observe that
all different underemployment equilibria are obtained when attention is restricted to ex-
pected opportunities (z, y) ∈ ZY satisfying, for every l ∈ LII, min{−zh

l
, y
f
l |h ∈ H, f ∈

F } ≤ b. The set of underemployment equilibria sustained by such expectations is denoted
by Ê.

The extent to which the market for a commodity l ∈ LII is employed in an underem-
ployment equilibrium (p∗, x∗, y∗, z∗, y∗) in Ê will be measured by the number υl ∈ [0, 1],
where

υl = 1

b
min{−z∗h

l
, y∗f
l
|h ∈ H, f ∈ F }.

If υl = 0, then the market for commodity l has collapsed completely and no supply is
expected to take place. If υl = 1, then no binding constraints on supply are expected in the
market for commodity l. We will need this measure of employment to distinguish between
different underemployment equilibria. 5

Theorem 3.1. Let E = ((Xh,
h, eh)h∈H , (Y f , (θ fh)h∈H )f∈F , p̃II, α, β) be an economy
with H ≥ 2.

1. Under Assumptions 1–5, the set of underemployment equilibria Ê owns a connected
component Êc which includes an underemployment equilibrium with maxl∈LIIυl = υ

for all υ ∈ (0, 1].

5 For the special case of E ∈ A, it is possible to take b = maxl∈L
∑
h∈H e

h
l . Note that rl ≤ 1 implies that υl ≤ 1,

all l. In fact, υl will be in general strictly less than one, since υl = (1/b)rlminh∈H ehl , all l. For economies in A
we will frequently use r to distinguish between different equilibria as it has a more straightforward interpretation.
Of course, rl and υl are just linear transformations of each other.
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2. Under Assumptions 1–6, LI ≥ 1, or LI = 0 and Assumption 7, generically 6 in initial
endowments, Ê owns a component Êc which contains a continuum of strongly different
underemployment equilibria.

3. Under Assumptions 1–6 and 8, if p̃II = p∗II with (p∗, x∗, y∗, z∗, y∗) a Walrasian equi-

librium, Ê owns a component Êc which ranges from an equilibrium with approximately
no trade in group II commodities at prices p ≤ p∗ to the competitive equilibrium
(p∗, x∗, y∗, z∗, y∗).

Proof. See the Appendix A. �

3.3. Interpretation of the theorem

Theorem 3.1(1) states that there is a connected set of underemployment equilibria ranging
from an underemployment equilibrium with arbitrarily low trade in the group II commodities
to an equilibrium without rationing in the market for at least one group II commodity. The
markets for the group I commodities are in equilibrium without rationing. This means
that there are many different expectations leading to an underemployment equilibrium,
ranging from the expectations that no household and no firm will supply a positive amount
of any group II commodity, to the expectations that at least in one market for group II
commodities free trade without rationing is possible. There exists an underemployment
equilibrium (p∗, x∗, y∗, z∗, y∗) ∈ Êc with x∗,II arbitrarily close to eII, and y∗,II, z∗, and
y∗ all arbitrarily close to zero, so with all υl arbitrarily close to zero. Furthermore, there

exists an underemployment equilibrium (p∗, x∗, y∗, z∗, y∗) ∈ Êc where for some l ∈ LII

it holds that no household and no firm faces binding expected opportunities in the market
for commodity l, so x∗hl − ehl > z∗hl , ∀h ∈ H , and y∗fl < y

∗f
l , ∀f ∈ F , and υl is equal to

one. These two “extreme” equilibria are contained in a connected set of underemployment
equilibria.

Figs. 1–3 illustrate some possibilities for the structure of the set of underemployment
equilibria when E ∈ A, prices are Walrasian, and L = 2. Since there are L instruments to
clear L markets, so there are L− 1 independent market clearing equations by Walras’ law,
one expects a 1-dimensional set of equilibria under suitable regularity conditions. When
r exceeds r(E, p∗), these regularity conditions are obviously violated, which explains the
rectangular area in Figs. 1–3. Fig. 1 illustrates the case where the continuum of underem-
ployment equilibria connects a no-trade equilibrium to a Walrasian equilibrium. It is not
obvious, however, that the set of underemployment equilibria looks like this. The situation
could also be the one of Fig. 2, where a continuum of underemployment equilibria exists
that is quite distinct from the Walrasian equilibrium. A priori, it cannot even be excluded
that the set of underemployment equilibria is as in Fig. 3. There are two different underem-
ployment equilibria only, the no-trade equilibrium and the Walrasian equilibrium. Indeed, it
follows easily from Walras’law that the continuum of equilibrium expectations, illustrated
in Fig. 3 by the straight vertical line, leads to a unique equilibrium allocation.

6 When LI = 0 and Assumption 7 hold the qualifier ‘generically’ can be omitted.
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We will show by means of Example 4.1 in Section 4 that it is possible that there is no
underemployment equilibrium in the set Ê with υl exactly equal to 0 for all l. However, we
notice that for E ∈ A, no trade equilibria (with υl = 0, all l) always exist when the price
system is strictly positive.

In principle, underemployment equilibria obtained in Theorem 3.1(1) may all correspond
to the same allocation. This is for instance the case if initial endowments are Pareto optimal.
Otherwise, it is well-known that Walrasian equilibria will involve non-zero trade in at
least one market. Therefore, Theorem 3.1(1) already implies existence of non-Walrasian
underemployment equilibria when the price system is Walrasian and initial endowments
are not Pareto optimal. However, the situation could still be the one of Fig. 3 with only
two underemployment equilibrium allocations. This case is dismal from an economic point
of view, because arbitrarily small perturbations away from competitive expectations would
then lead to a severe depression. The second example in Section 4 discusses such a case in
detail.

Theorem 3.1(2) makes clear that generically the continuum of underemployment equi-
libria that is shown to exist in Theorem 3.1(1) yields a continuum of strongly different
underemployment equilibria. Keeping everything fixed, except initial endowments, there
exists a subsetΩ of RHL++ such that the closure of RHL++ \Ω in RHL++ has Lebesgue measure
zero, and for every specification of initial endowments (e1, . . . , eH ) ∈ Ω , there is a contin-
uum of strongly different underemployment equilibria. Generically in initial endowments,
there is a continuum of different utilities that households can have in an underemployment
equilibrium, irrespective of the prices of group II commodities being compatible with com-
petitive values or not. If those prices have competitive values, then the Walrasian equilibrium
is one of the underemployment equilibria. There is a continuum of equilibria that involve
rationing. This follows immediately from the fact that Walrasian equilibrium is generically
locally unique. Generically in initial endowments, the set of underemployment equilibria
is therefore, as depicted in Fig. 1 or 2.

Under which circumstances is there a continuum of underemployment allocations near
a competitive allocation? For such a result to be true, it is necessary that p̃II be compatible
with a competitive equilibrium. Theorem 3.1(3) shows that the connected component of
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underemployment equilibria containing an equilibrium with approximately no trade
in group II commodities also contains a Walrasian equilibrium if Assumption 8 is
invoked, i.e. the structure of the set of underemployment equilibria is as in Fig. 1. From
this it follows by a simple argument that there is an underemployment equilibrium with
minl∈LIIυl equal to any υ ∈ (0, 1]. Values of υ close to one correspond to approximately
Walrasian equilibria. Theorem 3.1 is striking since it even holds in the circumstances
that are most favorable for competitive equilibrium: all prices of group II commodities
at competitive values and, in a world with time and uncertainty, all future commodities
in group I.

The intuition behind Theorem 3.1 is best explained by considering the case where group
II consists of commodities that we call labor services and group I of consumption goods.
Labor services are supplied by the households to the firms, which use them to produce the
consumption goods. If households expect that the total demand by firms for labor services is
low, then households expect to have low incomes, and express low demands for consumption
goods. Even though consumption goods belong to group I, so their markets clear, firms need
to hire few labor services to meet the depressed demand for consumption goods. The low
demand for labor services by firms thereby confirms the pessimistic expectations of the
households. Theorem 3.1 makes clear that there is a continuum of pessimistic expectations
that are sustained in equilibrium.

As Drèze (1997) argues, this reasoning can be given empirical underpinning. Theorem
3.1 shows that this reasoning can be verified formally. For the result to hold one needs
downwards rigidity of the prices of the group II commodities. Otherwise, excess supplies
of group II commodities could lead to lower prices of these commodities. However, Theorem
3.1 makes clear that also at those lower prices, there is again scope for coordination failures.
It may be difficult to get out of a situation with coordination failures. All the households
and firms together would have to revise their expectations simultaneously. An explicit
dynamic process of expectation formation on prices and supply opportunities is presented in
Section 5.

Following the arguments of Drèze (1997), Theorem 3.1 has even more important
economic consequences. For instance, it makes clear that the observation of excess
supply is not sufficient to infer the existence of price and wage distortions. Indeed,
Theorem 3.1(1) and 3.1(2) hold for any price system for the group II commodities, whereas
the prices of the group I commodities are completely flexible. When prices or wages
are not at competitive values, their distorting effects can even be magnified by coordi-
nation failures as expressed in Theorem 3.1(1). Because of the multiplicity of underem-
ployment equilibria, the modelling of dynamics becomes crucial, and history will play an
important role.

4. Two examples

In this section, we study two examples of our economies which will help illustrate
Theorem 3.1.

The first is an example of an economy, which displays no underemployment equilibrium
at which υl = 0 for all l ∈ LII.
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Example 4.1. 7 Consider the economy E = ((R2+),
1, (1, 1)), (Y f , 1), 1, α, β), where

1 is represented by the utility function u1(x1

1 , x
1
2) = x1

1x
1
2 , Y 1 = {y1 ∈ R2+|y1

2 ≤ 0,

y1
1 ≤

√
−y1

2}, LI = 1, and LII = 1. The rationing system (α, β) can be chosen arbitrarily
(satisfying Assumption 5). This example satisfies Assumptions 1–5. Therefore we know
by Theorem 3.1(1) that there exists a connected set of underemployment equilibria that
contains an underemployment equilibrium with maxl∈LIIυl = υ2 = υ, for all υ ∈ (0, 1].
Solving the firm’s profit maximization problem yields that for every p1 ∈ R+, for every
y1

2
∈ R+, η1((p1, 1), y1

2
) = {p1/2,−(p1)

2/4} and π1((p1, 1), y1
2
) = (p1)

2/4. Since, the
firm never wants to supply commodity 2, it is never affected by the supply opportunities
expected in this market.

Let, the household be constrained by x1
2 − 1 ≥ −υ. If it supplies υ to the firm, then

p1 = 2
√
υ is required for profit maximization. At that price, the unconstrained demand

of the household is x1 = (1 + (p1/2))2/(2p1), x2 = (1 + (p1/2))2/2. Hence, x2 − 1 <
−υ = 1− (p1)

2/4 iff p1 ≤ (2/3), or equivalently υ ≤ (1/9), in which case the constraint
is binding. There is a continuum of strongly different equilibria for υ ∈ (0, (1/9)] with
p1 = 2

√
υ; but there is no equilibrium at υ = 0, since this would imply p1 = 0 and excess

demand of good 1.

In Example 4.1, firms can transform labor into the consumption good at unboundedly
large rates for small amounts of labor. Firms keep supplying the consumption good, no
matter how low its price. This unrealistic feature drives the price of the consumption good
to zero if expectations on employment are very pessimistic, which excludes the existence
of an equilibrium at υ = 0. If an input vector subject to supply rationing is used to produce
an output not subject to supply rationing and desired by consumers, then technology and
tastes should be such that there exists a relative price for the output at which it is neither
supplied nor demanded, given the prices and expected opportunities for the other goods. It
is difficult to formulate assumptions on primitives that imply such a property, which should
be related to the existence of a finite rate of transformation of inputs into outputs.

The second example shows, when LI = 0, Theorem 3.1(2) does not hold without As-
sumption 7: we might not even have a continuum of strongly different rationing equilibria.

Example 4.2. 8 Consider an economy E ∈ A withH = 2 and L = 3. For each household,
the budget set at a Walrasian price system p, without the rationing constraints, forms a
triangle in R3++. The rationing constraint corresponds to a line on the triangular surface
of the budget set. Observe that the line associated with the constraint x1

1 − e1
1 ≥ −r1e1

1
is parallel to the axis of good 2. The lower r1, the farther away this line from the axis. A
similar situation occurs for the constraint on good 2, which is parallel to the axis of good
1. For good 3, the constraint line is parallel to the base of the triangle.

The Edgeworth box in this economy is a parallelepiped. The common budget set is a
plane (which contains the two triangular budget sets of each consumer). The intersection of

7 This example appears in Herings and Drèze (1998).
8 This example appears in Citanna et al. (1995).
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the box with this plane will in general have the shape of an irregular convex hexagon, with
parallel opposite sides, corresponding to the area common to the triangles. Observe that in
the Edgeworth box a given r cuts the budget set from opposite sides for the two households.
Graphically, it is therefore, convenient to use rhl to label the line corresponding to rl for
household h. At the Walrasian allocation, there is an indifference surface tangent to this
triangle. Any lower indifference surface cuts the triangle in a (deformed) circular fashion.

We now construct an example of non-existence of equilibrium for some r1. Choose a
Walrasian allocation x∗ (which is inside the hexagon) and an endowment e as in Fig. 4. At
this Walrasian equilibrium, household 1 is selling good 1 and buying goods 2 and 3, and vice
versa for household 2. Corresponding to x∗, there exist a vector r(E, p∗) of non-binding
constraints and related lines rhl . Note that this vector can be computed without completely
specifying the degree of convexity of uh. Choose r1 < r1(E, p∗), so x∗ is not feasible for
household 1. In Fig. 4, we are now on the line r1

1 . We are forcing household 1 to consume
more of good 1. Intuitively, if goods 1 and 2 are complement, this household may want to
consume a lot more of good 2 as well, say. This is represented by the shape of household
1’s indifference ellipsoids, H 1.

The optimal choice for household 1 is then shown at point A. We have to show that there
are r2 and r3 less than 1 that yield an equilibrium. Graphically, this means that the optimal
choice B for household 2 should coincide with A. Choose any r2

2 and r2
3 . If x∗2 is attainable

for household 2, B = x∗2 and trivially there will be no equilibrium. If A is not attainable
for 2, then again there is no equilibrium. If x∗ is not attainable for household 2, but A is,
we can find u2 that leads to indifference ellipsoids H 2. Again, B �= A, and no equilibrium
obtains. Small changes in eh (in the fiber given by p), uh and r1 do not alter the result, and
in this sense the example is robust.

Hence, the normalization maxlrl = υ cannot be substituted with rl = k. In a worst-case
scenario, the indifference surfaces of the two households leave only two possible equilibria

Fig. 4.
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(in the allocation space): x∗ and e. Observe that in this situation an equilibrium is obtained
for r1 = r3 = 0 and any r2 ∈ [0, 1], the 3-dimensional analogue of Fig. 3. This is because
if r3 = 0, household 2 does not care about the level of r2, and similarly if r1 = 0 household
1 does not care about r2 (r2 is not binding). Hence for any υ ∈ (0, 1], an equilibrium will
be given by r2 = υ, and r1 = r3 = 0. These are not strongly different underemployment
equilibria. It follows that the example violates Assumption 7.

Finally, it is apparent that the existence problems arise because of complementarities
across goods. If we assume some sort of gross substitutability, see Assumption 8, the
competitive equilibrium is unique and Theorem 3.1(3) implies that we can move from
Walrasian equilibria to arbitrarily severe underemployment equilibria without jumps in (the
expectations about) r .

5. A specialized economy

In this section, we illustrate further the bearing of Theorem 3.1 by considering a special,
and specialized class of economies in A, namely: a pure exchange economy, with the
number of goods L equal to the number of households H ; with the aggregate endowment
of any good h ∈ L accruing entirely to the similarly (re)numbered household h ∈ H = L;
and with household preferences represented by log-linear utilities. 9 , i.e. ehl = 0 whenever
h �= l; and for each h,

uh(xh) =
L∑
l=1

ahl logxhl , with ah ∈ SL =
{
a ∈ RL++|

L∑
l=1

al = 1

}
.

A specialized economy, fully defined by the parameters (ah, eh) ∈ SL×RL++, h = 1 . . . H ,
satisfies Assumptions 1–8.

5.1. Equilibrium in specialized economies

Given a price vector p ∈ RL++ and a vector of rations r ∈ [0, 1]L, each household h
solves

maxxh uh(xh)

s.t. p(xh − eh) ≤ 0
xhh ≥ (1− rh)ehh.

(1)

Let rh = 1 − ahh . If rh > rh, the solution to problem (1) is the same as that obtained if
rh = rh. It simplifies exposition w.l.o.g. to assume henceforth that rh ∈ [0, rh], h = 1 . . . H .

The solution to problem (1) is then given by

xhh = (1− rh)ehh plx
h
l =

ahl

1− ahh
phrhe

h
h := a′hl phrhehh := a′hl qh, l �= h, (2)

thereby defining qh = phrhehh.

9 The representation is extended to non-positive consumptions by defining uh(xh) = −∞ when xh0 = 0 for
some 0.
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Equality of effective demand and effective supply imposes, for each l ∈ L,

1

pl

∑
h�=l
a′hl qh = rlell =

1

pl
ql. (3)

Define the matrix A′ by a′ll = −1, a′lh = ah
′
l , h �= l; Eq. (3) then takes the simple form

A′q = 0.
It is readily verified that the matrix A′ has rank L− 1. 10 Hence Eq. (3) implies that q is

fully determined by the primitives (ah, eh)h=1...H , up to positive scalar multiplication.
Thus, the ratio (qh/ql) is a constant defined by the primitives. Similarly, the ratios

(phrh/plrl) are constants defined by the primitives.
The constraints thereby imposed on the products of relative prices and relative rations

come from the demand side; they simply reflect the first-order conditions for individual
demands, which happen to have clear-cut aggregate implications in the specialized economy.

The constraints place no restrictions on admissible prices, if rations are flexible. If all
prices were fixed, relative rations (rh/rl) would be uniquely defined, at under-employment
equilibria; but the absolute level of the rations would remain free to vary, between 0 and
a level such that rh = rh for some h; this is Theorem 3.1(1). Conversely, if the rations
were fixed (say via expectations, or via a supply mechanism), the relative prices would be
uniquely determined, but the overall price level would remain indeterminate (as well as
inconsequential). Intermediate situations are also possible, with some goods unconstrained
with flexible prices, some with predetermined prices and/or some with predetermined ra-
tions. The foregoing can be summarized in the following proposition.

Proposition 5.1. At under-employment equilibria in the specialized economy, the products
of relative pricesph/pl and relative rations rh/rl are uniquely determined by the primitives,
for every pair of commodities h, l ∈ H ; the absolute levels of either prices or rations rl ∈
[0, rl], l = 1, . . . , L are unrestricted; the absolute level of prices has no consequences for
the allocations; the absolute level of rations determines the extent of under-employment
of resources, and there exists a connected set of different equilibria containing a no-trade
equilibrium 11 and an equilibrium with at least one good unconstrained (Theorem 3.1(1)
and (2)).

5.2. A dynamic interpretation

It is interesting to consider an intertemporal reinterpetation of the above-defined special-
ized economy. Let there be T periods indexed t = 1, . . . , T . For transparency, we restrict at-
tention to specialized economies with time-independent parameters and non-storable goods.
More precisely, we impose aht = 1

T
ah, eht = eh, h = 1, . . . , H , t = 1, . . . , T . For each

t = 1, . . . , T , prices pt ∈ RL+ denote present-value prices as of period 1. For instance,
(ptl /p

1
1) defines the rate of exchange at time 1 between one unit of good l available at time t

and one unit of good 1 available at time 1. If prices were normalized by setting p1
1 = 1, that

10 See (Bellman, 1970).
11 Existence of the no-trade equilibrium is trivially verified in the specialised economy.
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rate of exchange would simply be ptl . Similarly, rtl ∈ [0, 1] defines the ration for good l at
time t ; rt = (. . . , rtl , . . . ) ∈ [0, 1]L defines the vector of rations at t , and r = (. . . , rt , . . . )
defines the intertemporal vector of rations.

Let p = (. . . , pt , . . . ) > 0 be given. We know from Theorem 3.1(1) that there exist
r = (. . . , rt , . . . ) and xh = (. . . , xht, . . . ), h = 1 . . . H , defining an underemployment
equilibrium. For each h, xh solves the problem

max
xh

1

T

T∑
t=1

L∑
l=1

ahl logxht
l s.t.

T∑
t=1

pt (xht − eh) ≤ 0

xht
h ≥ (1− rth)ehh, t = 1, . . . , T . (4)

Market clearing requires

H∑
h=1

xht
l = ell , l = 1, . . . , L, t = 1, . . . , T . (5)

Without loss of generality, we may restrict attention to solutions verifying

xht
h = (1− rth)ehh. (6)

Indeed, given any solution with xht
h > (1− r̂ th)ehh, one could lower r̂ th to rth = ((ehh−xht

h )/e
h
h)

verifying Eq. (6); all constraints in problem (4) would be unaffected. The solution to problem
(4) is then given by Eq. (6) and

ptl x
ht
l

ahl

1− ahh
1

T

T∑
τ=1

pτhr
τ
h e
h
h := a′hl qh, l �= h, (7)

thereby defining

qh =
1

T

T∑
t=1

pthr
t
he
h
h := 1

T

T∑
t=1

qth.

Eqs. (6) and (7) imply

ptl x
ht
l = pτl xhτl , for t, τ = 1, . . . , T , and for h, l = 1, . . . , H, h �= l. (8)

In turn, Eqs. (5) and (8) imply

pthr
t
h = pτhrτh , for h = 1, . . . , H, and for t, τ = 1, . . . , T . (9)

Thus, the nominal incomes, and market expenditures (good-by-good), of each agent are
constant across dates in present value terms. Again, this property reflects the first-order
conditions for individual demands.

As such, these conditions place no restriction on the evolution over time (the
dynamics) of either prices or rations—only on their products. There results, however,
an intriguing inflation-unemployment trade-off. For two consecutive periods, t and t + 1,
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we have

pt+1
l

ptl
= rtl

rt+1
l

. (10)

That is, intertemporal price increases are accompanied by equiproportionate decreases in
employment of resources.

At given prices, the continuum of under-employment equilibria in Theorem 3.1 takes the
form of alternative overall levels of rations r , with relative values pinned down by Eq. (10).

In order to generate specific dynamics, one needs to add specific assumptions on the
dynamics of either prices or rations. An example of such assumptions is provided by the
Walrasian price tâtonnement (here non-tâtonnement), whereby prices are adjusted over time
in the direction of notional (not effective) excess demands. That is, non-zero notional excess
demands exert pressure on prices.

Define

Dl(p
t , 1) =

∑
h�=l
xht
l (r

τ = 1, pτ = pt for all τ ≥ t)+ all ell .

Thus, Dl(pt , 1) is the notional demand for good l at t under stationary nominal price
expectations and with the assumption that agents face no supply restrictions and have
available the full purchasing power of their future endowments. Then xht

l is computed
as: 12

ptl x
ht
l =

1

T − t + 1
ahl

T∑
τ=t
pτhr

τ
h e
h
h = ahl pthehh, for all l, h (11)

and

ptlDl(p
t , 1) =

∑
h

ahl p
t
he
h
h.

A simple form of Walrasian price adjustment is

pt+1
l − ptl
ptl

= Dl(p
t , 1)− ell
ell

, l = 1, . . . , L. (12)

Over the finite horizon T the only relevant convergence concept is monotone convergence
towards p∗, where p∗ is such that Dh(p∗, 1) = ehh for all h, that is, p∗ is the Walrasian
price vector.

Proposition 5.2. In the specialized economy, process (12) converges monotonically towards
Walrasian prices p∗.

Proof. See the Appendix A. �

12 D0(p
t , 1) is uniquely defined in the specialized economy. Of course,D0(pt , 1) is not observable; our example

is hypothetical.
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Proposition 5.2 establishes that Walrasian non-tâtonnement tends to a Walrasian price,
even if it may not reach p∗ over the finite horizon T . At period T , the economy looks like
our static equilibrium, with appropriately adjusted endowments. Hence, the convergence
result suggests that underemployment equilibria at (almost) Walrasian prices are not just a
non-generic curiosity. Because of the structure of the model, no demand rationing is needed
along the adjustment path. With relative prices fully determined, so are relative rations.
Using Eqs. (9) and (12), the associated dynamics for rations are given by:

rt+1
l − rtl
rtl

= ell −Dl(pt , 1)

Dl(pt , 1)
(13)

Such a formula is introduced in Citanna et al. (1995) as a direct specification of expectations
dynamics, where the expectations bear on rations, and where the specification reflects a
supply mechanism based on uncertainty regarding market ability to absorb supplies above
a certain level, and on the assumption that unabsorbed supplies are wasted.

According to Eq. (13) and consistently with Eq. (10), excess notional supply at t triggers
more optimistic expectations about rations at t + 1. One explanation is that excess notional
supply at t leads sellers to expect lower prices, hence higher demand at t + 1. This is
precisely the direction suggested by Walrasian price adjustments.

If, for some t , prices are Walrasian, rations stabilize as per Eq. (13). Their level re-
mains arbitrary (or perhaps predetermined), because the overall level of rations throughout
the process remains arbitrary (as per Theorem 3.1). More precisely (Proposition 5.1), if
(p̂t , r̂ t )t=1,... ,T support an underemployment equilibrium, then (µp̂t , r̂ t ), µ ∈ R+ support
the same equilibrium; and (µp̂t , νr̂y), ν ∈ R+, ν such that νr̂t ≤ rt for all t , support a
different (ν �= 1) equilibrium with all quantities rescaled by the factor ν. A specific value
ν also corresponds to a specific initialization of the process.

In the temporal context, the quantities could always be rescaled unexpectedly from some
date t on, prices unchanged. But if the jump had been anticipated, it would have affected
consumption demand at dates τ = 1, . . . , t − 1, and either prices or quantities would have
been different. The possibility of state-dependent adjustments in ration levels at future dates
can of course be treated formally in a model of time and uncertainty (on an event tree).
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Appendix A. Proofs

A first step in the proof is to show that the production possibility correspondences and
budget correspondences are continuous.
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We compactify the consumption sets and the production possibility sets using the num-
ber b as defined in Section 3.2, so X̂h = {xh ∈ Xh|‖xh‖∞ ≤ b} and Ŷ f = {yf ∈
Yf |‖yf ‖∞ ≤ b}. It follows from a standard argument that there is no loss of generality
in using the compactified consumption and production sets when studying the existence of
underemployment equilibria. The feasible production plans, supply, budget, and demand
correspondences derived from X̂h and Ŷ h are denoted by ŝf , η̂f , γ̂ h, and δ̂h, respectively.
Let us define the set P of prices, expected opportunities, and wealths by

P = {(p, zh,wh) ∈ RL+ × −RL
II

+ × R|p · eh ≤ wh, and pI > 0 orpII · zh < 0}.

Lemma A.1. Let the economy E satisfy Assumptions 1–5. Then the production possibility
correspondence ŝf : RL

II

+ → RL of firm f is compact-valued, convex-valued and contin-
uous, and the budget correspondence γ̂ h : P → R

L of household h is compact-valued,
convex-valued, and continuous.

Proof. Compact-valuedness and convex-valuedness of ŝf are trivial. First, we show the
upper hemi-continuity of the production possibility correspondence. Let some yf ∈ RLII

+
be given, let (yf

n
)n∈N be a sequence inRL

II

+ converging to yf , and let the sequence (yf
n
)n∈N

be such that yf
n ∈ ŝf (yf n). Clearly, (yf

n
)n∈N remains in a compact set. Therefore, it has

a converging subsequence, also denoted by (yf
n
)n∈N, converging to, say, yf ∈ Ŷ f . It has

to be shown that yf ∈ ŝf (yf ). Since yf
n ≤ yf n , it follows that yf ≤ yf . Consequently,

yf ∈ ŝf (yf ) and ŝf is upper hemi-continuous.
Next, lower hemi-continuity of the production possibility correspondence is shown. Let

some yf ∈ RLII

+ be given, let (yf
n
)n∈N be a sequence in RL

II

+ converging to yf , and let yf

be an element of ŝf (yf ). The correspondence ŝf is lower hemi-continuous at yf if there

is a sequence (yf
n
)n∈N in RL such that yf

n ∈ ŝf (yf n) and yf
n → yf . Let the sets L and

L be defined by

L = {l ∈ LII|yfl > 0}, L = {l ∈ LII|yfl ≤ 0}.

For n ∈ N, let λf
n ∈ [0, 1] be defined by

λf
n = min

{
min
l∈L

y
f n

l

y
f
l

, 1

}
.

For n ∈ N, let yf
n

be defined by

yf
n = λf nyf .

It holds that yf
n ∈ Ŷ f , since 0 ∈ Ŷ f and Ŷ f is convex. Moreover, for l ∈ L it holds that

y
f n

l = λf
n
y
f
l ≤ (y

f n

l /y
f
l )y

f
l = y

f n

l , and for l ∈ L it holds that yf
n

l ≤ 0 ≤ y
f n

l . So,

yf
n ∈ ŝf (yf n). Notice that λf

n → min{minl∈L(y
f

l
/y
f
l ), 1} = 1. Therefore, it follows that

yf
n → yf .
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Compact-valuedness and convex-valuedness of γ̂ h are trivial. Let us show upper hemi-
continuity of the budget correspondence. Let some (p, zh,wh) ∈ P be given, let
(pn, zh

n
, wh

n
)n∈N be a sequence in P converging to (p, zh,wh), and let the sequence

(xh
n
)n∈N be such that xh

n ∈ γ̂ h(pn, zhn, whn). Clearly, (xh
n
)n∈N remains in a compact set.

Therefore, it has a converging subsequence, also denoted by (xh
n
)n∈N, converging to, say,

xh ∈ X̂h. It has to be shown that xh ∈ γ̂ h(p, zh,wh). Since pn · xhn ≤ whn it follows that
p · xh ≤ wh. Since xh

n,II − eh,II ≥ zh
n

it follows that xh,II − eh,II ≥ zh. Consequently,
xh ∈ γ̂ h(p, zh,wh) and γ̂ h is upper hemi-continuous.

Finally, lower hemi-continuity of the budget correspondence is shown. Let some
(p, zh,wh) ∈ P be given, let (pn, zh

n
, wh

n
)n∈N be a sequence inP converging to (p, zh,wh),

and let xh be an element of γ̂ h(p, zh,wh). The correspondence γ̂ h is lower hemi-continuous
at (p, zh,wh) if there is a sequence (xh

n
)n∈N in RL such that xh

n ∈ γ̂ h(pn, zhn, whn) and
xh

n → xh. Let the sets L and L be defined by

L = {l ∈ LII|xhl − ehl < 0}, L = {l ∈ LII|xhl − ehl ≥ 0.}.
Now two cases have to be considered, p · xh < wh and p · xh = wh. �

Case 1. p · xh < wh. Let x̂h ∈ X̂h be chosen such that x̂h,I ≤ eh,I and x̂h,II = eh,II. For
n ∈ N, let λh

n ∈ [0, 1] be defined by

λh
n = min

{
min
l∈L

zh
n

l

xhl − ehl
, 1

}
. (14)

For n ∈ N, let xh
n

be defined by

xh
n = λhnxh + (1− λhn)x̂h.

It holds that xh
n ∈ X̂h by convexity of X̂h. Moreover, using that p · xh < wh and pn · x̂h ≤

pn · eh ≤ whn , it holds for n sufficiently large that

pn · xhn = λhnpn · xh + (1− λhn)pn · x̂h ≤ λhnwhn + (1− λhn)whn = whn.
Furthermore, for l ∈ L,

xh
n

l − ehl = λh
n

(xhl − ehl ) ≥
zh

n

l

xhl − ehl
(xhl − ehl ) = zh

n

l
,

and for l ∈ L,

xh
n

l − ehl ≥ 0 ≥ zhn
l
.

So, for n sufficiently large, xh
n ∈ γ̂ h(pn, zhn, whn). Notice that

λh
n → min

{
min
l∈L

zh
l

xhl − ehl
, 1

}
= 1,

so it follows that xh
n → xh.
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Case 2. p · xh = wh. Let x̂h ∈ X̂h be such that x̂h,I � eh,I, and x̂h,II = eh,II. Choose
x̃h ∈ X̂h as follows. If pl′ > 0 for some l′ ∈ LI, then let x̃h be equal to x̂h. Otherwise,
there is l′′ ∈ LII such that pII

l′′ · z
h,II
l′′

< 0. Then let x̃h be such that x̃h,I ≤ eh,I, x̃h
l′′
= eh

l′′
− ε

with ε < −zh
l′′ , and x̃hl = ehl , ∀l ∈ LII \ {l′′ }. It follows from Assumption 3, as well as

the convexity of X̂h, that indeed x̃h can be chosen in the way described above. Notice that
p · x̃h < wh and zh

l′′ < x̃h
l′′
− eh

l′′
. Clearly, there exists n ∈ N such that for all n ≥ n,

pn · x̃h < wh
n

and zh
n

l′′
< x̃h

l′′
− eh

l′′
. For n ≥ n, let λh

n ∈ [0, 1] be defined as in Eq. (14).

For n ≥ n, let xh
n

be defined by

xh
n = µhn(λhnxh + (1− λhn)x̂h)+ (1− µhn)x̃h,

where µh
n

is given by µh
n = 1 if pn · (λhnxh + (1− λhn)x̂h) ≤ whn , and µh

n = (whn −
pn · x̃h)/(pn · (λhnxh + (1 − λhn)x̂h − x̃h)), otherwise. Notice that µh

n ∈ (0, 1) in the
latter case. As before, it is easy to verify that xh

n ∈ γ̂ h(pn, zhn, whn), and that λh
n → 1

and µh
n → 1. So it follows that xh

n → xh and that γ̂ h is lower hemi-continuous.

Lemma A.1 extends the lemma in Drèze (1975), p. 304, and Theorem 2.2 in Herings
(1996a), p. 67. It leads to upper hemi-continuity of demand and supply correspondences
and continuity of profit functions.

Lemma A.2. Let the economy E satisfy Assumptions 1–5. Then the supply correspondence
η̂f : RL × RLII

+ → R
L of firm f and the demand correspondence δ̂h : P → R

L of
household h are compact-valued, convex-valued, and upper hemi-continuous. The profit
function π̂f : RL × RLII

+ → R of firm f is continuous.

Proof. This follows from Lemma A.1 and an application of the maximum theorem. �

Some other properties of η̂f and δ̂h are readily seen. For instance the boundary behavior
that zh

l
= 0 implies xhl ≥ ehl for every xh ∈ δ̂h(p, zh,wh), and yfl = 0 implies yfl ≤ 0

for every yf ∈ η̂f (p, yf ). Using the definition of γ̂ h(p, zh,wh), p · xh ≤ wh for every

xh ∈ δ̂h(p, zh,wh).
Now, we construct a correspondence ζ̂ such that its zero points correspond to all dif-

ferent underemployment equilibria. Denote the minimal market share in the market for a
commodity l ∈ LII by αl , so αl = min{αhl , βfl |h ∈ H, f ∈ F }.

Them-dimensional unit cube is given byQm = {q ∈ Rm|0 ≤ qi ≤ 1, i = 1, . . . , m}. Let
(φ1, φ2) : QL

II → ZY be the function that associates to q ∈ QLII
the expected opportunities(

−αhl b
αl

ql

)
h∈H,l∈LII

,

(
β
f
l b

αl
ql

)
f∈F,l∈LII

,

whereφ1(q)determines the expected opportunities of the households andφ2(q) the expected
opportunities of the firms. So, for l ∈ LII,ql ∈ [0, 1] parametrizes the expected opportunities

in the market for commodity l,

(
−α1

l b

αl
ql, . . . ,

βFl b

αl
ql

)
. The expected opportunities range
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from (0, 0) if ql = 0, to a vector (z, y) satisfying min{−zh
l
, y
f
l |h ∈ H, f ∈ F } = b. The

parameter ql coincides with υl as defined in Section 3.2.
The correspondence ζ̂ : RL+ ×QL

II → RL is defined by

ζ̂ (p, q)=
∑
h∈H

δ̂h


p, φh1 (q), p · eh +∑

f∈F
θ fhπ̂f (p, φ

f

2 (q))




−
∑
h∈H

eh −
∑
f∈F

η̂f (p, φ
f

2 (q)).

The restriction of ζ̂ to the set (RL
I

+ × {p̃II})×QLII
is denoted by ζ̂|p̃II . It holds that ζ̂|p̃II is

a compact-valued and convex-valued correspondence that is upper hemi-continuous every-
where, except at the point ((0, p̃II), 0).

The set of zero points of ζ̂|p̃II is denoted by Ẑ0 = {(p, q) ∈ RL+ ×QL
II |pII = p̃II and

0 ∈ ζ̂ (p, q)}. The correspondence ψ̂ : Ẑ0 → RL × X̃ × Ỹ × ZY is defined by relating the
set

{p} ×



∏
h∈H

δ̂h


p, φh1 (q), p · eh∑

f∈F
θ fhπ̂f (p, φ

f

2 (q))


 ∏
f∈F

η̂f
(
p, φ

f

2 (q)
)∩ A




× {(φ1(q), φ2(q))}

to (p, q) ∈ Ẑ0. Then ψ̂(Ẑ0) is the set of all different underemployment equilibria of E ,
ψ̂(Ẑ0) = Ê.

To prove Theorem 3.1(1) we will use a fixed point theorem. In fact, Browder’s fixed point
theorem (see Cooper and John (1988)), and the extension of it to correspondences as stated
in Theorem A.3 (see Mas-Colell (1974), Theorem 3, p. 230) will be needed in the proof.

Theorem A.3 (Browder’s fixed point theorem). Let S be a non-empty, compact, convex
subset of Rm and let ϕ : S × [0, 1] → S be a compact-valued, convex-valued, upper
hemi-continuous correspondence. Then the set Fϕ = {(s, λ) ∈ S × [0, 1]|s ∈ ϕ(s, λ)}
contains a connected component F c

ϕ such that (S×{0})∩F c
ϕ �= ∅ and (S×{1})∩F c

ϕ �= ∅.
The m-dimensional unit simplex is denoted by Sm = {s ∈ Rm+1

+ |∑m+1
i=1 si = 1} and, for

ε ≥ 0, the subset of the cube satisfying that each of its elements has at least one component
greater than or equal to ε by Qm(ε) = {q ∈ Qm|‖q‖∞ ≥ ε}. Obviously, Qm(0) = Qm.
Now, for ε ≥ 0, an artificial correspondence ζ̃ : SL

I × QLII
(ε) → RL is considered. To

prove Theorem 3.1(1) we take ζ̃ (s, q) equal to ζ̂ (s1, . . . , sLI , sLI+1p̃
II, q). The set Z̃− =

ζ̃−1(−RL+) = {(s, q) ∈ SL
I ×QLII

(ε)|ζ̃ (s, q) ∩−RL+ �= ∅} has a very special structure as
the following result shows.

Lemma A.4. Let ε ≥ 0 and pII ∈ RLII

++ be given. Let ζ̃ : SL
I × QLII

(ε) → R
L be a

compact-valued, convex-valued, upper hemi-continuous correspondence satisfying that for
every (s, q) ∈ SLI × QLII

(ε), for every z ∈ ζ̃ (s, q), (s1, . . . , sLI , sLI+1p
II) · z ≤ 0, and,
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for l ∈ LII, ql = 0 implies zl ≥ 0. Then Z̃− has a connected component Z̃c− such that for
every υ ∈ [ε, 1] there is (sυ, qυ) ∈ Z̃c− with ‖qυ‖∞ = υ.

Proof. Since ζ̃ is a compact-valued, upper hemi-continuous correspondence, ζ̃ (SL
I ×

QL
II
(ε)) is compact, and therefore, there exists a compact, convex set Z satisfying ζ̃ (SL

I ×
QL

II
(ε)) ⊆ Z. The compact-valued, convex-valued, upper hemi-continuous correspon-

dences ϕ1 : Z → SL
I
, ϕ2 : Z → SL

II−1, and ϕ3 : SL
I × SLII−1 × [ε, 1] → Z are defined

by

ϕ1(z)=

s ∈ SLI |

∑
l∈LI

slzl + sLI+1p
II · zII

≥
∑
l∈LI

slzl + sLI+ 1p
II · zII,∀s ∈ SLI


 , z ∈ Z,

ϕ2(z) = {t ∈ SLII−1|t · zII ≥ t · zII,∀t ∈ SLII−1}, z ∈ Z,

ϕ3(s, t, λ) = ζ̃
(
s, λ

t

‖t‖∞

)
, (s, t, λ) ∈ SLI × SLII−1 × [ε, 1].

It follows that the correspondence ϕ : Z × SLI × SLII−1 × [ε, 1] → Z × SLI × SLII−1

defined by

ϕ(z, s, t, λ) = ϕ3(s, t, λ)× ϕ1(z)× ϕ2(z),

(z, s, t, λ) ∈ Z × SLI × SLII−1 × [ε, 1],

is a compact-valued, convex-valued, and upper hemi-continuous correspondence, and the
set Z × SLI × SLII−1 is non-empty, compact, and convex. By Theorem A.3 it follows that
the set Fϕ = {(z, s, t, λ) ∈ Z × SLI × SLII−1 × [ε, 1]|(z, s, t) ∈ ϕ(z, s, t, λ)} contains a

connected component F c
ϕ such that (Z × SLI × SLII−1 × {ε}) ∩ F c

ϕ �= ∅ and (Z × SLI ×
SL

II−1×{1})∩F c
ϕ �= ∅. The connectedness ofF c

ϕ therefore, yields that, for every υ ∈ [ε, 1],

(Z × SLI × SLII−1 × {υ}) ∩ F c
ϕ �= ∅. Let some (z∗, s∗, t∗, λ∗) ∈ F c

ϕ be given. So,

(z∗, s∗, t∗, λ∗) ∈ ϕ3(s∗, t∗, λ∗)× ϕ1(z∗)× ϕ2(z∗)

= ζ̃
(
s∗, λ∗

t∗

||t∗||∞

)
× ϕ1(z∗)× ϕ2(z∗).

Therefore, (s∗1 , . . . , s
∗
LI) · z∗I + s∗LI+1

pII · z∗II ≤ 0. Using that s∗ ∈ ϕ1(z∗) it follows by

taking s equal to the lth, respectively (l + 1)th, unit vector that z∗Il ≤ 0, ∀l ∈ LI, and
pII · z∗II ≤ 0.

Suppose maxl∈LIIz∗l > 0. Since pII ∈ RLII

++ and pII · z∗II ≤ 0, there exists l′ ∈ LII with
z∗
l′ < 0. From maxl∈LIIz∗l > 0, z∗

l′ < 0, and t∗ ∈ ϕ2(z∗) it follows that t∗
l′ = 0, implying that
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z∗
l′ ≥ 0, a contradiction. Consequently, maxl∈LIIz∗l ≤ 0. We have shown that z∗ ∈ −RL+.

The function g : Z × SLI × SLII−1 × [ε, 1] → SL
I ×QLII

(ε) is defined by

g(z, s, t, λ) =
(
s, λ

t

‖t‖∞

)
, (z, s, t, λ) ∈ Z × SLI × SLII−1 × [ε, 1],

and the set Z̃c− is defined by Z̃c− = g(F c
ϕ). Clearly, for every (s, q) ∈ Z̃c−, ζ̃ (s, q)∩−RL+ �=

∅. The set Z̃c− is connected by the connectedness of F c
ϕ and the continuity of g. For every

υ ∈ [ε, 1], there exists (zυ, sυ, tυ) ∈ Z × SLI × SLII−1 such that (zυ, sυ, tυ, υ) ∈ F c
ϕ , so

g(zυ, sυ, tυ, υ) = (sυ, υ(t/||t ||∞)) = (sυ, qυ) ∈ Z̃c−. Obviously, ||qυ ||∞ = υ. �

The correspondence ζ̃ has a continuum of points with a non-positive vector in its image set.
These points range from a point on the boundary ofQL

II
(ε)with every component less than

or equal to ε to a point on the boundary of QL
II
(ε), where at least one component equals

one.
We are now in a position to give a proof of Theorem 3.1(1). One of the problems we have

to deal with is the possible lack of upper hemi-continuity of ζ̂ at a point ((0, p̃II), 0).

Proof of Theorem 3.1(1). For ε ≥ 0, the correspondence ζ̃ ε : SL
I × QLII

(ε) → R
L is

defined by ζ̃ ε(s, q) = ζ̂ (s1, . . . , sLI , sLI+1p̃
II, q).

Let some ε > 0 be given. Notice that (s1, . . . , sLI) > 0 or sLI+1p̃
II � 0. In the

latter case, q ∈ QL
II
(ε) implies sLI+1p̃

II · φ2(q) < 0. So, by Lemma A.2 it follows
that ζ̃ ε is compact-valued, convex-valued, and upper hemi-continuous. Since ζ̃ ε satisfies
all conditions of Lemma A.4, the set (ζ̃ ε)−1(−RL+) has a connected component Z̃c− such
that for every υ ∈ [ε, 1] there is (sυ, qυ) ∈ Z̃c− with ||qυ ||∞ = υ.

We show that Z̃c− = (ζ̃ ε)−1({0}). Let (s∗, q∗) ∈ Z̃c− be given. Then there is z ∈
ζ̃ ε(s∗, q∗) ∩ −RL+ = ζ̂ (s∗1 , . . . , s

∗
LI , s

∗
LI+1

p̃II, q∗) ∩ −RL+. Let p∗ ∈ RL+, y∗f ∈ RLII

+ ,

f ∈ F , z∗h ∈ −RLII

+ , h ∈ H , and w∗h ∈ [p∗ · eh,∞), h ∈ H , be defined by p∗ =
(s∗1 , . . . , s

∗
LI , s

∗
LI+1

p̃II), y∗f = φf1 (q∗), z∗h = φh2 (q∗), and w∗h = p∗ · eh +∑f∈F θ fhπ̂f

(p∗, y∗f ). Then there is x∗h ∈ δ̂h(p∗, z∗h,w∗h), h ∈ H , yf ∈ η̂f (p∗, y∗f ), f ∈ F , such

that
∑
h∈Hx∗h −

∑
h∈Heh −

∑
f∈F yf = z. Let y∗1 be defined by y∗1 = y1 + z, and

y∗f , f ∈ F \ {1}, by y∗f = yf . It remains to be shown that y∗1 ∈ η̂f (p∗, y∗f ). Since

(x∗, y∗) ∈ A, it follows by the convexity of 
h that x∗h ∈ δh(p∗, z∗h,w∗h), h ∈ H . Then
non-satiation with respect to group II commodities and convexity of
h implies p∗ · x∗h =
w∗h, h ∈ H , and therefore, p∗ · z = 0. So p∗ · y∗1 = p∗ · y1. Since, there is no rationing
on the demand side, it is obvious that y∗1 ∈ ŝ1(y∗f ), so it holds that y∗1 ∈ η̂f (p∗, y∗f ).

For n ∈ N, take ε = (1/n) and denote the resulting connected component of (ζ̃ ε)−1({0})
by Z̃c−(n). By Hildenbrand (1974), Proposition 1, p. 16, the sequence {Z̃c−(n)}n∈N has
a convergent subsequence which we also denote by {Z̃c−(n)}n∈N. By Mas-Colell (1985),

Theorem 5.1.(ii), p. 10, the closed limit of the sequence {Z̃c−(n)}n∈N, denoted by ˜̃Z
c

−, is
connected since every Z̃c−(n) is connected. Since ||q||∞ ≥ (1/n) for every (s, q) ∈ Z̃c−(n),
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it holds that the set Z̃
c

− = ˜̃
Z

c

− \ (SL
I × {0}) is connected. For every υ ∈ (0, 1] there is

(sυ, qυ) ∈ Z̃c

− with ||qυ ||∞ = υ.

Let (s, q) be an element of Z̃
c

−. Then there exists a sequence of points {(sn, qn)}n∈N
such that ||qn||∞ > 0, ζ̃ 0(sn, qn) = 0, and (sn, qn) → (s, q). We show that sLI+1 >

0. Suppose sLI+1 = 0. Then ζ̃ 0(s, q) = ζ̂ ((s1, . . . , sLrmI , 0), q), and since sl > 0 for
some l ∈ LI, it follows by upper hemi-continuity of ζ̂ that 0 ∈ ζ̂ ((s1, . . . , sLI , 0), q) ⊆
ζ((s1, . . . , sLI , 0), φ1(q), φ2(q)). This leads to a contradiction, because the non-satiation
with respect to group II commodities implies ζ((s1, . . . , sLI , 0), φ1(q), φ2(q)) = ∅.

Consequently, sLI+1 > 0, for every (s, q) ∈ Z̃c

−.

The function g : Z̃
c

− → RL ×QL
II

is defined by

g(s, q) =
((

s1

sLI+1
, . . . ,

sLI

sLI+1
, p̃II

)
, q

)
, (s, q) ∈ Z̃c

−.

If (p, q) ∈ g(Z̃c

−), then there exists a sequence of points {(pn, qn)}n∈N such that ||qn||∞ >

0, 0 ∈ ζ̂ (pn, qn), and (pn, qn) → (p, q), and the upper hemi-continuity of ζ̂ at such a

point (p, q) implies 0 ∈ ζ̂ (p, q). The set Ẑc
0 is defined by Ẑc

0 = g(Z̃
c

−). It is immediate

that Ẑc
0 is connected. The set Êc is defined by Êc = ψ̂(Ẑc

0). We finish the proof by showing

that Êc is connected.
By Lemma A.2 and the continuity of the functions φ1 and φ2 it follows that ψ̂ is a

compact-valued, convex-valued, and upper hemi-continuous correspondence. Suppose Êc

is not connected, then there exist two disjoint, non-empty sets E1 and E2 such that E1 and
E2 are both closed in Êc andE1∪E2 = Êc. Therefore, by the upper hemi-continuity of ψ̂ , it
holds that ψ̂−1(E1) and ψ̂−1(E2) are closed in Ẑc

0. Suppose q ∈ ψ̂−1(E1)∩ ψ̂−1(E2). Let
ξ1, ξ2 ∈ ψ̂(q) be such that ξ1 ∈ E1 and ξ2 ∈ E2. Thenλξ1+(1−λ)ξ2 ∈ ψ̂(q),∀λ ∈ [0, 1],
since ψ̂(q) is convex, so ξ2 is an element of the connected component in Êc containing
ξ1, a contradiction to the construction of the sets E1 and E2. Consequently, ψ̂−1(E1) ∩
ψ̂−1(E2) = ∅. Moreover, ψ̂−1(E1)∪ ψ̂−1(E2) = Ẑc

0, while both ψ̂−1(E1) and ψ̂−1(E2)

are closed in Ẑc
0. So Ẑc

0 is not connected, a contradiction. This concludes the proof that Êc

is connected. �

Proof of Theorem 3.1(2), CaseLI = 0. By Theorem 3.1(1), Ê has a component Êc which
includes an underemployment equilibrium with maxl∈LIIυl = υ for all υ ∈ (0, 1]. If there
are two different underemployment equilibria in Êc, then there is a continuum of different
underemployment equilibria in Êc by the connectedness of Êc.

Suppose there are not two different underemployment equilibria in Êc. Then, for ev-
ery υ ∈ (0, 1] there is an underemployment equilibrium in Êc with maxl∈LIIυl = υ

and allocation (x(υ), y(υ)), where x(υ) = x(1), xh(υ) − eh ≥ φh1 (q(υ)), h ∈ H , and

yf (υ) ≤ φf2 (q(υ)), f ∈ F , with ‖q(υ)‖∞ = υ. Now, for every υ ∈ (0, 1], xh(1)− eh ≥
φh1 (q(υ)), implying that xh(1) ≥ eh,h ∈ H.Moreover, for everyυ ∈ (0, 1],

∑
h∈Hxh(1) =∑

h∈Heh+
∑
f∈F yf (υ) ≤

∑
h∈Heh+

∑
f∈Fφ

f

2 (q(υ)), implying that xh(1) = eh, h ∈ H ,

and
∑
f∈F yf (υ) = 0, ∀υ ∈ (0, 1].
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Suppose there is f ′ ∈ F such that yf
′
(1) �= 0. By choosing yf = 0, f ∈ F \ {f ′}, it

follows that yf
′
(1)+∑f∈F\{f ′}yf = yf

′
(1) ∈ Y , and by choosing yf

′ = 0 it follows that∑
f∈F\{f ′}yf (1)+ yf

′ = −yf ′(1) ∈ Y . So, 0 �= yf ′(1) ∈ Y ∩−Y ⊆ {0}, a contradiction.

Consequently, yf (1) = 0, f ∈ F .
Let l′ ∈ L be such that there is no rationing in the market for commodity l′ at the

underemployment equilibrium (p̃II, x(1), y(1), z(1), y(1)). There is h ∈ H such that eh /∈
δh(p̃II, 0−l′ , p̃II · eh) or there is f ∈ F such that 0 /∈ ηf (p̃II, 0−l′). In the latter case, there
is yf ∈ sf (0−l′) such that p · yf > 0. The convex combination λyf + (1 − λ)yf (1) =
λyf belongs to sf (yf (1)) for λ sufficiently small since yf

l′ (1) ≥ b, while p̃II · λyf > 0, a

contradiction to p̃II ·yf (1) = p̃II ·0 = 0. In the former case, there is xh ∈ γ h(p̃II, 0−l′ , p̃II ·
eh) such that xh �h eh. Since zh

l′(1) ≤ −b ≤ −ehl′ it follows that γ h(p̃II, 0−l′ , p̃II · eh) ⊆
γ h(p̃II, zh(1), p̃II · eh) = γ h(p̃II, zh(1), p̃II · eh +∑

f∈F θ fhp̃II · yf (1)). This leads to

a contradiction with xh(1) = eh. Consequently, the hypothesis that there are not two
different underemployment equilibria in Êc is false, and there is a continuum of different
underemployment equilibria in Êc.

The existence of a continuum of strongly different underemployment equilibria in Êc fol-
lows immediately if there ish ∈ H such that eh /∈ δh(p̃II, 0−l′ , p̃II·eh) sinceγ h(p̃II, 0−l′ , p̃II·
eh) ⊆ γ h(p̃II, zh(1), p̃II · eh +∑f∈F θ fhp̃II · yf (1)), so eh /∈ δh(p̃II, zh(1), p̃II · eh +∑
f∈F θ fhp̃II·yf (1)) and eh ≺h xh(1). If such a householdh does not exist, then by Assump-

tion 7 there is f ∈ F such that 0 /∈ ηf (p̃II, 0−l′). It follows that 0 /∈ ηf (p̃II, yf (1)), and

πf (p̃II, yf (1)) > 0. Let h ∈ H be such that θ fh > 0. Then there is an open neighborhoodO

of eh such that p̃II ·xh < p̃II ·eh+∑f∈F θ fhπf (p̃II, yf (1)), ∀xh ∈ O, and by non-satiation

with respect to group II commodities at the initial endowment there is xh ∈ O∩X̂h such that
eh < xh and eh ≺h xh. Clearly, xh ∈ γ h(p̃II, zh(1), p̃II ·eh+∑f∈F θ fhπf (p̃II, yf (1))), so

xh(1) � eh, and it follows that there is a continuum of strongly different underemployment
equilibria. �

Proof of Theorem 3.1(2), CaseLI ≥ 1. Let some l′ ∈ LII be given. For e ∈ RHL++, El′(e) =
((Xh

l′ ,
hl′ , (ehl )l∈LI∪{l′})h∈H , (Y f
l′ , (θ

fh)h∈H )f∈F ) is the projection of E on the coordinates
corresponding to the commodities inLI∪{l′}, fixing the other coordinates at the values of the

initial endowments or at zero. SoXh
l′ = RL

I+1
+ ,
h

l′ is defined by xh 
h
l′ x̂

h for xh, x̂h ∈ Xh
l′

if x
h 
h

l′
ˆ̂xh with x

h = xhl , l ∈ LI ∪ {l′}, ˆ̂xhl = x̂hl , l ∈ LI ∪ {l′}, and x
h

l = ehl and

ˆ̂xhl = ehl otherwise, and Yf
l′ = {(y

f

1 , . . . , y
f

LI , y
f

l′ ) ∈ RL
I+1|(yf1 , . . . , yfLI , 0, yf

l′ , 0) ∈ Yf }.
For all h ∈ H , fix the initial endowments of commodities l ∈ LII \ {l′} and denote this
H(LII− 1)-dimensional vector by e(−l′). Similarly, the initial endowments corresponding
to the commodities inLI∪{l′} are denoted by theH(LI+1)-dimensional vector e(l′). It can
be shown as in Laroque (1978), Proposition 3.1, p. 1131, and Appendix A, Proposition A.4,

p. 1152, that there is a full measure subsetΩ(e(−l′)) ofRH(L
I+ 1)

++ such that, for every e(l′) ∈
Ω(e(−l′)), for every competitive equilibrium of the economy El′(e(l′), e(−l′)), there is
trade in the market for every commodity l ∈ LI ∪ {l′}. It follows by a standard argument
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thatCl′ , the set of initial endowments e ∈ RHL++ for which in every competitive equilibrium
of the resulting economy El′(e) there is non-zero trade in the market for every commodity
in LI ∪ {l′}, is open. Moreover, ∪

e(−l′)∈RH(LII−1){(e(l′), e(−l′))|e(l′) ∈ C(e(−l′))} ⊆ Ωl′ .

Therefore, Ωl′ is an open set of full measure, and Ω = ∩l′∈LIIΩl′ is an open set of full
measure.

Let e ∈ Ω be given and let Êc be a connected component of the set of underemployment
equilibria of E = ((Xh,
h, eh)h∈H , (Y f , (θ fh)h∈H )f∈F , p̃II, α, β) which includes an un-
deremployment equilibrium with maxl∈LIIυl = υ for all υ ∈ (0, 1]. By Theorem 3.1(1)
such a connected component exists.

Suppose there are not two strongly different underemployment equilibria. For every
υ ∈ (0, 1] there is an underemployment equilibrium in Êc with maxl∈LIIυl = υ, alloca-
tion (x(υ), y(υ)), where xh(υ) ∼h xh(1), xh,II(υ) − eh,II ≥ φh1 (q(υ)), and yf,II(υ) ≤
φ
f

2 (q(υ)), with ‖q(υ)‖∞ = υ. The allocation (x(0), y(0)) is defined as a limit point of
the sequence (x(1/n), y(1/n))n∈N. It follows by market equilibrium, xh,II(υ) − eh,II ≥
φh1 (q(υ)), υ ∈ (0, 1], and yf,II(υ) ≤ φ

f

2 (q(υ)), υ ∈ (0, 1], that xh,II(0) = eh,II and
yf,II(0) = 0. By the closedness of A it follows that (x(0), y(0)) ∈ A.

We show that there is h′ ∈ H such that xh
′
(1) �= xh

′
(0) or there is f ′ ∈ F such

that yf
′
(1) �= yf

′
(0). Suppose, on the contrary, that xh(1) = xh(0) for all h ∈ H and

yf (1) = yf (0) for all f ∈ F . Let l′ ∈ LII be such that there is no rationing in the
market for commodity l′ in some underemployment equilibrium in Êc. Then it follows
that ((pl(1))l∈LI∪{l′}, (xl(1))l∈LI∪{l′}, (yl(1))l∈LI∪{l′}) is a competitive equilibrium for the
economy El′(e). Since e ∈ Ω , there is non-zero trade in the market for commodity l′, a
contradiction. Consequently, there is h′ ∈ H such that xh

′
(1) �= xh′(0) or there is f ′ ∈ F

such that yf
′
(1) �= yf ′(0).

Now consider the truncated economyE = ((Xh,
h, eh)h∈H , (Y f , (θ fh)h∈H )f∈F ), where

X
h = {xh ∈ Xh|xh,II − eh,II ≥ φh1 (q(1))} and Y

f = {yf ∈ Yf |yf,II ≤ φ
f

2 (q(1))}.
Clearly, (p(1), x(1), y(1)) is a competitive equilibrium for E and therefore, (x(1), y(1)) is
a Pareto optimal allocation inE . However, for everyλ ∈ (0, 1), (λx(0)+(1−λ)x(1), λy(0)+
(1 − λ)y(1)) is a feasible allocation (using that trivially xh,II(0) − eh,II ≥ φh1 (q(1)) and

yf,II(0) ≤ φf2 (q(1))) for E that satisfies λxh(0) + (1 − λ)xh(1) $h xh(1) for all h ∈ H .
Moreover, λxh

′
(0) + (1 − λ)xh′(1) �h′ xh′(1) or λyf

′
(0) + (1 − λ)yf ′(1) in the inte-

rior of Yf
′
, contradicting the Pareto optimality of the allocation (x(1), y(1)) in E . Con-

sequently, there are two strongly different underemployment equilibria in Êc, and, by the
connectedness of Êc, there is a continuum of strongly different underemployment equilibria
in Êc. �

We generalize the assumptions of Theorem 3.1(3). To avoid unnecessary technicalities,
we consider the case where ζ̂ is a function, denoted by ẑ. We parametrize relevant price
systems and expectations of available opportunities by means of a vector q ∈ QL. The first
LI components of q are used to parametrize the prices of the first LI commodities, and the
lastLII components to parametrize the expected opportunities for the group II commodities.
Let p∗ � 0 be a competitive price system for the economy E . The function p : QL→ RL
is defined by pl(q) = p∗l ql if l ∈ LI, and pl(q) = p∗l if l ∈ LII.
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The function z : QL→ RL is defined by

z(q) = ẑ(p(q), qII), q ∈ QL.
Notice that p(q) depends on qI only. Let BL denote the boundary of QL, where all com-
ponents are positive and at least one is equal to 1, so BL = {q ∈ QL|∃l ∈ L, ql = 1 and
q � 0}. We say that z satisfies the boundary condition if

∀q ∈ BL, z(q) = 0 or ∃l′ ∈ L such that ql′ > min
l∈L
ql and

zl′(q) < max
l∈L

zl(q).

We prove Theorem 3.1(3) with Assumption 8 replaced by the weaker Assumption 9 13 .

Assumption 9. For at least one Walrasian equilibrium (p∗, x∗, y∗, z∗, y∗) of E the
function z satisfies Condition (15).

Proof of Theorem 3.1(3). Let some ε > 0 be given. First we show the existence of a con-
nected set Z

c
− such that for every λ ∈ [ε, 1] there is q ∈ Zc

− inducing an underemployment
equilibrium with

∑
l∈Lql = λL.

We extend z to a subset of the set R = {r ∈ RL|ε ≤∑l∈Lrl ≤ L}. Let ρ : R→ QL be
the projection function that projects r on the set {q ∈ QL|∑l∈Lql =

∑
l∈Lrl}by minimizing

the Euclidean distance to this set. Let the continuous, compact-valued correspondence ϕ :
R→ QL be defined by ϕ(r) = {q ∈ QL|∑l∈Lql =

∑
l∈Lrl} and the continuous function

g : R×QL→ R by g(r, q) = −∑l∈L(rl − ql)2. Then the correspondence that assigns to
r ∈ R the set of points q ∈ ϕ(r) maximizing g(r, q) on ϕ(r) is an upper hemi-continuous,
compact-valued correspondence by the maximum theorem. Since ϕ(r) is convex for every
r ∈ R it follows that there is a unique maximizer. It is clear that the correspondence
coincides with ρ, so ρ is a continuous function. Using the first-order conditions it follows
that if ρ(r) = q, then either

∑
l∈Lrl = L and ρ(r) = 1 or

∑
l∈Lrl < L and there is λ ∈ R,

µl ≥ 0, l ∈ L, νl ≥ 0, l ∈ L, such that, for every l ∈ L, ql = rl − λ+ µl − νl , µlql = 0
and νl(ql − 1) = 0.

The set ∆ is defined by ∆ = {δ ∈ RL|∑l∈Lδl = 0 and δl ≥ −1, ∀l ∈ L}. Then
δ+ bf1 ∈ R for every δ ∈ ∆ and λ ∈ [ε, 1], with bf1 the vector of all ones. The continuous
function ϕ1 : ∆ × [ε, 1] → R

L is defined by ϕ1(δ, λ) = z(ρ(δ + λ1)). Since ϕ1 is a
continuous function, the set ϕ1(∆×[ε, 1]) is compact, and therefore, there exists a compact,
convex set Z satisfying ϕ1(∆ × [ε, 1]) ⊆ Z. The compact-valued, convex-valued, upper
hemi-continuous correspondence ϕ2 : Z→ ∆ is defined by

ϕ2(z) =
{
δ ∈ ∆|

∑
l∈L
δlzl ≥

∑
l∈L
δlzl,∀δ ∈ ∆

}
, z ∈ Z.

13 Assumption 9 leads to the following property: ∀q ∈ BL, if ql′ = 1, then zl′ (q) ≤ 0. Let some q ∈ BL be given.
If z(q) = 0, then Condition (15)) is satisfied. If z(q) �= 0, then q is not the vector of all ones. Let l′ ∈ L be such
that ql′ = 1. Then ql′ > minl∈Lql , and zl′ (q) ≤ 0 < maxl∈Lzl(q).
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It follows that the correspondence ϕ : Z ×∆× [ε, 1] → Z ×∆ defined by

ϕ(z, δ, λ) = ϕ1(δ, λ)× ϕ2(z), (z, δ, λ) ∈ Z ×∆× [ε, 1],

is a compact-valued, convex-valued, and upper hemi-continuous correspondence, and the
set Z × ∆ is non-empty, compact, and convex. By Theorem A.3 it follows that the set
Fϕ = {(z, δ, λ) ∈ Z ×∆× [ε, 1]|(z, δ) ∈ ϕ(z, δ, λ)} contains a connected component F c

ϕ

such that (Z×∆× {ε})∩F c
ϕ �= ∅ and (Z×∆× {1})∩F c

ϕ �= ∅. The connectedness of F c
ϕ

therefore, yields that, for every υ ∈ [ε, 1], (Z×∆×{υ})∩F c
ϕ �= ∅. Let some (z∗, δ∗, λ∗) ∈

F c
ϕ be given. So, (z∗, δ∗, λ∗) ∈ ϕ1(δ∗, λ∗)× ϕ2(z∗). Let us define q∗ = ρ(δ∗ + λ∗bf1) and
p∗ = p(q∗).

Suppose maxl∈Lz∗l > 0. There is l1 ∈ L such that z∗
l1
= maxl∈Lz∗l and p∗

l1
> 0.

Otherwise, δ∗ ∈ ϕ2(z∗) implies δ∗l = −1 for all l ∈ L with p∗l > 0, and hence q∗l ≤ q∗l1 =
0, where p∗

l1
= 0, so

∑
l∈Lq∗l = 0, a contradiction. Then, since p∗ · z∗ ≤ 0, there is l2 ∈ L

such that z∗
l2
< 0 and p∗

l2
> 0. This implies δ∗

l2
= −1. It follows that q∗ � 0, since q∗l = 0

for some l ∈ L implies that q∗
l2
= 0, so l2 ∈ LII, and z∗

l2
≥ 0, which gives a contradiction.

Without loss of generality we can assume that δ∗
l1
> 0. Using that δ∗

l1
> 0, δ∗

l2
= −1 and

q∗ � 0, it follows from the first-order conditions for the projection that q∗
l1
= 1. Moreover,

for every l′ ∈ L, if z∗
l′ < maxl∈Lz∗l , then δ∗

l′ = −1, so q∗
l′ = minl∈Lq∗l . This contradicts

Assumption 9, unless q∗ = 1. Consequently, q∗ = 1 or maxl∈Lz∗l ≤ 0.
Since p∗ is Walrasian it holds that z(1) = 0. The function g : Z ×∆× [ε, 1] → QL is

defined by

g(z, δ, λ) = δ + λbf1, (z, δ, λ) ∈ Z ×∆× [ε, 1],

and the set Zc− is defined by Zc− = g(F c
ϕ). We have shown that for every q ∈ Z

c
−,

z(q) ∈ −RL+. As in the proof of Theorem 3.1(1) it follows that z(q) = 0. The set Z
c
−

is connected by the connectedness of F c
ϕ and the continuity of g. For every λ ∈ [ε, 1],

there exists (zλ, δλ, λ) ∈ F c
ϕ , so g(zλ, δλ, λ) = (δλ + λbf1) = qλ ∈ Z

c
−. Obviously,∑

l∈Lqλl = λL.
For n ∈ N, take ε = (1/n) and denote the resulting connected component of {q ∈

QL|∑l∈Lql ≥ ε and z(q) = 0} that contains bf1 by Zc
0(n). Obviously, Z

c
0(n

1) ⊂ Zc
0(n

2)

if n1 < n2. By Mas-Colell (1985), Theorem 5.1.(ii), p. 10, the closed limit of the sequence
{Zc

0(n)}n∈N, denoted byZc
0, is connected. For every λ ∈ (0, 1] it holds that there is qλ ∈ Zc

0
with

∑
l∈Lqλl = λL, and by continuity of z at any such point, it follows that z(qλ) = 0.

Moreover, since for every λ ∈ (0, 1] there is qλ ∈ Zc
0 with

∑
l∈Lqλl = λL it holds that

for every υ ∈ (0, 1] there is qυ ∈ Zc
0 with maxl∈LIIqυl = υ, and for every υ ∈ (0, 1]

there is q̂υ ∈ Zc
0 with minl∈LII q̂υl = υ. Let the set of underemployment equilibria Êc be

defined by

Êc = ψ̂({(p(q), qII) ∈ RL+ ×QL
II |q ∈ Zc

0 \ {0}})

As in the proof of Theorem 3.1(1) it follows that Êc is connected, whereas the properties
given above imply that for every υ ∈ (0, 1] there is an underemployment equilibrium in
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Êc with maxl∈LIIυl = υ and for every υ ∈ (0, 1] there is an underemployment equilib-
rium in Êc with minl∈LIIυl = υ. The set Êc ranges from an equilibrium with approxi-
mately no trade in group II commodities at prices p ≤ p∗ to the competitive equilibrium
(p∗, x∗, y∗, z∗, y∗). �

Proof of Proposition 5.2. To see this, set ehh = 1 for all h, an innocuous quantity normal-
ization which simplifies notation. Then

ptlDl =
∑
h

ahl p
t
h and pt+1

l = ptlDl =
∑
h

ahl p
t
h. (16)

From Eq. (16) and ah ∈ SL, it follows that
∑
lp
t+1
l =∑lp

t
l . The monotonicity property is

minl (p
t+1
l /p∗l ) ≥ minl (ptl /p

∗
l ), with strict inequality wheneverpt �= p∗ at

∑
lp
t
l =

∑
lp
∗
l .

Let αt = minl
ptl
p∗l

; i.e. αt is the maximal number α such that ptl ≥ αtp∗l , for all l. Because

pt and p∗ are positive, αt ≥ 0. Unless pt = p∗, αt < 1.
We know thatp∗l =

∑
ha
h
l p
∗
h. Hence, using Eq. (16)): pt+1

l − αtp∗l =
∑
ha
h
l (p

t
h −

αtp∗h), where pth − αtp∗h ≥ 0,
∑
h(p

t
h − αtp∗h) = (1 − αt )

∑
hp

t
h and ahl > 0 for all h, l.

Accordingly, unless pt = p∗, pt+1
l − αtp∗l > 0, so that αt+1 = minl (p

t+1
l /p∗l ) > α

t .
Therefore, the αt ’s generate an increasing sequence bounded above by 1, and serve as a

Lyapunov function, showing the result. 14 �
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