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Abstract

In this paper we investigate possible ways to define consistency of assessments in
infinite signaling games. i.e. signaling games in which the sets of types, messages and
answers are complete. separable metric spaces. Roughly speaking, a consistency concept is
called appropriate if it implies Bayesian consistency and copies the original idea of
consistency in finite extensive form games as introduced by Kreps and Wilson
(Econometrica. 1982, 50, 863-894). We present a particular appropriate consistency
concept, which we call strong consistency. and give a characterization of strongly consistent
assessments. It turns out that all appropriate consistency concepts are refinements of strong
consistency. Finally., we define and characterize structurally consistent assessments in
infinite signaling games.

JEL classification: C72, C73

Kevwords: Signaling games: Consistency

1. Introduction

One of the most widely applied classes of games in economics is the class of
signaling games. A signaling game is a game of incomplete information where two
players are involved: player 1 — the sender — moves first and sends a message to
player 2 — the receiver — who observes the message and chooses an answer.
Player | has more information than player 2. which is modeled by assuming that

0304-4068 /97 /$17.00 € 1997 Elsevier Science S.A. All rights reserved
PII SO304-4068(96)00782-3



426 A. Perea xy Monsuwé et al. / Journal of Mathematical Economics 27 (19970 425449

player 1's type is drawn by a move of nature at the beginning of the game. player
1 is informed about the outcome of this draw. but player 2 is not: the distribution
of nature’s move. however. is common knowledge. Player 1's message may serve
as a signal to convey or hide information about player 1's type. Think. for
instance. of player | as the seller of a car who is informed about the quality of the
car. and of player 2 as the uninformed potential buyer who is to say yes or no to a
sales contract specifying the price as well as warranty conditions.

Signaling games — and. more generally. dynamic games of imperfect or
incomplete information — are analyzed by considering not only the strategies of
the players but also the beliefs that an uninformed player may have about his
information sets. In a signaling game as described above. an assessment is a pair
of strategies. together with a probability distribution (beliefs). assessed by player 2
over the possible types of player 1. Common to all kinds of Nash equilibrium
refinements considered in the literature on signaling games is the sequential
rationaliry requirement, which says that the players™ strategies are best responses
to each other. where playver 2 maximizes his payoff. given his beliefs. Moreover.
these beliefs must be consistent with Bayes™ rule whenever possible - i.e. at all
information sets reached with positive probability. where these probabilities
depend on the distribution of nature’s move and player 1's strategy. The latter
property is called Bavesian consistency.

In a finite signaling game an assessment is called a sequential equilibrium if it
satisfies sequential rationality and Bavesian consistency (see Cho and Kreps.
1987).

An essential part in the definition of sequential equilibria for general (finite)
extensive form games, as introduced by Kreps and Wilson (1982). is the consis-
tency condition. Roughly, this means that the assessment can be approximated by
a sequence of Bayesian-consistent and completely mixed assessments. This condi-
tion is a kind of ‘trembling hand" condition: the beliefs of a player should be
consistent. in the limit, with the beliefs he would have according to Bayesian
updating if all players would “tremble’. so that each of his information sets would
be reached with positive probability. Just as is the case with perfect equilibria. the
requirement is that beliefs be consistent with some trembles. not with all
trembles.

Moreover. consistency of assessments can be viewed as a condition that
requires the beliefs to reflect and respect the structure of information sets in the
game. By the structure of the information sets we mean the positions of the
information sets in the game tree and the way different information sets are
connected via actions and chance moves. In infinite extensive form games. such as
infinite signaling games, the collection of information sets may be (uncountably)
infinite. However. similarly to finite extensive form games, information sets in
infinite extensive form games have specific positions in the (possibly infinite)
game tree and are connected in a specific way. This is the reason why we think
that the idea of consistency is also meaningful in infinite extensive form games.
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It is well known that consistency is equivalent to Bayesian consistency in finite
signaling games. This is why the definition of sequential equilibria for finite
signaling games uses Bayesian consistency instead of consistency.

In this paper we try to apply this idea of consistency in infinite signaling games
where the sets of types. messages and answers are complete separable metric
spaces. In the last few years much attention has been paid to infinite signaling
games; see. for instance. Mailath (1987, 1988) and Manelli (1994). to name just
three. In contrast to finite extensive form games. it is not obvious how to define
completely mixed assessments and convergence of assessments in infinite signal-
ing games. Since the concept of consistency depends on the way in which these
two concepts are defined, a whole variety of definitions for consistency is
possible. A natural requirement for a consistency concept is that it should imply
Bayesian consistency. This requirement is called condition A. It turns out that this
condition heavily restricts the number of convergence concepts for assessments
that can be used in the consistency concept. An example will show that weak
convergence of probability measures is too weak for this purpose. Therefore, we
have to use a stronger kind of convergence. which we will call pointwise
convergence of probabiliry measures.

To stay close to the original definition of consistency for finite extensive form
games. in an appropriate consistency concept almost all local strategies and beliefs
in the supporting sequence of assessments should converge pointwise to the
original local strategies and beliefs. We call this restriction condition C. In a finite
extensive form game, a completely mixed assessment induces a positive probabil-
ity on every node in the tree. If we consider an infinite signaling game as a tree
where the number of nodes may be (uncountably) infinite, a completely mixed
assessment should induce a positive probability on every non-empty. open set of
nodes in the tree. This requirement is formalized in condition B. We call a
consistency concept appropriate if it satisfies the three conditions A, B and C.

After introducing infinite signaling games in Section 2. we formulate conditions
A, B and C in Section 3 and explain why these conditions are sensible. In Section
4. a particular consistency concept. called strong consistency. is introduced and is
shown to be appropriate.

In addition. we provide a characterization of strongly consistent assessments in
Section 5. This characterization states that an assessment is strongly consistent it
and only if it is Bayesian-consistent and the local beliefs following messages that
lie isolated in the message space are absolutely continuous with respect to the a
priori probability distribution on the types. This characterization plays a crucial
role in the remainder of the paper. A consequence of this characterization is, for
example. the observation that strong consistency and Bayesian consistency are
equivalent in signaling games where the message space contains no isolated points
or the type space is discrete.

In Section 6 we show that conditions A, B and C imply the conditions in this
characterization. As a consequence. every appropriate consistency concept in
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infinite signaling games is a refinement of strong consistency. Moreover, we
provide an example that shows how strong consistency can exclude some sequen-
tial equilibria in signaling games where strong consistency is nof equivalent to
Bayesian consistency.

In Section 7 we give a definition of structurally consistent assessments in
infinite signaling games that is, from our viewpoint, a natural implication of the
original idea of structural consistency as given by Kreps and Wilson (1982). We
conclude this paper with a characterization of the class of structurally consistent
assessments.

Noration

For a metric space X, .#(X) is the set of all finite measures on X and 2(X)
denotes the set of probability measures on X. By 8, we denote the Dirac measure
on the point x€ X. For an £>0 and an x € X the g-neighborhood of x is
denoted by U/(x). Furthermore, by a v b we denote the maximum of two
numbers a and b.

A metric space X is called separable if it contains a countable dense subset. A
Borel subset of X is denoted by X;.

2. Preliminaries

In this section we present the model of an infinite signaling game. This model,
which is very similar to that of Manelli (1994), is in our view a natural extension
of the finite model.

2.1. Infinite signaling games

An infinite signaling game (from now on simply called signaling game) is a
sextuple (T. M. A, u,, u,. 7). where T, M and A are complete, separable metric
spaces, u, and u, are measurable real functions on T X M X A, and 7 is a strictly
positive probability measure on T (i.e. 7 puts a positive weight on every
non-empty, open subset of T).

The game is played according to the following rules: first, player I's type is
determined by nature according to the a priori distribution 7. After observing his
type, player 1 sends a message, m € M. Being ignorant of player 1’s type, player 2
responds to this message with an answer. a € A. Finally. the payoffs for both
players are given by (¢, m, a) and u,(r. m, a). respectively.

2.2. Strategies and beliefs

A behavior strategy for plaver 1 is a mapping o, : T —52(M ), such that the
function ¢ — o (r)(My) is measurable on T for every My. So. for every type ¢,
o,(1) defines a probability measure on the message space M.
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A behavior strategy for plaver 2 is a mapping o, : M —2( A). such that the
function m — o{m} Ag) is measurable on M for every A,. For every message
m, o,(m) defines a probability measure on the answer space A.

The probability measures o (1) and o,(m) are called local strategies.

A pair o =(0,, o,) is called a behavior strategy profile (BSP).

A belief system is a mapping B: M —A(T), such that the function m —
B(mXTy) is measurable for every Ty.

For a message m and Borel set T. B(mXT,) can be interpreted as the
(subjective) probability that player 2 assigns to the event that player 1 has a type
in Ty if he observes the message m. The probability measures B(m) are called
local beliefs.

2.3. Sequential rationality and Bavesian consistency

A pair (o, B) is called an assessmenr. An assessment (o, 8) is called
sequentially rational if the local strategy o (1) maximizes player 1's expected
payoff for every t& T and if at every message m, the local strategy o,(m)
maximizes player 2's expected payoff, given his beliefs about player 1's type.
Formally, if for every 1T and u €2(M):

[4[14”'(’- m. a) doy(t) doy(m) = /,\fwul(’- m. a) dp doy(m).

and if for every me M and a €(A):

fAfruz(t. m. a) dB(m) do,(m) 2[3‘[[‘143(1. m, a)dB(m) da.

Note that o,(¢) in the first integral does nor mean that we integrate over ¢. In this
integral, r is fixed, and we integrate over m with respect to the probability
measure (7).

A BSP ¢ induces the probability measure 77 on T X M defined by

a1 (Ty X My) ==f o (1) (M) dr.

B

Hence, 7 “(Ty X My) is the probability that player 1 has a type in Ty and sends a
message in M. given the fact that ¢ is played.
We denote by P“ the marginal distribution on M corresponding to 7. Hence,

P7(My) fo(fl(’)(MB) dr

is the probability that a message in M, will be sent if o is played.
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An assessment (o, ) is called Bavesian-consistent it 8 is a conditional
distribution for 7 “. This means that for all 7, X M :

| BUm)(Ty) dP =77 (T, x My,).

My,

In finite extensive form games. Bayesian consistency completely determines the
beliefs at all information sets that are reached with positive probability. The
crucial difference between Bayesian consistency in finite extensive form games
and Bayesian consistency in infinite signaling games lies in the fact that in infinite
signaling games. it puts restrictions on the behavior of beliefs at collections of
information sets rather than at individual information sets.

An assessment (. B) is called a sequential equilibrium if 1t 1s sequentially
rational and Bayesian-consistent. However. a sequential equilibrium does not
always exist, as is shown by an example of van Damme (1987).

3. Minimal requirements for consistency concepts

As mentioned earlier. we investigate scveral possibilities 1o define consistency
of assessments in infinite signaling games. Ot course. there are many different
ways to do this. but not all of them are equally meaningful. To decide whether a
given consistency concept is appropriate. we develop a system of minimal
requirements that such a concept should satisty.

Formally speaking. a consistency concept is a mapping ¢ that assigns to every
signaling game I a set ¢(I") of assessments. An assessment in (1) is called
CORSIstent W.r.t. .

An appropriate consistency concept should. trom our point of view, retlect the
idea of consistency as it was defined by Kreps and Wilson (1982) for finite
extensive form games. This requirement can be formalized by saying that a
consistency concept ¢ should have the following canonical form:

An assessment (. B) is consistent w.r.l. ¢ if and only if there is a sequence
(o*. B*), -, of Bayesian-consistent assessments such that

(1) (a*. B*) is completely mixed for every k and

Q) (ot BY), .. converges 1o (a. B).

This canonical form does not induce a unique consistency concept. since it
depends on the way we define completely mixed assessments and convergence of
assessments. The particular definitions of completely mixed assessments and
convergence of assessments used in ¢ are called complere mixedness w.r.r. ¢ and
contergence w.r.l. ¢, respectively.
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However. we will not regard every concept ¢ satisfying this canonical form as
appropriate. for reasons to become clear later. More precisely, we will impose
further requirements labeied as conditions A, B and C.

3.1. Consistency should imply Bavesian consistency

First of all. an appropriate consistency concept should aiways imply Bayesian
consistency.

Condition A. Every assessment that is consistent w.r.t. ¢ should be Bayesian-con-
sistent.

This condition may seem easy to tulfill. but. as we show later in this section, we
need a rather strong convergence concept in order to satisfy this requirement.
Weak convergence of probability measures. tfor example. is not strong enough for
this purpose.

3.2, Restriction on completely mixed assessments

Next, we put a restriction on the definition of completely mixed assessments. In
Selten’s (1973) article about perfect equilibria. completely mixed behavior strate-
gies are used because they induce a positive probability on every node in the tree
of a finite extensive form game.

A signaling game can also be interpreted as an extensive form game with a
possibly infinite number of nodes. The nodes that follow the actions of player |
are given by pairs (1. m) & T X M. Of course. in general. it is not possible to
require that player 1's strategy induces a positive probability on every single node
in T X M. This condition cannot be satisfied i, for example. T X M is uncount-
able. However. Simon and Stinchcombe (1995) discuss a very natural way to
define completely mixed strategies in the infinite case. They call a mixed strategy
in an infinite normal form game of full support it it puts positive weight on every
non-empty. open subset of pure strategies.

Combining the ideas of both papers. we arrive at the following condition.
which says that a completely mixed assessment in a signaling game should always
induce a positive probability on every non-empty. open subset of nodes (1. m).

Condition B. Every ussessment { . ) that is completely mixed w.r.t. ¢ should
have the property that

| anay) dr>o.

B

for every non-empty. open subset (T, M) € T X M.
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One possible way to define completely mixed assessments is to say that an
assessment (o, B) is completely mixed if the local strategy o (1) is a strictly
positive probability measure on M for every r. We call such assessments
pointwise completely mixed. Obviously, this definition satisfies condition B.

An important property of completely mixed assessments in finite extensive
form games is the fact that they always induce strictly positive beliefs at every
information set if the assessment satisfies Bayesian consistency. In an infinite
signaling game, an assessment that is pointwise completely mixed and Bayesian-
consistent does not necessarily have the property that the local belief B(m) is
strictly positive for every m. However, a similar but somewhat weaker property
can be shown. It turns out that for every non-empty. open subset T, the set
{m| B(mXTy) > 0} is dense in M.

3.3. Why is weak convergence not strong enough?

A possible convergence concept that can be used in a consistency concept is the
so-called weak convergence of assessments. We say that a sequence (o *. B*), _y,
of assessments converges weakly to an assessment (o. B8) if (o!(1)), oy, con-
verges weakly to /(1) for every t. (o (m)), ., converges weakly to o,(m) for
every m and ( B*(m)), , converges weakly to B(m) for every m.

Although weak convergence seems a very natural convergence concept in this
situation, the following example shows that even the consistency concept that
makes use of weak convergence and pointwise completely mixed assessments
does not imply Bayesian consistency and can therefore not be appropriate.

Example 1. Let ¢ be the consistency concept induced by pointwise complete
mixedness and weak convergence. Let I" be a signaling game in which T=M =
[0. 1] and 7 is the uniform distribution on 7. We denote the uniform distribution
on [0, 1] by wu. and for an interval 7 [0, I] the uniform distribution on [ is
denoted by u,.

Now, we construct an assessment (. B) that is consistent w.r.t. ¢ but not
Bayesian-consistent.
Let the behavior strategy o, and the belief system 3 be given by

o(1)=u forevery t.
%“[O.I/Z] + %u[l,,,z_”~ it me Q.

B(m) =

SRPRIE it me Q.

Furthermore, we choose an arbitrary behavior strategy o, for player 2.
The assessment (¢, B8) is not Bayesian-consistent since

'/[-OA]]‘B(m)([O* ydu="
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but
[ oo, 1)) du="1.
[0.1/2]

To show that (o, B) is consistent w.rt. ¢. we construct a sequence
(0%, B*) e, of assessments that are Bayesian-consistent and pointwise com-
pletely mixed such that (o *, B*), ., converges weakly to (. B).

For every ke N, let M*:={0, 1/k, 2/k.....(k—1)/k} and let u* be the
probability measure on M that puts probability 1/k on every point in M*. It can
be shown that the sequence ( u*), ., converges weakly to u. (See, for example.
Example 25.3 in Billingsley, 1986.)

For every k. we define o/ and B* by

. - Tu+tuf ifr<
(=4, if 1>

tol— tuf—

) 2 s
IW[(’-'/Z] + Uy gy EmE M*.

B (m) =
( \14[0_1/2]. if meM*.

Obviously, o/*(1) is strictly positive for every . and the sequence (& (1)), < .
converges weakly to o (1) for every 1. To show that ( B*(m)), .. converges
weakly to B(m) for all m, we distinguish two cases.

If m & Q, then it follows that m & M* for every k. By construction, 8*(m) =
B(m) for all k, which implies that 3*(m) converges weakly to B(m).

For the case m & (). we need the following lemma, which is formulated as
Theorem 2.3 in Billingsley (1968).

Lemma 3.1. Let X be a metric space and w. ', u*.... probability measures on
X. Then, the sequence ('), .., converges weakly to w if and only if every
subsequence of ('), -y contains a further subsequence that converges weakly to
“.

Now. let m € @ and (B*(m)), .., a subsequence of ( B*(m)), .. We can
find a further subsequence ( 8% (m)), o, such that m € M*" for every k", which
implies that 8% (m) = B(m) for every k”. It follows that ( B*'(m)), _ ,, converges
weakly to B(m). By Lemma 3.1 ( *(m)), ., converges weakly to B(m).

Finally, it can be shown that (o *. 8*) is Bayesian-consistent for every k. This
implies that (o, B) is consistent w.rt. . [0

From the above example we learn that the “weakness™ of weak convergence lies
in the fact that the expected value of a bounded function w.r.t. a weakly
convergent sequence of probability measures converges only to the expected value
w.r.t. the limit measure if this function is continuous. However, the functions that
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occur in signaling games are typically not continuous. Therefore. we introduce a
sharpening of weak convergence. called pointwise convergence of probability
measures. which preserves the expected value of every bounded (continuous or
non-continuous) function in the limit.

3.4. Pointwise convergence of probabiliny meusures

Let X be a metric space and ( &'), ., be a sequence of probability measures
on X. We say that (,uf)A o v, Converges pointwise to a probability measure u if

Al_in”ﬂ(XB) = u(Xg).

tor every Borel set X,,.

Obviously. every pointwise convergent sequence is also weakly convergent.
since weak convergence requires only the equation above to be true for Borel sets
X in which the boundary has measure zero under wu.

If we consider the strong metric on probability measures given by

d( . v)=sup{l u( Xy) — v( X,) || X, measurable},
it 1s clear that convergence w.r.t. the strong metric implies pointwise convergence.
The following lemma. which is proved in the appendix, shows that pointwise
convergence can also be defined by convergence of integrals of bounded and
measurable functions. '

: 5
Lemma 3.2. Let X be a complete separable metric space and . w'. p°.. ...
probablity measures on X. Then (u*), .. converges pointwise to w if and onlv if

lim [ fdut= ffdu.
ko=l y X
Jor every bounded and measurable function f.

A similar characterization holds for weakly convergent sequences: the sequence
(") ., converges weakly to w if and only if the equation in the lemma is true
for every bounded and conzinuous function f.

In the next section we show that the pointwise convergence concept enables us
to find an appropriate consistency concept.

3.5. Restriction on convergence of assessments

In view of the fact that strategies and beliefs in signaling games typically
induce non-continuous functions. we regard pointwise convergence as a natural

' We thank Peter Wakker for this proof.
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convergence concept to define consistency. As a minimal condition for an
appropriate consistency concept. we require that almost all local strategies and
local beliefs in the supporting sequence of assessments should converge pointwise
to the local strategies and local beliefs in the limit assessment.

Condition C. Convergence of assessments w.r.t. ¢ should be defined in such a
way that. whenever (o*. B*), .. converges to (. B) w.rt. ¢. there is a dense
subset in T such that (o*(1)), , converges pointwise to o (1) for every 1 in this
dense subset and ( B*(m)), . - converges pointwise to B(m) for every m in some
dense subset of M.

3.6. Appropriate consistency concepts

The final condition completes the framework that we use in our search for
appropriate consistency concepts.

Definition. We call a consistency concept ¢ dappropriate if it has the canonical
form and satisfies conditions A. B and C.

4. Strong consistency

In this section we present a particular consistency concept. which we call strong
consistency.

We call an assessment (o. B) stronglv consistenr if there 1s a sequence
(0. B*), .. of assessments that are Bayesian-consistent and pointwise com-
pletely mixed such that (o (1)), _- converges pointwise to o (1) for every 1 and
( B*(m)), . . converges pointwise to 8(m) for every m.

To show that this is an appropriate consistency concept. we only have to prove
that strong consistency implies Bayesian consistency since it is clear that it
satisfies conditions B and C. The proof of this fact is based on the following
lemma.

Lemma 4.1. Let X be a complete. separable metric space. { u*), o« sequence of
probability measures that converges poinbwise 1o a probabilitv measure u. and
(f‘)k_g: a sequence of measurable functions from X to [0. 1] that conrverges
pointwise to a measurable function f. Then

lim f\j" dut = f\:f‘d,LL.

Ao >
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Proof. Let &> 0 be given. We can find a compact subset K with w(K)> 1 —
e, W'(K)> 1 — ¢ for k large enough, and | f*(x) — f(x)| < ¢ for all x € K and
k large enough. The latter follows from the fact that pointwise convergence of
functions implies almost uniform convergence. Moreover, the pointwise conver-
gence of (u*), _., implies that | [, f du* — [, fdul| < & for large k. But then.
for large &,

[t = [raul <t f st aut= [ rap s paut = [ 7 dul

<[Iff=fldg+ [ 1f —fldpt+e
fl\' ' # /\’I\ '
<g- l+e+e.

which leads to the conclusion that

ko wly

1imffA d,u"=/fd;u. O
X

To show that strong consistency implies Bayesian consistency, we need one
further lemma. which can be found as Exercise 18.25(d) in Billingsley (1986).

Lemma 4.2, Let T. M be metric spaces. B a measurable function on M. 7 a
probabiliry measure on T. o : T —P(M) such that the function t — o (it X My) is
measurable for every My and let the probability measure P on M be given by

P(My) = j;(f(r)(MB) dr. forevery My.

Then we have

fMB(m) dP:fT[fMﬁ(m) drr(r)] dr.

Lemma 4.3. Let (a*. B*), -, be a sequence of Bavesian-consistent assessments
such that Ca (1)), ., converges pointwise 10 o (1) for every t and (B*(m)), -+
converges pointwise to B(m) for everv m. Then the assessment (o, B) is
Bavesian-consistent.

Proof. Let Ty and My be Borel sets in 7 and M. respectively. First, we show that

lim [ B4(m)(Ty) dP™" = [ Bm)(T,) dP”.
v M,

k=xda,

Using Lemma 4.2 we obtain:

fMHB(m)(TB) dP"=/T[[MB/3(m)(TB) drrl(t)} dr.
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and
fMHBk(m)(TB) dP"‘:/T[/MBBk(m)(TB) dof(1)| dr.

Since the functions m — B*(mXT,) are measurable functions from M to [0, 1]
converging pointwise to the function m ~ B(mX}Ty). Lemma 4.1 implies

lim | B4 (m)(Ty) do () = | B(m)(Ty) do(1).

k==2uy,

Since this holds for every ¢, it follows with the dominated convergence theorem
that

nmf BE(m)(T,) dpff‘:[

[f B{mY(Tg)ydo(t)|dr
K= =20, Ty M,
= [ B(m)(Ty) dP".
My
Furthermore. the functions ¢ — o (X My) are measurable functions from 7' to

[0. 1. which converge pointwise to the function t — o (1}(M}). By the dominated
convergence theorem. we obtain:

k—xdT

lim [ of(1)(M,) dr= [ o,(1)(My) dr.
B TB

Combining these two results and using the fact that (o*. B*) is Bayesian-con-
sistent leads to the conclusion that

f (1) (M) dr = 1imf o (1)(My) dr=lim [ B (m)(Ty) dP”
Ty koot k== py

= [ BOm)(Ty) dP".

My

Since this holds for arbitrary Ty and My it follows that (. 8) is Bayesian-con-
sistent. O

From this lemma it follows directly that strong consistency implies Bayesian
consistency.

Corollary 4.4. Every strongly consistent assessment is Bayvesian-consistent.
This leads to the following conclusion.

Corollary 4.5. The strong consistency concept is appropriate.
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5. Characterization of strong consistency

In this section we give a characterization of strongly consistent assessments.
Besides the fact that this characterization gives good insight into the structure of
the set of strongly consistent assessments. it can be used later to show that every
appropriate consistency concept is a refinement of strong consistency.

Before formulating this result we first consider the topological structure of a
separable metric space. We formulate several properties of such spaces in terms of
the message set M.

A point m € M is called isolated it {m} is an open subset of M. The set of all
isolated points of M is denoted by M, .. Note that m € M, if and only if there is
an &> 0 such that M N U(m) = {m}. A point in M that is not isolated is called
an accumulation point of M and M, denotes the set of all accumulation points
of M.

In the proof of Theorem 5.2 we make use ot the following property of
separable metric spaces.

Lemma 5.1. Let M be a separable metric space and let M~ be a countable dense
subset of M. Then
(M IfmeM NM
(2) AMM‘ M.

then M~ \A{m} is a dense subset of M.

accu®

Theorem 5.2. Ler I' be a signaling game and let (o . B) be a strongly consistent
assessment. Then (. B) is Bavesian-consistent and B(m) is absolutely continu-
ous with respect to 1 for every isolated point m € M.

Proof. We already know that strong consistency implies Bayesian consistency.
Now. let (. B) be a strongly consistent assessment with a supporting sequence
(o*. B"), ., and let me M. Then. for a Borel set T, with 7(T) =0. the

Bayesian consistency of (¢ *. 8*) implies that
BHm(Ty) P (m) = | B (Ty) 4P =fl,“(r.*(/)<m> dr=0.
Because {m} is an open subset of M. o *(1)(m) > 0 for all 1. Hence.
P (m) = fl‘(r,‘( ty(m) dr> 0.
and
f ol (1) (m) dr
Ty

g T,)y=—"—/¥—=24.
B (m)(Ty) P
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Since this relation holds for any k. B(mXT,)=0. So B(m) is absolutely
continuous with respectto 7. 0O

The foregoing theorem describes a condition that 1s necessary for an assessment
to be strongly consistent. In the next theorem we show that this condition is also
sufficient.

Theorem 5.3. Let 1" be a signaling game and let (. B) be an assessment. If
(0. B) is Bavesian-consistent and B(m) is absolutely continuous with respect 1o
T for everv isolated point m € M. then (o, B) is strongly consistent.

The proot of this theorem will be based on three lemmas. First. we need some
notation.

Let M ={m,. m,....} be a countable dense subset of M and for every
me M, . let b(m):T— R be a density function of B(m) with respect to 7 (i.e.
B(mXTy) = [ bm)t}yd7 for all Ty). Note that Radon-Nikodym's theorem
guarantees the existence of this density function.

For k € \, we define the mapping &' : T —.#(M) by

| | 1 1
GHON M = o (DM + — Z — Z jlh(m,)([)vk+—
ke Pzt R Y k
mo= My M
Then. lim, ,, &/(:)X(M)= 1. because for all 4:
1 1 | 1 | 1
<o (M) 1T+ =Y =lk+—|=1+]|-+= L=
k- e k k O I

Note that £, 1/i" is finite since M~ is countable. For very k € N and r € T. let
RY1):=1/6M1)XM). Obviously. 0 <R* <1 is measurable on T for all k and
lim, ,, R*:)=1 forany 1.
We consider the behavior strategy. o' : T —.2(M). with
af (1) (M) = RN1) -G (1)(My).
for all + and M. By Lemma 5.1. the set
aceu

M (ky={meM . |ikfuM_ M

is dense in M. So. if M, is an open set. then M “(k) N\ My # (. Hence.
oM(1)X M) >0 for every k and r. which implies that the probability measure
o M(1) is strictly positive.

Lemma 5.4. For everv 1. the sequence {a!(1)), .« converges pointwise to o ().
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The proof of this result is straightforward. For k€ N and Borel set 7T, we
introduce:

f al(t)(m) dr

L itmeM (k).
/(rl'(t)(m) dr

BH(m)(T,) = . (5.1)
fR )y dB(m)

it meE M (k)

fTRA(r) dB(m)

Note that the two denominators in this definition are non-zero. If, for instance,
fro M (tXm) dT=0 for an m € M " (k). then o/ (s}m) =0, 7 almost everywhere.
However. by construction. o'(1)(m) > 0 for all 1.

Lemma 5.5. For everv m. the sequence (Bk(rn))kggl conrerges pointwise 1o

Blm).

Proof. (a) If m& M. then m& M (k) for large k. Then the dominated
convergence theorem implies that for all T it holds that

J dB(m)
klinlﬁk(ivz)(TB) = ———— = B(m)(T}).
/ dB(m)
T

(b) Let me M, and let 7 be fixed. Then {m} is a Borel set and

ING

f (r]A(r)( m
TB

—fR(I) a'(r)(m) dr

1

| R‘(t)[b(m)(z)\/k+z

I
= [ RU(1)- o (1)(m drt |

Ty ! Ty

(5.2)

Next we distinguish two cases.
(b1) Suppose that [, o,(rXm) d7> 0. By the dominated convergence theorem:

lim/ R*(1)or (1) m) d7=/ a{ry(m)dr. forall Ty,
ko= I‘H 7‘”
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Hence, (5.1) in combination with (5.2) implies that

/T o(t)(m) dr
lim B*(m)(Ty) = — :
‘ fral(r)(m) dr

The Bayesian consistency of (¢. 8) implies that
[ () (m) dr= [ B(m)(T,) dP" = B(m)(Ta) [ (1) (m) dr.
Ty {m} T
So
[. o(1)(m) dr

B(m)(Ty) = = lim B*(m)(Ty).
f_UI(I)(m) dr o

(b2) Suppose that [0 ()(m) dT=0. With (5.1) and (5.2) it follows that

/ R"(r)[b(_m)(r)\/kJrl
. k

B

dr

BH(m)(Ty) = :
dr

' i
fR"(t)[b(m)(t) vk + n
7
Together with the dominated convergence theorem this leads to

[ b(m)(t) dr
. T
fim B4 (m)(Ty) = =2 = B(m)(T}).
o b(m)(t)dr
[pem(1)
This completes the proof. O
Lemma 5.6. For any k. (¢*, B*) is Bavesian-consistent.

Proof. In this proof k € N is fixed. (a) For all 7;; and any Borel set My CM " (k).
[ BHm)(Ty) dP7 = L B (m)(Ty) P (m)
My meMy
/ al(t)(m) dr
Y L —— P"*(m)

IS
meMpy P (m)

=Y f(rl‘(r)(m) dr

me My Ty

[ ot (n)(My) dr,

TH

1l
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where the fourth equality is a consequence of the dominated convergence theorem.

(b) In this part of the proof we restrict ourselves to the set M’ := M\ M " (k).
First, we introduce for every Borel subset My of M’ the measure k(My) on T as
follows: for a Borel set 75,

K(M)(Te) = [ o(0)(M}) dr.
B
The Bayesian consistency of (. B8) implies that
K(M)(Ta) = [ BOm)(Ty) 47
With the help of Lemma 4.2 this leads to

fTHR‘(z) di( M) :fM [fTHR‘(r) dB(m)} dp.

’
B

Then for every Borel set My:

P (M) :flk*m-&ﬁ(r)(M.;) dT:L_R‘(r>-o.(r>(Mg) dr

:fR*(z) dr(M}) :] [[R‘(z) dB(m)} dpv.
T LT

So we may conclude that m — [; R*(r) d B(m) is a density function of P with

respect to P on M'. Hence. for all T:

J BTy dpr = | ,B*’(m)(m[flR‘(r) dB(m)] dp

My

fIR*(z) dB(m)

-/ [[_Rk(t)dﬁ(m)]dP"
My j;RA(f) dB(Iﬂ) 7

dP"zf R(1) dx( M)
TR

[ R*(t) dB(m)

/-M l’i JTI 3

= [ RY ) - o(n)(My) dr= [ o (1)(My) dr.

IB 7“
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(¢) Parts (a) and (b) imply that for all Ty and M:

| Bi(m)(Ty) aP
My

= B m)(Ty) dPT [ B (m)(Ty) dPY
MM k) MM

= [ ol (Mg M7 (k)) d7+j (f](r (Mg\M " (k)) dr
TH ]

= [ ol (n(My) ar
B
This completes the proof of the theorem. L

Corollary 5.7. Let I' be a signaling game and let (o. B) be an assessment. Then
(o, B) is strongly consistent if and onlv if (o. B) is Bavesian-consistent and
Bm) is absolutely continuous with respect to T for every isolated point m € M.

N
Using this characterization. we can investigate the consequences of strong consis-
tency in some special classes of signaling games.

Corollary 3.8. If the message space of a signaling game contains no isolated
points or the tvpe space Is discrete, strong consistency is equivalent 1o Bavesian
CONSIStency.

In particular, this holds for finite and discrete signaling games.

Corollary 3.9. If the message space of a signaling game is discrete and the type
space 1S not. then an assessment is stronglv consistent if and onlv if it is
Bavesian-consistent and B(m) is absolutely continuous w.r.t. T for every message
m.

6. Other consistency concepts

In the following theorem we show that every assessment that is consistent w.r.1.
some appropriate definition ¢ automatically satisfies the conditions of the charac-
terization in the previous section and is. therefore, strongly consistent. So, every
appropriate consistency concept is a refinement of strong consistency.

Theorem 6.1. Let ¢ be an appropriate consistency concept. If an assessment
(o, B) is consistent w.r.i. ¢ then (o, B) is Bavesian-consistent and B(m) is
absolutely continuous w.r.t. T for everv isolated point m.
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Proof. Let ¢ be an appropriate consistency concept and (o, 8) a consistent
assessment w.r.t. ¢ with a supporting sequence (o*, B8*),_.. Since ¢ is
appropriate, (0. 8) must be Bayesian-consistent.

Now, take an arbitrary isolated point m € M. Then, {m} is open and therefore
T X {m} is an open subset of T X M. By condition B;

P (m) = [l (1)(m) d7>0.
T
for every k. Since (a*, B*) is Bayesian-consistent. it follows that
BX(m)(Ty) - P (m)y= [ B*(m)dP” = [ af(s)(m) dr.
{m} Ty
for every Ty, which means that

[ (1) (m) dr

Ty

B (m)(Tg) = ;

(m)(Ty) = =

for every Ty. If 7(Ty) =0, we have B“(mXTy,) =0 for every k. Since m is in

every dense subset of M, condition C implies that 8*(m) converges pointwise to

B(m), which implies that B(mXTy)=lim, . B*(mXT,) =0. Hence, B(m) is
absolutely continuous w.r.t. 7. O

In view of Corollary 5.7. we arrive at the following conclusion.

Theorem 6.2. Everv appropriate consistency concept is a refinement of strong
consistency.

In the following example we consider a signaling game in which strong
consistency excludes some sequential equilibria. By Theorem 6.2 it follows that
every appropriate consistency concept excludes these equilibria.

Example 2. Let I' be a signaling game in which T=[0, 1], M ={y. n}. A =1{b, ¢}
and 7 is the uniform distribution on T. The payoffs are given by

u(r.m, a):=0, forall ¢, m, a.

t, if a=bh,
(1. m, a) = :
uy(r. m. a) {0. if a=c.
We define the assessment (o, 8) by

6., ifr=0,

\

i) = |8, if 1> 0.

ay(¥) =38,



A. Perea y Monsuwé et al. / Journal of Mathematical Economics 27 (1997) 425-449 445

o,(n)=35,.
B(¥) = d,.
B(n):=r.

It can be shown that (0. 8) is a sequential equilibrium. However. (¢. 8) is not
strongly consistent, since B( v) is not absolutely continuous w.r.t. 7. O

7. Structurally consistent assessments

Finally, we consider a different form of consistency as introduced by Kreps and
Wilson (1982). They call an assessment structurally consistent if for every
information set there is a behavior strategy profile such that this information set
will be reached with positive probability and the beliefs at this information set are
completely determined by Bayes™ rule. If we formulate this concept for signaling
games. we obtain the following definition.

Definition. An assessment (o. 8) is called structurally consistent if for every
m € M there is a BSP @ such that P7(m) > 0. and for every Ty:

[ @0 m) dr
TH

B(m)(Ty) = —
(m)(Ty) =~z

In the following theorem we characterize the class of structurally consistent
assessments in signaling games with at least two messages.

Theorem 7.1. For a signaling game with at least two different messages, an
assessment (. B) is structurally consistent if and only if, for every m, there is a
constant ¢,, > 0 such that for all Tg:

B(m)(Tg) <c,-7(Ty).

Proof. * =" Let (o. B) be a structurally consistent assessment and m a message
in M. By definition. there is a BSP & such that P”(m)> 0 and for any T:

f F(1)(m) dr

B

— < ,l
P (m) T P7(m)

Now choose ¢, = 1/P"(m).

<" Suppose, for every m. there is a constant ¢, > 0 such that for all 7, we
have B(mXTy) <<, - 7(Ty). Then, obviously. B(m) is absolutely continuous
w.r.t. T for every m.

B(m)(Ty) = 7(Ty).
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Let m € M and let H(m): T — R be a density function of B(m) with respect to
7. Then. for any Tj:

[ b(m) (1) dr=B(m)(Ty) <, 7(Ty) = [ ¢, d7.
TH

Hence, there is a Borel set Ty with 7(T,; ) = 1. such that &(m)1) < ¢, for all
1€ Ty . To define a behavior strategy @, for player 1. we take a message 71 # m
in M. If t+&T;. then let &,(r) be an arbitrary probability measure on M.
Otherwise, for a Borel set My:

1, WmeM,and meM,.
b(m)(1)
“(—. if meM, and m & M,.
(.
FOM) =1
l ! b{m)(1)
- Um&EM;and meM,.
(.H!
0, otherwise.
Then.
N - b(m)(1)
P7(m)y= 1| o()(m)dr= — dr
(m) =] @0 m) dr= | ==
b( m)([ [ |
j = —B(m)(T)=—>0.
B A

Furthermore, for any T
f o(t)(m)dr f a(ry(m)dr l/('mf b(m)(t) dr
Ty Ty Ty Tpm Ty

P7(m) P7(m) 1/¢,

= f b(m)(r) dr=B(m)(Ty).
TH
So (0. B) is structurally consistent. [

From the above theorem it follows that every structurally consistent assessment
(o, B) must have the property that the local belief S(m) is absolutely continuous
w.r.t. 7 for every m.

Consider. for instance, an infinite signaling game with 7= M = [0, 1], 7 equal
to the uniform distribution on 7 and an assessment (o, 8) in which B(0) = 3,,.
Such an assessment is ruled out by structural consistency, since B(0) is not
absolutely continuous w.r.t. 7.
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Appendix

Proof of Lemma 3.2. Tt can be shown easily that every sequence ('), .«
satisfying the condition in the lemma is pointwise convergent to u by choosing f
equal to the indicator function on the Borel set Xj,.

Now. let (u*), .. be pointwise convergent to u and let f be a bounded
measurable function on X. Without loss of generality. we assume that f: X —
(0, 1). For every k. we define the sets:

A,-(k):={.x‘_/“(x)2£}. i=0..... k

and

[
B/(k) = <= =1..... k.
(k)= \\\ <f(x) R
By the definition of the integral. we have for every k:
ki—1
ZT#(B,(k)) ffd#<2 p(B(k}).

i=1 1*1

Since

] | K
Z——w&ﬂkn — Lp(A(k)) and
/:I

=1

|
Z MBU)’—+—Z#

i= 1 i=1
it follows that
1

! » I &
% #(A,(/\’))S[\/ dps—+ ZE}M(“‘,(/\'))

HM>-

Similarly. we can show that

HM>~

1 1 L&
— "\ . : K — _ A :
DR = [ rdut = e g Dat(Ah)

These inequalities imply that
] K
[fdu = lim — 3 u( A, (k).
X k== ]\ =1
and

lim fd;i—lim—z,u A (k).

ko
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Therefore. it sutfices to show that

hm—Zu A(k)) = llm—Z/J. A (k).

=1 l* I

Assume that this were not true. Then, w.l.o.g.. there is a 6 > 0 such that

] &

]\Z (A (k) ——Zp.(A(l\ . for all k.

i=1 /—l

So, for every k. there is an integer /, < k such that | u*( A, (k) — u(A, (k)] = 8.
Without loss of generality, we may assume that u'( A4, (I\)) =8+ ,u(A (k) for
every k. Since 0 < (i /k) < 1. the sequence i /k contains a monotone convergent

subsequence. Without loss of generality. we assume that the sequence i, /k is
monotone and convergent.

Case 1. i, /k 1 r for some r<[0. 1]. Then. by construction. A, G+ 1) CA,k(k)
for every &, and

NA, =A={xIf(x)=r}.
.

Since u'( A, (k)= u'(A, (1) for | = k. it follows that
(A (K))=8+u(A (D). forlzk.
and. therefore,
limu'( A, (k)) =8+ limu(A,(1)). forevery k.
[— = * ’ {— =
By assumption lim,, w'(Xy) = u(Xy) for every Borel set Xz, so0

lim, ., /(A (k)= pu(A, (k)) Furthermore. by the monotone convergence theo-
rem, lim; ,u( A )= u( A). Combining these facts leads to the conclusion that

(A, (k)= 8+ u(A). forevery k.
However. this implies that

limu( A (k) =8+ u(A).

k— = :

which contradicts the fact that lim, ., w(A, (k)= u(A).

Case 2. i, /k | r for some r €[0. 1]. Then. by construction. A (k+ 1) DA,L(k)
for every k and

UA () =a={xlf(x)=r}
k

Since p'( A (k) = ;L‘/(A,-;(l)) for k> /. it follows that
p (A (k) =28+ u(A (). fork=1
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and

k]im w (A, (K))=8+u(A (). forevery (.

By the monotone convergence theorem. lim, .. w/(A,(k)) = u'(A). Together
with the inequality above, we obtain u'( A) > 8+ u( A (1)) for every [ which
implies that lim, . u'(A)> 6+ 1lim, ., u(A, (). However, this leads to a
contradiction, since lim, ,, u'(A)= u(A) and Iim, _, (A, (D) =u(A). O
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