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Abstract 

In this paper we investigate possible ways to define consistency of assessments in 
infinite signaling games, i.e. signaling games in which the sets of types, messages and 
answers are complete, separable metric spaces. Roughly speaking, a consistency concept is 
called appropriate if it implies Bayesian consistency and copies the original idea of 
consistency in finite extensive form games as introduced by Kreps and Wilson 
(Econometrica, 1982, 50, 863-894). We present a particular appropriate consistency 
concept, which we call strong consistency, and give a characterization of strongly consistent 
assessments, It turns out that all appropriate consistency concepts are refinements of strong 
consistency. Finally, we define and characterize structurally consistent assessments in 
infinite signaling games. 

JEL classification: C72, C73 

Kevwords." Signaling games: Consistency 

1. Introduct ion 

One of the most widely  applied classes of  games  in economics  is the class of  

signaling games.  A signaling game is a game of incomple te  informat ion where two 

players  are involved:  player  1 - the sender - moves  first and sends a message  to 

player  2 - the receiver  - who observes  the message and chooses  an answer.  

Player  1 has more information than player  2, which is mode led  by assuming that 
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player l ' s  type is drawn by a move of nature at the beginning of the game. player 
1 is informed about the outcome of this draw. but player 2 is not: the distribution 
of nature 's  move, however, is common knowledge. Player l ' s  message may serve 
as a signal to convey or hide information about player l ' s  type. Think, for 
instance, of player 1 as the seller of a car who is informed about the quality of the 
car, and of player 2 as the uninformed potential buyer who is to say yes or no to a 
sales contract specifying the price as well as warranty conditions. 

Signaling games - and, more generally, dynamic games of imperfect or 
incomplete information - are analyzed by considering not only the strategies of 
the players but also the beliefs that an uninformed player may have about his 
information sets. In a signaling game as described above, an assessment is a pair 
of strategies, together with a probabili ty distribution (beliefs), assessed by player 2 
over the possible types of player 1. Common to all kinds of Nash equilibrium 
refinements considered in the literature on signaling games is the sequetztial 
rationality requirement, which says that the players" strategies are best responses 
to each other, where player 2 maximizes his payoff, given his beliefs. Moreover, 
these beliefs must be consistent with Bayes'  rule whenever possible - i.e. at all 
information sets reached with positive probability, where these probabilities 
depend on the distribution of  nature 's  move and player l ' s  strategy. The latter 
property is called Bayesian consistency. 

In a finite signaling game an assessment is called a sequential equilibrium if it 
satisfies sequential rationality and Bayesian consistency (see Cho and Kreps, 
1987). 

An essential part in the definition of sequential equilibria for general (finite) 
extensive form games, as introduced by Kreps and Wilson (1982). is the consis- 
tency condition. Roughly, this means that the assessment can be approximated by 
a sequence of Bayesian-consistent and completely mixed assessments. This condi- 
tion is a kind of ' t rembling hand" condition: the beliefs of a player should be 
consistent, in the limit, with the beliefs he would have according to Bayesian 
updating if all players would "tremble'.  so that each of his information sets would 
be reached with positive probability. Just as is the case with perfect equilibria, the 
requirement is that beliefs be consistent with some trembles, not with all 
trembles. 

Moreover, consistency of  assessments can be viewed as a condition that 
requires the beliefs to reflect and respect the structure of information sets in the 
game. By, the structure of the information sets we mean the positions of the 
information sets in the game tree and the way different information sets are 
connected via actions and chance moves, in infinite extensive form games, such as 
infinite signaling games, the collection of information sets may be (uncountably) 
infinite. However, similarly to finite extensive form games, information sets in 
infinite extensive form games have specific positions in the (possibly infinite) 
game tree and are connected in a specific way. This is the reason wh 5 we think 
that the idea of consistency is also meaningful m infinite extensive form games. 
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It is well known that consistency is equivalent to Bayesian consistency in finite 
signaling games. This is why the definition of sequential equilibria for finite 
signaling games uses Bayesian consistency instead of consistency. 

In this paper we try to apply this idea of  consistency in infinite signaling games 
where the sets of types, messages and answers are complete separable metric 
spaces. In the last few years much attention has been paid to infinite signaling 
games; see, for instance, Mailath (1987, 1988) and Manelli (1994), to name just 
three. In contrast to finite extensive form games, it is not obvious how to define 
completely mixed assessments and convergence of  assessments in infinite signal- 
ing games. Since the concept of consistency, depends on the way in which these 
two concepts are defined, a whole variety of definitions for consistency is 
possible. A natural requirement ['or a consistency concept is that it should imply 
Bayesian consistency. This requirement is called condition A. It turns out that this 
condition heavily restricts the number of convergence concepts for assessments 
that can be used in the consistency concept. An example will show that weak 
convergence of probability measures is too weak for this purpose. Therefore, we 
have to use a stronger kind of  convergence, which we will call p o i n t w i s e  

convergence  ~:f probab i l i t  3' measures .  

To stay close to the original definition of consistency for finite extensive form 
games, in an appropriate consistency concept almost all local strategies and beliefs 
in the supporting sequence of assessments should converge pointwise to the 
original local strategies and beliefs. We call this restriction condition C. In a finite 
extensive form game, a completely mixed assessment induces a positive probabil- 
ity on every node in the tree. If we consider an infinite signaling game as a tree 
where the number of nodes may be (uncountably) infinite, a completely mixed 
assessment should induce a positive probability on every non-empty, open set of 
nodes in the tree. This requirement is formalized in condition B. We call a 
consistency concept appropr ia t e  if it satisfies the three conditions A, B and C. 

After introducing infinite signaling games in Section 2, we formulate conditions 
A, B and C in Section 3 and explain why these conditions are sensible. In Section 
4, a particular consistency concept, called s t rong  cons i s tency ,  is introduced and is 
shown to be appropriate. 

In addition, we provide a characterization of  strongly consistent assessments in 
Section 5. This characterization states that an assessment is strongly consistent if 
and only if it is Bayesian-consistent and the local beliefs following messages that 
lie isolated in the message space are absolutely continuous with respect to the a 
priori probability distribution on the types. This characterization plays a crucial 
role in the remainder of the paper. A consequence of  this characterization is, for 
example, the observation that strong consistency and Bayesian consistency are 
equivalent in signaling games where the message space contains no isolated points 
or the type space is discrete. 

In Section 6 we show that conditions A, B and C imply the conditions in this 
characterization. As a consequence, every appropriate consistency concept in 
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infinite signaling games is a refinement of strong consistency. Moreover, we 
provide an example that shows how strong consistency can exclude some sequen- 
tial equilibria in signaling games where strong consistency is not equivalent to 
Bayesian consistency. 

In Section 7 we give a definition of structurally consistent assessments in 
infinite signaling games that is, from our viewpoint, a natural implication of the 
original idea of  structural consistency as given by Kreps and Wilson (1982). We 
conclude this paper with a characterization of  the class of structurally consistent 
assessments. 

Notation 

For a metric space X, ~gg(X) is the set of  all finite measures on X and , ~ ( X )  
denotes the set of probability measures on X. By 6~ we denote the Dirac measure 
on the point x e X .  For an e > 0  and an x e X  the e-neighborhood of x is 
denoted by U~,(x). Furthermore, by a v b we denote the maximum of two 
numbers a and b. 

A metric space X is called separable if it contains a countable dense subset. A 
Borel subset of  X is denoted by X B. 

2. Preliminaries 

In this section we present the model of an infinite signaling game. This model, 
which is very similar to that of Manelli (1994), is in our view a natural extension 
of  the finite model. 

2.1. Infinite signaling games 

An infinite signaling game (from now on simply called signaling game) is a 
sextuple (T, M, A, u~, u 2, T), where T, M and A are complete, separable metric 
spaces, u~ and u, are measurable real functions on T ×  M × A, and r is a strictly 
positive probability measure on T (i.e. ~- puts a positive weight on every 
non-empty, open subset of  T). 

The game is played according to the following rules: first, player  l ' s  type is 
determined by nature according to the a priori distribution ~-. After observing his 
type, player I sends a message, m e M. Being ignorant of player I ' s  type, player 2 
responds to this message with an answer, a e A. Finally, the payoffs for both 
players are given by u~(t, m, a) and us(t, m, a). respectively. 

2.2. Strategies and belief$ 

A behaz'ior strategy for player 1 is a mapping o-~ : T - ~ ( M ) ,  such that the 
function t ~ o-l(t)(M B) is measurable on T for every M B. So, for every type t, 
o-~(t) defines a probability measure on the message space M. 
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A behaHor strategy.jbr player 2 is a mapping (r, : M ~ 3 ( A ) ,  such that the 
function m ~ o-2(m)(AB) is measurable on M for every A R. For every message 
m, o-2(m) defines a probability measure on the answer space A. 

The probabili ty measures o-l(t) and cry(m) are called local strategies. 
A pair o -=  (o-l, o-2) is called a behaHor strategy profile (BSP). 
A belief system is a mapping /3 : M ~ , ~ ( T ) ,  such that the function m 

/3(m)(T B) is measurable for every T B- 
For a message m and Borel set T B. /3(m)(Tu) can be interpreted as the 

(subjective) probabili ty that player 2 assigns to the event that player 1 has a type 
in T B if he observes the message m. The probability measures /3(m) are called 
local beliefs. 

2.3. Sequential rationality and Bayesian consistency 

A pair (o-, /3) is called an assessment. An assessment (o-, /3) is called 
sequentially rational if the local strategy o-~(t) maximizes player l ' s  expected 
payoff  for every t ~ T and if at every message m, the local strategy o-2(m) 
maximizes player  2"s expected payoff, given his beliefs about player l ' s  type. 
Formally,  if for every t • T and ~ • o ~ ( M ) :  

and if for every m ~ M and a • , ~ ( A ) :  

f4fff2(t,• m, a)d /3(m)do-_~(m)  _> f ~.u2(1. m, a ) d / 3 ( m ) d a .  

Note that try(t) in the first integral does not mean that we integrate over t. In this 
integral, t is fixed, and we integrate over m with respect to the probabili ty 
measure o'l(t).  

A BSP o- induces the probability measure 7r '~ on T × M defined by 

7r "(TB × M B ) : =  frB cr ' ( t ) (MB)  dz.  

Hence, 7r'~(TB × M B) is the probabili ty that player I has a type in T B and sends a 
message in M B, given the fact that o- is played. 

We denote by P'~ the marginal distribution on M corresponding to 7r'L Hence, 

: J T  

is the probabili ty that a message in M B will be sent if o- is played. 
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An assessment ((r, /3) is called Bavesi(m-con.~istent if /3 is a conditional 
distribution for 7r'*. This means that for all T~ × M~: 

£ /3(,,,)(f,,) dP '~: ~'~(T~XM,). 

In finite extensive form games, Bayesian consistency completely determines the 
beliefs at all information sets that are reached with positive probability. The 
crucial difference between Bayesian consistency in finite extensive form games 
and Bayesian consistency in infinite signaling games lies in the fact that in infinite 
signaling games, it puts restrictions on the behavior of beliefs at collections of 
information sets rather than at indiHdual  information sets. 

An assessment ((r, /3) is called a sequential  eq , i l ibr ium if it is sequentially 
rational and Bayesian-consistent. However. a sequential equilibrium does not 
always exist, as is shown by an example of van Damme (1987). 

3. Minimal requirements for consistency concepts 

As mentioned earlier, we investigate several possibilities to define consistency 
of assessments in infinite signaling games, Of course, there are many different 
ways to do this, but not all of them are equally meaningful. To decide whether a 
given consistency concept is appropriate, we develop a system of minimal 
requirements that such a concept should satisfy. 

Formally speaking, a consistency concept is a mapping ~ that assigns :o every 
signaling game 1" a set ¢ ( P )  of assessments. An assessment in 4 ( I  ~) is called 
('onsisten[ ~v.r.l. sc. 

An appropriate consistency concept should, from our point of view, reflect the 
idea of consistency as it was defined by Kreps and Wilson (1982) for finite 
extensive tbrm games. This requirement can be formalized by saying that a 
consistency concept ,# should have the following canonical form: 

"'An assessment (~r. /3) is consistent ,a.r.t. sc if and only if there is a sequence 
(o- k, /3 ~)k ~ < of  Bayesian-consistent assessments such that 

( I ) (or ~, /3 ~) is completely mixed for every /, and 
(2) (or< /3a)~, conrerges t(, (o-, /3).'" 

This canonical form does not induce a unique consistency concept, since it 
depends on the way we define completely mixed assessments and convergence of 
assessments. The particular definitions of completely mixed assessments and 
convergence of assessments used in ¢ are called complete mi_vedne,~s w.r.t, q: and 
com'ergence w,r.t. ~, respectively. 
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However. we will not regard every concept ~ satisfying this canonical form as 
appropriate, for reasons to become clear later. More precisely, we will impose 
further requirements labeled as conditions A, B and C. 

3.1. Consis tency should imply Bayesian co~tsistencv 

First of all, an appropriate consistency concept should always imply Bayesian 
consistency. 

Condition A. Every assessment that is consistent w.r.t. ¢ should be Bayesian-con- 
sistent. 

This condition may seem easy to fulfill, but, as we show later in this section, we 
need a rather strong convergence concept in order to satisfy this requirement. 
Weak convergence of probability measures, for example, is not strong enough for 

this purpose. 

3.2. Restrict ion on complete ly  mLved assessment,s 

Next, we put a restriction on the definition of completely mixed assessments. In 
Selten 's  (1975) article about perfect equilibria, completely mixed behavior strate- 
gies are used because they induce a positive probability on every node in the tree 
of a finite extensive form game. 

A signaling game can also be interpreted as an extensive form game with a 
possibly infinite number of nodes. The nodes that follow the actions of player I 
are given by pairs (t. i n ) ¢  T × M .  Of course, in general, it is not possible to 
require that player l ' s  strategy induces a positive probability on every single node 
in E × M. This condition cannot be satisfied if, for example,  f × M is uncount- 
able. However, Simon and Stinchcombe (1995) discuss a very natural way to 
define completely mixed strategies in the infinite case. They call a mixed strategy 
in an infinite normal form game o f f i d l  support if it puts positive weight on every 
non-empty, open subset of pure strategies. 

Combining the ideas of both papers, we arrive at the following condition, 
which says that a completely mixed assessment in a signaling game should always 
induce a positive probability on every non-empty, open subset of nodes (t, m). 

Condition B. Every assessment (or. /3) that is completely mixed w.r.t, q: should 
have the property that 

f l  o',( l ) (  M b )  d r > O ,  
B 

for every non-empty, open subset (T~, MI~) ~ T x  M. 
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One possible way to define completely mixed assessments is to say that an 
assessment (or, /3) is completely mixed if the local strategy cry(t) is a strictly 
positive probability measure on M for every t. We call such assessments 
pointwise  completely  mixed. Obviously, this definition satisfies condition B. 

An important property of completely mixed assessments in finite extensive 
form games is the fact that they always induce strictly positive beliefs at every 
information set if the assessment satisfies Bayesian consistency. In an infinite 
signaling game, an assessment that is pointwise completely mixed and Bayesian- 
consistent does not necessarily have the property that the local belief /3(m) is 
strictly positive for every m. However. a similar but somewhat weaker property 
can be shown. It turns out that for every non-empty, open subset T B the set 
{ml / 3 (m) (T  B) > O} is dense in m. 

3.3. Why is weak com'ergence  not strong enough? 

A possible convergence concept that can be used in a consistency concept is the 
so-called weak concergence o f  assessments.  We say that a sequence (or k. /3 k)k ~ ~:J 
of assessments converges weakly to an assessment (o-, /3) if (O'lk(t))~ ~ con- 
verges weakly to o-t(t) for every t, (cry(m)) k ~ ~j converges weakly to cr2(m) {'or 

every m and (/3k(m))k~ ~j converges weakly to /3(m)for  every m. 
Although weak convergence seems a very natural convergence concept in this 

situation, the following example shows that even the consistency concept that 
makes use of weak convergence and pointwise completely mixed assessments 
does not imply Bayesian consistency and can therefore not be appropriate. 

Example  1. Let q~ be the consistency concept induced by pointwise complete 
mixedness and weak convergence. Let F be a signaling game in which T = M = 
[0, 1] and ~- is the uniform distribution on T. We denote the uniform distribution 
on [0, 1] by u, and for an interval I c [ 0 ,  1] the uniform distribution on 1 is 
denoted by u 1. 

Now, we construct an assessment (~r. /3) that is consistent w.r.t. ¢ but not 
Bayesian-consistent. 

Let the behavior strategy o-~ and the belief system /3 be given by 

c r , ( t ) : = u  forevery  t, 

' l u  2 
3 [o,1,,'21 + 5U[ l , ,2.1]  - i f  m ~ Q .  

/3(m) := 
u[0.1.21, if m ¢ Q. 

Furthermore, we choose an arbitrary behavior strategy o- 2 for player 2. 
The assessment (o-, /3) is not Bayesian-consistent since 

"[0/.,]/3(m)([0" 'e]) du : ', 
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but 

f[[0 I I ] )  d u  = 
.1/2] 

To show that (o ' ,  /3) is consistent w.r.t. ,~, we construct a sequence 
(o  "k, /3k)k~,~ of assessments that are Bayesian-consistent and pointwise com- 
pletely mixed such that (or k, /3~)k ~ F::~ converges weakly to (or. /3). 

For every k ~ t ~ ,  let Mk:={O, l / k ,  2 / k  . . . . .  ( k - 1 ) / k }  and let #k be the 
probability measure on M that puts probability 1 /k  on every point in M k. It can 
be shown that the sequence (#k)~ ~ ~,~ converges weakly to u. (See, for example. 
Example 25.3 in Billingsley, 1986.) 
For every k, we define or1 k and /3k by 

O ' l k ( t )  : =  ~ H  + 7 #  " i f  t __< V.  
1 • i f t > ~  

[, • 
/3~(m) := Su[°""2]+~ull"2ll '  if m ~ M ~ "  

/u[0.1/21 . if m M t 

Obviously, trek(t) is strictly positive tbr every t, and the sequence (o~k(t))k~ p~ 
converges weakly to ~r~(t) for every t. To show that ( /3k(m))k~  ~ converges 
weakly to /3(m) for all m, we distinguish two cases. 

If m ~ Q, then it follows that m ~ M ~ tbr every k. By construction, /3k(m) = 
/3(m) for all k, which implies that /3~(m) converges weakly to /3(m). 

For the case m ~ Q. we need the following lemma, which is formulated as 
Theorem 2.3 in Billingsley (1968). 

Lemma 3.1. Let X be a metric space and #, #1  is2 . . . .  probabili O' measures on 

X. Then, the sequence (i~k)k ~ ~ concerges weakh" to # if and only if ecer3" 
subsequence o f  ( #~ )k ~ ~ contains a./hrther subsequence that concerges weakly to 

tx. 

Now, let m ~ Q and ( /3k ' (m) )~  ~,~ a subsequence of (/3k(m))k ~ ~. We can 
find a further subsequence (/3k"(m)) k ~ ~ such that m ~ M k'' for every k", which 
implies that /3k"(m) = /3 (m)  for every k". It follows that (/3k"(m))k ~ ~ converges 
weakly to /3(m). By Lemma 3.1 (/3k(m))k ~ ,:j converges weakly to /3(m). 

Finally, it can be shown that (o  -k, /3 k) is Bayesian-consistent for every k. This 
implies that (o-, /3) is consistent w.r.t, q~. [] 

From the above example we learn that the "weakness" of  weak convergence lies 
in the fact that the expected value of a bounded function w.r.t, a weakly 
convergent sequence of  probability measures converges only to the expected value 
w.r.t, the limit measure if this function is continuous. However, the functions that 
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occur in signaling games are typically not continuous. Therefore, we introduce a 
sharpening of weak convergence, called pointwise com'ergence o f  probabil i ty 

measures, which preserves the expected value of  every bounded (continuous or 
non-continuous) function in the limit. 

3.4. Pointwise concergenee o f  probab i l io  measure,s 

Let X be a metric space and (/.z x)k ~ ~ be a sequence of probability measures 
on X. We say that (/.z ~)~ ~ ~+ eom'erges pointwise to a probability measure # if 

lira # ~ ( X ~ )  = # ( X ~ ) ,  
, (  . ~  

for every Borel set Xu. 

Obviously+ every pointwise convergent sequence is also weakly convergent, 
since weak convergence requires only the equation above to be true for Borel sets 
X~ in which the boundary has measure zero under #. 

If we consider the strong metric on probability measures given by 

d( # .  ~,) := sup{I # ( X ~ )  - v ( X ~ )  I [ X~ measurable}, 

it is clear that convergence w.r.t, the strong metric implies pointwise convergence. 
The following lemma, which is proved in the appendix, shows that pointwise 
convergence can also be defined by convergence of integrals of  bounded and 
measurable functions. J 

Lemma 3.2. Let X be a complete separable metric space and la,, #1. tz2 . . . . .  

probabli  U measures on X. Then ( # ~ ) , ,  '+ conrer~es pointwise to # i ( a n d  onh' i[" 

f o r  ecerv bounded and measurable funct ion [. 

A similar characterization holds for weakly convergent sequences: the sequence 
/zk)ke ~ converges weakly to /2, if and only if the equation in the lemma is true 

for every bounded and continuous function f+ 
In the next section we show that the pointwise convergence concept enables us 

to find an appropriate consistency concept. 

3.5. Restrieti+m on eoncergence q(  assessmenl.s 

In view of the fact that strategies and beliefs in signaling games typically 
induce non-continuous functions, we regard pointwise convergence as a natural 

I We thank Peter VCakker for thi> proof. 
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convergence concept to define consistency. As a minimal condition for an 
appropriate consistency concept, we require that almost all local strategies and 
local beliefs in the supporting sequence of  assessments should converge pointwise 
to the local strategies and local beliefs in the limit assessment. 

Condition C. Convergence of assessments w.r.t. ~# should be defined in such a 
way that. whenever (o -~. /3k)kc % converges to (~r. /3) w.r.t. ~#. there is a dense 
subset in T such that (o'~k(t))k ~ e4 converges pointwise to o-~(t) for every t in this 
dense subset and (/3k(m))~ :. ~o converges pointwise to /3(m) for every m in some 
dense subset of M. 

3.6. Appropriate con.sistencv concepts 

The final condition completes the framework that we use in our search for 
appropriate consistency concepts. 

Definition. We call a consistency concept ~# appropriate if it has the canonical 
form and satisfies conditions A, B and C. 

4. Strong consistency 

In this section we present a particular consistency concept, which we call strong 
consistency. 

We call an assessment (or. /3) strongly consistent if there is a sequence 
(crk, /3k)a~,  of assessments that are Bayesian-consistent and pointwise com- 
pletely mixed such that (o-tk(t))~ ~ ~ converges pointwise to o-~(t) for every r and 
(/3k(m))~ ~ ~ converoes,_, pointwise to /3(m) for every, m. 

To show that this is an appropriate consistency concept, we only have to prove 
that strong consistency implies Bayesian consistency since it is clear that it 
satisfies conditions B and C. The proof of this fact is based on the following 
lemma. 

Lemma 4.1. Let X be a complete, separahle metric ~v?ace. ( #~ )~ ~ ~ a ,sequence (~[ 
probabi l iu  measures that conrerges pointwise to a probabi l iu  measure I*, and 
(.fk)~ ~ a sequence q/" measurable fimctions /?om X to [0, 1] that conrerges 

pointwise to a measurable f imction /'. Then 

lira [ , /~  dzx ~ : f~ /  d/l .  
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Proof. Let ~ > 0 be given. We can find a compact subset K with p , ( K ) >  1 - 
e, p 3 ( K )  > l - e for k large enough, and t j"k(x) - f ( x ) ]  < e for all x ~ K and 
k large enough. The latter follows from the fact that pointwise convergence of 
functions implies almost uniform convergence. Moreover, the pointwise conver- 
gence of ( /zk)~ ,~  implies that ] fx  f d ~  k -  fx,f.d/.tl < e for large k. But then. 
for large k, 

I fxfl~d.k- f / d ~  I _< I f /~d  ~ -  f /d  g~[+I f,/d g~- f /  dg I 

-',v " / X  
• " K  

< g . l + ~ : + ~ .  

which leads to the conclusion that 

limff a dv?=f/dl*. [] 
k ~ V X  • 

To show that strong consistency implies Bayesian consistency, we need one 
further lemma, which can be found as Exercise 18.25(d) in Billingsley (1986). 

Lemrna 4.2. Let T, M be metric spaces, [3 a measurable funct ion on M, r a 

probabilio" measure on T. cr : T ~ , ~ (  M ) such that the /~mction t ~ o'( t ){ Ms  ) is 

measurable f o r  e t e m  M B and let the probabil io '  measure P on M be given by 

P ( M  B ) : = £ ( r ( t ) ( M  B) d r ,  for every M B. 

Then we ha~'e 

S .{-,d.(,)]'.. 
Lemma 4.3. Let ((r k. /3k)k ~ ~:, be a sequence of. Bayesian-consistent  assessments 

such that ({rlk(t))~ ~: r:~ com'erges pointwise to {r](t) .fbr ecerv t and ( iSk( m))k ~ ~j 

c o m e r g e s  pointwise to ~ ( m )  .fi)r ecerv m. Then the assessment  (or, ~ )  is 

Bayesian-consistent.  

Proof. Let T u and M B be Borel sets in T and M, respectively. First, we show that 

= ~ ( m ) ( T B )  d P  '~ lira f /3~(,n)(TB) d P " *  f w ,  

Using Lemma 4.2 we obtain: 

d.-: d.]{,,], ... 
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and 

Since the functions m ,-> ~k(mXTv,) are measurable functions from M to [0, 1] 
converging pointwise to the function m ,-* ~ ( m X T  B), Lemma 4-. 1 implies 

limf /~k(,n)(TB)d~,k(t)= f.,9(,.)(T.)d~,(,). 
k --~ ~ ,441 

Since this holds for ever), t, i t  fol lows with the dominated convergence theorem 
that 

'im L ,'(m)(TB)dP"<=ir[f, /J(,,,)(TB)d.1(t)i d~" 
k ~ 7- M ~ l I~ 

=f~ p{m)(r.) d P " .  

Furthermore, the functions t ~ o'I~(t)(MB) are measurable functions from T to 
[0, 1], which converge pointwise to the function t ~ ~rl(t)(MB). By the dominated 
convergence theorem, we obtain: 

,!i~. f,..,<(,)( M.I d T :  f~/.,(, i( M.l d~'. 

Combining these two results and using the fact that (o "k. /3 k) is Bayesian-con- 
sistent leads to the conclusion that 

Sr o-i( t)(M~) dT=/, ~-'- >r~lim f o-ik(t)(MB) d.: N.I. dP" 

= f%/B(m)(TB)dP". 

Since this holds for arbitrary T B and M. it follows that (or. /3) is Bayesian-con- 
sistent. [] 

From this lemma it follows directly that strong consistency implies Bayesian 
consistency. 

Corollary 4.4. E terv  strongly consistent assessment is Bayesian-consistent.  

This leads to the following conclusion. 

Corollary" 4.5. The strong consistency concept is appropriate. 
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5. Characterization of strong consistency 

In this section we give a characterization of strongly consistent assessments. 
Besides the fact that this characterization gives good insight into the structure of 
the set of strongly consistent assessments, it can be used later to show that every 
appropriate consistency concept is a refinement of strong consistency. 

Before formulating this result we first consider the topological structure of a 
separable metric space. We formulate several properties of such spaces in terms of 
the message set M. 

A point m e M is called isolated if {m} is an open subset of M. The set of all 
isolated points of M is denoted by Mi,,,. Note that m ¢ Mi~,, if and only if there is 
an a > 0 such that M ~ Q.(m) = {711}. A point in M that is not isolated is called 
an accumulation point of M and M ...... denotes the set of all accumulation points 
of M. 

In the proof of Theorem 5.2 we make use of the following property of 
separable metric spaces. 

Lemma 5. I. Let M be a separable metric .spac~' aTut let M be a countable dense 

subset o f  M. Then 

(1) l f m ~ M  ~ M  ........ , then M \{n~} i.~ a den.se subset o / M .  
(2) Mi,,, c M  . 

Theorem 5.2. Let 1" he a sifnali7 ~, game aml let ( ~r. [3 ) be a strongly consistent 

assessment.  Then (~r. ~ ) is Bayesian-consistent  amt  /3(m) i,s ah,solutelv contimt- 

ous with rexpect to 7 /~r et'erv isolated point  717 ¢ M. 

Proqfi We already know that strong consistency implies Bayesian consistency. 
Now. let (or, /3) be a strongly consistent assessment with a supporting sequence 
(o  -k. /3k)k~ri and let m e M i ~  ..  Then, for a Borel sel T, with r ( T , ) = 0 ,  the 
Bayesian consistency of ( ~r ~, /3 ~) implies that 

/ 3 ~ ( m ) ( T ~ ) . P ' ~ ' ( m )  =1" /3a(m')(Tl~ ) d P  ' ~ = j "  c r ~ ( t ) ( m )  dr  O. 
J{ 

Because {171} is an open subset of M, cr~"(r)(m) > 0 for all t. Hence. 

and 

P" I,,,) j i ,#t ,} t , , l )  d : > O .  

£ ~v~( l)(,17) dr 
/3~( ,7,)( TB ) = : 0 

p" ' ( , . )  
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Since this relation holds for any k, / 3 ( m ) ( i r ~ ) - 0 .  So /3(m) is absolutely 

cont inuous  with respect to r .  [] 

The foregoing theorem describes a condi t ion that is necessary for an assessment 
to be strongly consistent.  In the next theorem we show that this condi t ion is also 
sufficient. 

Theorem 5.3. Let 1" be a signaling game and let (~r. /3) be an assessment.  I[ 
(o-. /3 ) is Bavesian-c'onsistent and ~ ( m )  is absolutely continuous with respect to 

r .fi)r ecerv isolated point  m • M, then ( (r. /3 ) is strongly consistent. 

The proof of this theorem will be based on three lemmas.  First. we need some 

notation. 
Let M '  = {m 1, m . . . . .  } be a countable dense subset of  M and for every 

m ~ Mi~,,. let b ( m ) :  T ~  ~ be a density function of /3(m) with respect to r (i.e. 

/3(m)(T B) 17 b ( m ) ( t )  dr  for all Tu). Note that R a d o n - N i k o d y m ' s  theorem 
guarantees the existence of this density function. 

For k ~ % we define the mapping ~k  : T ---,.//(M ) by 

I I 
Then. lim k ~ •  ~ lk ( t ) (M = I. because tbr all k: 

l<a/(,)(M)_< + ~ E  7 k+ = l +  + Z w  
- i n ,  I -  

Note that ~,,, 1 / i :  is finite since M " is countable.  For very /< e g,J and t • T, let 
Rk( t )  := 1 / & l k ( t ) ( M ) .  Obviously.  0 < R a _< 1 is measurable on f for all k and 

limk~_,_ R k ( t ) =  l for any t. 
We consider  the behavior  strategy, cr~ ~ : T --,.:A(M). with 

,~,~' (t)(M~) : -  R ~ ( t )  - a,~( t ) (  M,~ ). 

for all t and M B. B~ Lemma 5.1. the set 

M'(k):-{m,•M ....... l i > k } ~ M ~ , , c m  

is dense in M. So. if M B is an open set, then M * ( k ) ~ M B 4 = { ~ .  Hence, 
o-]k(t)(M~) > 0 for every k and t, which implies that the probabil i ty measure 

o- ( ( t )  is strictly positive. 

Lemma .5.4. For  every t. tile sequence (crlx(l))~ ~, c(mver~es pointwise to (rl(t). 
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The proof of this result is straightforward. For k ~ r~ and Borel set T B, we 
i n troduce: 

/?a(, , , )(TB) := 

~B O ' I ] ' ( t )  ( ]~ ) dr  

~ O" lk (  / ' ) ( " )  dr  

£ R~(t) d ,8 (m)  
B 

fTRk(t)  d ~ ( m )  

it" m~M'(k).  

if m ~ M * ( k )  

(5.1) 

Note that the two denominators in this definition are non-zero. If, lk)r instance. 
)TO'lk(t)(m) dr  = 0 for an m e M *(k), then G,~(t)(m) = 0. r almost everywhere. 
However. by construction. G~k(t)(m) > 0 for all t. 

Lemma 5.5. For  every m, the sequence  ( [3k(m))~ ~ ~, converges  pointwise  to 
~(m). 

Proqfi (a) If m g:M,~ o, then m ¢ M  ( k )  for large k. Then the dominated 
convergence theorem implies that for all T B it holds that 

,, d f l ( , n )  

lim/3k( m ) (  T~ ) - - ]3(  , n  )( TI~ ). 

*~ ~ £ d/3(,,7) 

(b) Let m ~ M > o  and let T B be fixed. Then {m} is a Borel set and 

£/ ,-~(t)(m) d~- 

= Q k * ( t ) .  a,*(~)(,,,) d~- 

1 1 . [ 
= £ f l k ( t ) . o ' , ( t ) (m)  dr+ 75-_~ 7 j , .  Rk(,) t,(,n)(t) 

Next we distinguish two cases. 

"1 v k +  dr .  

(5.2) 

(bl)  Suppose that (rO'l(t)(m) d r  > 0. By' the dominated convergence theorem: 

l i m /  R X ( l ) t r l ( t ) ( m ) d - ~ = f l  G , ( t ) ( , n ) d r ,  for all T B. 
k ~ :" JIB "/~ 
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Hence, (5.1) in combination with (5.2) implies that 

£ ~l(O(m) dr 
lira/3k(m)(TB = 

The Bayesian consistency of (or. /3) implies that 

jT,f r l ( t ) (m) d r =  f,,,f( m')( T~) dP"= /3( m)( TB) fr~rl( t)( m) dz. 

So 

/3(m)(TB) = = lira/3k(m)(TB). 

frO't( t)( m) d~" k ~  

(b2) Suppose that !ro'~(t)(m) d~-= 0. With (5.1) and (5.2) it follows that 

[ - ,f"Rk(t) b(m)(t)  v k + dr 

/3k(m)(TB)= f [ 1] 
j~,Rk(t) b (m) ( t )  v k + -k dr 

Together with the dominated convergence theorem this leads to 

f r b ( m l ( t )  dr 
l i ra/3k(m)(T B) = = / 3 ( m ) ( T ~ ) .  

~-~ ~ frb( m) ( t )  dr  

This completes the proof. [] 

Lemma 5.6. F'or any k, (~r ~, ilk) is Bayesian-consistent. 

Proof In this proof k • N is fixed. (a) For all T B and any Borel set M B c M  *(k): 

f, /3~(m)(rB) d P ' ~ =  E /3k(m)(TB) 'P'~(m) 
M B m ~ M 

meM, P"~(m) 

= F~ - , ~ S ( t ) ( m )  d'~ 
m ~ M B 

= fT,~,k(t)(M~) dr, 
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where the fourth equality is a consequence of the dominated convergence theorem. 
(b) In this part of the proof we restrict ourselves to the set M' : -  M \ M  * (k). 

First, we introduce for every Borel subset M~ of M' the measure K(M~) on T as 
follows: for a Borel set T B, 

' fTBO-I ' K(M.)(TB) := ( t ) (Mt , )  dT. 

The Bayesian consistency of (o-, fi ) implies that 

K(M'B)(T~) = f ~(m)(T~)  dP" 
~m 

With the help of Lemma 4.2 this leads to 

Then for every Bore] set M~: 

p"~(M~) : fR*(,).~,*(,)(M;,)d~-= i f* ( , ) ,  o-,(,)(M~)d~- 

So we may conclude that m ~ .(rR~(t) d /3(m) is a density function of P<" with 
respect to P" on M'. Hence, for all T~: 

: L ,  

= f ~ < , . . f ~ ( , ) d / 3 ( , , , )  d , ' " =  iT.< 
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(c) Parts (a) and (b) imply that for all T B and M~: 

~t ~k(  m) (  TB) d P  '~ 

: fv, f i a ( m ) ( T B )  d P ' ~ ' +  fw ~a (m) (TF ' )  dP"~  
a~',M "(k) ,~ ..,'vl " ( k ) 

= ~ M ~ ( a ) )  d r +  f , r l x ( t ) ( M a \ M * ( k ) )  dr 

= f,;a,*(t)(M.) dr.  

This completes the proof of the theorem. E 

Corollary" 5.7. Let F be a signaling game and let (o',  fi ) be an assessment. Then 
(o-, ~ ) is strongly consistent i f  and onh" if (o-, fi ) is Bayesian-consistent and 
~ ( m )  is absoluteh, continuous with respect to v fi)r every isolated point m ~ M. 

Using this characterization, we can investigate the consequences of strong consis- 
tency in some special classes of signaling games. 

Corollary 5.8. l f  the message space ~ t a  signaling game contains no isolated 
points or the ~.'pe space is discrete, strong consistency i.~ equivalent to Bm, esian 
consistency. 

In particular, this holds for finite and discrete signaling games. 

Corollary 5.9. I f  the message space of  a signaling game is discrete and the O,pe 
space is not. then an assessment is strongly consistent ~[" and only i[" it is 
Bayesian-consistent and el(m) is absolutely continuous w. r.t. r )Cor every message 
m .  

6. Other consistency concepts 

In the following theorem we show that every assessment that ~s consistent w.r.t. 
some appropriate definition ¢ automatically satisfies the conditions of the charac- 
terization in the previous section and is, therefore, strongly consistent. So, every 
appropriate consistency concept is a refinement of strong consistency. 

Theorem 6.1. Let ~ be an appropriate consistency concept. I f  an assessment 
(o', ~ )  is consistent w.r.t,  q: then (o-, ~ )  is Bayesian-consistent and ~ ( m )  is 
absoluteh" continuous w. r.t. "r .[br ecery isolated point m. 
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Proof Let q~ be an appropriate consistency concept and (or, /3) a consistent 
assessment w.r.t. ~ with a supporting sequence (o  -k, /3k)k~j .  Since ¢ is 
appropriate, (or, /3) must be Bayesian-consistent. 

Now, take an arbitrary isolated point m ~ M. Then, {m} is open and therefore 
T × {m} is an open subset of T X M. By condition B; 

P ~  ( m) = frcrlk( t)( m) d~-> 0, 

for ever? k. Since (o  -k, /3 k) is Bayesian-consistent, it follows that 

/3k(m)(T, ) .  P'~(m) = f{m}/3 k ( m ' )  dP '~= fr o-1~( t)(m) dr ,  

for every T B, which means that 

fro ' ,k( t)(m) dr  

/3k( m) ( r , )  = 
P"~(m) 

for ever?' T B. If r ( T B ) = 0 ,  we have / 3 k ( m ) ( T ~ ) = 0  for every k. Since m is in 
every dense subset of M, condition C implies that /3~(m) converges pointwise to 
/3(m), which implies that /3 (mXTB)= l i m k ~  /3k(mXTB)= 0. Hence, /3(m) is 
absolutely continuous w. r . t . r .  [] 

In view of Corollary 5.7, w'e arrive at the following conclusion. 

Theorem 6.2. Ecera, appropriate consistency concept is a refinement of strong 
consistency. 

In the following example we consider a signaling game in which strong 
consistency excludes some sequential equilibria. By Theorem 6.2 it follows that 
every appropriate consistency concept excludes these equilibria. 

Example 2. Let F be a signaling game in which T = [0, 1], M = {y, n}, A = {b, c} 
and r is the uniform distribution on T. The payoffs are given by 

ut( t .  m, a ) : = 0 ,  for all t, m, a, 

t, if a = b, 
u : ( t ,  m, a):= 0, if a = c .  

We define the assessment (o-, /3) by 

f6,,  if t = 0 ,  
O ' l ( t )  : =  ~6,, if t > 0 ,  

o- : (y )  := a ,  
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o-_~(n) := a/,. 

/3(_~') : :  a0, 
/ 3 ( ~ )  : - - ~ - .  

It can be shown that (or, /3 is a sequential equilibrium. However. (or. /3) is not 
strongly consistent, since /3(3') is not absolutely continuous w.r.t. 7-. [] 

7. Structurally consistent assessments 

Finally, we consider a different form of consistency as introduced by Kreps and 
Wilson (1982). They call an assessment structurally consistent if for every 
information set there is a behavior strategy profile such that this information set 
will be reached with positive probability and the beliefs at this information set are 
completely determined by BaTes" rule. If we formulate this concept for signaling 
games, we obtain the following definition. 

Delqnition. An assessment (or, /3) is called structurally  consis tent  if for every 
m e M there is a BSP K such that P a ( m )  > O, and tot  every TB: 

f~ K , ( t ) ( m )  d~- 

/ 3 (m) (TB)  = P ~ ( m )  

In the following theorem we characterize the class of structurally consistent 
assessments in signaling games with at least two messages. 

Theorem 7. 1. For  a signaling game with at least two dii~'erent messages ,  an 

assessment  ( ~r. /3 ) is s tructurally  consis tent  if and only i[, f o r  ez'er)' m. there is a 
constant  c m > 0 such that f o r  all TB : 

/3( ,n)(  TB) <_ ~,,, . "~( T~).  

Proof  " ~ " Let (or, /3) be a structurally consistent assessment and m a message 
in M. By definition, there is a BSP ~ such that P " ( m )  > 0 and for any TB: 

J :  

0"1( t ) ( m )  d r  1 

/3( m ) (  TB) -- < - - 7 (  TB) .  
P~(m) P"(m) 

N o w  choose c,,, := l/P;~(m). 
" ~ '  Suppose, for every m. there is a constant c,,, > 0 such that for all T B we 

have / 3 ( m X T B ) < C , ,  ' .T(TB). Then, obviously, /3(m) is absolutely continuous 
w.r.t. ~" for every m. 
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Let m ~ M and let b ( m ) :  T--+ J~ be a densi ty  function of /3(m) with respect  to 
r .  Then. for any TB: 

fT . . . .  £ c,,; d r  ,~ /~ ( ,n) ( t )  d r  /3(,n)(Ts)_<~,,, r ( f ~ )  

Hence, there is a Borel set T~ with r ( T s ) =  1. such that b(m)(l)_< c,, for all 
t ~ T B. To define a behav ior  strategy, K] for p layer  l, we take a message  ~ :/= m 
in M. If t ¢  TI~', then let Kl ( t )  be an arbitrary probabi l i ty  measure  on M. 
Otherwise ,  for a Borel set Ms :  

1, 

~ ( t ) ( M ~ ) : =  J ~'"' " 

1 ; , ( , n ) ( ; )  

J [ ,  
~0, 

Then.  

i t m e M  R a n d , ~ e M  u, 

if m ¢ M  R and t h e M  u, 

i t  ; ,  ~ M~ and ;~ ~ M s,  

otherwise.  

P ~ ( , , , )  = £ , ;  a , ( l ) ( ; n )  d r  = f;,~ - -  
t,( , , ) (  ; ) 

( 'IH 
d r  

f ? ( , . ) ( ¢ )  l l 1 -  
- j d r :  = - > o .  

Furthermore .  for any T B' 

£<(,)(,.) d~ £ a,t,t(,,,t dr 1/,,,,f ~(,.)(,) dr 

P a ( m )  P ~ ( m )  l / c , .  

f b(,n)(t) dr / 3 ( m ) ( T B ) .  
)"B 

So (o-.  /3) is s tructural ly consistent .  [] 

F rom the above theorem it fol lows that every structural ly consis tent  assessment  
(or, /3) must  have the proper ty  that the local bel ief  /3(m) is absolute ly  cont inuous  
w.r.t, v for every m. 

Consider .  for instance, an infinite s ignal ing game with T = M = [0, 1], r equal 
to the uniform distr ibut ion on T and an assessment  (o-,  /3) in which / 3 ( 0 ) =  6 0. 
Such an assessment  is ruled out by structural consis tency,  since /3(0) is not 
absolute ly  cont inuous  w . r . t . r .  
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A p p e n d i x  

Proof of Lemma 3.2. It can be shown easily that every sequence ( / . z* )k~  
satisfying the condition in the lemma is pointwise convergent to tt by choosing f 
equal to the indicator function on the Borel set X~. 

Now. let ( # ~ ) , ~ ,  be pointwise convergent to # and let f be a bounded 
measurable function on X. Without loss of generality, we assume that f :  X---, 
(0, 1). For every k. we define the sets: 

A, (k ) :=  x f ( x )  >_~ . i = 0  . . . . .  k 

and 

i - [  i I B i (k )  := x ~ < . f ( x )  < ~ >. i =  1 . . . . .  k. 

By the definition of the integral, we have for every k: 

k i--1 ~" i 
E ~. ~ ( B , ( k ) ) _ < f / d t * _ < E ~ t z ( B , ( k ) ) .  

i = 1  • t = l  

Since 

~ i - 1  1 k 
E ~ - I ~ ( B ( k ) ) =  7 - E # ( A , ( k ) )  and 

t = l  t = l  

~ i 1 1 k 
= - - +  ~ l # ( A i ( k )  ) ,= ~.(,9(k)) k k,= 

it follows that 

1 k 1 1 
E . (  ,~,(kl) _< .~.f/ d~ ~ ; -- ;. E,~( .~,(kl). 7 

i =  l = ] 

Similarly, we can show that 

1 /' 1 I ;" 
_< _<-+ ,E,.'(a,(k)). 7~,E, ~'(a'(k)) f f  d~ k 

= • = 

These inequalities imply that 

1 k 

f /d~ ,  = 2~5 ;E~(= a,(k)), 

and 

1 k 

lira f f d~? = lira - Y' .#k(Ar(k) ) .  
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Therefore, it suffices to show that 

1 k 1 k 

Assume that this were not true. Then, w.l.o.g., there is a fi > 0 such that 

I x k ( A i ( k ) ) - T ~ _ , t x ( A , ( k ) }  >_~, foral l  k. 
l ' = l  

So, for every k, there is an integer i t _< k such that I # k ( A , ( k ) )  - ~(A,  (k)) I >_ 6. 
Without loss of  generality, we may assume that #k( A, (k)) >_ 6-- tz(Ai(k))  for 
every k. Since 0 _< ( i t / k )  _< I. the sequence ik/k contains a monotone convergent 
subsequence. Without loss of generality, we assume that the sequence ik/k is 
monotone and convergent. 

Case 1. i k / k "  r for some r e  [0. 1]. Then, by construction, Ai, ' (k + 1) c A , ( k )  
for every k, and 

f"lAi, = A  := { x l f ( x )  _> r}. 
k 

Since / , / (Ai (k)  ) > #,,(Ai(1)) for I >_ k, it follows that 

**'(adk) ) > a+ u(a, ,( l )) ,  for/>_ k, 

and. therefore, 

l i m # ' ( A , ~ ( k ) )  >_ a +  lim /x( &,( l ) ). for every k. 
t -~r-  t-~v- 

By assumption, l imi t , ,  t c ' ( X u ) =  p.(X u) for every Borel set X B, so 
lim ~ ~ ~_ p]( A,(  k )) = p.(A,(k)).  Furthermore. by the monotone convergence theo- 
rem, lim,. ~ ~ #(A,(I))  = Ix(A). Combining these facts leads to the conclusion that 

t z ( a i , ( k ) ) > a + p , ( a ) ,  forevery  k. 

However, this implies that 

l i m / , ( a , ~ ( k ) )  >_ 6 ~- # ( A ) .  
k--+m 

which contradicts the fact that lira, .~ # ( A , ( k ) )  = #(A) .  

Case 2. ik/k ,~ r for some r e  [0. 1]. Then. by construction. A;~. (k + 1 ) D A i ( k )  
for every k and 

UA*(k) > r }  
k 

Since p](A (k)) > bC'(A {1)) for k > / ,  it follows that 

t t ~ ( a , , ( k ) ) > _ 6 + # ( a , , ( l ) ) ,  f o r k > l .  
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and 

l i m / Z ( A i ~ ( k ) ) > 6 + / a . ( a  ( / ) ) ,  forevery  /. 
/,- - - +  ; c  

By the monotone convergence theorem, lim k +~ #~(Ai,(k))=/Z(A). Together 
with the inequality above, we obtain t,](A)>__ <5+ Ix(Ai{I)) for every 1. which 
implies that l i m / ~  ~ / a ] ( A ) > _ ~ + l i m ] + ~  #(A (I)). However,  this leads to a 
contradiction, since lim] ~,+ p ] ( A )  = # ( A )  and lim+, +:~ /x(A (1)) = ,u.(A). [] 
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