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Chapter 1

Introduction

A central issue in economics is allocation of goods. One of the best ways to allocate
goods is to sell them using free market mechanisms and an auction such a mecha-
nism. Traditionally, art objects, collectibles and antiques have been sold by means
of auctions. Also, the rights to use natural resources from public property such as
off-shore oil lease, have often been auctioned off. In the past two decades auctions
were extensively used to facilitate the transfer of assets from public to private hands,
such as industrial enterprizes in Eastern Europe and the former Soviet Union, and
transportation systems in Britain and Scandinavia. Recently governments of many
countries have made use of auctions to sell UMTS spectrum frequencies for mo-
bile communication. In the last few years, due to modern information technologies
both the range and the total value of goods sold by auctions has grown enormously.
The Internet is used nowadays to conduct hundreds of thousands of different online
auctions each day with bidders worldwide.

The increasing popularity of auctions has raised a lot of questions on the appro-
priate design of auctions for a particular situation and captured attention of many
researchers. Auctions have grown in interest within different scientific communities
especially among economists, game theorists and computer scientists.

Auctions are basically about allocating and pricing scarce goods1 in a setting of
uncertainty. On the first place, there is uncertainty on the seller side in the sense
he is unsure of the price he can get for the object. In fact nearly any good whose
value varies enough to preclude direct and absolute pricing, is a candidate to be
auctioned off. A common feature of all auctions is that they elicit information, in

1In this book the words good, item and object are used interchangeably to refer to a commodity

being sold. Also the words buyer, bidder, agent and player are used interchangeably to refer to a

person who participates in an auction.
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Introduction

the form of bids, from potential buyers regarding their valuations for the good(s)
being sold, typically in form of the maximum amount each buyer is willing to pay.
The outcome of the auction—who gets the object and at what price—is determined
on the basis of the received information on bidders’ valuations.

In its classical form one seller, the auctioneer, wants to find a buyer among a
group of bidders who is willing to pay the highest price. Auctions may not only be
used to sell goods but also to purchase them. In procurement or reverse auctions
bidders compete for the right to sell their product or service. In this case the
auctioneer, being a buyer, wants to find a seller among a group of bidders who
suggest the lowest price.

There are different ways to classify auctions. There are for example open auc-
tions and sealed-bid auctions, auctions where the price rises and auctions where the
price drops. This results in four basic auction formats are widely used and ana-
lyzed: English, Dutch, sealed bid first price and sealed bid second price auctions.
In describing their rules we focus for simplicity on the sale of a single object.

In the English auction, the price is successively raised until only one bidder
remains, and that bidder wins the object at the final price. The auction can run by
having the seller announce prices, or by having the bidders call out prices themselves.
Antiques and artworks are commonly sold using versions of the English auction. Now
over 80% of all online auctions implement this format (Lucking-Reiley [39]).

The Dutch auction (named after its best known example, the flower auctions in
the Netherlands) is a descending auction where the auctioneer starts at a very high
price, and then lowers the price continuously. The first bidder who calls out that he
agrees to accept the current price wins the object at that price. In Dutch auctions
the price is reduced rapidly so as to make the auction efficient in terms of real time,
thus the Dutch auction is an attractive format for selling perishable goods.

In the sealed bid first price auction each bidder independently submits a single
bid, without seeing others’ bids, and the object is sold to the bidder who makes the
highest bid. The winner pays his own bid. This auction format is used in auctioning
mineral rights in government-owned land and sometimes in the sale of real estate.
In its reverse version it is the typical auction used for procurement in the public
sector.

In the sealed bid second price auction the item is awarded to the highest bidder
at a price equal to the second-highest bid. This format is also known as the Vickrey
auction , named after William Vickrey who wrote the seminal paper on auctions
[59]. This format is implemented in some auctions on the Internet (Lucking-Reiley
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Introduction

[39, 40]) but it is much less used than the other standard formats.

The appropriate choice among auction formats depends a lot on the particular
setting with respect to bidders’ preferences. In the private-value setting the value
of the good depends only on the bidder’s own preferences. A bidder is not certain
about the values of others, but knowledge of other bidders’ values would not affect
his own valuation. The private value assumption is natural in auctions for non-
durable consumer goods. In the interdependent (or correlated) value setting values
are dependent partly on own preferences and may be affected by preferences of other
bidders. For example, a bidder’s value for a painting may depend mostly on how
much he likes it but also somewhat on how much others like it, because this affects
the resale value and/or the prestige of owning it. In the common value setting the
actual value is the same for everyone, but bidders have different private information
about what that value actually is. For example, the value of an oil-lease depends on
how much oil is under the ground and bidders may have access to different geological
information about that amount. In this case a bidder would change his estimate of
the value if he learned another bidder’s information, in contrast to the private value
case.

When several objects are sold at the same time, bidder’s value for a bundle is
often not simply additive. For example, when many identical goods are for sale
a buyer might have decreasing or increasing marginal values (that is, the value of
an additional unit decreases or, respectively, increases with the number of units
already obtained), or might even have a positive value only for a single unit. When
heterogeneous goods are for sale the buyers’ valuation on bundles of goods might
exhibit complementarity (that is, a bundle is worth more than the sum of its parts)
or substitutability (that is, a bundle is worth less than the sum of its parts). Auction
design addresses these issues in the form of combinatorial auctions , in which buyers
are allowed to submit bids on bundles of goods.

When it comes to the comparison of different auction formats, various perfor-
mance measures can be used (see e.g. Krishna [34]). From the perspective of the
seller, it is natural to use revenue as a criterion for comparison. From the perspective
of society as a whole, however, allocative efficiency may be more important. This
is especially true when it concerns the sale of a publicly held asset to the private
sector. So the seller, in this case a government, may want to choose an auction
that ensures that the asset is allocated efficiently (that is, the allocation maximizes
social welfare ), even if the revenue from some other, inefficient, allocation would be
higher.

In this thesis we exclusively consider the single item, private values setting and
concentrate our attention on maximization of social welfare as the primal goal that
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Introduction

the designer wants to achieve. The issue of social welfare maximization has been
studied extensively. Much research has been done on how to set the rules of the
auction so that this social goal is achieved despite the fact that buyers act based
on self-interest. Due to the Revelation Principle , the focus has mainly been on
direct revelation mechanisms (see e.g. Mas-Colell et al. [41]). This principle states
that the designer only needs to consider direct revelation mechanisms where each
agent reports in a single step his valuations on all possible combinations of goods to
be sold. In the private value environment the challenge is considered to be solved
since in the Vickrey-Clarke-Groves (VCG) direct mechanism truth-telling is a weakly
dominant strategy and the equilibrium results in an efficient allocation (Clarke [8],
Groves [26], Vickrey [59]).

By construction, implementation of an equilibrium strategy in the VCG mech-
anism (as in any direct mechanism) requires buyers to reveal complete and exact
preference information . It has been recognized however that this is an undesirable
feature of a mechanism for several reasons. First, buyers may prefer not to reveal
information on their valuations for reasons of privacy or long-term competitiveness
(Engelbrecht-Wiggans and Kahn [17], Rothkopf et al. [52]). Second, determining
one’s valuation with a precision up to the last digit can be computationally demand-
ing (Sandholm [54]). Finally, the full revelation of buyer’ preferences may require
a prohibitive amount of communication (Conitzer and Sandholm [13], Nisan and
Segal [45]).

Recognition that full expression of preferences is undesirable has led to an in-
terest in auctions where bidders need not reveal their information entirely but only
partially. The challenge (also in this thesis) is to design auctions that are able to
find an (approximate) efficient allocation , preferably in weakly-dominant strategies,
without asking bidders to reveal complete information on their preferences.

The revelation problem is especially pronounced in settings with complex pref-
erences involving complementarity and/or substitutability. Therefore, most results
in the literature are devoted to the discussion of possible revelation reduction in
combinatorial auctions. Several approaches have been proposed for limiting revela-
tion in combinatorial auctions. Ascending combinatorial auctions (Parkes [47, 49],
Ausubel and Milgrom [1], Wurman and Wellman [60]) provide one means of reduc-
ing the information requirements on bidders. Conen and Sandholm [11, 12] observe
a significant topological structure in the combinatorial setting and use that to avoid
asking the bidders unnecessary questions about their valuations.

Recently the preference elicitation problem has become an issue also for the
setting of a single indivisible object. One general approach which allows bidders
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to retain much of their private information is to limit the number of possible bids
where bidders can choose from. Blumrosen and Nisan [4] introduce one-shot auc-
tions where bidders have to choose and announce one of k price levels fixed by
the auctioneer. While such simple one-shot auctions indeed achieve the objective
of limiting both revelation and associated communication (compared to the direct
revelation mechanism), they are not very flexible in the following sense. All players
reveal their valuations with the same precision, and when doing so many players
may reveal much more about their valuations than is required to determine the
desired outcome. It would be better to rule out players as potential winners on
the basis of less precise information on their valuation. That way one could engage
only a restricted number of players in (more) precise elicitation, reducing overall
revelation and incurred computation and communication cost. This leads to a nat-
ural motivation for iterative mechanisms where the players reveal their preferences
incrementally, only on a need-to-know basis.

Thus, for the situation described above where k prices are fixed, instead of
asking players to announce one of them, the auctioneer may ask players to indicate
whether they are willing to pay the price he announces. Using an increasing sequence
of announced prices we eventually end up with an English auction where queries
are restricted to discrete levels. This approach has received attention in auction
literature though most of the works is restricted to the study of other than revelation
properties of this auction. Kress and Boutilier [33] are the first who addressed
revelation properties of ascending price auctions with discrete bid levels.

Reduction of preference revelation in single-item auctions is the primary focus of
this thesis. It extends the idea of incremental querying and shows that by choosing
carefully the query strategy, revelation of information can be significantly reduced.
We propose a new iterative auction, the bisection auction, that can be used for
the sale of a single indivisible object. The main idea of the proposed auction is
to search for the winner and the price using the bisection method. The auction
consists of several rounds in each of which the auctioneer announces the ask price
and players report their demand. Depending on the players’ answers in a round,
the ask price of the next round can increase or decrease and some players can be
eliminated from the auction. So, during each round the auctioneer asks players for
very limited information about their valuation, and each successive round refines
the information revealed earlier. By using a query strategy in which previously
revealed information guides the selection of subsequent ask prices, elicitation in the
bisection auction is focused on pertinent information. As soon as it becomes clear
to the auctioneer that a particular player does not possess relevant information, i.e
information which helps the auctioneer to find the winner and the price, this player
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is eliminated from the auction. Such limited participation is one of the main factors
that allows us to achieve reduction of preference revelation in the bisection auction.

When evaluating the effectiveness of elicitation one generally cares about the
running time, expressed in the number of queries, and/or the amount of com-
munication required to determine an optimal (according to the specific objective
of the designer) allocation. Since information about agents’ valuations becomes
more refined with each query, a higher number of queries leads to a better alloca-
tion. This has prompted researchers to examine the trade-off between the running
time/communication complexity of query auctions and the level of allocative effi-
ciency. In particular, several issues concerning welfare of single-item limited reve-
lation auctions have been considered. Blumrosen et al. [4, 5] study the effect on
welfare of a severe restriction of the amount of communication allowed in an auction.
In the context of English auctions with discrete bid levels Rothkopf and Hastard [51]
and David et al. [16] derive lower bounds on the expected loss of welfare. Parkes [50]
studies a model in which bidders are uncertain about their valuations and have an
option to refine their valuation for a cost. He shows that in such an environment as-
cending price query auctions can achieve better allocative efficiency than sealed-bid
auctions, using less preference elicitation. Compte and Jehiel [9] compare the per-
formance of iterative and sealed-bid auctions in the presence of costly information
acquisition. They also support the allocative efficiency benefits of iterative auctions
and show that iterative ascending auctions can avoid high information revelation
but still generate a higher expected welfare than sealed bid auctions.

In this thesis, we pursue the same line of research and focus on allocative effi-
ciency of iterative, limited revelation auctions. We analyze to what extend we can
limit information revelation while still preserving full efficiency of an allocation. We
show that for the case of integer valuations the proposed bisection auction, while
being fully efficient, requires elicitation of much less information than the known
efficient auctions. We show that in expectation only a small fraction of players’
valuation information needs to be revealed before the efficient allocation can be de-
termined. In fact for the integer setting we design an iterative implementation of
the single-item VCG mechanism that finds the outcome with minimal information
revelation from buyers. For the case of continuous valuations, we prove that limited
information revelation is incompatible with the efficiency requirement. We show
what level of revelation can be achieved if we are satisfied with a particular level of
efficiency.

Part I of the thesis is devoted to the setting of integer valuations where we
introduce and analyze the bisection auction. In Chapter 2 we present a full game-
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theoretic analysis of the bisection auction and show that the proposed auction is
strategically equivalent to the Vickrey auction and the English auction, implying
that also in the bisection auction telling the truth is a weakly dominant strategy
and the equilibrium results in an efficient allocation.

While being strategically equivalent to the Vickrey and English auctions the
bisection auction outperforms them in terms of information revelation and associated
communication. The superiority of the bisection auction is shown in Chapter 3 where
we give precise upper bounds on the expected communication and the expected
information revelation of the bisection auction and compare these to lower bounds
for the Vickrey and English auctions. In Chapter 4 we investigate the following
questions that naturally arise: how much communication does the bisection auction
need compared to any other auction that finds the Vickrey outcome, in particular,
does there exist an auction with Vickrey outcome that needs less communication
than the bisection auction? We introduce a measure for comparison that resembles
stochastic dominance, but that, to the best of our knowledge, has not been used
before for comparison of communication performance of algorithms. With respect
to this measure we partially answer the posted questions. We prove for the case of
two bidders a tight lower bound on the required communication and show that the
bisection auction matches this bound.

Given the reported advantages of the proposed auction it seems quite attractive
to put the bisection mechanism to practice. However there are some justified doubts
about players’ behavior in the bisection auction. Early on, it was recognized that
humans have bounded rationality, e.g. due to cognitive limitations, so they do not
act rationally as economic theory assumes (see Rubinstein [53], Simon [56]). The
bisection auction, due to its more complicated rules, seems to be more difficult
to understand and therefore it might be difficult to choose the right strategy to
play. In order to investigate the practical usefulness of the bisection auction we
conduct a laboratory experiment where we test and compare bidding behavior in
the bisection, Vickrey and English auctions. We check whether bidders follow the
dominant truth-telling strategy and how their behavior changes over time as they
gain more experience. Moreover, we provide some insights concerning the efficiency
of allocation and the revenue to the auctioneer. Data show that the bisection auction
performs better than the Vickrey auction and only in terms of some measurements
worse than the English auction. Chapter 5 describes the experiment and reports
the results.

In Part II we switch to the setting of continuous valuations. In many applica-
tions there is nothing wrong with assuming discrete valuations as it is done in Part
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I. It is however sometimes desirable to be able to run an auction without an a-priori
agreement on the discretization of bids. The leading example from which we draw
our motivation is a computerized bidding environment in multi-agent systems. In
such an environment the precision with which bidding agents represent their valu-
ations might be unknown, and therefore preferably be left unspecified. Also time
constraints can thus be captured, since time restrictions might force an auctioneer to
determine valuations only up to a level of precision that is not of the same order of
magnitude in which bidders do, or would like to, express their valuations. We model
the possibility of arbitrary fine representation of valuations by allowing valuations
to take on continuous values.

In the context of continuous valuations we investigate the allocative efficiency of
query auctions. In a query auction the auctioneer sequentially queries the bidders
about specific aspects of their valuations, offering them the opportunity to take
one of a finite set of actions as an answer to the query. In Chapter 6 we study the
limitations of query auctions regarding the objective of maximal economic efficiency.
We prove that any ex-post equilibrium in an individually rational query auction
that ends with positive probability after a finite number of queries cannot be fully
efficient. It means that in the continuous setting query auctions, being a good tool
for reducing preference revelation, do not allow achieving full allocative efficiency.

The inefficiency result implies that in the setting of continuous valuations full
efficiency can only be achieved at the expense of an infinite running time of a query
auction for almost all realizations of valuations. So the question arises: what price
(in terms of running time) has to be paid for getting a desired level of approximate
efficiency? In the last two chapters of the thesis we give an answer to this question.
In Chapter 7 we introduce a very wide class of query auctions, general bisection
auctions. The main characteristics of these auctions are that they have a fixed
order in which active bidders are queried, they all use a binary search algorithm to
determine the price, and they all stop as soon as the winner is found. We prove
that a general bisection auction is indeed ex post individually rational, and there
exists an ex post equilibrium, called the bluff equilibrium, which is sometimes finite.
Hence in a general bisection auction the inefficiency is inevitable. In Chapter 8
we are concerned with the trade-off between running time and allocation efficiency
in the bluff equilibrium of a family of general bisection auctions called c-bisection
auctions. We show that, by choosing the appropriate parameter c, we can achieve
arbitrary small inefficiency in equilibrium, while the running time of the auction in
equilibrium is finite for all realizations of valuations. Moreover, given the desired
level of efficiency, the particular choice of auction can be made independently of the
number of bidders that will participate in the auction.

18
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Chapter 2

The bisection auction

In this chapter we present a new iterative auction, the bisection auction, which
can be used for the sale of a single indivisible object. The bisection auction has
fewer rounds than the classical English auction and causes less information to be
revealed than in the Vickrey auction. Still, it preserves all characteristics the English
auction shares with the Vickrey auction: there exists an equilibrium in weakly
dominant strategies in which everyone reports truthfully, in this equilibrium the
object is allocated in accordance with efficiency requirements to the buyer who has
the highest valuation, and the price paid by the winner of the object equals the
second-highest valuation.1

2.1 Introduction

A well known theoretical result for private value single item auctions is strategic
equivalence of the sealed bid second-price auction and the English auction. This
result was shown by Vickrey [59] in his famous 1961 contribution to auction theory.
Under the sealed bid second-price auction (also called the Vickrey auction) bidders
are asked to submit one single sealed bid. The bidder with the highest bid is declared
to be the winner. He gets the object for a price equal to the second-highest bid that
is made. In the English auction2 the auctioneer calls successively higher prices.
Initially all bidders are active and, as the auctioneer raises the price, they decide
when to drop out. Dropping out is irrevocable so that a bidder can no longer bid on
the object. The last bidder to remain is the winner and he pays the final ask price.
In case where the last two bidders dropped out at the same price, a lottery can be

1The results of this chapter were first presented in Grigorieva et al. [24].
2There are several versions of the English auction. The variant described here, also called the

Japanese auction, is the one that is strategically equivalent to the Vickrey auction.
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used to determine who gets the object.

Strategic equivalence of the two auctions implies that, as long as bidders behave
rationally, in these auctions the same bidder wins and pays the same price. Two
main results were established concerning these auctions. First of all, truth-telling is
a weakly dominant strategy , independent of the prior distribution of the valuations
of the bidders, the number of bidders or their risk attitudes. In the Vickrey auction
the truth-telling strategy is to submit a bid equal to one’s private value. In the
English auction the truth-telling strategy is to remain active until one’s value is
reached. Secondly, the resulting truth-telling equilibrium is efficient , meaning that
the object gets assigned to the bidder who values it most.

Yet both the Vickrey auction and the English auction have their drawbacks in
practical use. As any direct mechanism the Vickrey auction requires all participants
to reveal complete and exact preference information. It has been recognized that
the full revelation of bidders’ preferences is not necessarily a desirable feature of a
mechanism.3

First, buyers may prefer not to reveal information on their valuations for reasons
of privacy or long-term competitiveness (see e.g. Engelbrecht-Wiggans and Kahn
[17], Rothkopf et al. [52]). Buyers might be reluctant to truthfully reveal their
full private value if there will be subsequent auctions or negotiations in which the
information revealed can be used against them. For example, after such an auction
the buyer will be at a disadvantage in future negotiations with the seller who may
be able to extract more surplus using information about the buyer’s valuation.4

Second, determining one’s valuation with a precision up to the last digit can be
computationally demanding, see Sandholm [54]. A buyer may have to spend effort
in determining his unknown a priori preferences by computing (see e.g. Larson
and Sandholm [37, 36], Parkes [48]) or by gathering additional information (see e.g.
Bergmann and Välimäki [3], Compte and Jehiel [10]).

Finally, the full revelation of buyer’ preferences may require a prohibitive amount
of communication (see e.g. Conitzer and Sandholm [13], Nisan and Segal [45]). For
example in a combinatorial auction which allocates heterogeneous indivisible items

3For extensive discussion of other weaknesses and disadvantages of the VCG mechanism see e.g.

Ausubel and Milgrom [1, 2].
4One can argue that recently a great deal of research in computer science has been done in

developing cryptographic protocols for auctions that preserve the privacy of the participants. Vari-

ous schemes to ensure the safe (from a privacy perspective) conduction of sealed-bid auctions have

been proposed, see Brandt [6], Naor et al. [44]. Indeed, in some settings by the use of the pro-

posed protocols we can ensure the confidentiality of the bids, but the problems of computing and

communicating the bids remain to be solved.
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among bidders whose preferences for bundles of items can exhibit complementari-
ties, every buyer has to report his valuation for each subset of the items, and the
number of such subsets is exponential in the number of items. With 30 items, full
revelation of such preferences would require the communication of more than one
billion numbers.

A significant problem with the English auction is that it might proceed at a very
slow pace: if a very small price increment is chosen, in which case the auction might
take a long and unpredictable amount of time to reach the required price level. This
shortcoming can be devastating, for instance, when using auctions to allocate time-
shared resources in real-time environments. One remedy is to introduce a fixed
bid increment, as has been done for example in the spectrum auctions (see e.g.
Moldovanu and Jehiel [43], van Damme [58]). This though is known to affect the
efficiency of the auction (Rothkopf and Harstad [51]).

Attempts to speed up the auction while preserving efficiency were made in Fu-
jishima et al.[19]. The authors introduce a class of multi-round sealed-bid auctions,
called survival auctions, and show that a special case, the (n-1)round survival auc-
tion is strategically equivalent to the English auction and therefore preserves its
equilibrium properties. In the proposed auction bidders submit a sealed-bid in each
round. All except a bidder who submits the lowest bid survive the round. The
losing bid is announced to be the minimum bid for the next round. The last bidder
to remain is the winner and he pays the final losing bid. The auction of n bidders
predictably takes n − 1 rounds which makes a significant improvement in speed in
comparison to the English auction. Having quick and predictable termination time,
the survival auction, however, requires the full and complete revelation of bidders’
valuation, the same as the Vickrey auction.

So, the question that arises is: how to design an auction that elicits less in-
formation about bidders’ valuations than the Vickrey auction but still enough to
guarantee an efficient allocation and which is at the same time faster than the En-
glish auction. Based on Milgrom and Weber [42], limited information revelation
is often believed to be incompatible with the efficiency requirement. Nevertheless,
the primary contribution of this chapter is to present and to analyze an alternative
auction format, called the bisection auction, that possesses these properties for the
case of selling a single indivisible object under private values.
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2.2 The rules of the bisection auction

Suppose a single indivisible object is auctioned. The buyers’ valuations are assumed
to be integer, randomly drawn from a bounded interval – by default of the form
[0, 2R) for some positive integer R. The bisection auction has R rounds. The price
sequence starts at the middle of the initial interval with a price equal to 2R−1.
Bidders report their demand at the current price by sealed bids. A yes-bid stands
for the announcement to be willing to buy at the current price, a no-bid for the
contrary. As a function of these bids, the auctioneer announces the price of the next
round.

In case there are at least two players submitting a yes-bid, the price goes up to
the middle of the upper half interval, i.e., the interval [2R−1, 2R). The players that
are allowed to participate actively in the next round are the ones that said yes and
they are competing for the object in the price range [2R−1, 2R). The other players
drop out of the auction and do no longer have any influence on the proceedings of
the auction. In case there is at most one player saying yes, attention shifts to the
lower half interval, i.e. the interval [0, 2R−1) and the price goes down to the middle
of this interval. Two different things can happen now. First, the easy case, if no-one
has submitted a yes-bid. In that case all active players remain active in the next
round. In the other case there is a single player that submitted a yes-bid. This
player now becomes the winner and he gets the object. Nevertheless the auction
does not end, but enters a price-determination phase. The active players in the
next round are the ones that were active in the previous round minus the winner.
In order to keep active players motivated to participate in the auction they should
not get to know that the object has already been assigned. Therefore we assume
that bidders aren’t able to observe bids of the others. The remaining active players
are competing on the lower half interval [0, 2R−1). The winner, although he is no
longer considered to be active, is considered to say yes to all prices that are proposed
beyond the moment he became the winner. After all, all these prices will be lower
than the price he agreed to when he became the winner. Apart from this, the way
it is decided whether the price should go up or down is not any different from the
way this is decided in the winner-determination phase. In each round depending
on submitted bids we subsequently restrict attention to either the lower half of the
current interval, or to the upper half of the current interval.

Iterating this procedure will eventually yield a winner and a price. If in no
round there was precisely one player that said yes then ties are broken by random
assignment to a player who is still active after R rounds. At no point during the
auction are the bidders informed that the object has been assigned to the winning
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bidder, or indeed that any particular bidder has dropped out of the auction. The
price is uniquely determined because in each round the length of the current interval
goes down by one half. Since the initial interval is of length 2R, after R rounds the
resulting interval is of length 1. And since it is a half-open interval, it contains
exactly one integer. This integer is declared to be the price the winner of the
auction has to pay for the object.

The following example illustrates how the bisection auction works.

Example. Suppose there are four bidders, A, B, C, and D, with the following
integer private valuations from the interval [0, 16): 11, 4, 15, 9. To determine the
winner and the price in this setting the bisection auction takes four rounds and
starts with an ask price equal to 8. Suppose that each bidder chooses to respond
truthfully and follows a straightforward strategy under which he says yes if an ask
price is less or equal to his valuation and no otherwise. Bidders are not informed
about other bidders’ choices. The bisection auction proceeds as follows:

Round Price Lower Upper Bidder A Bidder B Bidder C Bidder D
bound bound vA = 11 vB = 4 vC = 15 vD = 9

1 8 0 16 yes no yes yes
2 12 8 16 no (no) yes no
3 10 8 12 yes (no) (yes) no
4 11 10 12 yes (no) (yes) (no)

Since three bidders submitted yes-bids in the first round, the price increases to
the middle of the current price and the current upper bound. So the ask price of the
second round is 12. These three bidders remain active while bidder B drops out. We
allow a drop-out to submit any bid, but consider any bid of a drop-out as a no-bid.
Since there is only one yes-bid in the second round we have a winner and we enter
what we call the price determination phase. From now on, any bid of the winner,
bidder C, is considered as a yes-bid. Players A and D are still active. In the third
round, there are two yes-bids so the price increases. Player D drops out. In the
fourth round, the auction terminates. Taking into account bids made during the last
round we compute the final lower and upper bounds. Since there were 2 yes-bids
the upper bound remains 12 while the lower bound becomes 11. The winner, bidder
C, takes the object and pays price 11 which is the smallest Walrasian price for the
demand announced by the bidders that participated in this auction.

A related auction format is mentioned in Fujishima et al. [19] in the context of
designing iterative auctions with quick and predictable termination time. In partic-
ular they write: “In what we call “the binary price-search auction”, the auctioneer
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queries all bidders whether they are willing to pay a given price. If only one bid-
der answers yes, he gets the good at that price. If zero or more than one answer
yes, another query follows at a lower or higher price, in such a way to converge at
logarithmic speed to a price that exactly one bidder will be willing to pay. Unfortu-
nately, this and other “accelerated auctions” are difficult to analyze with the tools
of game theory.” The binary price-search auction is very similar to the bisection
auction. A subtle difference is that the binary price-search auction stops as soon
as the winner has been found while the bisection auction continues with a price-
determination phase. Exactly the presence of this second phase makes the auction
incentive compatible as we show in the this chapter.

2.3 Formal representation of the auction

In section 2.2 we already gave a description of the bisection auction. A formal
proof of strategic equivalence requires an exact framework. For this reason we will
represent the bisection auction by an extensive form game . Formally we would need
to introduce a move of nature that represents the realization of players’ valuation,
see e.g. Osborne and Rubinstein [46]. But to simplify the analysis we deviate
somewhat from the classical approach to games of this sort. We will not include a
move of nature in the tree to represent the realization of the valuations but rather
construct the tree independent of these realizations. Next, notice that the rules of
the auction require players to move simultaneously in each round. However, in an
extensive form setting this is not explicitly possible but takes the form of sequential
moves in which players do not observe moves made by the other players. Thus
we model the auction as a non-cooperative game in extensive form with imperfect
information.

The game

(1) A finite set N = {1, . . . , n} of players that participate in the game.

(2) A number of rounds R that specifies the duration of the game.

(3) For each player a decision set A = {yes, no}. This reflects the fact that
each player has to make a binary decision in each and every of his information sets.

(4) Every node in the game tree is a vector a that represents the history of
decisions chosen by players before the game reached this node. Formally, a = (ak)r

k=1

with 1 ≤ r ≤ R where ak = (aki)n
i=1 for k < r and ar = (ari)

j
i=1 for some j ≤ n.

Here aki is the decision in A by player i in round k.

The length of a node is defined as l(a) = (r − 1)n + j. The initial node a0 is a
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node with length equal to 0. The nodes with length equal to rn are referred to as
the start of round r +1. The terminal nodes are nodes whose length is equal to Rn.

(5) There is an edge between two nodes a and b if the length of b is equal to
the length of a plus one, and for all i and k for which aki is defined, aki = bki.

Let Xr denote the set of nodes corresponding to round r. The set Xr partitions
into n sets Xri, each Xri being the set of nodes in round r where player i has to
make a decision. Formally, Xri = {a | l(a) = (r−1)n+i−1}. For a node a ∈ Xr and
q < r, let aq = (ak)

q
k=1 denote the part of the history a corresponding to the first q

rounds. We associate with every node a ∈ Xr the set P (a) of players whose decisions
made in round r − 1 equal yes, taking into account that decisions of drop-outs are
counted as no, decisions of a winner as yes.

(6) Node a in Xri belongs to the information set H(a) defined as the set of all
nodes b from Xri such that for all k < r

1. aki = bki

2. |P (ak)| ≤ 1 iff |P (bk)| ≤ 1.

(7) We associate with each terminal node τ , a set WIN(τ) that is a set of
candidate winner(s) of the game if the game terminates in node τ . If in one of the
rounds corresponding to node τ there has been exactly one yes-bid, then WIN(τ)
consists of the player that submitted this bid. Otherwise, WIN(τ) equals the set of
players that never dropped out. In that case, the winner of the game is determined
by a lottery among all players i in WIN(τ). The price the winner pays is

p(τ) = 2R−1 +
R−1∑
k=1

λk2R−k−1 + β

where for all k

λk =

{
−1 if |P (τk)| ≤ 1

1 otherwise
and β =

{
−1 if |P (τ)| ≤ 1

0 otherwise.

The payoff of player i with private value vi in terminal node τ is defined by

Ui(τ) =

{
vi − p(τ) with probability 1

|WIN(τ)| if i ∈ WIN(τ)

0 else.

A few remarks. To describe the auction more precisely, we partition the set of
players N into three subsets of players, A(a) - the set of players that are active in
node a, W (a) - the winner set in node a, and D(a) - the set of players that dropped
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out before the game reached node a. For the initial node a0 they are defined as
follows: A(a0) = N , W (a0) = ∅ and D(a0) = ∅. We iteratively define them for
nodes with arbitrary length. For a node a = (ak)r

k=1 with l(a) = nr,

W (a) =

⎧⎪⎨⎪⎩
W (ar−1) if W (ar−1) �= ∅
∅ if W (ar−1) = ∅ and |P (a)| �= 1
P (a) if W (ar−1) = ∅ and |P (a)| = 1

D(a) =

{
D(ar−1) if |P (a)| ≤ 1
D(ar−1) ∪ {i ∈ A(ar−1) | ari = no} otherwise

A(a) = N \ (W (a) ∪ D(a)).

For a node a = (ak)r
k=1 with l(a) �= nr, we define these sets as follows: W (a) =

W (ar−1), D(a) = D(ar−1), and A(a) = A(ar−1).

In a similar way as for terminal nodes, we can associate a price with an arbitrary
internal node. For a node a = (ak)r

k=1 with l(a) = nr we define its price by

p(a) = 2R−1 +
r∑

k=1

λk2R−k−1

where for all k

λk =

{
−1 if |P (ak)| ≤ 1

1 otherwise.

Note that for a with l(a) = nr the price p(a) = p(ar−1) + 2R−r−1 if |P (a)| > 1
and p(a) = p(ar−1) − 2R−r−1 if |P (a)| ≤ 1. Furthermore, for a node a = (ak)r

k=1

with l(a) �= nr we define p(a) = p(ar−1).

In any node a we now have a price. The actions a player can take in this node
a, either a yes or a no, can be interpreted as being his answer to the question:

Are you willing to pay the price p(a) for the object we are selling?

Moreover, these prices can be used to characterize information sets. For any
a, b ∈ Xri from the same information set, p(a) = p(b). Each information set in Xri

can be represented by its associated price and the sequence of decisions chosen by
player i in the first r − 1 rounds.
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Observe that the way the auction proceeds depends only on the behavior of
active players. The following result shows that the bisection auction leads to a very
particular information structure.

Proposition 2.3.1. For an information set in which player i is active and for every
decision of player i made in this set, there exists exactly one immediate successor
information set H(a) in which player i is still active. Moreover, this immediate
successor is, in case the player chose yes, the one with |P (a)| > 1 and the one with
|P (a)| ≤ 1 in the other case.

This proposition is an immediate consequence of the definition of an information
set. Once a player said no from the fact that he stays active he can infer that there
was nobody or exactly one player with a yes-bid, but he can’t distinguish between
these two possible cases so that he can conclude whether the winner is found already.

2.4 Playing the game

2.4.1 Equivalence of strategies and threshold strategies

Let Hi denote the collection of player i’s information sets.

Definition 2.4.1. A strategy for player i is a function si : Hi → A.

First notice that the number of information sets of each player corresponding to
round k is equal to 4k−1 (unless the number of players equals two, in which case it is
3k−1). The total number of information sets in the game for each player is equal to∑R

k=1 4k−1 = 1
3(4R − 1). Thus, the number of possible strategies of a player equals

2
1
3
(4R−1). We will show that the number of essentially different strategies is much

lower, in the order of 2R to be specific. We denote by p(H) the price corresponding
to information set H.

Definition 2.4.2. Let t be an integer, called the threshold. The threshold strategy
st
i : Hi → A assigns the action yes to H ∈ Hi with p(H) ≤ t and the action no to

H ∈ Hi with p(H) > t.

We show next that from a strategic perspective players may restrict themselves
to using threshold strategies only. First we need the following result.

Lemma 2.4.3. Let si be a strategy of player i and let r be a round. Then there is
a unique information set Hr,i(si) of player i such that if he is still active in round
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r he will necessarily be in information set Hr,i(si). Furthermore, the price of this
information set Hr,i(si) equals

p(Hr,i(si)) = 2R−1 +
r−1∑
k=1

λk2R−k−1

where for all k

λk =

{
−1 if si(Hk,i(si)) = no

1 if si(Hk,i(si)) = yes.

Proof. For round r = 1. The information set H1,i(si) is simply the unique informa-
tion set X1,i of player i in round 1. Its price is p(H1,i(si)) = 2R−1.

Now suppose that for some r < R the information set Hr,i(si) has been reached
(and its price is determined as above). Since player i is supposed to be active in
this information set, according to Proposition 2.3.1 the action si(Hr,i(si)) player i

takes in this information set determines a unique immediate successor Hr+1,i(si) in
which player i is still active.

Furthermore, for si(Hr,i(si)) = no, this immediate successor is one with |P (a)| ≤
1. This implies that the price of Hr+1,i(si) is equal to p(Hr,i(si)) − 2R−r−1. Thus,
λr = −1 in this case. If on the other hand s(Hr,i(si)) = yes, this immediate
successor is one with |P (a)| > 1. This implies that the price of Hr+1,i(si) is equal
to p(Hr,i(si)) + 2R−r−1 and hence λr = 1.

This result enables us to specify for any strategy its equivalent threshold strategy.

Definition 2.4.4. Let si be a strategy of player i. The threshold ti(si) is defined by
ti(si) = p(HR,i(si))+β where β = −1 if si(HR,i(si)) = no and β = 0 if si(HR,i(si)) =
yes.

The following result implies that a strategy si and the threshold strategy s
ti(si)
i

are realization-equivalent.

Theorem 2.4.5. Let si be a strategy and let s̃i be the threshold strategy with thresh-
old ti(si). Let s−i be an arbitrary collection of strategies for players other than i.
Let a be the realized history if s = (si, s−i) is played and let b be the realized history
if s̃ = (s̃i, s−i) is played. Then for both histories holds
1. For every round r, A(ar−1) = A(br−1), D(ar−1) = D(br−1), W (ar−1) = W (br−1).
2. For every round r where player i is active according to a we have ar = br.
3. For all k ≤ r and all players j �= i, akj = bkj.
4. All players j �= i in all rounds reach the same information sets.
5. The payoff of all players are the same in a and b.
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Proof. We will first prove statements 1, 2 and 3 by induction.

(I) For r = 1. By definition, A(a0) = A(b0), D(a0) = D(b0) and W (a0) = W (b0).

In order to prove (2) and (3), notice that the set X1j is the only information set
of any player j in round 1. Obviously a1j = b1j for all j �= i, so it remains to prove
that a1i = b1i or equivalently that si(X1i) = s̃i(X1i).

If si(X1i) = no we have to show that ti(si) < p(X1i). By Lemma 2.4.3 it holds
that λ1 = −1, so

ti(si) = 2R−1 +
R−1∑
k=1

λk2R−k−1 + β ≤ p(X1i) − 2R−2 +
R−1∑
k=2

2R−k−1 < p(X1i).

Similarly, if si(X1i) = yes we can show that ti(si) ≥ p(X1i).

(II) Now suppose that (1), (2) and (3) are true in round r. We will show that
they are also true for r + 1. Using (3) of the induction hypothesis it follows easily
that A(ar) = A(br), D(ar) = D(br) and W (ar) = W (br), which proves (1).

In order to prove (2) and (3), suppose that according to a player i is active in
round r + 1. Then player i is also active in round r. We know from the induction
hypothesis that ar = br. It is then clear that ar+1,j = br+1,j for all players j �=
i. The only thing left to show is ar+1,i = br+1,i or equivalently si(Hr+1,i(si)) =
s̃i(Hr+1,i(si)).

If si(Hr+1,i(si)) = no, we have to show that ti(si) < p(Hr+1,i(si)). Lemma 2.4.3
implies λr+1 = −1. So,

ti(si) = p(Hr+1,i(si)) +
R−1∑

k=r+1

λk2R−k−1 + β

≤ p(Hr+1,i(si)) − 2R−r−2 +
R−1∑

k=r+2

2R−k−1 < p(Hr+1,i(si)).

The other case goes again along the same lines of reasoning.

(4) This follows easily from (2).

(5) Observe that the payoff is a function of the information sets reached in round
R and decisions of active players made in the last round. All these are the same.
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Corollary 2.4.6. Any strategy si of a player i can be represented by an equivalent
threshold strategy s̃i.

In the following, we will restrict our attention to threshold strategies and denote
them just by referring to the threshold.

2.4.2 Playing the game with threshold strategies

In this subsection we show that the winner of the object to be sold is a player
with the maximum threshold and the price equals the second-highest threshold, and
consequently that truth-telling is a weakly dominant strategy.

Let t = (ti)i∈N be a profile of thresholds played in the bisection auction. This
profile remains fixed during the next few statements. We denote the terminal node
where the game ends according to this profile by τ∗. Let p(r) = p((τ∗)r−1) be the
price in round r for this realization of the game.

Definition 2.4.7. The maximum threshold tmax is defined to be the number maxi∈N ti.

Definition 2.4.8. Let k be a player with tk = tmax. The second-highest threshold
tsec is defined to be the number maxi∈N/{k}ti.

Theorem 2.4.9. Let t = (ti)i∈N be a profile of thresholds played in the bisection
auction. The winner of the game is necessarily a player whose threshold equals the
maximum threshold.

Proof. According to the definition the set of candidate winner(s) of the game is
WIN(τ∗) = W (τ∗) if W (τ∗) �= ∅ and WIN(τ∗) = A(τ∗) otherwise.

Case 1. W (τ∗) �= ∅. Let W (τ∗) = {k}. Consider the round r in which player k

became the winner. Then ark = yes and arj = no for all j �= k. Thus tj < p(r) for
all j �= k and tk ≥ p(r).

Case 2. W (τ∗) = ∅. Note that all players in A(τ∗) must have chosen the same
action in each round. Therefore they have the same thresholds. A player j who
became inactive in some round r must have said no in this round while all players
in A(τ∗) said yes. But then tj < p(r) ≤ tk for all k ∈ A(τ∗) and for all j /∈ A(τ∗).

Lemma 2.4.10. Let t = (ti)i∈N be a profile of thresholds played in the bisection
auction. A player with the second highest threshold remains active till the end of
the game.
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Proof. Let player j be a player with the second highest threshold. We have to show
that j ∈ A(τ r) for all 0 ≤ r ≤ R. The case r = 0 is trivial. Suppose the statement
is true for some r. We show that it is true for r + 1. There are three situations
concerning the winner set that could possibly occur.

(A) W (τ r+1) = ∅. It means that |P (τ r+1)| �= 1. Suppose |P (τ r+1)| = 0. Then
A(τ r+1) = A(τ r) - all active players remained active, thus player j too. Suppose
|P (τ r+1)| > 1. Then every player with the highest threshold, as well as any player
with the second highest threshold, decides yes. In this case all players from A(τ r)
with a yes-bid remain active, including player j.

(B) W (τ r) = ∅ and W (τ r+1) �= ∅. It means that |P (τ r+1)| = 1. The only
yes-bid comes from the, in this case unique, player with the highest threshold, and
he becomes the winner. The set of active players is A(τ r+1) = A(τ r) / W (τ r). Thus
player j remains active.

(C) W (τ r) �= ∅. For this case it holds that |P (τ r+1)| ≥ 1. Suppose |P (τ r+1)| =
1. Then all players from A(τ r) have made a no-bid and remain active, thus player
j too. If |P (τ r+1)| > 1, then at least one player from A(τ r) has made a yes-bid and
remains active. This surely includes player j because he has the highest threshold
among the players that are still active.

Lemma 2.4.11. Let t = (ti)i∈N be a profile of thresholds played in the bisection
auction. The price of the terminal node τ∗ is equal to the threshold of any player
that is active at the end of the game.

Proof. Consider a player from A(τ∗), say i. First of all we will show that |ti−p(R)| ≤
1. We prove this inductively by showing that |ti − p(r)| ≤ 2R−r for each round r.
For r = 1 the statement follows easily. Suppose it is true for some r.

(a) p(r) ≤ ti. Together with the assumption of the induction hypothesis it gives
us p(r) ≤ ti ≤ p(r) + 2R−r. Moreover, in this case player i has made a yes-bid in
round r. Since he is active in all rounds, the price went up to p(r)+2R−r−1 in round
r + 1, so |ti − p(r + 1)| ≤ 2R−r−1.

(b) p(r) > ti. For this situation we show in the same way that p(r)−2R−r ≤ ti ≤
p(r) and p(r+1) = p(r)−2R−r−1 from which it follows that |ti−p(r+1)| ≤ 2R−r−1.

Thus, |ti − p(R)| ≤ 1 for any player who is active at the end of the game.

Case 1. p(τ∗) = p(R)− 1 and so |P (τ∗)| ≤ 1. This last inequality implies that
player i said no in the last round, so p(R) > ti. Since |ti − p(R)| ≤ 1, p(τ∗) = ti.

Case 2. p(τ∗) = p(R) and so |P (τ∗)| > 1. This last inequality implies that
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player i said yes in the last round, in other words, p(R) ≤ ti. If, he said yes in
all rounds, p(R) = 2R − 1, and thus p(R) = ti. Otherwise, if follows from the
construction of the bisection auction that the last round in which player i has said
no has a price equal to p(R) + 1. So p(R) ≤ ti < p(R) + 1, and thus p(τ∗) = ti.

Corollary 2.4.12. Let t = (ti)i∈N be a profile of thresholds played in the bisec-
tion auction. The price the winner of the game pays is equal to the second highest
threshold.

Definition 2.4.13. The truth-telling strategy of player i is the threshold strategy
for which t is equal to player i’s valuation vi.

Theorem 2.4.14. The truth-telling strategy of player i is a weakly dominant strat-
egy.

Proof. From the previous results, specifically Theorem 2.4.9 and Corollary 2.4.12,
it follows that we can interpret the thresholds from Corollary 2.4.6 as bids in the
Vickrey auction. The bisection auction is therefore strategically equivalent to the
Vickrey auction, and telling the truth is a weakly dominant strategy.

A final immediate consequence of this theorem is the following corollary.

Corollary 2.4.15. The truth-telling strategy profile constitutes a symmetric Nash
equilibrium. It is the unique perfect Nash equilibrium.

2.4.3 Some remarks on generalizations of the bisection auction

The bisection auction assumes that the bidders’ valuations are randomly drawn
from a probability distribution on the bounded set [0, 2R)n. There is no problem to
extend the bisection auction to the case where the upper bound is equal to infinity.
The key insight is that the current construction where after each round the current
interval is split in two equally sized intervals can be generalized to any split without
changing our main results. In particular, one may start the first round with the
interval [0,∞), which splits in the intervals [0, u) and [u,∞) for some integer u. As
long as all realizations of valuations are assumed to be finite, after a finite number
of rounds attention will be restricted to an interval with a finite upper bound.

The rules of the bisection auction presented in the sections above are constructed
in such a way that the only information revealed to players after each round is the
change of the price. This information policy is less restrictive than it may look at
first sight. First of all, in order to make the formal representation of the auction and
the proofs of its properties concise and comprehensive we decided not to include the
number or identities of the drop-outs in the information revealed. Notice however
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that revealing which players dropped out does not reveal whether or when the winner
has been determined. Thus, revealing which players drop out does not change the
weak dominance of truth-telling. Only the formal proof of this property becomes
more sophisticated. Information sets of a player are characterized then, in addition
to price and own previous actions, by time and the identity of the players that
dropped out. So, the strategy space becomes larger and more complicated. But we
still can show that for any strategy from this extended space there exists an outcome
equivalent threshold strategy, so that the results of this chapter also hold for the
auction with such an information policy.

The possibilities offered by for instance the internet render a practical imple-
mentation of the bisection auction feasible. Bidders should be informed about the
rules of the bisection auction, in particular about how prices respond to the number
of yes-bids, and about the fact that the price in each round is the only information
transmitted to them.

Now we will examine what happens if after each round the bids of all the players
are revealed, so not only the drop-outs but also the winner becomes publicly known.
The following example shows that truth-telling is not a weakly dominant strategy
in the bisection auction under this information policy.

Example. Consider the bisection auction under the full information policy with
two players. Let player A choose to act according to the following strategy: to say
no up to the moment the winner is found and yes afterwards. Regardless of his
valuation the best that player B can do against this strategy is to say no in all
rounds but the very last one. Player B will get the object for a price equal to zero.

Nevertheless, it can still be shown that the truth-telling profile constitutes an
ex-post Nash equilibrium. Indeed, let us analyze what the best thing is player i can
do given that all other players follow the truth-telling strategy. If player i does not
win, his payoff is zero. If he wins he pays the price equal to the highest valuation
of other players, so the price is not influenced by his behaviour during the auction.
Thus, any strategy that guarantees winning in case player i’s valuation is the highest
is a best response. One such strategy is the truth-telling strategy.

2.5 Conclusion

We proposed a new auction, the bisection auction, and analyzed its equilibrium
properties. First, we have proved that in the bisection auction, threshold strategies
are sufficient from a strategic point of view. Furthermore, we have shown strategic
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The bisection auction

equivalence of the bisection auction to the Vickrey auction. Using this result we
established that the proposed auction is incentive compatible, that is truth-telling
is a weakly dominant strategy. The equilibrium that results when everyone tells
the truth is efficient in the sense that the player with the highest valuation gets the
object.
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Chapter 3

Bounds on communication

performance

In this chapter we discuss the information revelation requirements of the bisection
auction and the associated amount of data that needs to be transmitted. We show
that in the truthtelling equilibrium the bisection auction is economical in its demand
for information on the valuations of the players. It requires the players to transmit
less information bits to the auctioneer than the Vickrey and English auctions.1

3.1 Introduction

It has been shown in the previous chapter that the bisection auction is strategically
equivalent to the Vickrey and English auctions and therefore it preserves efficiency
and has truth-telling as a dominant strategy.

While being strategically equivalent to the Vickrey and English auctions the bi-
section auction outperforms them in terms of valuation revelation requirement . In
comparison with the Vickrey and English auctions in the bisection auction much less
information needs to be revealed to the auctioneer to decide on an allocation and a
payment. In the truth-telling equilibrium all valuations in the Vickrey auction and
all but the highest valuation in the English auction are revealed to the auctioneer
with a precision up to the very last digit.2 In the bisection auction through in-
cremental querying the auctioneer asks bidders for very limited information about
their valuation, namely whether the valuation is more than an ask price or not.

1The results of this chapter were first presented in Grigorieva et al. [21].
2The reason is that in the version of the English auction that is strategically equivalent to the

Vickrey one, all bidders except a bidder with the highest valuation drop out when the price reaches

their valuations.
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Information already revealed guides the selection of subsequent queries in such a
way that only pertinent information is asked. As soon as it becomes clear to the
auctioneer that a particular bidder does not possess relevant information, i.e infor-
mation which helps the auctioneer to find the winner and the price, this bidder is
eliminated from the auction. An efficient outcome is determined despite the fact
that almost all bidders’ valuations have only been partially revealed. Only a bidder
with the second highest valuation reveals his valuation, something that is inevitable
in a Vickrey implementation (Green and Laffont [20]). All other bidders only reveal
their valuation up to a precision required to determine the winner and the precise
value of the second highest valuation.

The primal contribution of this chapter is to analyze precisely the communica-
tion associated with the revelation of bidders’ valuations in these three auctions.
The fact that these auctions are strategically equivalent to each other allows us to
compare for all three auctions the information bidders are required to reveal about
their valuations in equilibrium. Following Kushilevitz and Nisan [35] we measure
communication by the number of information bits that bidders should transmit dur-
ing the auctions in the truth-telling equilibrium. By a bit we mean the smallest unit
of information used by a computer, either a 0 or a 1. We find that in expectation
the corresponding number in the bisection auction is far less than in the Vickrey
and English auctions. In order to show this we derive formulas for the expected
number of information bits in these auctions with n players whose valuations are
integer numbers uniformly and independently drawn from the interval [0, 2R) for
some positive integer R. While we find that in the Vickrey auction Rn information
bits and in the English auction at least 1

3n2R information bits are to be transmit-
ted, it turns out that the bisection auction requires transmission of at most 2n + R

information bits.

3.2 Communication performance of the bisection auc-

tion

The tool we use to measure communication associated with revelation of information
is the amount of data that gets transmitted in equilibrium. Notice that the fact that
we have truth telling in equilibrium indeed allows us to identify revelation of infor-
mation with data transmission . We calculate and compare the expected number
of information bits that are to be transmitted by players before the auctioneer can
decide upon allocation and payment in the Vickrey, English and bisection auctions.
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3.2. Communication performance of the bisection auction

3.2.1 Bounds on data transmission in the bisection auction

In this subsection we present an implementation of the bisection auction that re-
quires players to transmit at most 2n + R information bits.

The initial ask price is known to all players before the auction starts. During a
round with an ask price pr each active player submits a bid 0 or 1 where 0 stands
for the statement ”My valuation is less than pr” and 1 stands for the contrary. So,
during a round each active player sends a single bit of information to the auctioneer.
We do not require inactive players to submit bids since the outcome of the auction
does not depend on the actions of inactive players. After receiving bids from all
active players the auctioneer counts the number of 1’s and determines who remains
active. To each player that participated in this round the auctioneer sends a message
0 or 1 where 0 stands for the announcement that the bidder is not active anymore
and 1 stands for the contrary. A player that remains active uses the information
about his own previous action to compute the price of the next round and submits
his next bid. Recall that if he said yes in the previous round the price goes up,
otherwise the price goes down.

We calculate the expected number of information bits to be transmitted from
players to the auctioneer during the auction. We consider the setting where valu-
ations of players are integer numbers drawn uniformly and independently from the
interval [0, 2R), for some integer R. We assume that each player follows his truth-
telling strategy, i.e. he submits 1 to an ask price that is less than or equal to his
true valuation and 0 otherwise. From this assumption it follows that in any round
an active player submits 1 or 0 with equal probability. Indeed, any active player in
current round r has a valuation that is uniformly distributed in the interval between
the current lower and the current upper bound. Together with the fact that a cur-
rent ask price lies in the middle of this interval it gives us the desired probability of
1/2.

Let EB(n,R) denote the expected number of information bits that will be trans-
mitted from players in the auction of n (remaining) active players and R (remaining)
rounds in the case where the winner is not found yet. Similarly, by E∗

B(n,R) we de-
note the expected number of information bits that will be transmitted from players
in the auction of n (remaining) active players and R (remaining) rounds in the case
the winner has already been found.

First, we find a recursive formula for EB(n,R). During the first out of R re-
maining rounds all active players submit bids, so that n information bits are trans-
mitted. Obviously, if only one round remains, then only n bits are transmitted, so
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EB(n, 1) = n. For R > 1 several situations can occur. If during this round the
winner happens to be found, then n − 1 active players (everyone except the win-
ner) and R − 1 rounds remain. The probability of this event is equal to n

(
1
2

)n. If
during this round the winner is not found then k active players and R − 1 rounds
remain. Notice that if the winner is not found the situation with only one active
player in the next round can’t occur, so 2 ≤ k ≤ n. For k �= n the probability that
k out of n active players say yes is P (k, n) =

(
n
k

)(
1
2

)n. For k = n this probability is
P (n, n) = 2

(
1
2

)n (i.e the probability that all n players say yes plus the probability
that all n players say no). Thus, for n > 1 and R > 1 we find that

EB(n, R) = n + n

(
1
2

)n

E∗
B(n − 1, R − 1) +

n∑
k=2

P (k, n)EB(k, R − 1).

Now we derive a recursive formula for E∗
B(n, R). To do that we consider a sit-

uation where n active players and R rounds remain in the auction and during a
previous round the winner was already found. During the first out of R remaining
rounds all active players submit bids, so that n information bits are transmitted
during this round. Again, if only one round remains, then only n bits are trans-
mitted, so E∗

B(n, 1) = n. If only one player happens to be active he remains active
till the end of the auction and during the remaining R rounds exactly R bits will
be submitted, so E∗

B(1, R) = R. For n > 1 and R > 1 several situations can oc-
cur. Depending on the bids in this round k active players (1 ≤ k ≤ n) and R − 1
rounds remain. For k �= n the probability that k out of n players remain active is
P (k, n) =

(
n
k

)(
1
2

)n. For k = n this probability is P (n, n) = 2
(

1
2

)n. Thus, for n > 1
and R > 1 we find that

E∗
B(n,R) = n +

n∑
k=1

P (k, n)E∗
B(k,R − 1).

Using these formulas we can compute the expected number of information bits
transmitted from the players to the auctioneer in the bisection auction for different
combinations of n and R. Table 3.1 presents the computational results for R up to
10 and n up to 20 (within an accuracy of 0.001).

We show now that both E∗
B(n,R) and EB(n, R) have upper bounds that are

linear in n and R.

Lemma 3.2.1. For any n ∈ N and R ∈ N, E∗
B(n,R) ≤ 2n + R − 2.

Proof. The proof is by induction on R. Our induction proposition is

P (R) : for every n ∈ N : E∗
B(n,R) ≤ 2n + R − 2.
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3.2. Communication performance of the bisection auction

n�R 2 3 4 5 6 7 8 9 10

2 3.500 4.750 5.875 6.938 7.969 8.984 9.992 10.996 11.998

3 5.250 6.938 8.297 9.480 10.573 11.619 12.643 13.655 14.661

4 6.750 8.688 10.172 11.418 12.542 13.604 14.635 15.651 16.659

5 8.125 10.273 11.873 13.179 14.333 15.411 16.450 17.469 18.479

6 9.468 11.818 13.530 14.895 16.080 17.173 18.220 19.243 20.255

7 10.828 13.373 15.194 16.618 17.833 18.942 19.996 21.023 22.037

8 12.218 14.954 16.882 18.364 19.610 20.734 21.796 22.827 23.843

9 13.641 16.562 18.597 20.136 21.411 22.551 23.620 24.656 25.673

10 15.088 18.195 20.333 21.929 23.234 24.389 25.466 26.505 27.525

11 16.554 19.847 22.086 23.739 25.073 26.243 27.328 28.371 29.393

12 18.032 21.513 23.853 25.561 26.925 28.109 29.203 30.249 31.273

13 19.519 23.190 25.629 27.392 28.785 29.985 31.086 32.137 33.162

14 21.011 24.877 27.413 29.230 30.653 31.868 32.976 34.031 35.058

15 22.506 26.571 29.204 31.075 32.527 33.757 34.873 35.932 36.961

16 24.007 28.273 31.001 32.926 34.406 35.652 36.775 37.837 38.869

17 25.502 29.980 32.804 34.781 36.291 37.551 38.682 39.748 40.781

18 27.001 31.693 34.612 36.642 38.179 39.455 40.594 41.664 42.699

19 28.501 33.412 36.424 38.506 40.073 41.363 42.509 43.583 44.620

20 30.000 35.134 38.242 40.375 41.970 43.275 44.429 45.506 46.545

Table 3.1: The expected number of information bits transmitted from the players
to the auctioneer in the bisection auction of n players and R rounds, EBA(n,R).

The basis of induction, P (1), is trivial since E∗
B(n, 1) = n ≤ 2n + 1 − 2 = 2n − 1

is true for any n ∈ N. Now suppose that the proposition P (R − 1) is true. Take
n ∈ N. If n = 1 then we have E∗

B(1, R) = R ≤ 2 + R − 2 = R. If n > 1 then, using
the induction hypothesis,

E∗
B(n,R) = n +

n∑
k=1

P (k, n)E∗
B(k, R − 1)

= n +
n−1∑
k=1

(
n

k

)(
1
2

)n

E∗
B(k, R − 1) + 2

(
1
2

)n

E∗
B(n,R − 1)

≤ n +
n−1∑
k=1

(
n

k

)(
1
2

)n

(2k + R − 3) + 2
(

1
2

)n

(2n + R − 3)

= n + 2
n∑

k=0

(
n

k

)(
1
2

)n

k + 2n

(
1
2

)n

+
n∑

k=0

(
n

k

)(
1
2

)n

(R − 3)

= 2n + 2n

(
1
2

)n

+ R − 3.

Since for any n it holds that 2n
(

1
2

)n ≤ 1 we have the desired inequality.
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Theorem 3.2.2. For any integer n ≥ 2 and R ∈ N, EB(n, R) ≤ 2n + R.

Proof. The proof is by induction on R. Our induction proposition is

P (R) : for every integer n ≥ 2 : EBA(n,R) ≤ 2n + R.

The basis of induction, P (1), is trivial since EB(n, 1) = n ≤ 2n + 1 is true for any
integer n ≥ 2. Now suppose that the proposition P (R − 1) is true. Take an integer
n ≥ 2. Using the induction hypothesis and the result of Lemma 3.2.1 we have

EB(n, R) = n + n

(
1
2

)n

E∗
B(n − 1, R − 1) +

n∑
k=2

P (k, n)EB(k, R − 1)

= n + n

(
1
2

)n

E∗
B(n − 1, R − 1) +

n−1∑
k=2

(
n

k

)(
1
2

)n

EB(k, R − 1) +

2
(

1
2

)n

EB(n,R − 1)

≤ n + n

(
1
2

)n

(2n + R − 5) +
n−1∑
k=2

(
n

k

)(
1
2

)n

(2k + R − 1) +

2
(

1
2

)n

(2n + R − 1)

= n + 2n2

(
1
2

)n

+ n

(
1
2

)n

(R − 5) + 2
n−1∑
k=2

(
n

k

)(
1
2

)n

k +

4n

(
1
2

)n

+
n−1∑
k=2

(
n

k

)(
1
2

)n

(R − 1) + 2
(

1
2

)n

(R − 1)

= n + 2n2

(
1
2

)n

+ n

(
1
2

)n

(R − 5) + n + R − 1 − n

(
1
2

)n

(R − 1)

= 2n + R +
(

1
2

)n

(2n2 − 4n) − 1.

It is straightforward to check that f(n) =
(

1
2

)n (2n2 − 4n) ≤ 1 for any integer
n ≥ 1. Thus the desired inequality EB(n, R) ≤ 2n + R holds.

So we can conclude that during the bisection auction on average not more than
2n + R bits are transmitted from players to the auctioneer. Concerning a lower
bound, it is easy to see that during the bisection auction at least n+R−1 information
bits are to be transmitted from players to the auctioneer. Indeed, during the first
round all n active players send a bit and there is at least one active player during
the remaining R − 1 rounds.
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3.2. Communication performance of the bisection auction

Figure 3.1: The expected number EBA(n,R) of information bits transmitted from
players to the auctioneer during the bisection auction, compared to the upper bound
2n + R (view from the back side).

3.2.2 Comparison with the English auction

The English auction starts with an ask price equal to 1. From round to round the
price increases by a unit increment as long as at least two players announce their
willingness to pay. Let us assume that only a synchronization signal is submitted:
the auctioneer communicates price increments to all active players by sending 1,
while he communicates the end of the auction by sending 0. Players update their
price based on this signal and send 1 to the auctioneer if they are willing to buy at
this price and 0 otherwise.3

As in the bisection auction, we calculate the expected number of information
bits which are to be transmitted during the auction from players to the auctioneer.
Suppose that valuations of players are integer numbers uniformly and independently
drawn from the interval [0, L) for some integer L. We assume that all players follow
their truth-telling strategies. In the first round with an ask price equal to 1 the
probability that a player says yes is equal to the probability that his valuation is
not equal to 0 which is L−1

L . For any player i who remains active in the next round
it holds that vi ∈ [1, L). So, the probability of saying yes in the second round (i.e

3Shoham and Tennenholtz [19] suggest implementation of the English auction where each player

communicate only a single bit indicating his willingness to quit the auction. However this imple-

mentation requires the use of a global clock whose initial point and rate of change are common

knowledge among all participants. We assume that no such a device is available to conduct the

auction.
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the probability of having valuation not equal to 1) given that the player is active is
equal to L−2

L−1 . And so on.

With n active players in a round there will be 2 ≤ k ≤ n active players in the
next round. By P (k, n, L) we denote the probability that exactly k out of n active
players, whose valuations are random integer numbers from a half open interval of
length L, say yes. Thus,

P (k, n, L) =
(

n

k

)(
L − 1

L

)k ( 1
L

)n−k

.

Let EE(n,L) denote the expected number of information bits transmitted from play-
ers in the auction of n active players whose valuations are random integer numbers
from a half open interval of length L. Notice that for L = 2, EE(n, 2) = n. For
L ≥ 3 and n ≥ 2 we find that

EE(n,L) = n +
n∑

k=2

P (k, n, L)EE(k, L − 1)

= n +
n∑

k=2

(
n

k

)(
L − 1

L

)k ( 1
L

)n−k

EE(k, L − 1).

We will use this recurrent equation to show that the average number of bits
EE(n,L) that will be transmitted from players to the auctioneer has a lower bound
of 1

3Ln.

Theorem 3.2.3. For any integer n ≥ 2 and L ≥ 2, EE(n, L) ≥ 1
3Ln.

Proof. The proof is by induction on L. Our induction proposition is

P (L) : for every integer n ≥ 2 : EE(n,L) ≥ 1
3
Ln.

The basis of induction, P (2), is trivial since EE(n, 2) = n ≥ 1
32n is true for any

integer n ≥ 2. Now suppose that the proposition P (L − 1) is true. Take an integer
n ≥ 2. Using the induction hypothesis we have
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EE(n,L) = n +
n∑

k=2

(
n

k

)(
L − 1

L

)k ( 1
L

)n−k

EE(k, L − 1)

≥ n +
n∑

k=2

(
n

k

)(
L − 1

L

)k ( 1
L

)n−k 1
3
(L − 1)k

= n +
1
3
(L − 1)

[(
L − 1

L

)
n − n

(
L − 1

L

)(
1
L

)n−1
]

=
1
3
nL + n

[
2
3
− 1

3

(
L − 1

L
+

(L − 1)2

Ln

)]
.

Finally observe that L−1
L ≤ 1 and (L−1)2

Ln ≤ 1 for any L and any n ≥ 2.

To compare the communication performance of the bisection and English auc-
tions we look at the same range of valuations for both auctions. So we take interval
[0, 2R) and compare EB(n,R) with EE(n, 2R). For valuations uniformly and inde-
pendently drawn from the interval [0, 2R) the bisection auction requires from players
in expectation transmission of at most 2n + R information bits while the English
auction requires transmission of at least 1

32Rn bits.

It can easily be checked that for any R ≥ 4 and any n the upper bound of the
expected number of bits transmitted by players in the bisection auction is less than
the corresponding lower bound in the English auction. Moreover it can be shown
that for all n and R it holds that EB(n,R) ≤ EE(n, 2R). From the above bounds
it is clear that the expected number of information bits required by the English
auction is exponential in the total expected number of information bits required by
the bisection auction. Thus we can conclude that the bisection auction requires from
players in expectation communication of far less information bits than the English
auction.

3.2.3 Comparison with the Vickrey auction

To compare the communication performance of the bisection and Vickrey auctions
we look again at valuations uniformly and independently drawn from the interval
[0, 2R). Any valuation from this interval can be represented using a binary encoding
of length R. Submission of a valuation expressed in this way consists of R informa-
tion bits. Since during the Vickrey auction all players submit their exact valuation,
this auction of n players requires communication of Rn bits.

It can easily be shown that for any n and R the expected number of bits EB(n,R)
transmitted from players in the bisection auction is less than the number Rn of
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corresponding bits in the Vickrey auction. Thus, we can conclude that the bisection
auction requires from players in expectation far less communication than the Vickrey
auction.

3.3 Conclusion

While being strategically equivalent to the Vickrey and English auctions the bisec-
tion auction outperforms them in terms of information revelation and associated
communication. We compared three strategically equivalent auctions and showed
that in the truth-telling equilibrium the bisection auction requires the players to
transmit less information bits to the auctioneer than the Vickrey and English auc-
tions.
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Chapter 4

Optimal communication

performance

In this chapter we analyze the communication performance of auctions viewed as
algorithms that sequentially queries bidders about their valuations. We investigate
and compare the number of queries performed by algorithms until they find the
Vickrey outcome. We introduce a measure for comparison that resembles stochastic
dominance, but that, to the best of our knowledge, has not been used before for
algorithm comparison. With respect to this measure, we prove for the case of two
bidders a tight lower bound on the required communication of Vickrey auctions, and
show that the bisection auction matches this bound.

4.1 Introduction

In Chapter 2 we showed that in the proposed bisection auction truth-telling is a
weakly-dominant strategy and the equilibrium where all players follow this strategy
results in an efficient allocation. The bisection auction shares this property with the
Vickrey auction and the English auction. In Chapter 3 we showed that compared
to these two auctions the bisection auction needs less communication to determine
the allocation and the price for the item. The following natural questions arise:
how much communication does the bisection auction need compared to any other
auction that possesses the same equilibrium properties, in particularly, does there
exist an auction with these equilibrium properties that needs less communication
than the bisection auction?

Results of Green and Laffont [20] and Holmström [28] imply that under certain
minor restrictions on bidders’ utility functions the Vickrey-Clarke-Groves (VCG)
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mechanisms are the only ones that are incentive compatible, have a dominant strat-
egy equilibrium and provide an efficient allocation. Due to this result we restrict
our search to this class of mechanisms. For the case of a single indivisible item any
mechanism that belongs to this class is a mechanism that finds the Vickrey out-
come. The Vickrey outcome requires that the winner is a bidder having the highest
valuation and the price he pays for the item is equal to the second-highest valuation.

In this chapter we partially answer the questions posted above, showing that
the bisection auction applied to the case of two bidders requires less communication
than any other auction that finds the Vickrey outcome. We prove a lower bound for
any Vickrey auction1, and show that the bisection auction matches this bound. To
achieve this goal we view a Vickrey auction, and in particular the bisection auction,
as an algorithm that sequentially queries bidders about bits of a binary encoding of
their valuations. We investigate and compare the number of queries performed by
algorithms until they find the identity of all bidders with the highest valuation and
the exact value of the second-highest valuation.

It is widely accepted in theoretical computer science to compare the performance
of two algorithms by considering performance of the algorithms in the worst case
(see e.g. Knuth [32]). For the problem at hand, worst case analysis hardly makes
any sense since for any algorithm there exists a realization of valuations requiring
Rn queries to provide a Vickrey outcome, where n is the number of bidders and R

is the length of the binary encoding of the valuations. Therefore, we need another,
more sophisticated tool for algorithm comparison. Given an algorithm we count the
number of realizations of valuations for which the number of queries is at most k,
for some 0 ≤ k ≤ Rn. We say that algorithm A1 is preferred to algorithm A2 if for
every k the number of realizations of valuations on which algorithm A1 finds the
Vickrey outcome by performing at most k queries is not less than the same number
in algorithm A2. For the case of two bidders we show that the bisection algorithm is
preferred to any other algorithm that determines the Vickrey outcome. In particular,
this result implies that for two bidders having uniformly distributed valuations the
bisection algorithm has the lowest average number of performed queries among all
Vickrey algorithms.

We conjecture that the bisection algorithm is preferred to any Vickrey algorithm
not only in case of two bidders but for any number of bidders. This is left for further
research.

1In this chapter we use term a Vickrey auction in a broad sense to refer to an auction that finds

the Vickrey outcome (so not to refer to the seal-bid second price format as we did in the previous

chapters).
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This result is of interest not only in mechanism design but also in theoretical
computer science. Consider the classical problem of comparing two numbers given in
binary encoding. The question is which of these numbers is the bigger one? Clearly,
a very straightforward algorithm for this problem that is crossing our minds is to
compare the first (highest register) digits of the numbers, then the second and so
on till a difference is found. The question is whether there exists a more efficient
algorithm solving this problem. Despite the fact that this problem is fundamental
and our preference measure is natural, to the best of our knowledge, this has not
been shown before. Our result can be seen as the proof that the intuitive algorithm
above, using in fact binary search, is the preferred algorithm among all algorithms
solving the number comparison problem.

4.2 Vickrey auctions as algorithms

Suppose there is an auctioneer who wants to sell a single indivisible item to an
individual in the set N = {1, . . . , n} of bidders. Each bidder i has a valuation for
the item that is given in binary encoding of length R. Thus, the valuation of bidder
i is a vector vi = (vri), r = 1, . . . , R, where each element vri is a binary digit, i.e.
is equal to 0 or 1. The set Vi = {0, 1}R denotes the set of all possible realizations
of bidder i’s valuation. A realization of bidders’ valuations is a matrix v = (vi)i∈N ,
where column i corresponds to the valuation of bidder i. In the following we call cells
in this matrix a box. The set V =

∏
i∈N{0, 1}R is the set of all possible realizations

of bidders’ valuations. The valuation of a bidder is only known to the bidder itself.
In particular, the auctioneer is entirely ignorant concerning the particular realization
of valuations. An auction that the auctioneer is employing to retrieve information
about bidders’ valuations can be viewed as an algorithm that operates on matrices in
V . To define precisely what we mean by an algorithm, we need some more notation.

For k ∈ N, a history h of length k is a sequence of k binary digits. So h =
(b1, . . . , bk), where bj ∈ {0, 1}, j = 1, . . . , k. The length of the history h is denoted
by �(h). The initial history is given by h0 = ∅ and has length zero. The history g is
a subhistory of h, denoted g ≤ h, if the first �(g) digits of h yield the history g. The
set C = N × {1, . . . , R} denotes the set of matrix coordinates.

Algorithm. Consider a triplet A = (H, ϕ, σ), where H is a collection of histories
and ϕ : H → C, and σ : H → {0, 1} are functions. The function ϕ is called the
query function, and σ is called the stopping criterion. The triplet A = (H,ϕ, σ) is
an algorithm if:

1. ∅ ∈ H.
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2. If h ∈ H and σ(h) = 0, then (h, 0) ∈ H and (h, 1) ∈ H.

3. If h ∈ H and σ(h) = 1, then (h, 0) �∈ H and (h, 1) �∈ H.

The interpretation of an algorithm A = (H, ϕ, σ) is as follows. First, nature
selects an instance v in V. The algorithm A starts without any information, rep-
resented by the empty vector h0 = ∅. If σ(∅) = 1, the algorithm has solved the
problem and stops (of course, stopping at h0 is unusual). Otherwise, σ(∅) = 0 and
the algorithm opens box ϕ(h0) of v (this is also referred to as the query performed
by the algorithm), which generates the history h1 = (vϕ(h0)). If σ(h1) = 1, the algo-
rithm stops. Otherwise, the algorithm opens box ϕ(h1), which generates the history
h2 = (h1, vϕ(h1)). In general, after k steps history hk is generated. If σ(hk) = 1, the
algorithm stops. Otherwise, the algorithm opens box ϕ(hk), which generates the
history hk+1 = (hk, vϕ(hk)), and so forth.

Remark. Even though the algorithm only decides on the next query to perform
given the announced binary digits, without remembering who announced it, this is of
course not a restriction, because the algorithm itself decided to whom the previous
question was asked. Thus, to include data regarding the queries itself –not just the
answers– into histories will needlessly complicate our notation. It suffices just to
remember which answers were given in which order. When necessary we can use the
algorithm itself to find out to which question a certain digit was an answer.

Any such algorithm A can be represented by a rooted binary tree with arcs
directed from the root to the endnodes. Nodes of this tree correspond to histories
in H, at which the query ϕ(h) is posed, arcs correspond to answers to the queries
ϕ(h). The root of the tree is h0 = ∅. A sequence of nodes on a path from the root to
any node of the tree is a realization of algorithm A. A path from the root to a node
h indicates queries which were performed and answers to them before the algorithm
asks the query corresponding to node h. Any node h for which the stopping criterion
σ(h) = 0 is followed by two arcs. Any node h for which σ(h) = 1 is an endnode. The
length of an endnode e, l(e), is equal to the number of nodes (not counting the root)
on the path from the root to h. Alternatively, l(e) equals the number of arcs on
the path from the root to e. This length indicates how many queries are performed
before algorithm A ends for an instance v for which the algorithm goes along this
path. The set of instances in V for which algorithm A goes along this path and
ends in node e has cardinality 2Rn−l(e), since the number of unopened boxes at the
moment algorithm A stops is equal to Rn − l(e).

Definition 4.2.1. An algorithm A = (H, ϕ, σ) is a Vickrey algorithm if the stopping
criterion σ is defined such that the algorithm stops does not stop before the identity
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of all bidders with the highest valuation2 and the exact value of the second-highest
valuation are found. A valuation is considered to be the second highest one if there
is exactly one strictly higher valuation, or if it is the highest valuation and there are
at least two bidders with this valuation.

The bisection algorithm. An example of a Vickrey algorithm is the bi-
section algorithm, to be denoted by B. The bisection algorithm B opens boxes of
matrix v in R steps. In step r the algorithm B opens some boxes in the rth row
of the matrix. Inside a step the boxes can be opened in an arbitrary sequence. To
define boxes to be opened in a step we introduce sets Ar and Wr. Initially, A1 = N

and W1 = ∅.
In step r the bisection algorithm B

1. opens box {r, i} for all i ∈ Ar;

2. defines Yr = {i ∈ Ar | vri = 1};

3. defines Ar+1 and Wr+1 as follows

• if |Yr| = 0 then Wr+1 = Wr and Ar+1 = Ar;

• if |Yr| = 1 and Wr = ∅ then Wr+1 = Yr and Ar+1 = Ar\Yr;

• if |Yr| = 1 and Wr �= ∅ or if |Yr| > 1 then Wr+1 = Wr and Ar+1 = Yr.

After R steps the bisection algorithm finds the Vickrey outcome. The algorithm
opens all boxes of all valuations from the set AR+1. The valuation of a bidder from
this set is a value of the second highest valuation (if the set AR+1 contains more than
one bidder valuations of all bidders from this set are equal). If WR+1 �= ∅, it contains
the bidder with the highest valuation. Otherwise the set AR+1 contains all bidders
(at least two) with the highest valuation (that is the case when the highest and the
second highest valuations coincide). Note that, the bisection algorithm always finds
the identity of all bidders with the highest valuation, the identity of all bidders with
the second highest valuation, and the value of the second highest valuation.

Remark. Step r of the bisection algorithm corresponds to round r of the
bisection auction. The set Ar can be interpreted as the set of players active in round
r, the set Wr as the winner set. The set Yr corresponds to the set of active players
who said yes in round r. This correspondence is valid because it can be shown that

2We require an algorithm to find the identity of all bidders with the highest valuation to give

them equal chance to get the object in case of ties.
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a truth-telling player active in round r of the bisection auction says yes if the rth

digit of the binary encoding of his valuation is equal to 1 and says no otherwise.3

4.3 A criterium for communication performance of al-

gorithms

Among all Vickrey algorithms we want to find the one that finds the Vickrey outcome
performing as few queries as possible. The typical approach taken when assessing
the performance of an algorithm is to make worst-case analysis . In a worst-case
analysis of the considered algorithms, an upper bound should be given for the num-
ber of queries the algorithm performs for a given number of bidders n and length
of valuations R. Since there are instances for which any Vickrey algorithm needs to
open all Rn boxes (e.g. when the valuations of all bidders are equal to each other),
the worst case analysis hardly makes any sense to compare the performance of Vick-
rey algorithms. Here we will use a more sophisticated criterium for optimality of an
algorithm than that implied by worst-case analysis.

For each Vickrey algorithm A we denote by �A : V → N∪{∞} the function that
assigns to each instance v in V the length of the history after which the algorithm
stops (or equivalently the number of queries that algorithm A performs on v).

Suppose we have two Vickrey algorithms A1 and A2, and suppose that the
designer of algorithm A1 challenges the designer of algorithm A2 saying: I claim
that my algorithm requires less communication than yours on the set V of instances.
How could we decide that this is a legitimate claim? We suggest to let designers
play the following game. Each contestant starts with an instance bin that initially
contains all instances and a discard bin that is initially empty. In the first round of
the game A2 may choose any instance v from his instance bin. The task of A1 is
to find an instance v′ (not necessarily equal to v) in his instance bin on which his
algorithm performs at least as good as algorithm A2 does on instance v, i.e such
that �A1(v′) ≤ �A2(v). If A1 is not able to find such an instance, A2 beats A1 and
wins the contest. However, if A1 succeeds to find such an instance, both contestants
discard the instance they have chosen to their respective discard bins, and the game
enters the second round that is played using only the instances that are still left in
their instance bins. This procedure is repeated until either A2 beats A1 at a certain
moment, or until the instance bins are empty, in which case we declare A1 to be the
winner.

3Actually, the question during the rth round of the bisection auction can be interpreted as ”Is

the rth digit of your valuation equal to 1?”

52



4.3. A criterium for communication performance

kRn

2Rn

Figure 4.1: Graph of the characteristic function of an algorithm.

Actually it is fairly easy to find optimal strategies for both designers. Designer A2

can basically chose any instance from his instance bin while designer A1 should, when
faced with instance v, select an instance v′ that has the highest value of �A1 among
those instances that are still left in his instance bin and for which �A1(v′) ≤ �A2(v)
still holds. Notice that following the optimal strategy designer A1 wins the game if
for all k the number of instances for which algorithm A1 performs at most k queries
is not less than the number of instances for which algorithm A2 performs at most k

queries. Using this observation we can state our criterium for algorithm comparison
in a more formal way.

Definition 4.3.1. The characteristic function of an algorithm A is the function
FA(k) that counts the number of instances in V for which �A(v) ≤ k.

Notice that the characteristic function of an algorithm enables us to identify
the number of instances for which the algorithm terminates in exactly k steps as
FA(k) − FA(k − 1).

Using the tree representation of algorithm A we can say that

FA(k) =
k∑

j=1

|Ej |2Rn−j ,

where Ej is the set of endnodes with length j. Figure 4.1 shows an example of a
graph that corresponds to the characteristic function of an algorithm.

Definition 4.3.2. An algorithm A1 is preferred to an algorithm A2, A1 � A2, if
FA1(k) ≥ FA2(k) for all k.
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Notice that if an algorithm A1 is preferred to an algorithm A2 then the graph
of FA1(k) is never below the graph of FA2(k).

Actually Definition 4.3.2 resembles the definition of first-order stochastic dom-
inance (see, e.g. Levy [38]) if we assume the uniform distribution of instances.
Indeed, for the case at hands, it would state that an algorithm A1 first-order stochas-
tically dominates an algorithm A2 if for every number of queries k, the probability
of stopping after at most k queries is not smaller for A2 than for A1. Indeed, rescal-
ing the characteristic function along the y-axis (dividing by the total number of
instances 2Rn) we get the function that, for every number of queries, shows the
probability that on a randomly chosen instance the algorithm performs at most as
many queries.

Definition 4.3.3. Given a class of algorithms, an algorithm A1 is an optimal algo-
rithm if A1 � A for all algorithms A in this class.

Not all algorithms can be considered as candidates to be an optimal algorithm.
In the following we show that a cyclic algorithm can not be optimal.

Definition 4.3.4. An algorithm A = (H,ϕ, σ) is cyclic if there are histories g, h ∈ H

with g ≤ h such that ϕ(g) = ϕ(h). Consequently, an algorithm A = (H,ϕ, σ) is
acyclic if for all histories g, h ∈ H with g ≤ h holds ϕ(g) �= ϕ(h).

An acyclic algorithm never performs the same query, i.e. never asks a bidder
to report a specific digit of his valuation more than once. Therefore an acyclic
algorithm always ends within Rn performed queries.

Proposition 4.3.5. For any cyclic Vickrey algorithm A1 = (H1, ϕ1, σ1) there is a
Vickrey algorithm A2 = (H2, ϕ2, σ2) such that FA2(k) ≥ FA1(k) with strict inequality
for some k.

Proof. Let us construct such an algorithm A2. Consider histories a, b, c ∈ H1 such
that σ1(c) = 1, a ≤ c, b ≤ c, a ≤ b and ϕ1(a) = ϕ1(b). Since algorithm A1 is cyclic
such histories exist. We construct algorithm A2 in the following way. Algorithm A2

performs the same queries as algorithm A1 does, except on instances that generate
history b. On these instances it skips query ϕ1(b) and goes on asking the same
queries as A1 does after query ϕ1(b). By skipping query ϕ1(b) algorithm A2 does
not lose any essential information and thus finds the Vickrey outcome based on the
same information as algorithm A1 has. Obviously, on the instances that generate
history b algorithm A2 stops after l(c)−1 queries (i.e. one query less than algorithm
A1) while on other instances it performs the same number of queries as A1 does.
Thus, in comparison to algorithm A1, algorithm A2 has more instances for which
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in case of two bidders

it performs l(c) − 1 queries and less instances for which it performs l(c) queries. It
means that FA2(l(c)− 1) > FA1(l(c)− 1) while FA2(k) = FA1(k) for all other k.

This result implies that a cyclic algorithm cannot be an optimal one. Thus,
when searching for an optimal algorithm, we may restrict ourselves to studying
acyclic algorithms.

4.4 Optimal communication performance of the bisec-

tion algorithm in case of two bidders

Here we consider the case where there are only two bidders, i.e. N = {1, 2}. We
show that in this case the bisection algorithm is an optimal one among all Vickrey
algorithms. Let

v =

⎡⎢⎣ a1 b1
...

...
aR bR

⎤⎥⎦ .

Definition 4.4.1. A matrix row (ar, br) for some r is called a double if ar = br and
is called a single otherwise.

Let pA : V → N be the function that assigns to each instance v in V the number
of rows that algorithm A opens in v before it stops.

Let gA(k) be the function that defines the number of instances in V for which
pA(v) ≤ k.

Since a Vickrey algorithm A should find the exact value of the second-highest
valuation (and thus to open all its boxes) the number of queries that A performs on
an instance v is equal to the number of rows that A opens in V before it stops plus
R:

�A(v) = pA(v) + R.

It means that for any two Vickrey algorithms A1 and A2 gA1(k) ≥ gA2(k) for all
k implies that FA1(k) ≥ FA2(k) for all k. So, to prove that algorithm A1 is preferred
to algorithm A2 it is enough to show that gA1(k) ≥ gA2(k) holds for all k.

Proposition 4.4.2. For an instance v which contains R doubles any Vickrey algo-
rithm, before it stops, opens all rows. For any other instance any Vickrey algorithm
opens at least one single.
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Proof. A Vickrey algorithm as defined in Definition 4.2.1 finds the identity of all
bidders with the highest valuation. To do that it should be verified that either
valuations of both bidders equal to each other (and thus they both have the highest
valuation) or valuations are different. The former can be only shown by opening all
boxes, the latter by opening at least one row with unequal entries.

Remark. If we do not require an algorithm to find all bidders with the high-
est valuation then the statement of Proposition 4.4.2 does not hold. Consider the
following example. Suppose an algorithm has opened⎡⎢⎣ 0 0

1 1
0 ∗

⎤⎥⎦
after five queries. The revealed information is enough to find the second highest
valuation (which is equal to the valuation of bidder 1) as well as the identity of a
bidder with the highest valuation (that is bidder 2). So if we are satisfied with finding
only a bidder with the highest valuation we can stop without opening the remaining
box. That means that the algorithm, before it stops, may neither open all R rows
nor a single.

Lemma 4.4.3. For every Vickrey algorithm A applied to the case of two bidders

gA(k) ≤
k∑

j=1

22R−j .

Proof. Let us consider an algorithm Ā that does the same as algorithm A but stops
as soon as the first single is opened. Let the set of instances M be equal to V and
Me and Mu be empty sets. Go through the following procedure. Take an instance
v from M . Consider the step in algorithm Ā where the first row4 has been opened.
W.l.o.g. in this step box br has been opened. Define instance v′ as follows:

a′j = aj for all j

b′j = bj for all j �= r

b′r �= br

Obviously, instance v′ is also from M .

4By “the first row” we do not refer to the upper row of matrix v but to a row that has been

opened first when no other row is completely opened yet. The same holds for the usage of “the

second row”.

56



4.4. Optimal communication performance

Clearly, either ar = br or a′r = b′r. If ar = br then update

Me := Me ∪ {v}
Mu := Mu ∪ {v′}.

Otherwise
Me := Me ∪ {v′}
Mu := Mu ∪ {v}.

In both cases M := M \ {v, v′}.
Repeat the procedure from the beginning until set M is empty. It is clear from

the construction that when the procedure ends we have |Me| = |Mu| = 22R−1.
Obviously for any instance from Mu algorithm Ā stops after the first row is opened,
since this row is a single.

Let Vk(A) ⊆ V be the set of instances for which algorithm A, before it stops,
opens k rows. Then V1(Ā) = Mu and |V1(Ā)| = 22R−1.

Using Proposition 4.4.2 we know that algorithm A stops not earlier than algo-
rithm Ā and thus V1(A) ⊆ V1(Ā). That implies gA(1) = |V1(A)| ≤ 22R−1.

Now apply the same procedure to the set Me by considering the step in the
algorithm Ā where the second row is opened. Note that for any instance from Me

the first opened row is a double. At the end of the procedure we have the set V2(Ā),
the set of instances for which algorithm Ā stops after the second row is opened. The
cardinality of this set is 22R−2. Again, by Proposition 4.4.2, algorithm A stops not
earlier than algorithm Ā and thus V1(A) ∪ V2(A) ⊆ V1(Ā) ∪ V2(Ā), which implies
that gA(2) = |V1(A) ∪ V2(A)| ≤ 22R−1 + 22R−2.

Iterating this procedure we can show that for any k ≤ n it holds that |Vk(Ā)| =
22R−k. Since

k⋃
j=1

Vj(A) ⊆
k⋃

j=1

Vj(Ā)

we get the desired result

gA(k) = |
k⋃

j=1

Vj(A)| ≤
k∑

j=1

22R−j .

The bisection algorithm B applied to (R × 2)-matrix v opens rows in the top-
down fashion as long as no single is opened. As soon as the first single is opened the
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algorithm is able to determine the identity of the highest valuation (and at the same
time the identity of the second highest). Then the algorithm opens the remaining
boxes of the second highest valuation.

Theorem 4.4.4. For the case of two bidders the bisection algorithm B is an optimal
algorithm among all Vickrey algorithms.

Proof. First of all, notice that after the algorithm B finds the first single no new
row is opened. It means that Vk(B) = Vk(B̄). From the proof of Lemma 4.4.3 it
follows that |Vk(B)| = 22R−k and for any k ≤ n

gB(k) =
k∑

j=1

22R−j .

Using the result of Lemma 4.4.3, for any Vickrey algorithm A and any k we get

gA(k) ≤ gB(k)

and consequently
FA(k) ≤ FB(k).

Corollary 4.4.5. For the case of two bidders with uniformly distributed valuations
the bisection algorithm has the lowest expected communication among all Vickrey
algorithms.

4.5 Conclusion

In this chapter we have shown that for the case of two bidders the bisection algorithm
has the optimal communication performance in the class of Vickrey algorithms. An
interesting and very natural question is to extend this result to an arbitrary number
of bidders. Despite obvious similarities, the problem with multiple bidders seems to
be much more difficult to tackle than the problem with only two bidders. At least,
the presented approach is not straightforwardly extendable to handle the general
problem. We leave this question as a conjecture for further research.

Conjecture 4.5.1. The bisection algorithm B applied to the case with an arbitrary
number of bidders is an optimal algorithm among all Vickrey algorithms.
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Chapter 5

An experimental investigation

of bidding behavior in the

bisection auction

We present a laboratory experiment in which we investigate bidding behavior in
the proposed bisection auction, and compare it with two classical auction formats
– the Vickrey auction and the English auction. We test whether subjects behave
strategically equivalent, following the dominant truth-telling strategy, as predicted
by theory. Furthermore, we provide some insights concerning the learning process,
the efficiency of allocation, and the revenue to the auctioneer. The data show that
the bisection auction performs better than the Vickrey auction and only in some
terms worse than the English auction.1

5.1 Introduction

In Chapter 2 it is shown that the bisection auction is strategically equivalent to the
Vickrey auction (and hence also to the English auction). Therefore it preserves effi-
ciency and has truth-telling as a dominant strategy. While being strategically equiv-
alent to the Vickrey and English auctions the bisection auction outperforms them
in terms of speed and valuation revelation requirements. Contrary to the English
auction the bisection procedure guarantees a fast termination of the proposed auc-
tion. In comparison with the Vickrey auction, the bisection auction requires much
less information to be revealed to the auctioneer. Through incremental querying the
auctioneer asks bidders for very limited information about their valuation, namely

1The results of this chapter were first presented in Grigorieva and Strobel [25].
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whether the valuation is more than an ask price or not. Information already revealed
guides the selection of subsequent queries in such a way that only pertinent informa-
tion is asked. As soon as it becomes clear to the auctioneer that a particular bidder
does not possess relevant information, i.e information which helps the auctioneer to
find the winner and the price, this bidder is eliminated from the auction. An optimal
outcome is determined despite the fact that almost all bidders’ valuations have only
been partially revealed. Only the bidder with the second highest valuation reveals
it entirely, something that is inevitable in a Vickrey implementation (see Green and
Laffont [20]).

Given the advantages of the bisection auction, it seems strange that one does
not come across it in practical applications. One potential reason is that while
all three auctions are theoretically equivalent, they might differ substantially from
a behavioral point of view when boundedly rational decision makers are involved.
Several experiments were conducted so far for testing the strategic equivalence of
the Vickrey and English auctions in the laboratory. The results by and large show
that in contrast with theory players typically do not behave in an equivalent way.
Behavior according to the dominant truth-telling strategy was observed more often
in the English auction (see e.g. Coppinger et al. [14], Kagel et al. [30]). In the
Vickrey auction, observed bids often exceeded the predicted level (see e.g. Harstad
[27], Kagel et al. [30] and Kagel and Levin [31]).2 As conjectured in Kagel [29],
this difference in behavior can be attributed to different information flows inherent
in the structure of the two auctions. The structure of the English auction makes
it relatively transparent to players that they should not bid above their valuations
- any time a player bids above his valuation and wins he necessarily loses money.
In contrast, in the Vickrey auction there is no such direct link between the bid of
a winner and the price he has to pay. In the Vickrey auction a player does not
necessarily lose money if he bids above his private valuation and wins. This sustains
the illusion that overbidding improves the probability of winning with only the little
risk of paying a price above the own valuation. The feedback mechanism to learn
and to correct overbidding is therefore weaker in the Vickrey procedure.

The reported breakdown of the strategic equivalence of the Vickrey and English
auctions with respect to behavior raises justified doubts on the behavioral equiv-
alence of the bisection auction and the others . The bisection auction due to its
more complicated rules seems to be more difficult to understand. A particularly
uncommon feature for auctions is that the price might be moving up and down. It

2Some papers, e.g. Cox et al. [15] and Smith [57], report the Vickrey auctions in which prices

converge to the dominant strategy price from below. However, in these experiments subjects were

explicitly prohibited from bidding above their valuations.
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might make bidders think that with bidding high initially and hoping that the price
would go down later in the auction, they can increase their profit by overbidding.
In this sense the bisection auction also lacks the tight cognitive connection between
the probability to win and the price to be paid. The situation calls for an initial test
of behavioral equivalence before putting the bisection mechanism to practice. One
could argue, that market forces will drive out irrational behavior and will lead to
the dominant strategy behavior sooner or later. The process, however, will not be
free of frictions (e.g. law suits) and thus a good ex-ante estimate of the behavioral
anomalies in the bisection auction will be helpful. The goal of this chapter is to
make some first steps into the investigation of the practical usage of the bisection
auction. Therefore we test all three auction types in a laboratory experiment and
compare them with respect to truth-bidding, revenue and efficiency.

In comparison to the other auctions the bisection auction did fairly well and
much better than we initially expected. The performance is quite comparable to
the English auction and in terms of some measurements better than the Vickrey
auction.

The chapter is organized as follows. Section 5.2 describes the experimental design
and laboratory procedure. Section 5.3 reports the results and tests and Section 5.4
concludes with a summary and some open questions. In the Appendices 5.5 - 5.7 the
instructions, the post-experimental questionnaire and additional tables with relevant
data are presented.

5.2 Experimental design and procedure

To compare the auction mechanisms we designed an experiment with three different
treatments VA, EA and BA which correspond to the Vickrey, English and bisec-
tion auction, respectively. The experiment was computerized with the help of zTree
(Fischbacher [18]). Throughout the experiment we used ECU (Experimental Cur-
rency Unit) as a fictitious currency for expressing prices, values, bids and earnings.
One session lasted for 10 periods and was played by 9 subjects. In each period they
were randomly partitioned into three groups of three bidders. At the beginning of
each period every bidder got to know privately her value which was independently
drawn from the uniform distribution over the interval [32, 96).3 For every session of
one treatment a new set of valuations and a new matching scheme were randomly
generated. However, in order to maximize comparability of treatments we used the
same sets of valuations and the same matching schemes across treatments. After

3This probability function was publicly known.
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learning their value subjects had to bid against the other group members in order
to win the auction. The auction mechanism depended on the treatment.

Vickrey auction (VA): Subjects were asked to submit one bid which had to
be an integer number from the interval [0, 128). The subject with the highest bid
won the auction and received the object (i.e. she got her private value). The price
the winner had to pay was equal to the second-highest bid that was made within
the group.

English auction (EA): The English auction was implemented by using an
ascending clock procedure. The price started at zero and increased continuously at
a rate of 1 ECU per 2 seconds with the maximum possible price of 127. Subjects
had drop out at the price they were not willing to bid anymore. Dropping out was
irrevocable so that a bidder could no longer bid on the object. The last bidder of
the group won the object at the price 1 ECU below the price where the next-to-last
bidder dropped out.4

Bisection auction (BA): The initial interval for the bisection auction was
[0, 128). The initial ask price was set to 64. The winner and the price were then
determined by the procedure described in section 2.2.

In all treatments ties could happen if at least two persons show exactly the same
behavior and end up to be the “highest” bidders. In such cases the winner was
randomly determined among the tied bidders. At the end of each period the winner
of the auction received his private value but had to pay the determined final auction
price. Each of the bidders was informed whether or not she bought the object, the
selling price of the object, as well as her gains and losses.

The experiment was conducted in the experimental behavior laboratory of the
economic faculty at Maastricht University. In total 135 subjects took place in the
experiment. Most of them were undergraduate students from economics or business.
They could register for the experiment via Internet via their student id. By this we
prevented double registration. In total we conducted 5 sessions for each treatment,
with 9 subjects each. When subjects arrived at the laboratory they were randomly

4We explicitly have chosen this instead of the classical version of the ascending clock English

procedure where the winner gets the object at the price when the next-to-last bidder dropped out.

This choice allowed us to simplify the part of the subjects instructions where we explained the

moment of dropping out, namely “ ... at the price you are not willing to bid any more”. This

change in rules has the consequence that in the implemented version dropping out as soon as the

price exceeded the private value is the dominant truth-telling strategy. Apart from that, these two

versions are identical and either of them can be used for comparison with the bisection and Vickrey

procedures.
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placed at isolated computer terminals, so that they neither could see screens of the
others nor get into eye contact with them. The sessions lasted for about 60 minutes.

Before the start of a session subjects received written instructions (see Appendix
1). They were allowed to privately ask questions which were also privately answered
by the experimenters. As a part of the instructions subjects were provided with ex-
amples of players’ valuations and were asked to calculate the profit of each player for
some assumed outcomes. The calculations were privately checked. The experiment
started only when every calculation was done correctly. After a session we asked
participants to fill in a post-experimental questionnaire (see Appendix 2) where
they could explain how they made their decisions and give any comments on the
experiment.

Each participant received an initial endowment of 3 EURO. At the end of the
experiment the amount which was earned was converted from ECU into Euro at
the rate of 1 EURO = 4.5 ECU. For the case that the earned amount was nega-
tive, the losses were deducted from the initial endowment. Average earnings of the
participants were about 13 Euro.

5.3 Experimental results

By and large we were able to replicate the common results on the Vickrey and
the English auction.5 The data further shows that the bisection auction does not
perform worse than the Vickrey auction. In some aspects it was doing better and
matches the performance of the English auction. In the following we will analyze
the data in more detail with respect to truth-telling, learning, auctioneer’s revenue
and efficiency. If not mentioned explicitly we will base our statistical tests on the
session level (i.e. on statistically independent observations). Therefore we aggregate
the data by averaging over all observations within a session.

5.3.1 Bidding behavior

Theory predicts bidders in all auctions types to follow a truth-telling strategy. In the
following we check whether this is indeed the case or whether subjects tend to under-
or overbid. When classifying subjects as truth-tellers we accept small deviations
from the private value and call it a value bid . Reasons for small deviations could
be that subjects ignored the possibility of ties. In such cases small deviations (i.e.
by 1 ECU) from true-value bidding do not change the subjective expected payoff.
Another reason for dropping out a bit too early or too late in the English auction

5See also our discussion in the introduction to this chapter.
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could be the fear of missing the exact time to drop out or indeed missing it. In
the following paragraphs we define value bids in detail and report results for the
different treatments.

Vickrey auction: For VA truth-telling means to bid exactly the private value
vi, hence we consider any bid in the set {vi − 1, vi, vi + 1} as a value bid. If the bid
was above or below this set we consider it as over- or underbidding, respectively.

The data shows that 48% of all 450 Vickrey bids are value bids while 30% of
the bids were too high and 22% of the bids were too low. Five subjects out of 45
followed the value bidding strategy in all 10 auction periods. The average number
of periods where a subject bid his value was 3.6 periods.

English auction: In the implemented version of the English auction the truth-
telling strategy is to drop out as soon as the price p exceeds the private valuation
vi, i.e. if p = vi + 1. Thus we consider it a value bid if the drop-out price was
in the set {vi, vi + 1, vi + 2}. If a player dropped out at a price below or above
this set, we considered it as under- and overbidding, respectively. Normally one
particular player, the winner of the auction, does not drop out and therefore does
not completely reveal his bidding strategy. These cases we regarded as value bids
as long as the elicited behavior was consistent with value bidding.6

Among 450 bids in the EA treatment 75% were value bids, 16% subjects were
underbids and 9% overbids. If we neglect the observations from the auction win-
ners (because their willingness to bid was not fully revealed), we observe a higher
frequency of non-value bids (i.e. 63% value bids, 24% underbids and 13% overbids).
Nine subjects (or 20% of all subjects) are consistent with value bidding in all 10
auction periods. The average number of periods where a subject bid his value was
7.4 periods.

Bisection auction: The bisection auction was implemented along the descrip-
tion in Section 2.2. Each period consisted of 7 rounds. In each round active bidders
have to submit either yes or no for a current ask price. The truth-telling strategy
is to regard the private valuation as threshold value and to state yes if the ask
price is less or equal to the threshold, and no otherwise. It is an inherent feature
of the bisection auction that bidders thresholds are only partially revealed. Hence,
we cannot analyze behavior precisely but we have to rely on bidder’s observable
actions. Thus, we consider a strategy as value-bidding if in all observed rounds the
bidder’s submissions are consistent with a threshold from the set {vi − 1, vi, vi + 1}.

6This classification can be viewed as too optimistic, i.e. we assume that buyers with a private

value above the auction price would never overbid. However, we will also report data without taking

these buyers into account.
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Table 5.1: Value bids across different treatments.

VA EA BA
all observations 450 450 450

value bids 48% 75% 72%
underbids 22% 16% 14%
overbids 30% 9% 14%

fully informative observations 450 305 164
value bids 48% 63% 68%
underbids 22% 24% 17%
overbids 30% 13% 15%

number of value bidders 5 9 7
average number of truth-telling periods per subject 3.6 7.4 6.7

If the latent threshold proved to be lower or higher than this set, then the bidding
strategy was considered to be an under- or overbid, respectively.7,8

The analysis of the data gives us the following results: in 72% of all 450 cases
subjects were consistent with value bidding, in 14% they were underbidding and in
14% they overbid. If we restrict the analysis to those bidders who were active all 7
rounds of a period (i.e subjects whose strategy we could observe to the very end)
the frequencies were almost the same: 68% value-bidding, 17% underbidding and
15% of overbidding. Seven subjects out of 45 (or 15%) followed the value bidding
strategy in all 10 auction periods. The average number of periods where a subject
was consistent with value-bidding was 6.7 periods.

Table 5.1 gives an overview over the value bids across treatments. It seems ev-
ident that EA and BA outperform VA with respect to value bidding. In order to
test this we calculated the average frequency of value bidding per session and treat-
ment, using all observations as well as using only the fully informative observations
(i.e bids where we could observe the strategy to the very end). A nonparametric
Mann-Whitney-U test on the session level yields a significant difference between
BA and VA as well as between EA and VA. In both cases the null hypothesis that

7As for the English auction this classification can be seen as too optimistic. Hence we also

report data from those bidders who stayed active till the end of the auction (at least one bidder

per auction).
8Notice that in a period a player can’t overbid in one round and underbid in another. Indeed if

in a round a player overbids and stays active, then in the next rounds the ask prices are certainly

above his valuation so that underbidding is not possible anymore. Similar, if in a round a player

underbids and stays active, then in the next rounds the ask prices are certainly below his valuation

so that overbidding is not possible anymore.
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Figure 5.1: Bidding behavior: frequency of the different types of bids.

the frequency of value bidding is equal was rejected in favor of statement that the
frequency is smaller in VA treatment (Mann-Whitney-U test, N = 10 for each com-
parison, one-sided; based on all observations: p = 0.004 for both comparisons; based
on the fully informative observations: p = 0.079 for comparison VA with BA and
p = 0.0159 for comparison VA with EA). Between treatments BA and EA we did
not find any significant difference. We summarize this in

Result 1. In terms of value bidding the bisection auction is comparable to the
English auction and significantly better than the Vickrey auction.

5.3.2 Learning process

In section 5.3.1 we analyzed the different auction formats from a static viewpoint.
However for the question of practical usability of the bisection auction it is also
important to take a dynamic viewpoint. Do subjects learn to place value bids? To
answer this we analyze whether subjects get closer to value-bidding as they gained
more experience. For a first glance, Figure 5.1 shows how the frequencies of value-
bidding, under- and over-bidding develop over time.

For each of the treatments, there is a tendency that value-bidding increases
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over time and underbidding decreases over time. For VA these tendencies are most
pronounced. With respect to overbids only VA shows a clear tendency, with the
other treatments it seems not to be clear. Interestingly, the number of overbids in
VA tends to increase rather than to decrease. In order to test the results statistically
we compare the number of deviations from value-bidding in the beginning of a session
(periods 1-3) with the number of deviations at the end of a session (periods 8-10) for
each subject. We assume one subject to be an independent observation and test the
following null hypothesis: the number of deviations from value-bidding in periods
1-3 is the same as in periods 8-10. For each the treatments we can reject the null
hypothesis in favor of the alternative hypothesis that the number of deviations in the
beginning of a session is higher than at the end of a session (Wilcoxon signed-rank
test, N = 45 for each treatment, p ≤ 0.02, one-sided).

The assumption of one subject being an independent observation is disputable.
It rests on the fact that subjects were randomly matched to other subjects in each
round. They neither learned to whom they were matched nor did they learn some-
thing about the other bidders values or bidding strategies. The only thing they got
to know was the final price and whether they bought the object or not.9 Neverthe-
less, subjects interacted with each other repeatedly during 10 periods of a session
(though without knowing against whom they played) and therefore their behav-
ior could be considered as not strictly independent. Hence, we run the same test
on the level of independent observations (session-level) and we get similar results,
although only weakly significant (Wilcoxon signed-rank test, N = 5 for each treat-
ment, p = 0.0625, one-sided).

The tests above only make use of the cases were indeed some differences were
found in the behavior at the beginning and at the end (see e.g. Siegel and Castellan
[55]). This applies to 23, 29, and 26 subjects for the treatments VA, EA, and BA,
respectively. Among those subjects who did not contribute to the test results we
can distinguish between subjects who did not deviate from value bidding in any of
the periods 1-3 and 8-10 and those subjects who did deviate to the same extend in
the beginning and the end.

The first group of subjects always behaved rationally and therefore could not
improve behavior. The numbers of subjects were 5, 12, and 15, for VA, EA, and BA,
respectively. Apparently there is more rational behavior in EA and BA than in VA.

9Some information could be extracted from the prices. For example since the VA price is the

second highest bid, one could infer that at least one bidder must have bid this price. However

this information is rather vague and moreover it does not give much information about the bidding

strategy conditional on the valuation.

67



An experimental investigation

Table 5.2: Learning across different treatments.

VA EA BA
learning not to deviate

subjects (WSR, one-sided) p = 0.02 p = 0.02 p = 0.02
sessions (WSR, one-sided) p = 0.0625 p = 0.0625 p = 0.0625

learning not to severely deviate
subjects (WSR, one-sided) p = 0.0013 n.s. p = 0.0013
sessions (WSR, one-sided) p = 0.0313 n.s. p = 0.0313

# rational bidders in periods 1-3 and 8-10 5 12 15
# non-learners in periods 1-3 and 8-10 17 5 4
# non-learners of severe deviations 7 4 1

In order to confirm this statistically we calculated the average number of rational
subjects (who placed value bids from the beginning) for each session. We can reject
the hypothesis of equal number of rational bidders in favor of the hypothesis that
there are more rational bidders in EA and BA than in VA (Mann-Whitney-U test,
N = 10 for each comparison, p ≤ 0.03, one-sided). A comparison between EA and
BA does not result in significant differences.

The second group of subjects did not behave rationally and did also not learn to
do so. The numbers of subjects are 17, 5, and 4, for VA, EA, and BA, respectively.
Apparently the number of non-learners is much higher in VA than in the other
auctions. In the same manner as above we can reject the hypothesis that the number
of non-learners is equal between VA and each of the other auctions in favor of the
hypothesis that the number of non-learners is higher in VA (Mann-Whitney-U test,
N = 10 for each comparison, p < 0.01, one-sided).

Table 5.2 gives an overview over the results. The whole analysis of this section
was also done with respect to severe deviations. We considered a deviation as severe
if the bid / drop-out price / threshold value had a difference of more than 5 to the
dominant value.10 The learning results were slightly stronger for severe deviations
in VA and BA. For EA no significance was found due to the scarcity of severe
deviations.

In context of learning it is interesting to mention the observation made for the

10The precise definition of severe deviation for BA treatment would be: If in at least one round

of a period an ask price is more than 5 above the bidder’s private valuation and he submits yes

then the bidder is considered to severely overbid. If in at least on round of a period an ask price is

more than 5 below the bidder’s private valuation and he submits no then the bidder is considered

to severely underbid.
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Vickrey auction. We observed that in VA out of 67 cases where a bidder overbid
and won11, only 15 (22%) led to a loss for the bidder. Only in 3 out of the 15 cases
a bidder revised his behavior after suffering a loss. Moreover, there were 3 bidders
who had losses more than once. This illustrates quite well that even from earlier
encountered losses bidders hardly learned that overbidding in the Vickrey auction is
dominated. This observation goes along with a result of Kagel [31] who found that
the feedback mechanism to learn and correct overbidding is weak in the Vickrey
auction. To compare it with BA: out of 29 cases where the winner overbid (which
is half as much as in VA) the winner lost money in 13 cases (45%). After suffering
from losses only in 4 cases subjects continued overbidding.

Summarizing the findings we get

Result 2. In all treatments subjects learn to adjust their behavior in the direction of
the dominant strategy. However, in EA and BA there are significantly more subjects
bidding rational right from the beginning and significantly less subjects who do not
adjust their behavior.

5.3.3 Revenue

According to the theoretical prediction the equilibrium price of an auction, and con-
sequently revenue for the auctioneer must be identical across treatments. Moreover
the revenue should be equal to the second highest valuation among the bidders of
an auction. To compare the revenues we take a look at the following measurements:
first, we are interested in the average resulting revenue; second, the percentage of
auctions with the resulting revenue at the predicted level;12 and third, the aver-
age absolute difference between the resulting and the predicted revenue. Table 5.3
presents the results aggregated over all sessions and periods. We see that the En-
glish auction performs “best” in all three measures. With the exception of average
revenue the bisection auction comes second while the Vickrey auction comes last.

Testing the results of average revenue on a session level yields no significance.
There is, however, a difference in the percentage of auctions with the predicted
revenue level between VA and EA as well as between VA and BA. In both cases the
null hypothesis of equal percentages is rejected in favor of the alternative hypothesis
that the percentage is smaller in VA (Mann-Whitney-U test, N = 10 for each
comparison, p < 0.05, one-sided). However, we are unable to reject, at conventional
significance level, the hypothesis of equality of the percentages for EA and BA. We

11Almost every second winner overbid his valuation.
12Similar as with the definition of a value bid, we accept a deviation by 1 ECU from the predicted

revenue.
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Table 5.3: Revenue across different treatments.

VA EA BA
average revenue in ECU 64.14 64.42 63.88
% of auction with pred. rev. level 42% 60% 52%
avg. abs. diff. between result and pred. in ECU 5.58 2.82 4.39

did not find any significant difference when comparing the percentages of auctions
with a revenue higher than the predicted level. Neither did we find any significant
difference for the percentages of auctions with a revenue smaller than the predicted
level.

Further, the tests show that the average absolute difference between the resulting
and the predicted revenue is not the same for EA and BA as well as for EA and VA.
In both cases the null hypothesis is rejected in favor of the alternative hypothesis
which states that this difference is smaller in EA (Mann-Whitney-U test, N = 10
for each comparison, p < 0.05, one-sided). A comparison of VA and BA does not
result in significant differences.

Moreover, for each treatment we investigated how performance in terms of the
used revenue measurements changed over time. For this purpose for each measure-
ment we calculated average performance in the beginning of a session (periods 1-3)
and at the end of a session (periods 8-10). Testing on the session level yields for
EA a significant increase in the percentage of auctions with revenue at the pre-
dicted level; for BA a significant decrease in the average absolute difference between
the resulting and the predicted revenue (in both cases: Wilcoxon signed-rank test,
N = 5, p = 0.031). For the other measurements and treatments we didn’t find any
significant changes.

Summarizing this section we achieve:

Result 3. Prices and therefore revenues are significantly more accurate in the En-
glish auction than in the other two auctions (according to two measurements, com-
pared to the Vickrey auction, and one measurement, compared to the bisection auc-
tion). The accuracy of revenue of the Vickrey and the bisection auctions differs
significantly with respect to one measurement. The average revenues of the auctions
do not significantly differ from each other.
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Table 5.4: Efficiency across different treatments.

VA EA BA
allocative efficiency 86% 92% 86%
absolute efficiency loss in ECU 1.22 0.63 1.59
relative efficiency loss 1.59% 0.83% 2.03%

5.3.4 Efficiency

An efficient allocation requires assigning an object to the bidder with the highest
valuation, because independent of the price this maximizes total social welfare.
We compare the auction formats with respect to three different efficiency measures:
allocative efficiency, absolute loss of efficiency and relative loss of efficiency. The term
allocative efficiency refers simply to the percentage of efficiently allocated objects
(i.e. the bidder with the highest valuation has to receive the object). Measuring
efficiency in this way does not however reflect the actual magnitude of efficiency
lost due to misallocations. If the “wrong” bidder obtains an object, his valuation
may be substantially or only slightly below the highest bidder’s valuation, causing
either dramatic or small welfare losses. Our second and third measures take this into
account. With absolute loss of efficiency we refer to the difference between maximum
possible welfare and achieved welfare, i.e the difference between the bidders’ highest
valuation and the valuation of the bidder who wins the auction. The relative loss of
efficiency measures the loss of efficiency relative to the maximum possible welfare.

For each measure described above we calculated aggregate results over all ses-
sions and periods (see Table 5.4). Again treatment EA shows the best figures. It
is followed by VA and then by BA.13 However, there is only one result which is
significant: the hypothesis that EA and BA yield the same relative efficiency loss
can be rejected in favor of the hypothesis that EA yields a lower relative efficiency
loss (Mann-Whitney-U test, N = 10, p = 0.047, one-sided).

Investigating change of efficiency over time on session level we observed signifi-
cant decreasing of absolute and relative efficiency loss in BA (Wilcoxon signed-rank
test, N = 5, p = 0.062). For the other measurements and treatments we didn’t find
any significant changes.

To sum up:

13While it seems that VA outperforms BA, the results are in favor of BA if we only take the last

3 periods into account: the figures for VA are 82.2%, 0.95, 1.31%; for BA they are 88.9%, 0.77,

1.02%. None of the measures differs significantly, however.
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Result 4. The allocative efficiency of the auctions do not significantly differ from
each other. The bisection auction performs worse than the English auction with
respect to relative loss of efficiency.

5.3.5 Post-experimental questionnaire

Since theory does not predict any significant differences in behavior but differences
can be found it makes sense to simply ask subjects about their strategies and
thoughts. This was done in a post-experimental questionnaire.14 Two problems
occur with such kind of data. First the answers were not paid and hence subjects
could write anything they want. Second, most questions asked for free text answers
and hence it is difficult to provide quantitative summaries. Nevertheless we make
the attempt to report a selection of the data. Both authors have investigated the
questionnaires independently, classifying the answers into different types. Then we
merged our classifications and the corresponding data to the following summary.15

Vickrey auction. Twenty two out of 45 subjects indicated that they have
chosen (not always from the beginning of the session) the private valuation as a bid.
Seven subjects wrote that they have explicitly decided to make bids below their
private valuation. Sixteen subjects indicated overbidding as a strategy they have
chosen to follow. Half of those 16 bid above their private value only if this value
was very high. From the answers of the overbidders we could see that many of them
(namely 13) disconnected the probability of getting the object from the price paid.
By bidding higher than the private value they thought to increase the probability
without influencing the price they had to pay in case they win. They failed to see
that it were only the bad cases they won additionally.

English auction. The majority of the subjects, namely 34 out of 45, indicated
that they dropped out of the auction as soon as the price reached (or just past) their
valuation. Underbidding and overbidding were mentioned as a chosen strategy by 3
and 7 subjects, respectively. The underbidders attempted to collude. When having a
low private value they explicitly dropped out quickly after the period began in order
to decrease the price and therefore to increase the profit of the winner. Contrary,
3 of the 7 overbidders exhibited competitive behavior. They stayed active longer in
order to increase the price and thus to decrease the profit of the winner, hoping not
to become the winner themselves.

Bisection auction. The most frequently mentioned strategies in BA were: sub-
mit ”No” if the ask price is larger than the private value (21 subjects); and submit

14The questionnaire can be found in the appendix 5.6.
15The raw data is available from the authors on request.
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Table 5.5: Questionnaire: subjects’ knowledge of auction theory.

auction theory VA EA BA
knowledge

thorough 10% 10% 7%
superficial 26% 27% 21%
no 64% 63% 72%

”Yes” if the current price is smaller than the private value (25 subjects). Eight sub-
jects mentioned that they chose to underbid while 9 mentioned overbidding. Seven
subjects mentioned that sometimes, regardless of the private value, they submitted
”No” in order to make the price to go down, hoping to increase thereby their poten-
tial profit. Four subjects indicated that regardless of their valuation they submitted
”Yes” in the first round in order not to be dropped out from the auction immedi-
ately. Also with the two last types we see that 13 subjects disconnected the price
from the probability to win. They either tried to increase the probability without
taking into account the price. Or they tried to lower the price without realizing (or
at least underestimating) the risk to be dropped out.

Over all treatments several subjects wrote that the more money they obtained
the more risk they were willing to take. Many also explicitly mentioned the avoid-
ance of losses as a primary goal. This was mentioned by 11, 8 and 5 subjects in VA,
BA and EA, respectively.

One of our goals was explicitly to test the auction mechanisms among non-
professional bidders. However an explicit restriction of the recruitment to subjects
without auction knowledge had probably attracted even more experienced subjects,
since they might have thought to make a lot of money easily. Consequently we asked
subjects about their pre-knowledge ex-post. The answers are summarized in Tables
5.5 and 5.6.16 By and large the pre-knowledge seems to be rather similar across
treatments with the exception of the experience of online auctions in EA. However,
most important for our purpose is that subjects in treatment BA did not have more
pre-knowledge then in the other auction formats.

Finally we asked subjects what they consider to be the optimal strategy. Sub-
jects were given a predetermined set of answers which differ only in their degree
of deviation from the dominant strategy. Depending on the treatment the answer
implied a bid (VA), a drop-out price (EA), or threshold value (BA). The potential

16The questions about theoretical knowledge and practical experience were only asked in sessions

3-5 of the treatments, so the table contains data on percentage of responded subjects.
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Table 5.6: Questionnaire: practical experience of the subjects.

online auctions VA EA BA other auctions VA EA BA
experience experience

frequently 0% 22% 0% frequently 0% 0% 0%
sometimes 30% 41% 18% sometimes 7% 8% 18%
never 70% 37% 82% never 93% 92% 82%

Table 5.7: Questionnaire: choice of the optimal strategy.

VA EA BA
a number that is

5 or more below the private value 2 0 18
less than 5 below the private value 4 6 9
exactly equal to the private value 25 27 10
less than 5 above the private value 8 10 4
5 or more above the private value 6 2 4

answers we gave to the subjects and the data are shown in Table 5.7.17

It can be seen that EA subjects produced the most correct answers, closely
followed by the VA subjects. The BA subjects gave the correct answer only in 22%
of the cases and therefore differ significantly from the other two treatments (Fisher
exact test, N = 90 for both comparisons, p < 0.001, two-sided).18

It is interesting to compare the answers of the questionnaire with the decisions
actually made in the auctions. We say that a subject behaved consistently in a period
if her decision in this period was in the same category as the answer. Taking a look
at the last three periods we found that in VA 22 subjects (49%) were consistent
in their decisions with what they considered to be optimal. Regarding the last
two periods both decisions were in the same category as the answer for 24 subjects
(53%). Investigating the very last period we see 30 subjects (67%) to be consistent.
The results in EA turned out to be almost the same, namely 21 (47%), 22 (49%)
and 30 (67%), respectively.

It is quite difficult to check consistency of subjects in BA, because, due to limited
information revelation inherent in the bisection auction, it is rarely possible to find

17The question for the English auction was framed in such a way that also “exactly equal to the

private value” was the right answer.
18We neglect any dependence of persons here.
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a unique threshold that corresponds to the used strategy. Only for a player who
is active during all 7 rounds of an auction the threshold can be found precisely,
but if a player drops out or becomes the winner earlier then we can only define
a set of thresholds that correspond to actions he made. Since thresholds from
this set can be in different categories relatively to the player’s valuation we cannot
say for sure whether he is consistent or not.19 However, it is interesting to notice
that among 25 subjects who behaved optimally in more than 6 periods only 9 have
answered the question correctly. Fifteen subjects decided that the optimal threshold
is below the valuation and 1 subject above the valuation. Among these 16 subjects
13 indicated that making decisions they often or even always thought in terms of
threshold strategy.

Taking together the answers in the post-experimental questionnaire we find the
following

Result 5. Despite the fact that the questionnaire was not paid according to perfor-
mance we have no reason to doubt that subjects answered truthfully. The answers
give us the following insights:

1. Pre-knowledge of subjects was quite comparable except in the experience with
online auctions. There, however, VA and BA subjects had less experience than
EA subjects and therefore our positive findings with respect to VA and BA are
conservative.

2. In EA, deviations from the truth-telling strategy were mainly driven by social
preferences. Cognitive issues seem to be a minor problem. In VA and BA
several persons get trapped by the thoughts that it is possible to regard the
probability to win and the expected price as independent items to optimize.
They thought they could change one item with holding the other constant.
This view can cause overbidding as well as underbidding.

3. In BA it seems to be least clear what the optimal strategy is.

5.4 Summary and conclusions

The bisection auction is strategically equivalent to the Vickrey and the English
auction. However, previous results from the comparison of the Vickrey and the
English auction have shown that we should be cautious when drawing conclusions

19For instance, in the example from Section 2.2 actions of player B could correspond to a threshold

strategy with any threshold from set [0, 7]. Notice that some thresholds from this set are smaller

than the valuation of player B and some are larger.
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for the behavioral equivalence. Given that the bisection auction does offer some
advantages over the others in terms of speed and information revelation, the question
rises whether it could be used in practical settings as well. An ultimate answer to
this can of course only be given after a real practical application. The experiment
can be seen as a first step into this direction.

In the paper we compared the bisection mechanism to two other mechanisms,
the Vickrey auction and the English auction. By and large the bisection auction
performs somewhere in-between the others. It is significantly better than the Vick-
rey auction (i.e. closer to theoretical predictions) with respect to the frequency
of value-bidding and the accuracy of the price. Compared to the English auction
it performs worse with respect to severe deviations from value bidding, the relative
loss in efficiency and the absolute difference between resulting and predicted revenue
(see Table 5.8 for the full summary on treatments comparison).

Moreover, we investigated how the performance of the auctions changed over
time. For the bisection auction we noticed a significant improvement in terms of
the frequency of value-bidding, the loss of efficiency and the accuracy of the price
(see Table 5.9 for the full summary on change of measurements over time).

A major reason for subjects to deviate from value bidding seems to be the
thought that probability to win can be seen independently from the expected price.
Subjects who overbid in the Vickrey auction, for example, increase the probability
to win but they fail to see that the additional cases are those that give a negative
payoff. Some of the subjects see this negative dependence but they underestimate
the consequences.20 Similar thoughts are possible for the bisection auction: As laid
out in Section 5.3.5, some subjects submitted always “Yes” or “No” in the first
round in order to increase the probability to win or to decrease the expected price,
respectively.

Given that the bisection auction faces the same cognitive trap as the Vickrey
auction it is interesting to see that fewer people run into it. We speculate that
the reason therefore is that the bisection auction is much more complex than the
Vickrey auction. This has been evidenced by the huge number of wrong answers
in the questionnaire. People bidding their value know that they will not lose. The
more complex design of BA makes them more careful with respect to deviations.
This is different in VA where some very simple rules give subjects the impression to
overview the situation.

20For a rational person no estimate is necessary. Overbidding is dominated. People who are, how-

ever, not able to analytically understand the Vickrey auction might well just estimate an influence

on the expected price.
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There is one issue about the practical application that is still open and subject to
further research. In the Vickrey and the English auction the price and the winner
are determined at the same time. In the bisection auction normally the winner
is determined first, then the auction goes on with the determination of the price.
Moreover the winner can conclude from the price movements that she has been
determined the winner (i.e. she submitted “yes” and nevertheless the ask price
drops). In theory as well as in the laboratory there is no communication between
the winner and the other bidders. Hence the problem does not exist there, since no
bidder except the winner does know that the object is already gone. However, in
practical settings the winner might communicate his win and other bidders might
drop out of the auction. This could lead to an interesting instance of cartel behavior.
On the other hand the remaining bidders might engage in the spiteful action to drive
up the price in order to harm the winner. This behavior would have the effect that
the bisection auction remains efficient and gives a higher revenue to the auctioneer.
Since we have seen some instances of competitive behavior in the EA treatment we
may also expect it in real life settings. Eventually this issue is highly speculative
and depends on the precise frame the auction takes place in. If the group of bidders
knows each other, then the cartel appears to us as the natural consequence. However
in competitive market settings where players get for example a long term advantage
from driving out competitors from the market, they might try to harm others as
severely as possible.

All in all it seems to us that it is worthwhile trying to implement the bisection
auction in a real life setting.
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Table 5.8: Comparison of treatments.

BA vs. VA BA vs. EA EA vs. VA

Bidding behavoir

frequency of value-bidding

all observations BA�0.01VA BA≈EA EA�0.01VA

fully informative observations BA�0.01VA BA≈EA EA�0.02VA

number of rational bidders

in periods 1-3 and 8-10

all deviations BA�0.05VA BA≈EA EA�0.05VA

severe deviations BA�0.05VA EA�0.05BA EA�0.01VA

number of non-learners

in periods 1-3 and 8-10

all deviations BA�0.01VA BA≈EA EA�0.01VA

severe deviations BA≈VA EA≈BA EA≈VA

Efficiency

% of auctions with

efficient allocation BA≈VA BA≈EA EA≈VA

absolute loss of efficiency BA≈VA BA≈EA EA≈VA

relative loss of efficiency BA≈VA EA�0.05BA EA≈VA

Revenue

revenue BA≈VA BA≈EA EA≈VA

% of auctions with revenue

at the predicted level BA�0.05VA BA≈EA EA�0.05VA

absolute difference between

resulting and predicted revenue BA≈VA EA�0.05BA EA�0.05VA

Note: BA�0.05VA means that the bisection auction outperforms the Vickrey auction (in terms of a

particular measurement) at the level of significance 0.05. EA≈BA means that there is no significant

(any level less than 0.1) difference between the performance (in terms of a particular measurement)

of the English and the bisection auctions.
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Table 5.9: Comparison of measurements of a particular treatment over time.

BA EA VA

Bidding behavior

underbidding BAe �0.05 BAb EAe �0.05 EAb VAe �0.07 VAb

value bidding BAe �0.07 BAb EAe �0.07 EAb VAe �0.07 VAb

overbidding BAb ≈ BAe EAb ≈ EAe n.e.d.

Efficiency

% of auctions with

efficient allocation n.e.d EAb ≈ EAe VAb ≈ VAe

absolute loss of efficiency BAe �0.07 BAb EAb ≈ EAe VAb ≈ VAe

relative loss of efficiency BAe �0.07 BAb EAb ≈ EAe VAb ≈ VAe

Revenue

% of auctions with revenue

at the predicted level BAb ≈ BAe EAe �0.05 EAb VAb ≈ VAe

absolute difference between

resulting and predicted revenue BAe �0.05 BAb EAb ≈ EAe VAb ≈ VAe

Learning process

all deviations BAe �0.05 BAb EAe �0.05 EAb VAe �0.05 VAb

severe deviations BAe �0.01 BAb EAb ≈ EAe VAe �0.01 VAb

Note: BAe �0.05 BAb means that the performance of the bisection auction (in terms of a particular

measurement) is improved (at the level of significance 0.05) at the end in comparison with the

beginning. EAb ≈ EAe means that there is no significant (any level less than 0.1) difference

between the performance of the English auction (in terms of a particular measurement) in the

beginning and at the end. N.e.d. means that there is not enough informative data to make any

conclusion.
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5.5 Appendix 1: Subjects instructions

Dear participant, thank you for taking part in this experiment! It will last about 1
hour. You will be compensated according to your performance. In order to ensure
that the experiment takes place in an optimal setting, we would like to ask you to
follow the general rules during the whole experiment:

• Do not communicate with your fellow students!

• Please switch off your mobile phone!

• Please read the instructions carefully. It is important that you understand
the rules of the experiment. If something is not explained well, please raise
your hand. We will then answer your questions privately. The instructions
are identical for all participants.

• You may make notes on this instruction sheet if you wish.

• After the experiment please remain seated till you are paid off.

• If you do not obey the rules, the data becomes useless for us. Therefore we
will have to exclude you from this experiment and you will not receive any
compensation.

Your decisions are anonymous. Neither your fellow students nor anybody else
will ever learn them from us.

The experiment consists of 10 periods. In each period the participants are ran-
domly matched into groups of three bidders. In each group a fictitious commodity
is auctioned off. Before the auction starts you will receive information about your
private value for the commodity, expressed in Experimental Currency Unit (ECU).
The private values are independently and randomly determined. Thus, they may
be different for different bidders. Each integer value between 32 and 95 is equally
likely. If you win the auction you do not receive the commodity but you receive an
amount of money equal to your private value. In return you have to pay the price
resulting from the auction.

Who wins the auction and what price the winner has to pay is determined in
the following way:

This part of the instructions is different for each treatment. See below the cor-
responding parts.

ECUs are transformed into Euros according to the following conversion rate:
1 Euro = 4.5 ECU . You will obtain an initial endowment of 3 Euro. If you
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make losses in an auction these will be deducted from your previous
gains (or from your initial endowment). You will receive your final profit in
cash at the end of the experiment.

Before the experiment starts please answer the following questions:

1. Assume three bidders Ann, Bert and Chris take part in the experiment. Ann
gets informed about her private value which is 62. What does Ann know about
the private values of Bert and Chris?

(a) Bert and Chris have exactly the same private values, i.e. 62.

(b) Bert and Chris have different private values, i.e. their values are between
32 and 95 but not 62.

(c) Bert and Chris may have the same but may also have different values, i.e
their values are between 32 and 95 including 62.

2. Assume that the participants have the following private values: Ann 57, Bert
41 and Chris 75. Assume further that Ann wins the auction and that the price
is 48.

What are the profits of the three participants?

Ann:

Bert:

Chris:

3. Assume that the participants have the following private values: Ann 39, Bert
77 and Chris 77. Assume further that Bert wins the auction and that the price
is 83.

What are the profits of the three participants?

Ann:

Bert:

Chris:

After the experiment, we would like to ask you to complete a short questionnaire.

Thank you again and good luck with the experiment!
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Part of the instructions corresponding to the Vickrey auction.

After you observe your private value, you have to place a bid which is allowed to
be between 0 and 127 ECU. After every bidder in your group has placed his bid the
winner and the price at which he obtains the commodity is determined. The bidder
with the highest bid is the winner. The price he has to pay is equal to the second
highest bid. If more than 1 bidder submitted the same highest bid, the winner is
determined randomly among these bidders. The price he has to pay is, again, equal
to the second highest bid which in this case coincides with the highest bid.

The profit of the winner is determined as the difference between his private value
and the price. If his private value is larger than the price, he receives this difference.
If his value is less than the price, he has to pay this difference. The other
bidders do not receive anything and do not pay anything.

Please make your decisions carefully - your reward will depend on your per-
formance during the experiment. Note that you can make losses, but it is always
possible, however, to bid in such a way that you avoid losses for sure.

You will get information and make your decisions via the computer terminal. In
each period you go through the following rounds:

• You observe your private value for the commodity. You will not be informed
about the values of the others, just as they do not know your private value.

• You submit your bid which is allowed to be between 0 and 127 ECU.

• You observe whether or not you bought the commodity, the price, your gains
/losses in this auction and in total including all previous auctions.

• A new period starts. You will be randomly matched to two other participants.
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Part of the instructions corresponding to the English auction.

The auction starts with a price of 0. Every 2 seconds the current price is increased
by 1. As long as you are not reacting we assume that you are active, that means
you are bidding the current price. If the price reaches a level which you are not
willing to bid anymore you have to click the button ”DROP OUT”. From this
moment on you are not active anymore. For active bidders the price continues to
increase. The auction stops as soon as there is only one active bidder left. The last
remaining bidder becomes the winner. The price the winner has to pay is 1 ECU
below the price where the second last bidder dropped out. If several bidders drop
out simultaneously and no bidder is left active, the winner is determined randomly
among these bidders and the price is 1 ECU below the price where they dropped
out. If upon reaching the maximal price of 128 ECU there is more than one active
bidder, then the commodity is randomly allocated among these active bidders for a
price of 127 ECU.

The profit of the winner is determined as the difference between his private value
and the price. If his private value is larger than the price, he receives this difference.
If his value is less than the price, he has to pay this difference. The other
bidders do not receive anything and do not pay anything.

Please make your decisions carefully - your reward will depend on your per-
formance during the experiment. Note that you can make losses, but it is always
possible, however, to bid in such a way that you avoid losses for sure.

You will get information and make your decisions via the computer terminal. In
each period you go through the following rounds:

• You observe your private value for the commodity. You will not be informed
about the values of the others, just as they do not know your private value.

• You observe successive change of the price and indicate your dropping out by
clicking the button ”DROP OUT” at the price you are not willing to bid
any more.

• After the period ends you observe whether or not you bought the commodity,
the price, your gains/losses in this period and in total including all previous
periods.

• A new period starts. You will be randomly matched to two other participants.
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Part of the instructions corresponding to the bisection auction.

One period consists of 7 rounds. For each round the interval where the bidders
are competing for the commodity is determined. The ask price in a round is set
to the middle of this interval. In the first round the interval is [0, 128) and the
ask price is equal to 64. All bidders receive the status “Active”. Active bidders
are asked whether they are willing to bid the current ask price for the commodity.
A bidder replies “Y ES” to announce his willingness and “NO” to announce his
unwillingness. After all bidders submit their decision, the interval and the ask price
of the next round as well as the status of bidders are determined according to the
following rule:

• In case 3 “yes”-bids are submitted: All three bidders are willing to bid
the ask price for one available commodity. It means that at the ask price
demand exceeds supply and therefore we can concentrate our search to the
upper half of the previous interval. The price goes up to the middle of this
new interval. It means that in round 2 the interval will be [64, 128) and the
price 96. All active bidders remain active.

• In case 2 “yes”-bids and 1 “no”-bid are submitted: Two bidders are
willing to bid the ask price for one available commodity. It means that at
the ask price demand exceeds supply and therefore, again, we can concentrate
our search to the upper half of the previous interval. The price goes up to
the middle of this new interval. It means that in round 2 the interval will be
[64, 128) and the price 96. The bidders that are active in the next round are
the ones that submitted “yes”-bids. The bidder with a “no”-bid drops out of
the auction. His status remains “Dropped out” till the end of the period. He
is not free anymore to choose between “yes” and “no”. Since the prices in all
next rounds will be larger than the price that this bidder declined when he
became a drop out, his decisions in all forthcoming rounds are considered to
be “no”.

• In case 1 “yes”-bid and 2 “no”-bids are submitted: There is only
one bidder who is willing to bid the ask price. The bidder with a “yes”-bid
becomes the winner of the auction. His status remains “The winner” till the
end of the period. The bidders that are active in the next round are the ones
that submitted “no”-bids. By their future bids the price the winner has to pay
is determined. The new interval is set equal to the lower half of the previous
interval. So the price goes down to the middle of this new interval. It means
that in round 2 the interval will be [0, 64) and the price 32. The winner is not
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free to choose between “yes” and “no”. Since the prices in all next rounds
will be lower than the price that this bidder agreed on when he became the
winner, his decisions in all forthcoming rounds are considered to be “yes”.

• In case 3 “no”-bids are submitted: No bidder is willing to bid the ask
price for the commodity. It means that at the ask price supply exceeds demand
and therefore we can concentrate our search to the lower half of the previous
interval. So the price, again, goes down to the middle of this new interval. It
means that in round 2 the interval will be [0, 64) and the price 32. All active
bidders remain active.

The way to decide about the status of bidders, the change of interval and the price
is the same in all rounds. Depending on submitted bids we subsequently restrict
attention to either the lower half or to the upper half of the previous interval. The
only information bidders get after each round is the new interval, the new price and
own status. The bidders are not informed about the status of others, so during the
period you do not get to know whether there are drop outs or the winner among the
other bidders. Thus, an active bidder does not know whether he is competing for the
commodity or he is determining the winner’s price. After round 7 the new interval
is determined. The price the winner has to pay is equal to the lower bound of this
interval. If the winner was not found during 7 rounds (i.e. if in no round exactly
one bidder submitted a “yes”-bid), the status of the bidders after the last round is
determined and the commodity is randomly allocated to one of the remaining active
bidders.

The profit of the winner is determined as the difference between his private value
and the price. If his private value is larger than the price, he receives this difference.
If his value is less than the price, he has to pay this difference. The other
bidders do not receive anything and do not pay anything.

Please make your decisions carefully - your reward will depend on your per-
formance during the experiment. Note that you can make losses, but it is always
possible, however, to bid in such a way that you avoid losses for sure.

You will get information and make your decisions via the computer terminal. In
each period you go through the following phases of the auction:

• You observe your private value for the commodity. You will not be informed
about the values of the others, just as they do not know your private value.

• ROUND 1: You are “Active”. You observe the initial interval [0, 128) and the
initial price 64. You have to indicate your decision “YES, I’m willing to bid
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this price for the commodity” or “NO, I’m not willing to bid this price for the
commodity” by clicking the corresponding button.

• ROUNDS 2-7: You observe your current status that can be “Active”, “Dropped
out” or “The winner”. You observe the current interval and the current price.
If you are active you have to indicate your decision”YES” or ”NO” for the
current price. If you are a drop out or the winner you are not allowed to
submit bids anymore.

• After round 7 the period ends and you observe whether or not you bought the
commodity, the winning price, your gains/losses in this period and in total
including all previous periods.

• A new period starts. You will be randomly matched to two other participants.
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5.6 Appendix 2: Post-experimental questionnaire

Subject ID (see the card you have drawn in the beginning):
Year of birth:
Gender:
Nationality:
Study:

In the following we are interested to learn how you reached your decision. Please
answer the following questions as precisely as possible.

What factors did influence your decision? What information did you use?

Given the information and factors mentioned above, how did you make up your
strategy?

Did you encounter problems in particular with the software? If yes, what prob-
lems?

Did you ever deal with auctions in one of your courses?

◦ yes, thoroughly
◦ yes, but superficially
◦ never

Do or did you participate in online auctions (e.g. www.ebay.com)?

◦ frequently
◦ sometimes
◦ never

Do or did you participate in other but online auctions?

◦ frequently
◦ sometimes
◦ never

This last part of the questionnaire is different for each treatment. See below the
corresponding parts.
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Part of the questionnaire corresponding to BA treatment.

Consider the following strategy: Given your private value of the commodity you
chose a number. Whenever the ask price is equal to or below this number you submit
”Yes”. If the ask price is above this number you submit ”No”.

Did you use such a threshold strategy?

◦ always
◦ often
◦ sometimes
◦ never

Suppose you cannot participate in the auction yourself but you can submit a
number to a software agent who bids for you according to the strategy described in
the question above.

Given that you know your private value, which number would maximize your
payoff?

◦ a number that is 5 or more below the private value
◦ a number that is less than 5 below the private value
◦ the number exactly equal to the private value
◦ a number that is less than 5 above the private value
◦ a number that is 5 or more above the private value

Part of the questionnaire corresponding to VA treatment.

Which strategy do you consider to maximize your payoff?

◦ submit a bid that is 5 or more below the private value
◦ submit a bid that less than 5 below the private value
◦ submit a bid exactly equal to the private value
◦ submit a bid that is less than 5 above the private value
◦ submit a bid that is 5 or more above the private value
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Part of the questionnaire corresponding to EA treatment.

Which strategy do you consider to maximize your payoff?

◦ drop out if the price exceeds a value which is 5 or more below the private
value

◦ drop out if the price exceeds a value which is less than 5 below the private
value

◦ drop out if the price exceeds the private value
◦ drop out if the price exceeds a value which is less than 5 above the private

value
◦ drop out if the price exceeds a value which is 5 or more above the private

value
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5.7 Appendix 3: Tables with data used for the con-

ducted tests

session 1 session 2 session 3 session 4 session 5

BA 64.4% 81.1% 68.9% 75.5% 68.9%
BAb 48.1% 85.2% 74.1% 70.4% 59.2%
BAe 88.9% 88.9% 74.1% 81.5% 70.4%

VA 53.3% 26.6% 45.5% 60.0% 54.4%
VAb 33.3% 25.9% 25.9% 59.2% 51.8%
VAe 59.2% 25.9% 70.4% 66.7% 55.5%

EA 69.9% 76.7% 68.9% 76.7% 75.5%
EAb 62.9% 77.8% 62.9% 70.4% 59.2%
EAe 62.9% 81.5% 70.4% 88.9% 92.6%

Table 5.10: Frequency of value bidding.

session 1 session 2 session 3 session 4 session 5

BA 65.7% 66.6% 63.5% 71.9% 58.9%
VA 53.3% 26.6% 45.5% 60.0% 54.4%
EA 71.0% 65.6% 53.4% 67.7% 63.3%

Table 5.11: Frequency of value-bidding among the players with fully informative
bids.
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session 1 session 2 session 3 session 4 session 5

BA 21.1% 12.2% 15.6% 3.3% 20.0%
BAb 33.3% 7.4% 14.8% 3.7% 25.9%
BAe 11.1% 3.7% 7.4% 0.0% 18.5%

VA 17.8% 23.3% 41.1% 11.1% 17.8%
VAb 37.0% 29.6% 66.7% 18.5% 48.1%
VAe 11.1% 29.6% 22.2% 3.7% 3.7%

EA 7.8% 15.5% 18.9% 18.9% 23.3%
EAb 11.1% 18.5% 29.6% 18.5% 40.7%
EAe 3.7% 7.4% 3.7% 7.4% 7.4%

Table 5.12: Frequency of underbidding.

session 1 session 2 session 3 session 4 session 5

BA 14.4% 6.7% 15.5% 21.1% 11.1%
BAb 18.5% 7.4% 11.1% 25.9% 14.8%
BAe 7.4% 7.4% 18.5% 18.5% 11.1%

VA 28.9% 50.0% 13.3% 28.9% 27.7%
VAb 29.6% 44.4% 7.4% 22.2% 0.0%
VAe 29.6% 44.4% 7.4% 29.6% 48.1%

EA 22.2% 7.8% 12.2% 4.4% 1.1%
EAb 25.9% 3.7% 7.4% 11.1% 0.0%
EAe 33.4% 11.1% 25.9% 3.7% 0.0%

Table 5.13: Frequency of overbidding.
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session 1 session 2 session 3 session 4 session 5

all deviations
BA 1 5 4 3 2
VA 1 0 0 2 2
EA 2 3 3 1 3

severe deviations
BA 1 6 5 5 4
VA 3 0 0 2 3
EA 6 6 6 6 6

Table 5.14: Number of subjects who didn’t deviate neither in the beginning of a
session nor at the end.

session 1 session 2 session 3 session 4 session 5

all deviations
BA 2 0 0 1 1
VA 4 5 3 3 2
EA 1 1 2 1 1

severe deviations
BA 1 1 1 1 0
VA 3 3 0 1 0
EA 0 0 0 0 1

Table 5.15: Number of subjects who deviated in the beginning of a session and
didn’t change behavior at the end.
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5.7. Appendix 3: Tables with data

session 1 session 2 session 3 session 4 session 5

BA 62.7 62.9 64.4 66.6 62.8
VA 60.6 67.5 62.7 66.3 63.6
EA 65.3 64.7 67.6 62.2 62.3

Table 5.16: Average revenue of auctions.

session 1 session 2 session 3 session 4 session 5

BA 53% 60% 47% 53% 47%
BAb 33% 67% 55% 44% 55%
BAe 78% 78% 55% 67% 55%

VA 43% 27% 40% 43% 57%
VAb 33% 33% 22% 33% 44%
VAe 22% 44% 55% 55% 66%

EA 43% 73% 63% 63% 57%
EAb 44% 67% 55% 44% 44%
EAe 66% 89% 67% 67% 78%

Table 5.17: Percentage of auctions with revenue at the predicted level.
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session 1 session 2 session 3 session 4 session 5

BA 4.77 3.51 3.87 5.63 3.43
BAb 8.55 3.00 6.11 5.78 4.44
BAe 1.67 2.60 5.88 1.67 2.67

VA 7.97 6.33 6.23 4.83 2.53
VAb 5.00 7.78 11.00 5.55 4.44
VAe 17.00 5.11 1.78 3.11 1.55

EA 4.83 1.53 1.97 3.07 2.71
EAb 2.44 2.89 2.44 2.66 4.44
EAe 4.89 0.89 1.53 4.89 1.22

Table 5.18: Average difference between the resulting and the predicted revenue
(in absolute value).

session 1 session 2 session 3 session 4 session 5

BA 87.0% 97.0% 80.0% 80.0% 87.0%
BAb 77.8% 100.0% 77.8% 88.9% 88.9%
BAe 100.0% 100.0% 77.8% 88.9% 88.9%

VA 90.0% 67.0% 83.0% 87.0% 100.0%
VAb 88.9% 55.5% 77.8% 88.9% 100.0%
VAe 77.8% 77.8% 88.9% 66.7% 100.0%

EA 80.0% 97.0% 97.0% 97.0% 90.0%
EAb 88.9% 88.9% 88.94% 100.0% 77.8%
EAe 77.8% 100.0% 100.0% 88.9% 100.0%

Table 5.19: Percentage of auctions with the efficient allocation.

94



5.7. Appendix 3: Tables with data

session 1 session 2 session 3 session 4 session 5

BA 3.00 0.17 1.73 1.60 1.43
BAb 5.89 0.00 3.11 2.22 2.33
BAe 0.00 0.00 1.55 1.44 0.89

VA 0.53 2.33 1.57 1.57 0.00
VAb 0.33 4.11 3.44 2.22 0.00
VAe 0.88 0.33 0.55 3.00 0.00

EA 1.23 0.20 0.43 0.20 1.07
EAb 0.22 0.66 1.44 0.00 2.11
EAe 1.66 0.00 0.00 0.66 0.00

Table 5.20: Average loss of efficiency (in absolute value).

session 1 session 2 session 3 session 4 session 5

BA 3.62% 0.33% 2.45% 2.08% 1.66%
BAb 6.55% 0.00% 5.09% 2.81% 2.51%
BAe 0.00% 0.00% 1.68% 2.26% 1.16%

VA 0.83% 3.28% 1.89% 1.94% 0.00%
VAb 0.47% 5.17% 3.93% 2.58% 0.00%
VAe 1.27% 0.48% 0.89% 3.87% 0.00%

EA 1.57% 0.22% 0.67% 0.34% 1.34%
EAb 0.32% 0.74% 2.22% 0.00% 2.92%
EAe 1.98% 0.00% 0.00% 1.13% 0.00%

Table 5.21: Average relative loss of efficiency.
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Bisection auctions in the
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Chapter 6

Inefficiency of equilibria in

query auctions with continuous

valuations

In this chapter we investigate the allocative efficiency of query auctions in the context
of continuous valuations. We show that in an ex post equilibrium of any individually
rational query auction the item will necessarily be assigned inefficiently with positive
probability, unless one accepts the unrealistic phenomenon that the auction runs an
infinite number of queries for almost all realizations of valuations. It means that
in the continuous setting query auctions, being a good tool for reducing preference
revelation, does not allow achieving full allocative efficiency.1

6.1 Introduction

The Vickrey auction and the iterative auctions strategically equivalent to it have
been shown to be a satisfactory way to sell a single indivisible item in the set-
ting of integer valuations. It is however sometimes desirable to be able to run an
auction without an a-priori agreement on the discretization of bids. For example,
in a computerized bidding environment in multi-agent systems the precision with
which bidding agents represent their valuations might be unknown, and therefore
preferably be left unspecified. Also time constraints – an issue of some importance
in auctions like the UMTS auctions (see Moldovanu and Jehiel [43], van Damme
[58]) – can thus be captured, since time restrictions might force an auctioneer to
determine valuations only up to a level of precision that is not of the same order

1The results of this chapter were first presented in Grigorieva et al. [23].
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of magnitude in which bidders do, or would like to, express their valuations. The
possibility of arbitrary fine representation of valuations can be modeled by allowing
valuations to take on continuous values.

In this chapter we are concerned with the issue of designing iterative implemen-
tation of the Vickrey auction for the setting of continuous valuations. We consider
multi-round query auctions where the auctioneer sequentially queries the bidders
about specific aspects of their valuations, offering them the opportunity to take one
of a finite set of actions as an answer to the query. We prove that, when bidders have
continuous valuations, any ex-post equilibrium in an ex-post individually rational
query auction that ends with positive probability after a finite number of queries,
can not be fully efficient. It means that in the continuous setting the execution of
the Vickrey auction by means of multi-round queries is not possible, unless we have
infinite running time. In other words, any implementation of the Vickrey auction
by means of a query auction in a model with continuous valuations will necessarily
have an infinite running time for almost all realizations of valuations, and is hence
not a feasible option in any practical sense.

Related literature Iterative models with a finite set of possible bids in the set-
ting of continuous valuations have received some attention in the auction literature.
One such a model, namely an English auction with discrete bid levels has been stud-
ied extensively. Yamey [61] first considered this auction format and commented that
introducing of discrete bid levels appear to have the effect of speeding up the auc-
tion proceedings and hence reduce the costs of both the auctioneer and the bidders.
However, such restriction of possible bid levels causes many well known results from
the continuous bid auction literature to fail. For example, the bidders within the
auction no longer have a dominant bidding strategy2 (see Yu [62]) and, as the item
is no longer guaranteed to be allocated to the bidders with the highest valuation,
the Revenue Equivalence Theorem3 no longer applies (see Chwe [7]), and thus the
revenue that the auction generates depends on the specific implementation details,
such as the number and the distribution of the discrete bid levels. To elaborate on
this issue, Rothkopf and Hastard [51] provide a full discussion of how the choice of
discrete levels affects the expected revenue of the auction. For a number of very
limited simple cases, they address the question of revenue maximizing design of an
English auction with discrete bid levels. David et al. [16] extend this work and
derive general results that indicate how the discrete bid levels should be set in order

2Though recently David et al. [16] proposed to modify the standard auction rules in such a way

that a dominant strategy equilibrium exists.
3This theorem states that all efficient auction formats yield the same expected revenue in equi-

librium.
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to maximize the revenue of the auctioneer. Kress and Boutilier [33] are the first who
addressed revelation properties of ascending price auctions with discrete bid levels.

6.2 Preliminaries

Here we briefly discuss some known results on auction design and the notions that we
use in this chapter. A single indivisible object is being sold to a set N = {1, . . . , n}
of bidders by means of a deterministic auction. The set of actions of bidder i is
denoted by Fi. Write F =

∏
i Fi. The winner determination rule

w : F → N

decides for each profile f = (fi)i∈N of actions in F who the winner of the object is.
The payment function

p : F → R

determines for each profile f of actions in F the amount p(f) the winner w(f) has
to pay to the auctioneer. A triplet (F, w, p) is an auction.

Strategic behavior Each bidder has a valuation vi for the item. Valuations are
drawn from a non-degenerate interval I and are assumed to be private information.
Bidders have to decide in advance which action to choose for each valuation they
might possibly have. Thus, a strategy of bidder i is a function si : I → Fi stating
that bidder i, when having valuation vi ∈ I, will take action si(vi) in Fi. A vector
s = (si)i∈N of strategies is called a strategy profile.m

A realization v = (vi)i∈N of valuations defines an ex post game (F, w, p, v) with
action space Fi for bidder i and payoff function ui(vi) : F → R defined by

ui(vi)(f) :=

{
vi − p(f) if i = w(f);
0 otherwise.

Since the ex post game (F, w, p, v) is a game in normal form, the classical definition
of Nash equilibrium applies. An action profile f = (fi)i∈N is a Nash equilibrium of
the ex post game (F,w, p, v) if for every bidder i and every action gi ∈ Fi of that
bidder it holds that

ui(vi)(f) ≥ ui(vi)(f | gi)

where (f | gi) denotes the action profile where bidder i chooses gi and every other
bidder j chooses fj . A strategy profile s = (si)i∈N is an ex post equilibrium of the
auction (F, w, p) if for every realization v = (vi)i∈N of valuations the action profile
s(v) := (si(vi))i∈N in F is a Nash equilibrium of the ex post game (F,w, p, v).
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In the same way other notions also carry over to the setting of an auction. A
strategy si of bidder i is dominant if for every realization vi of the valuation of
bidder i and any profile f of actions

ui(vi)(f | si(vi)) ≥ ui(vi)(f | gi)

holds for any action gi ∈ Fi. Given a strategy profile s, strategy si is a best response
for player i to s if

ui(vi)(s(v)) ≥ ui(vi)(s(v) | fi)

for any realization v = (vi)i∈N of valuations and any action fi ∈ Fi. Strategy si is
ex post individually rational if for every realization vi of the valuation of bidder i

and any profile f of actions,

ui(vi)(f | si(vi)) ≥ 0.

The auction (F,w, p) itself is called ex post individually rational if every bidder has
an ex post individually rational strategy in it. A strategy profile s is called ex post
efficient if for every realization v = (vi)i∈N it holds that

w(s(v)) ∈ arg max{vi | i ∈ N}.

Direct auction An auction (F,w, p) is called direct if Fi = I for each bidder
i. In other words, the action a bidder has to take in the auction is to report a
valuation (not necessarily his true valuation). Since in a direct auction it is clear
what the action spaces are, we will simply write (w, p) to denote such an auction. A
straightforward but important observation is that any strategy profile s in (F, w, p)
automatically induces a direct auction (w ◦ s, p ◦ s).

A direct auction (w, p) is called a Vickrey auction if for every profile r = (ri)i∈N

of reported valuations in IN it holds that

w(r) ∈ arg max{ri | i ∈ N} and p(r) := max{ri | i �= w(r)}.

It is very well known that in a Vickrey auction bidding your valuation is a dominant
strategy. If every bidder bids according to this strategy, the outcome is ex post
efficient, and the winner pays an amount equal to the second-highest valuation.

Query auction In a query auction the auctioneer sequentially queries the bidders
about specific aspects of their valuation. As an answer to the query4 a bidder can

4Each separate query by the auctioneer could be thought of as a round in the auction because

the action taken by the queried bidder is, at least in our setting, supposed to be publicly observable.
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choose one out of a finite set of actions. During the course of the auction each
bidder may be, and usually will be, queried more than once.The number of times
a particular bidder is queried during the auction is not assumed to be bounded,
and may potentially be infinite. Determination of winner and payment in a query
auction are based exclusively on the actions taken by the bidders in response to the
queries of the auctioneer. The auction ends as soon as both winner and payment
are determined.

In the next chapter we will give formal definitions of a specific type of query
auctions, namely bisection auctions. However, for the purposes of this chapter the
verbal description of a general query auction given so far is sufficient.

6.3 The theorem of Green and Laffont

In the next section we will use the following version of the Theorem by Green and
Laffont, adjusted to our (simple) context. This theorem shows under precisely which
conditions a direct auction is a Vickrey auction (see Green and Laffont [20]).

Theorem 6.3.1. A direct auction (w ◦ s, p ◦ s) is a Vickrey auction if the following
three conditions hold

(a) the auction (F,w, p) is ex post individually rational;
(b) the strategy profile s is an ex post equilibrium of (F, w, p);
(c) the strategy profile s is ex post efficient in (F, w, p).

Proof. Assume that (a), (b) and (c) hold. We will show that (w ◦ s, p ◦ s) is a
Vickrey auction. To this end, let v = (vi)i∈N be a profile of valuations in IN . Since
s is ex post efficient, we know that

(w ◦ s)(v) = w(si(vi)i∈N ) ∈ arg max{vi | i ∈ N}.
So we only have to show that (p ◦ s)(v) = vsec, where

vsec := max{vi | i �= (w ◦ s)(v)}.
Write i∗ := (w ◦ s)(v). Moreover, denote the profile of realizations of valuations
((vj)j �=i∗ , r) by (v | r), and the profile of actions (sj(vj)j �=i∗ | si∗(r)) by s(v | r). The
proof is in two steps.

Only actions whose effects can only be observed at the same moment in time by other bidders are

usually considered to be taken in the same round. Rounds typically differ from each other in terms

of the information available to bidders. In that sense each query could be counted as a round. In

this paper though we deviate slightly from this standard interpretation. The order in which bidders

are queried is usually fixed, and a round is a sequence of queries in which each bidder is queried

exactly once.
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I. First we will show that (p ◦ s)(v) ≤ vsec. To this end, take a valuation r ∈ I

with r > vsec. We show that (p ◦ s)(v) ≤ r.

Since the strategy profile s is an ex post equilibrium of (F, w, p) we know that
s(v) is a Nash equilibrium in the ex post game (F, w, p, v). Because i∗ = (w ◦ s)(v),
we know that

ui∗(vi∗)(s(v | r)) ≤ ui∗(vi∗)(s(v)) = vi∗ − (p ◦ s)(v). (6.1)

Now suppose bidder i∗ happens to have valuation r. Since r > vsec, ex post
efficiency of the strategy profile s in (F, w, p) implies that i∗ = (w ◦ s)(v | r).
Moreover, since the strategy profile s is an ex post equilibrium of (F,w, p) we know
that s(v | r) is a Nash equilibrium in the ex post game (F, w, p, (v | r)). Hence, by
ex post individual rationality

ui∗(r)(s(v | r)) = r − p(s(v | r)) = r − (p ◦ s)(v | r) ≥ 0.

The last inequality implies that r ≥ (p ◦ s)(v | r).

Now, suppose that bidder i∗ chooses action si∗(r) while having valuation vi∗ .
Again, since r > vsec, ex post efficiency of the strategy profile s in (F, w, p) implies
that i∗ = (w ◦ s)(v | r). So

ui∗(vi∗)(s(v | r)) = vi∗ − (p ◦ s)(v | r) ≥ vi∗ − r (6.2)

where the inequality follows from the result that r ≥ (p ◦ s)(v | r).

Combination of the inequalities (6.1) and (6.2) yields vi∗ − (p ◦ s)(v) ≥ vi∗ − r.
Hence, (p ◦ s)(v) ≤ r.

II. Secondly we will show that (p ◦ s)(v) ≥ vsec. To this end, take an r ∈ I with
r < vsec. We show that (p ◦ s)(v) ≥ r.

Suppose bidder i∗ happens to have valuation r. Since the strategy profile s is ex
post efficient in (F, w, p) and r < vsec, we know that i∗ �= (w ◦ s)(v | r). Hence

ui∗(r)(s(v | r)) = 0. (6.3)

However, since s(v | r) is a Nash equilibrium in (F, w, p, (v | r)), we also know that

ui∗(r)(s(v | r)) ≥ ui∗(r)((s(v)) = r − (p ◦ s)(v). (6.4)

Combining equality (6.3) and inequality (6.4) yields that (p ◦ s)(v) ≥ r.
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6.4 Efficient query equilibria are almost always infinite

Suppose we are given a query auction (F,w, p) together with an ex post equilibrium
s = (si)i∈N in this auction. Such an equilibrium is called a query equilibrium. Let Z

be the set of valuations v = (vi)i∈N for which in the action profile s(v) := (si(vi))i∈N

the auctioneer asks a finite number of queries before the auction ends. We will
assume that Z is measurable, and that moreover w ◦ s is also measurable. When Z

has Lebesgue measure equal to zero, we say that the query equilibrium s is almost
always infinite. When Z has Lebesgue measure larger than zero, we say that s is
sometimes finite.

Theorem 6.4.1. Let s be a query equilibrium in (F, w, p) and suppose that s is
sometimes finite. Then the corresponding direct auction (w◦s, p◦s) is not a Vickrey
auction.

Proof. Define
O(Z) := {(w(s(v)), p(s(v))) | v ∈ Z}.

Let Zk be the set of valuations v ∈ Z for which the auction ends after k queries
given the profile of actions s(v). Then the cardinality of the set

O(Zk) := {(w(s(v)), p(s(v)) | v ∈ Zk}

is finite since each player only has a finite number of possible responses to each
query and the determination of winner and payment is based exclusively on the
responses of the bidders to the queries of the auctioneer. Thus O(Z) = ∪∞

k=1O(Zk)
is a countable set.

Now suppose that the corresponding direct auction (w ◦ s, p ◦ s) is a Vickrey
auction. Note that

O(Z) = {((w ◦ s)(v), (p ◦ s)(v)) | v ∈ Z}.

Define Zi := {v ∈ Z | (w ◦ s)(v) = i}. Since Z and w ◦ s are measurable by
assumption, also each Zi is measurable. So, since the Zi’s partition Z and the
Lebesgue measure of Z is larger than zero, we know that at least one Zi must have
Lebesgue measure larger than zero as well. Take such a Zi. Define for each p∗ ∈ R

Zi(p∗) := {v ∈ Zi | (p ◦ s)(v) = p∗}.

Since (w ◦ s, p ◦ s) is a Vickrey auction we know that each set Zi(p∗) is a subset of
the set {

v ∈ IN | max{vi | i �= (w ◦ s)(v)} = p∗
}
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which has Lebesgue measure zero. Thus, each Zi(p∗) itself is measurable and has
Lebesgue measure zero. Hence, the set

Pi := {p∗ | Zi(p∗) �= φ}

must be uncountable, because Zi = ∪p∗∈PiZi(p∗) and Zi has Lebesgue measure
larger than zero. The set O(Z) must have a cardinality that is at least as large
as the cardinality of Pi because p∗ �→ (i, p∗) is an injective function from Pi to
O(Z), so O(Z) is uncountable. This contradicts our earlier conclusion that O(Z) is
a countable set. Hence, the direct auction (w ◦ s, p ◦ s) cannot be a Vickrey auction.

Theorem 6.4.2. Any ex post efficient ex post equilibrium in an ex post individually
rational query auction is almost always infinite.

Proof. Consider an ex post efficient ex post equilibrium s in an ex post indi-
vidually rational query auction (F, w, p). Theorem 6.3.1 states that the correspond-
ing direct auction (w ◦ s, p ◦ s) is a Vickrey auction. However, if the equilibrium
were sometimes finite, Theorem 6.4.1 states that the corresponding direct auction
(w ◦ s, p ◦ s) is not a Vickrey auction. Hence, the equilibrium cannot be sometimes
finite. Since Z is measurable by assumption, the equilibrium must be almost always
infinite.

6.5 Conclusion

We have shown that in a setting with continuous valuations, any ex post equilibrium
in an ex post individually rational query auction that ends with positive probability
in finite time will necessarily be inefficient. Thus any implementation of the Vickrey
auction by means of a query auction in the continuous setting will necessarily have
an infinite running time for almost all realizations of valuations, and is hence not a
feasible option in any practical sense.
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Chapter 7

General bisection auctions

In this chapter we show that the result of Chapter 6 has application. We introduce a
class of query auctions, called general bisection auctions, and show that any auction
from this class is ex-post individually rational and has an ex post equilibrium. We
show that these equilibrium is sometimes finite and inefficient. According to the
result of the previous chapter inefficiency of these equilibria is inevitable.1

7.1 Introduction

In the previous chapter we have shown that, in a setting where bidders have contin-
uous valuations, ex post efficiency –allocating the item to a bidder with the highest
valuation– in an ex-post equilibrium of a query auction can only be obtained at
the price of an infinite running time of the auction for almost all realizations of
valuations. Still, ex-post equilibrium need not always exist, which would render our
result useless. Here we show that for a very wide class of query auctions, namely
so-called general bisection auctions, an ex-post equilibrium exists so that the result
of Chapter 6 has application.

The general bisection mechanism works as follows. Suppose a single indivisible
object is auctioned to a set N = {1, . . . , n} of players. The players have independent
private valuations, vi, drawn from a common continuous probability distribution
with cumulative density F (v), within the range [α, β). We assume quasi-linear
utilities. Valuations of players are private information, i.e. each player knows only
his own valuation but not the valuations of the others. Before the start of the
auction there is a lottery that determines the order of the players. W.l.o.g. we
assume that this ordering is 1 ≺ 2 ≺ 3 ≺ · · · ≺ n − 1 ≺ n.

1The results of this chapter were first presented in Grigorieva et al. [23].
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The auction runs for an a priori indefinite number of rounds. In each round there
is a specific payment P to be made by a bidder if he wins in this round. In every
round there is also a query price Q which is higher than the current payment and
an upper bound H on future payments that is higher than the query price. Initially
the payment and the upper bound are set as P = α and H = β, and all bidders are
active. In every round the auctioneer asks the bidders that are active in that round
whether they would be willing to pay the query price. Bidders are queried openly
in increasing order.

If only one bidder is willing to pay the query price, he becomes the winner of the
auction. He has to pay the current payment (not the query price). If more than one
bidder is willing to pay the query price, the auction proceeds into the next round.
Only those bidders who agreed to pay the query price stay active. The query price
becomes the payment, and the new query price is raised to a level strictly above
the old query price, but still below the upper bound. If no bidder is willing to pay
the query price all bidders stay active, the payment stays the same, the old query
price becomes the new upper bound, and the new query price is set between the
new payment and the new upper bound. In case no winner is found, i.e., should the
auction run indefinitely, then among the bidders who are still active the one with
highest ranking wins and he pays the lowest price that is still higher than or equal
to any of the payments that were announced while the auction was running.

Effectively a general bisection auction is a variation of the bisection auction
presented in Chapter 2, the main two differences being that the auction proposed
here may last indefinitely, and that it stops as soon as the winner is found. The
bisection auction in Chapter 2 was designed to handle the situation in which bidders
have discrete valuations. The present definition of a general bisection auction is
specifically designed to handle continuous valuations.

In the remaining part of this chapter we focus on the strategic analysis of the
proposed auctions and show that each general bisection auction has an ex post
equilibrium. Given a general bisection auction we construct a specific equilibrium,
called the bluff equilibrium, for that auction. The bluff equilibrium requires each
bidder to act as follows. When there still is an active bidder with a lower rank
in the ordering, the bidder stays in the auction until the query price exceeds his
valuation. As soon as he becomes the active bidder with the lowest rank, he stays
in the auction until the payment exceeds his valuation (effectively a bluff since he
will say yes to a query price exceeding his valuation). We show that this strategy is
ex post individually rational, and that the resulting profile where each bidder uses
this strategy is an ex post equilibrium. Moreover we show that these equilibrium
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is sometimes finite, and even, under a mild assumption (namely that the price in
the auction can in principle be driven up to exceed any possible valuation of any
bidder)2, has a running time that is finite for all realizations of valuations. A formal
proof requires an exact framework, which we present in the next section.

7.2 Formal representation of a general bisection auction

A general bisection auction in the form described above is specifically designed to
handle the case in which valuations are drawn from an interval I = [α, β). We will
however first give a formal description of a general bisection auction that is free
from any reference to valuations of the bidders.

We represent a general bisection auction as an extensive form game on a com-
plete binary decision tree. We will describe this tree first and subsequently discuss
the winner determination rule W and the payment scheme P to give a complete
description of the auction.

We provide a complete description of the game tree. This tree is the same for
the entire class of general bisection auctions. The nodes of the tree are given in (1)
and the directed edges are defined in (2). The game board has perfect information,
meaning that each node in the tree will be a decision node for one of the players.
Hence information sets are obsolete.

The set of players that can participate in the game is N = {1, . . . , n}. The
response set for each player in every query node is R = {yes, no}. This reflects the
fact that in each round of the auction each player will be faced with a binary query
regarding his valuation. The precise nature of this query is explained in the next
subsection.

(1) A node a in the game tree is represented by the history of responses players
have to give in order to reach this particular node. Formally, a = (ak)r

k=1 with r ∈ N

where ak = (ak,i)n
i=1 for k < r and ar = (ar,i)

j
i=1 for some j ≤ n. Here ak,i is a

particular response in the set R chosen by player i in round k.

The length of a node is defined as l(a) = (r − 1)n + j. The initial node a0 = ( )
has length zero. This node corresponds to the first round where the first player has
to respond. The nodes with length larger than or equal to (r− 1)n but less than rn

correspond to round r, where the nodes with length (r − 1)n are referred to as the
start of round r. The set of nodes corresponding to round r is denoted by Xr. For
a node a ∈ Xr, the node a∗ ∈ Xr is the node of length (r− 1)n for which a∗k,i = ak,i

2This is an assumption that is met by all existing auctions.
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for all k < r and all i ∈ N .

A node a that has a length of l(a) = (r − 1)n + j − 1 for some r > 0 is a
decision node of player j in round r.3 Let Dj denote the collection of all decision
nodes of player j and Djr denote the collection of player j’s decision nodes in round
r. A predecessor of a decision node a of player j is a node from Dj that player j

encounters when moving from the initial node a0 to node a. We denote by a(k) ∈ Djk

the predecessor of a in round k. Conversely, a is a successor of a(k).

(2) There is a directed edge from node a to node b if l(b) = l(a)+1, and for all
j and k for which ak,j is defined, ak,j = bk,j . So, there is an edge between two nodes
if in the second node one player has given an additional response in comparison with
the first node.

The next ingredient of the description of the game is the determination of the
winner of the item and the specification of payments. As we allow general bisection
auctions to last indefinitely, we will define the winner and the payment on infinite
sequences of actions, which we call endnodes.

Thus, an endnode of the game is an infinite sequence h = (hr,i)r∈N,i∈N of nodes
in the game tree such that (1) h1,1 = a0 (the initial node is the first element of this
sequence), and (2) there is an edge from node hr,i to node hr,i+1 for any i < n, and
from node hr,n to node hr+1,1 for any r ∈ N.

Each endnode (hr,i)r∈N,i∈N may be viewed as a history of infinite length such
that its upper part of length (r− 1)n + i− 1 coincides with node hr,i. Thus, the set
of all possible endnodes of the game is order isomorphic to the set 2N.

For an endnode h = (hr,i)r∈N,i∈N , we denote by A(h) the set of players who
remain active throughout the play, that is A(h) = ∩rA(hr,1), where for a node
a ∈ X1 we define the set of active players by A(a) := N and for a node a ∈ Xr+1

for some r ≥ 1 we define the set A(a) of active players iteratively by

A(a) :=

{
A(a(r)) if ar,i = no ∀i ∈ A(a(r));
{i ∈ A(a(r)) : ar,i = yes} otherwise.

Notice that |A(h)| ≥ 1 will always hold. The winner of the game in endnode h is

W (h) := max {i | i ∈ A(h)}.
The difference between different general bisection auctions is in the payment

rule. Suppose that I = [α, β). The price the winner pays depends on when it
3Notice that this implies that the bidders are queried according to the fixed ordering 1 ≺ 2 ≺

3 ≺ · · · ≺ n − 1 ≺ n.
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became known that he is the winner. We will first provide a recursive description
of the way the payment rule is constructed.

First we associate with each node a ∈ Xr of length (r − 1)n a current price
interval [P (a),H(a)) and a query price Q(a) in the interior of this half-open interval.
The query price Q(a) bisects the current interval [P (a),H(a)) into two intervals
[P (a), Q(a)) and [Q(a), H(a)) of smaller size. For this reason we call this auction a
general bisection auction.

Once the game has reached node a ∈ Xr, the price P (a∗) is the minimum amount
the winner, whoever it may be, will have to pay, regardless of what happens from
now on. In the same way H(a∗) is a hard upper bound on the payment of the
winner. The query in round r associated with the query price Q(a∗) is

Is your valuation larger than or equal to the query price Q(a∗)?

The answer to this query is an element of the response set R = {yes, no}, and
only the responses of players that are currently active (in round r that is) can
influence the outcome of the auction.

Formally P (a0) := α and H(a0) := β, and Q(a0) is an element of the interval
(P (a0),H(a0)). For a node a ∈ Xr of length (r − 1)n with r > 1 we recursively
define

P (a) :=

{
P (a(r − 1)) if |{i ∈ A(a(r − 1)) : ar−1,i = yes}| ≤ 1
Q(a(r − 1)) otherwise.

and

H(a) :=

{
Q(a(r − 1)) if |{i ∈ A(a(r − 1)) : ar−1,i = yes}| ≤ 1
H(a(r − 1)) otherwise.

Finally, we again choose Q(a) in the interval (P (a),H(a)).

Now, for an endnode h = (hr,i)r∈N,i∈N with |A(h)| = 1 we define the running
time of the auction by T (h) = min{r ∈ N : |A(hr,1)| = 1}. Otherwise we define the
running time by T (h) = ∞. The price the winner in endnode h pays is

P (h) := sup {P (hr,1) | r ≤ T (h)}.

All other players pay zero. The resulting payoff in endnode h for player j having
valuation vj is given by

Uj(vj)(h) :=

{
vj − P (h) if j = W (h)
0 otherwise.
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This completes the description of a general bisection auction in its representation
as a query auction. Notice that effectively a general bisection auction is completely
characterized by the choices of α and β, and the choices of the query price Q(a) for
every node a that has a length (r − 1)n for some r ≥ 1. The price bounds P (a)
and H(a) as well as winner determination and payment specification are uniquely
determined by the choices of α, β, and the queries Q(a).

One-shot representation of general bisection auctions A general bisec-
tion auction is a query auction, meaning that the auction has multiple rounds and
in each round the players can give several (two in this case) responses to the queries
of the auctioneer. We will briefly discuss how the one-shot representation (F, w, p)
of such an auction looks like in the terminology of Section 6.2.

A plan of action of player j is a function fj that assigns to each decision node
a ∈ Dj a response fj(a) in R. The action set Fj is the collection of all plans of
action of player j. For the profile of plans of action f = (fi)i∈N in F :=

∏
i Fi the

winner w(f) and payment p(f) are now defined as follows. The realization of f is
the endnode h = (hr,i)r∈N,i∈N where h1,1 = a0, hr,i+1 = (hr,i, fi(hr,i)) for any i < n

and hr+1,1 = (hr,n, fn(hr,n)) for any r ∈ N. Then w(f) := W (h) and p(f) := P (h).
Automatically uj(vj)(f) = Uj(vj)(h).

This auction will be ex post individually rational as long as valuations are larger
than or equal to α. Indeed, in this case always saying no guarantees a player a
non-negative payoff. If a player does so he can win only if all other players also keep
on saying no, in which case the payment for the winner is α.

7.3 Ex post equilibrium of a general bisection auction

In this section we will introduce for each general bisection auction a strategy pro-
file that constitutes an individually rational ex-post Nash equilibrium in the given
general bisection auction. We will also show that in equilibrium there is a set of
valuations whose Lebesgue measure is larger than zero for which the auction ends
in finite time. Consequently, in equilibrium, the allocation is not ex post efficient.

Consider the general bisection auction. Define the set of players who have rank-
ing less than j and are active in node a ∈ Dj by

Aj(a) := {i ∈ A(a) : i < j}.
These are the players whose decisions in the current round are observable for player
j when he has to make a decision in node a. Let

D1
j := ∪r{a ∈ Djr | ∃i ∈ Aj(a) : ar,i = yes}
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be the set of decision nodes of player j such that there is at least one active prede-
cessor of player j whose action in the current round was yes. Thus, D2

j := Dj\D1
j

is the set of decision nodes of player j such that all active predecessors of player j

took decision no.

As before, a strategy for player j in a general bisection auction is a function
sj that assigns to each possible valuation vj ∈ [α, β) a plan of action sj(vj) in Fj .
Thus, for each decision node a ∈ Dj of player j, sj(vj) specifies a response sj(vj)(a)
in R.

Definition 7.3.1. Let vj be a valuation of player j and let a ∈ Dj be a decision
node of player j. The bluff strategy bj of player j is defined by

bj(vj)(a) :=

⎧⎪⎨⎪⎩
yes if a ∈ D1

j and Q(a∗) ≤ vj

yes if a ∈ D2
j and P (a∗) ≤ vj

no otherwise.

This strategy has a bluffing component with regard to the query “Is your val-
uation larger than the current query price?”. Indeed, in D1

j player j compares his
valuation vj with the current query price and in any node from D2

j with the current
payment. So in nodes from D2

j when his valuation is larger than the payment even
if it is smaller than the query he replies yes and thus deceives the auctioneer by
pretending to have higher valuation than he really has. Therefore one can think of
nodes from D1

j as truthful nodes and nodes from D2
j as bluff nodes.

To show that the profile b = (bi)i∈N of bluff strategies constitutes an ex post
individually rational ex post equilibrium we need the following results.

We say that a node from D2
j is in MD2

j if none of the predecessors of this node
is in D2

j . We analyze what happens in such a node when a player uses his bluff
strategy.

Lemma 7.3.2. Suppose player j has valuation vj and follows the plan of action
bj(vj). If a node a is an element of MD2

j and if player j is active in this node, then
bj(vj)(a) = yes.

Proof. Let r be the round to which a belongs. If r = 1, then P (a) = α, thus
vj ≥ P (a) and j says yes. If r > 1, by definition of MD2

j there was an active
predecessor in the previous round who said yes. Since j is still active, j also said
yes. Hence vj ≥ Q(a(r − 1)) = P (a).

As a consequence after round r player j either is the winner (in case no other
player who is active in round r and has ranking larger than j says yes) or he is
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active in round r + 1 (otherwise). In any case all players with ranking less than j

are nonactive from then on.

Lemma 7.3.3. Suppose player j follows his bluff strategy, and a is a decision node
of player j in round r. Suppose that player j is active in a and says no for the first
time. Then as long as player j will stay active, his actions will be no.

Proof. If a ∈ D1
j , then player j is not active in any future round. Suppose then

a ∈ D2
j , then vj < P (a) < Q(a). This relation remains valid in any successor node

of a.

Equivalently this lemma states that, if player j follows his bluff strategy and
says yes in node a where he is active, then all previous actions of him were yes as
well.

Proposition 7.3.4. A bluff strategy is ex post individually rational. Hence, as said
before, general bisection auctions are ex post individually rational.

Proof. Suppose that player j follows his bluff strategy and due to the plans
of action chosen by the other players endnode h is realized. If j �= W (h) then
uj(vj)(h) = 0. So, suppose that j = W (h). We consider two cases. Case 1: if
T (h) < ∞. Let a be the decision node of player j in round T (h). Then all players
in Aj(a) said no, while player j said yes. Therefore vj ≥ P (a∗), and since P (a∗)
is the price to be paid by j, he has a non-negative payoff. Case 2: if T (h) = ∞.
Since j = W (h), Lemma 7.3.3 implies that player j said yes in every round. Then,
by definition of the bluff strategy, P (hr,1) ≤ vj for every r. Hence, also P (h) ≤ vj .

Theorem 7.3.5. The strategy profile b = (bi)i∈N is an ex post Nash equilibrium.

Proof. Let (vi)i∈N be a realization of valuations and fj ∈ Fj be a plan of action
of player j. Let a be the first decision node at which player j following fj deviates
from bj(vj). In case player j is not active in node a both bj(vj) and fj yield payoff
0 and we are done. So suppose that player j is active in node a. We consider two
cases.

Case 1. In case a ∈ D1
j . If fj(a) = no and bj(vj)(a) = yes, the payoff of playing

fj is 0, while according to Proposition 7.3.4 the payoff of playing bj(vj) is at least
0. Consider the case where fj(a) = yes and bj(vj)(a) = no. When player j says yes
in a, there are at least two players who say yes in the current round by definition of
D1

j . So, the winning payment will be at least Q(a∗). Further, vj < Q(a∗) because
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bj(vj)(a) = no. Hence, the payoff of playing fj is non-positive while the payoff of
playing bj(vj) is 0.

Case 2. In case a ∈ D2
j . If fj(a) = yes and bj(vj)(a) = no we know that

P (a∗) > vj . Since the payment of the winner is at least P (a∗), playing fj has non-
positive payoff, while playing bj(vj) guarantees non-negative payoff. Consider the
case where fj(a) = no and bj(vj)(a) = yes. Suppose that b(v) = bi(vi)i∈N is such
that all successors of j say no if j says yes. Then, following bj(vj) player j wins at
price P (a∗) while following fj he might win at price at least P (a∗). Now suppose
that there is a successor i of j that plays yes if player j says yes. Since player i plays
according to bi(vi), he will also say yes when player j switches to no. But then the
payoff of playing fj would be 0 while the payoff of playing bj(vj) is non-negative.

The following example shows that bidders that do not have the highest ranking
do not have a dominant strategy. Hence the previous result cannot be strengthened
much further. It can be shown that the bluff strategy is a dominant strategy for
bidder n.

Example Consider a game with two players and suppose that player 2 has the
following strategy: if in the first round player 1 says yes then play yes in the first
round and no in all other rounds; otherwise play no in all rounds. Then any best
response of player 1 against this strategy chooses no in the first round (and yes in
some later round) whenever the valuation of player 1 is strictly larger than zero.
Now, consider another strategy of player 2: if in the first round player 1 says yes

then play no in all rounds; otherwise play yes in the first round and no in all other
rounds. In this case any best response of player 1 against this strategy chooses yes

in the first round (in decision node a0) whenever the valuation of player 1 is strictly
larger than zero. It follows that there is no strategy of player 1 which is a best
response against both strategies of player 2. Consequently player 1 does not have a
dominant strategy.

Theorem 7.3.6. The strategy profile b = (bi)i∈N is sometimes finite. Consequently,
the allocation under b is not ex post efficient.

Proof. Consider the set V of realizations v = (vi)i∈N of valuations for which
α ≤ vi < Q(a0) for all i ∈ N . Then for each v ∈ V in round 1 bidder 1 says yes
and all other bidders say no. Thus, the auction ends after this first round, and the
Lebesgue measure of the set of valuations for which the auction ends after one round
is at least

(
Q(a0)−α

)n
> 0. Consequently, by Theorems 6.4.2, 7.3.4, and 7.3.5, the

allocation under b is not ex post efficient.
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As in the above proof, consider the set V of realizations v = (vi)i∈N of valuations
for which α ≤ vi < Q(a0) for all i ∈ N . A direct way to conclude that allocation
under b is not ex post efficient is via the observation that for each v ∈ V bidder 1
wins the item (for a price of α). So, if we take for example v1 = α, and vi = Q(a0)+α

2

for all i �= 1, then the allocation is not ex post efficient.

7.4 Finite running time

Not every general bisection auction will have a finite running time under the bluff
equilibrium for any realization of valuations. If we take for example α = 0, β = 1,
and for each a ∈ Xr

Q(a∗) = (1 − 1
(r + 1)2

)P (a∗) +
1

(r + 1)2
H(a∗)

we get a general bisection auction for which for each endnode h we have that P (h) ≤
3
4 . 4 It is clear that the running time in equilibrium is not finite as soon as at least
two players have a valuation larger than 3

4 . In order to exclude such pathological
cases, consider the quantity

P ∗ := sup{P (a) | a is of length (r − 1)n for some r ∈ N}.

This quantity is the price the winner has to pay in a general bisection auction when
in any round there are at least two players who say yes to their query in that round.

We say that a general bisection auction is regular if P ∗ = β. Regularity implies
for example that the price can in principle be driven up by the bidding process to a
level where a bidder makes a loss if he becomes the winner.

Lemma 7.4.1. Given the realization of valuations (vi)i∈N suppose that in a reg-
ular general bisection auction player j follows his plan of action bj(vj) while all
other players follow s−j(v−j) –the profile of plans of action corresponding to an ar-
bitrary profile of strategies s−j. Let h be the realization of the game if the profile
(bj(vj), s−j(v−j)) is played. If j = W (h) then T (h) < ∞.

Proof. Suppose that T (h) = ∞. It implies that |A(h)| > 1 and, by definition
of W (h), for all i ∈ A(h) it holds that i ≤ j. First we argue that no player in
A(h) can say yes indefinitely. If a player in A(h) would say yes indefinitely, then,
because j = W (h), player j must do so as well. However, since player j follows his

4Use the fact that 1
(r+1)2

≤ 1
r(r+1)

= 1
r
− 1

r+1
for every r ≥ 2.
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bluff strategy, this implies that β = P ∗ ≤ vj by the regularity of the auction. This
contradicts the assumption that vj is drawn from [α, β).

Consider the round in history h where for the first time a player i from A(h)
says no. Let a be the decision node that player j reaches in this round. If any other
player from Aj(a) says yes in this round then i is not active in the next round,
which contradicts the fact that i ∈ A(h). If all players from Aj(a) say no in this
round then, according to Lemma 7.3.2, player j says yes and, again, i is not active
anymore after this round. Since T (h) = ∞, this means that any player from A(h)
says yes indefinitely. Contradiction. Hence, we conclude that T (h) < ∞.

As an immediate consequence of Lemma 7.4.1, the bluff equilibrium of a regular
general bisection auction guarantees a finite running time for any realization of
valuations. Notice that this statement is stronger than just saying that we have a
finite running time almost surely. Furthermore, from Lemma 7.3.2 it immediately
follows that, when every bidder plays according to his bluff strategy, in any round
of the auction there is at least one player that says yes. Thus we have established
the following Theorem.

Theorem 7.4.2. In a regular general bisection auction the profile of bluff strategies
has a finite running time for any realization of valuations. Moreover, the query price
increases from round to round up to the moment where the winner is found.

7.5 Conclusion

We have shown that the inefficiency result of Chapter 6 applies to a wide class of
query auctions, in particular general bisection auctions. According to this result
inefficiency of the bluff equilibrium of a general bisection auction is inevitable. In
the next chapter we will analyze exactly how (in)efficient bluff equilibrium may be.
In particular we show that within the class of general bisection auctions any level of
approximate efficiency can be achieved with a finite running time for all realizations
of valuations.
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Chapter 8

The family of c-bisection

auctions: efficiency and running

time

In this chapter we introduce a special type of general bisection auction, the c-
bisection auction, and analyze its performance. We discuss the running time and
the efficiency in the ex-post equilibrium of the auction. We show that by changing
the parameter c of the auction we can trade off efficiency against running time and
achieve any desirable level of efficiency with finite running time. Moreover, we show
that the auction that gives the desired level of efficiency in expectation takes the
same number of rounds for any number of players.1

8.1 Introduction

In Chapter 6 we studied the uses and limitations of query auctions regarding the
objective of economic efficiency maximization. In particular, we proved that in a
setting with continuous valuations any ex-post equilibrium in an ex-post individual
rational query auction that ends with positive probability after a finite number of
queries, can not be fully efficient. This result implies that in the setting of continuous
valuations full efficiency can only be achieved at the expense of an infinite running
time of a query auction for almost all realizations of valuations. So the question that
arises is: what running time can be achieved if we are satisfied with a particular
level of approximate efficiency.

Thus, in this chapter we are concerned with the trade-off between running time

1The results of this chapter were first presented in Grigorieva et al. [22].
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and allocative efficiency in the proposed general bisection auction. In particular,
we consider a special type of a general bisection auction, the c-bisection auction.
The auction is characterized by a parameter c which, together with the distribution
from which valuations of players are drawn, determines a sequence of query prices.
The c-bisection auction has an ex-post equilibrium, called the bluff equilibrium, and
under this equilibrium the auction ends in finite time, regardless of the realization
of players’ valuations. Due to the result mentioned above we know that inefficiency
of the bluff equilibrium for some realizations of valuations is inevitable.

Here we discuss in detail the performance of the c-bisection auction under the
bluff equilibrium. In particular, we study how the choice of parameter c and the
number of participating players affect the running time of the auction and its
(in)efficiency.

First, we investigate the running time of the auction according to two measures,
namely the expected number of rounds and the expected number of queries per-
formed in the auction.2 For both measures we derive first a recursive formula and
give then an upper bound for the function defined by this formula. We prove that
for a fixed c the expected number of rounds is bounded by a function that is loga-
rithmic in the number of players while the expected number of queries is bounded
by a function that is linear in the number of players.

Second, we analyze the level of inefficiency of the auction. As measures of
inefficiency we employ the probability of inefficient allocation and the expected loss
of welfare. For the probability of inefficient allocation we derive a recursive formula
and prove that it is not more than c for any number of players. We show that
when valuations are uniformly drawn from [0, 1) the expected loss of welfare is
bounded from above by c2 for any number of players. It means that by choosing the
appropriate c, the minimum level of efficiency can be determined by the auctioneer
before it is known how many players will participate in the auction. We also give a
(more) precise estimate of the expected loss of welfare by using computer simulation.

Furthermore we show that for a fixed number of players there is a trade-off
between efficiency and running time: for the increasing efficiency of the auction
we have to pay by an increasing number of rounds and an increasing number of
queries. By simulation it turns out that the trade-off curves, which show the relation
between the expected number of rounds and the expected loss of welfare, constructed
for different numbers of players coincide with each other. Thus, in expectation
the number of rounds of the auction that obtains a desired level of efficiency is

2As a query we consider each separate question of the auctioneer to an active player. As a round

we consider a sequence of queries in which each active player is asked to act exactly once.
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independent of the number of players.

Related literature The trade-off between the running time/communication
complexity and the level of allocative efficiency of query auctions has been recently
examined by some researchers. In particular, several issues concerning welfare of
single-item limited revelation auctions have been considered. In David et al. [16] the
issue is considered for English auctions when restricting queries to discrete levels.
The authors analyze how the choice of query levels in the English auction affects
the expected welfare and the expected duration (measured in terms of the number
of leels that the query price has been raised through). Blumrosen et al. [4, 5] study
the effect on welfare of a severe restriction of the amount of communication allowed
in an auction. They consider the case where each bidder is only allowed to submit
one of k distinct bids, requiring communication of lg(k) bits. They show that for
any prior over valuations, there exists an one-shot auction, called a priority game,
that incurs a welfare loss (relative to an optimal unlimited communication auction,
e.g. the Vickrey auction) which is bounded above by O( 1

k2 ) for a fixed number of
players. For the case of 2 players it is shown that a priority game is welfare-optimal
among those 2-player mechanisms allowing at most k distinct bids. In Blumrosen et
al. [5] additionally a sequential mechanism is considered in which players split their
bids to smaller messages and send them in alternating order with full knowledge of
all previously revealed bids by other players. They show that such mechanisms can
achieve better results, the additional gain in communication, however, is limited.
Namely, for every sequential mechanism with total communication of m bits there
exists a one-shot mechanism that achieves at least the same expected welfare with
communication not more than nm, where n is the number of players.

8.2 The c-bisection auction

First, we repeat the rules of a general bisection auction (choosing description that
suits the best the needs of this chapter) and then we introduce a specific type of it,
the c-bisection auction.

Suppose a single indivisible object is auctioned to a set N = {1, . . . , n} of play-
ers. The players have independent private valuations, vi, drawn from a common
continuous probability distribution with cumulative density F (v), within the range
[α, β). We assume quasi-linear utilities. Valuations of players are private informa-
tion, i.e. each player knows only his own valuation but not the valuations of the
others. Before the start of the auction there is a lottery that determines the order of
the players. W.l.o.g. we assume that this ordering is 1 ≺ 2 ≺ 3 ≺ · · · ≺ n−1 ≺ n. A
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player with a lower ranking is called a predecessor. So e.g. player 5 is a predecessor
of player 7.

The auction runs for an a priori indefinite number of rounds. Each round is
characterized by payment pr, query price qr, upper bound ur and a set of active
players Ar. The payment specifies the price to be payed if a player wins in this
round. The query price is used by the auctioneer to ask an active player whether his
valuation is larger than or equal to the query price. Players are queried openly in
increasing order, so that a player can observe the bids of his predecessors. In each
round the query price qr chosen form the open interval (pr, ur).

The initial set of active players is A1 = N . The auction starts with p1 = α

and u1 = β and q1 is a point in (α, β). Given the current set Ar, the payment
pr, the query price qr, the upper bound ur and the bids of players in round r the
characteristics of the next round r + 1 are defined as follows. If all players submit a
no bid they all remain active, i.e. Ar+1 = Ar. The payment remains the same and
the upper bound is set to the previous query price, i.e. pr+1 = pr and ur+1 = qr.
If at least two players submit a yes bid, all players that said yes remain active.
The upper bound remains the same and the payment is set equal to the previous
query price, i.e. ur+1 = ur and pr+1 = qr. The new bounds determine a new query
price qr+1 in (pr+1, ur+1). If only one player submits a yes bid the auction stops,
this player wins the auction and pays pr. If such a moment does not occur, i.e. at
least two players remain always active, the winner is determined according to the
order of players: among those players who remain active the player with the highest
ranking wins. The price the winner pays is equal to the limit of the sequence of the
payments that occurred in the subsequent rounds in the auction. Since the sequence
of payments is increasing this limit is equal to the supremum of the payments.

In the special type of a general bisection auction called c-bisection auction, the
query price is defined as follows. For any c ∈ (0, 1) and any continuous probabil-
ity distribution with cumulative density F (v) from which valuations of players are
drawn, in any round r, given the payment pr and the upper bound ur, the query
price qr is chosen such that

F (qr) − F (pr)
F (ur) − F (pr)

= c,

i.e. interval [pr, qr) contains a fraction c of the measure of [pr, ur). For example, for
the uniform distribution the query price bisects the interval [pr, ur) in fractions c

and 1 − c so that qr = pr + c(ur − pr).

The following strategy, called the bluff strategy, constitutes a symmetric ex-post
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equilibrium in the c-bisection auction (this result is proven in Chapter 7). Under the
bluff strategy an active player i having valuation vi says yes in round r whenever:

1. vi ≥ qr, or

2. pr ≤ vi < qr and no active predecessor of him said yes in this round.

The following example illustrates how the c-bisection auction proceeds under the
bluff equilibrium.

Example. Suppose five players with valuations uniformly distributed on [0, 1)
participate in the c-bisection auction with c equal to 0.5. Suppose that according
to the lottery the ordering of players is A ≺ B ≺ C ≺ D ≺ E. Players have
the following private valuations respectively: 0.43, 0.71, 0.38, 0.79, and 0.86. The
auction proceeds as follows:

Round Payment Query Set of act. Player Player Player Player Player
r pr price qr players Ar A B C D E
1 0 0.5 ABCDE yes yes no yes yes
2 0.5 0.75 ABDE no yes - yes yes
3 0.75 0.875 BDE - no - yes no

In the first round player A, having no predecessor and valuation larger than p1

says yes. Every other player, having predecessor A with yes decision, says yes iff his
valuation is larger than q1 = 0.5. All players except C say yes and therefore remain
active. The payment and the query price increase to 0.5 and 0.75, respectively. Since
vA < p2 player A says no in the second round. Now player B has no predecessor
with yes decision and since vB > p2 he says yes. Players D and E say yes since
their valuations are larger than q2 = 0.75. Again the payment and the query price
increase. In the third round player B says no, player D, having now no predecessors
with yes decision, says yes and player E says no. So there is only one yes decision
meaning that the auction ends. Player D wins the auction and pays 0.75.

Notice that the outcome in the example is not efficient - the winner is not the
player with the highest valuation. But as we have already pointed out inefficiency
for some realizations of valuations is inevitable. Later in the chapter we investigate
how inefficient this auction is by analyzing the probability of inefficient allocation
and the expected loss of welfare.

Probability distribution of player actions. In the remaining part of the chap-
ter we focus on auction performance in expectation. In order to analyze the ex-
pected performance we need to know the probability of particular actions of players.
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Namely, we need to know the probability of saying yes and no by an active player
under the bluff strategy.

Recall that in any round r of the c-bisection auction the query price qr is de-
termined in such a way that, given that the valuation of a player is in [pr, ur), the
probability that his valuation is in [pr, qr) is equal to c. Write ir := min{i | i ∈ Ar}
- among the active players in round r the one with the lowest ranking; jr := min{i |
i ∈ Ar, i �= ir} - among the active players in round r the one with the second lowest
ranking.

First let us observe that when player ir says no for the first time, player jr says
yes with certainty. Indeed, in all previous rounds player ir said yes and since jr

is active in round r also he said yes in those rounds. Both the payment and the
query price increased so that pr = qr−1. Since player jr follows the bluff strategy
his previous yes decision implies that vjr ≥ qr−1 = pr. If in round r player ir says
no, player jr is in the situation where he does not have any active predecessor with
yes decision and therefore says yes whenever his valuation is not smaller than pr,
that is with certainty. It follows that after round r player ir drops out so that
ir+1 = jr. Notice that in the equilibrium in every round r either player ir or player
jr (or both) say yes. It means that in the equilibrium only players with yes decision
remain active. This in its turn implies that the upper bound always remains the
same so that ur = β for any r, and the payment and the query price increase, so
that pr = qr−1 for any r > 1.

Second, we need to know the probability that player ir says yes in round r.
Having no active predecessor player ir says yes iff vir ≥ pr. Since p1 = α player
i1 in round 1 says yes with certainty. Now let us show that for any r > 1 the
probability that player ir says yes in round r equals 1− c. Regarding the identity of
player ir there are two possibilities - either ir = ir−1 (happens if decision of ir−1 was
yes) or ir = jr−1 (happens if decision of ir−1 was no and consequently decision of
jr−1 was yes). In both cases the decision of player ir in round r−1 was yes implying
that vir ≥ pr−1. Thus, P (vir ≥ pr | vir ≥ pr−1) = P (vir ≥ qr−1 | vir ≥ pr−1) = 1−c.
The last equality holds because qr−1 divides the interval (pr−1, β) exactly in such a
way that this conditional probability is equal to 1 − c.

Further, we need to know the probability of saying yes in round r for any player
i �= ir, i ∈ Ar. We can distinguish two cases. First, consider the case where player
i says yes in round r. From the fact that i ∈ Ar follows that player ir said yes

in round r − 1 and thus vi ≥ qr−1. In round r he says yes iff vi ≥ qr. Thus,
P (vi ≥ qr | vi ≥ qr−1) = P (vi ≥ qr | vi ≥ pr) = 1 − c. The last equality holds
because qr divides the interval (pr, β) exactly in such a way that this conditional
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probability is equal to 1 − c. Secondly, consider the case where player ir says no in
round r. As we described above player jr says yes with certainty. For any other
player i the situation is the same as in the previous case and thus also here player
i ∈ N\{ir, jr} says yes with probability 1 − c.

Now notice that the analysis above was done without specifying the distribution
function from which valuations of players are drawn. Due to the price setting rule
of the c-fraction auction the obtained probability results hold regardless of the dis-
tribution function of valuations. Thus, in the remaining part of the chapter, namely
in Section 8.4, for simplicity of argumentation we focus on the setting where val-
uations of players are independently drawn from the uniform distribution in [0, 1).
Moreover, it could be seen from the analysis above that the probability of saying
yes or no by an active player does not depend on the round. It enables us to derive
recursive formulas (in the number of active players) for the expected number of
rounds and the expected number of queries performed in the auction.

8.3 Running time of the c-bisection auction

In this section we investigate the expected running time of the c-bisection auction
if the bluff strategies are played. We analyze two measures, namely the expected
number of rounds and the expected number of queries performed in the auction
before the winner is found. As a query we consider each separate question of the
auctioneer to an active player. As a round we consider a sequence of queries in
which each active player is asked to act exactly once. For both measures we derive
first a recursive formula and give then an upper bound for the function defined by
this formula.

8.3.1 The expected number of rounds

Let ec(k) be the expected number of rounds of the auction with k active players,
given that the decision of the active player with the lowest ranking is yes in the
current round; and e∗c(k) be the expected number of rounds given that this decision
is no. Consider round r with n active players and suppose that the decision of player
ir in the current round is yes. The current round contributes 1 to ec(n). Now let us
compute the expected number of remaining rounds. If all active players apart from
player ir say no, the auction stops after this round. If k (for some 1 ≤ k ≤ n − 1)
active players apart from player ir say yes, then the auction continues with k + 1
active players. The probability of this situation given the yes decision of player ir is(
n−1

k

)
(1− c)kcn−1−k (since when player ir says yes all other players say yes and no
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The family of c-bisection auctions

with probabilities 1− c and c respectively). In the next round player ir+1 = ir says
yes or no with probabilities 1 − c and c respectively. Thus if k active players apart
from player ir say yes in the round r, the expected number of remaining rounds is
equal to (1 − c)ec(k + 1) + ce∗c(k + 1). Hence, for any n ≥ 2

ec(n) = 1 +
n−1∑
k=1

(
n − 1

k

)
(1 − c)kcn−1−k

[
(1 − c)ec(k + 1) + ce∗c(k + 1)

]
. (8.1)

Now recall that if player ir+1 says no player jr+1 says yes with certainty, which
causes player ir+1 to drop out of the auction. Thus, e∗c(2) = 1 and e∗c(k +1) = ec(k)
for any k > 1. These observations are used in Appendix 8.6 to rewrite the above
recursive relation to[

1 − (1 − c)n
]

ec(n) = 1 + (n − 1)(1 − c)cn−1 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−kec(k). (8.2)

This formula is valid for any n ≥ 2.

Now notice that since in the first round player i1 says yes with certainty, the
expected number of rounds of the auction of n players is equal to ec(n). Thus
using formula 8.2 we can compute the expected number of rounds in the auction
of n players. Plugging in n = 2 yields ec(2) = 1+c(1−c)

c(2−c) . All other values can
be determined recursively. Table 8.1 in Appendix 8.6 presents the computational
results for different values of c in the auction with up to 100 players (data is within
an accuracy of 0.001). Figure 8.1(a) shows how for a fixed value of c the expected
number of rounds increases in the number of players who participate in the auction.
Furthermore, Figure 8.1(b) demonstrates how for a fixed number of players the
expected number of rounds decreases as c increases.

Generally we show that the expected number of rounds of the auction is bounded
from above by a function that is logarithmic in the number of players. To prove
this, first we introduce several notations and lemmas.

Define Dn =
∏n

k=1
1

1−(1−c)k for any n ≥ 2.

Also define E2 = 1+c(1−c)
c(2−c) and for any n > 2

En = 1 + (n − 1)(1 − c)cn−1 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−kEk.
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Figure 8.1: The expected number of rounds (a) for different fixed values of c; (b)
for different fixed numbers of players.

Lemma 8.3.1. For any n ≥ 2, e(n) ≤ En · Dn.

Proof. The proof is by induction on n. The basis of the induction is trivial since
ec(2) = E2 and D2 > 1. Suppose that ec(k) ≤ Ek ·Dk is true for any 2 ≤ k ≤ n− 1.
Notice that Dn ≥ Dn−1 ≥ . . . ≥ D2 > 1. Thus, using the recursive formula for ec(n)
and the induction hypothesis,

[
1 − (1 − c)n

]
ec(n) = 1 + (n − 1)(1 − c)cn−1 +

n−1∑
k=2

(
n

k

)
(1 − c)kcn−kec(k)

≤ 1 + (n − 1)(1 − c)cn−1 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−kEkDk

≤ 1 + (n − 1)(1 − c)cn−1 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−kEkDn−1

≤ Dn−1

[
1 + (n − 1)(1 − c)cn−1 +

n−1∑
k=2

(
n

k

)
(1 − c)kcn−kEk

]
= En · Dn−1,

which completes the proof.
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Now we find bounds on Dn and En.

Lemma 8.3.2. For any n ≥ 2, Dn ≤ e
1−c
c2 .

Proof. It is enough to show that lnDn ≤ 1−c
c2

. Let us define λ = 1
1−c . Notice that

since 0 < c < 1 it holds that λ > 1.
We have

lnDn = ln

(
n∏

k=1

λk

λk − 1

)
=

n∑
k=1

[
lnλk − ln(λk − 1)

]
≤

n∑
k=1

(
lnx
)′
|x=λk−1

=
n∑

k=1

1
λk − 1

≤
n∑

k=1

1
λk − λk−1

=
1

λ − 1

n∑
k=1

1
λk−1

≤ 1
λ − 1

∞∑
k=0

1
λk

=
λ

(λ − 1)2
=

1 − c

c2
.

Lemma 8.3.3. For any n ≥ 2 and any c ≤ 1
2 , En ≤ 1 + loga n, with base a = 1

1−c .

Proof. The proof is by induction on n. The basis of induction holds since 1+c(1−c)
c(2−c) ≤

loga 2 + 1 for any c ≤ 1
2 . Suppose Ek ≤ 1 + loga k for any 2 ≤ k ≤ n − 1. Using the

induction hypothesis,

En = 1 + (n − 1)(1 − c)cn−1 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−kEk

≤ 1 + (n − 1)(1 − c)cn−1 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−k(loga k + 1)

≤ 1 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−k loga k +

n−1∑
k=1

(
n

k

)
(1 − c)kcn−k

≤ 2 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−k loga k.

Since the logarithm with base a = 1
1−c is concave, we know that if λk ≥ 0 and∑n

k=0 λk = 1 then
n∑

k=0

λk loga(xk) ≤ loga

( n∑
k=0

λkxk

)
.

So let us take λk =
(
n
k

)
(1 − c)kcn−k for all k and take x0 = xn = 1, xk = k for

any 1 ≤ k ≤ n − 1. Then
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En ≤ 2 +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−k loga k

= 2 +
n∑

k=0

(
n

k

)
(1 − c)kcn−k loga(xk)

≤ 2 + loga

[
n∑

k=0

(
n

k

)
(1 − c)kcn−kxk

]

= 2 + loga

[
n−1∑
k=1

(
n

k

)
(1 − c)kcn−kk + cn + (1 − c)n

]

≤ 2 + loga

[
n−1∑
k=1

(
n

k

)
(1 − c)kcn−kk + n(1 − c)n

]

= 2 + loga

[
n∑

k=0

(
n

k

)
(1 − c)kcn−kk

]
= 2 + loga

[
(1 − c)n

]
= 1 + loga n.

The last inequality holds since for any c ≤ 1
2 and any n ≥ 2 it holds that

cn + (1 − c)n ≤ 2(1 − c)n ≤ n(1 − c)n.

A final immediate consequence of Lemmas 8.3.1 – 8.3.3 is the following theorem.

Theorem 8.3.4. For any c ≤ 1
2 and any n ≥ 2, ec(n) ≤ e

1−c

c2

(
log 1

1−c
n + 1

)
.

Remark: Since ec(n) > ec(n) when c < c, the upper bound for c = 1
2 is also valid

for any c > 1
2 .

We showed that the expected number of rounds of the c-bisection auction is
bounded from above by a function that is logarithmic in the number of players.
A comparison of the bound with the computed results suggests that this bound is
not tight. Computer results also show that for a fixed value of c the ratio between
the bound and the computed result is approximately constant (as a function of n),
implying that the bound is likely to have the correct order of magnitude.

8.3.2 The expected number of queries

Let bc(k) be the expected number of queries of the auction with k active players,
given that the decision of the active player with the lowest ranking is yes in the
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current round; b∗c(k) be the expected number of queries given that this decision is
no. Notice that in a round with k active players k queries are performed. Following
the same argumentation as we used for determining the formula for the expected
number of rounds we find that for any n ≥ 2

bc(n) = n +
n−1∑
k=1

(
n − 1

k

)
(1 − c)kcn−1−k

[
(1 − c)bc(k + 1) + cb∗c(k + 1)

]
. (8.3)

Again, notice that when player ir+1 = ir says no player jr+1 says yes with
certainty, which causes player ir+1 to drop out of the auction. Thus, b∗c(2) = 2 and
for all k > 1 it holds that b∗c(k + 1) = 1 + bc(k). This is used in Appendix 8.6 to
derive the following recursive relation. For any n ≥ 2

[
1−(1−c)n

]
bc(n) = n+(n−1)(1−c)cn−1+c−cn+

n−1∑
k=2

(
n

k

)
(1−c)kcn−kbc(k). (8.4)

Now notice that since in the first round player i1 says yes with certainty, the
expected number of queries in the auction of n players is equal to bc(n). Thus
using formula 8.4 we can compute the expected number of queries performed in the
auction of n players. Plugging in n = 2 yields bc(2) = 2+2c(1−c)

c(2−c) . All other values can
be determined recursively. Table 8.2 in Appendix 8.6 presents the computational
results for different values of c in the auction with up to 100 players (data is within
an accuracy of 0.1). Figure 8.2(a) demonstrates that for a fixed value of c the
expected number of queries increases in the number of players participating in the
auction. Figure 8.2(b) shows that for a fixed number of players the expected number
of queries decreases as c becomes larger.

Generally we show that the expected number of queries is bounded from above
by a function that is linear in the number of players. To prove this we introduce
several notations and lemmas.

Define B2 = 2+2c(1−c)
c(2−c) and

Bn = n + (n − 1)(1 − c)cn−1 + c − cn +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−kBk

for any n > 2.

Recall that Dn =
∏n

k=1
1

1−(1−c)k .
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Figure 8.2: The expected number of queries (a) for different fixed values of c; (b)
for different fixed numbers of players.

Lemma 8.3.5. For any n ≥ 2, bc(n) ≤ Bn · Dn.

Proof. The proof is identical to the proof of Lemma 8.3.1 if we replace ec(k) by bc(k)
and Ek by Bk for all 2 ≤ k ≤ n.

From Lemma 8.3.2 we know that for any n ≥ 2, Dn ≤ e
1−c
c2 . Now we find a

bound on Bn.

Lemma 8.3.6. For any n ≥ 2, Bn ≤ (2
c + 1

2

)
(n + 1).

Proof. The proof is by induction on n. The basis of the induction holds since it can
be easily shown that B2 < 3

(
2
c + 1

2

)
. Now suppose that Bk ≤ (

2
c + 1

2

)
(k + 1) for

any 2 ≤ k ≤ n − 1. Using the induction hypothesis,

Bn = n + (n − 1)(1 − c)cn−1 + c − cn +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−kBk

≤ n + (n − 1)(1 − c)cn−1 + c − cn +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−k

(
2
c

+
1
2

)
(k + 1)

≤ 2n + c +
(

2
c

+
1
2

) n∑
k=0

(
n

k

)
(1 − c)kcn−kk +

(
2
c

+
1
2

) n∑
k=0

(
n

k

)
(1 − c)kcn−k

= 2n + c +
(

2
c

+
1
2

)
(1 − c)n +

(
2
c

+
1
2

)
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=
(

2
c

+
1
2

)
(n + 1) + c

(
1 − n

2

)
≤

(
2
c

+
1
2

)
(n + 1).

The last inequality holds since n ≥ 2.

A final immediate consequence of Lemmas 8.3.2, 8.3.5 and 8.3.6 is the following
theorem.

Theorem 8.3.7. For any integer n ≥ 2, bc(n) ≤ e
1−c
c2
(

2
c + 1

2

)
(n + 1).

We showed that the expected number of queries is bounded from above by a
function that is linear in the number of players. Again, a comparison of the bound
with the computed results suggests that this bound is not tight. Computer results
also show that for a fixed value of c the ratio between the bound and the computed
result is approximately constant (as a function of n), implying that the bound is
likely to have the correct order of magnitude.

8.4 Efficiency of the c-bisection auction

In this section we investigate the efficiency of the c-bisection auction when the
bluff equilibrium is played. In particular we compute the probability of inefficient
allocation and the expected loss of welfare. Here for simplicity of argumentation we
focus on the setting where valuations of players are independently drawn from the
uniform distribution in [0, 1).

In order to compute these measures of inefficiency it is convenient to consider
the direct revelation mechanism associated with the bluff equilibrium. We construct
a direct auction that mimics the bluff strategies of the c-bisection auction.

8.4.1 The direct c-bisection auction

Consider the following direct auction (wd, pd), called the direct c-bisection auction
. For r ∈ N, write Ir := [1 − (1 − c)r−1, 1 − (1 − c)r). 3 Note that the intervals
I1, I2, . . . partition the unit interval [0, 1) from which valuations are drawn. Now let
v = (vi)i∈N be a profile of valuations. Write Ir(v) := Ir ∩ {vi | i ∈ N} - the set of

3In case of a general density function F (v) in [α, β) intervals Ir are defined recursively as follows.

Write Ir = [αr, βr) where α1 = α, αr = βr−1 and βr is chosen such that F (βr)−F (αr)
F (β)−F (αr)

= c.
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valuations that belong to the interval Ir. Let r(v) be the highest natural number r

for which Ir(v) is not empty. Among players whose valuations belong to the interval
Ir(v) the one with the lowest ranking is declared to be the winner. So the winner
wd is defined by

wd(v) := min{i ∈ N | vi ∈ Ir(v)}.
Let s(v) be the highest natural number r for which Ir ∩ {vi | i ∈ N\{wd(v)}} is
not empty. The price the winner pays is equal to the lower bound of interval Is(v)

if all players whose valuations belong to this interval have a ranking higher than
the winner. Otherwise the price equals the upper bound of this interval. So the
payment pd is defined by

pd(v) :=

{
1 − (1 − c)s(v)−1 if i > wd(v) for all i ∈ Is(v)(v)
1 − (1 − c)s(v) else.

Notice that the first condition always holds if |Ir(v)| > 1, i.e. if s(v) = r(v). If
Ir(v) contains only one valuation, the payment depends on the ranking of the players
with valuations in Is(v).

Example. Consider the same example as in Section 2.2 with players A ≺ B ≺
C ≺ D ≺ E whose valuations are 0.43, 0.71, 0.38, 0.79 and 0.86, respectively.
Suppose that in the direct c-bisection auction with c = 1/2 the players truthfully
report their valuations. Then r(v) = s(v) = 3. Players with valuation in I3 are
players D and E. Player D has ranking lower than player E so he is the winner. The
price he pays for the object is equal to the lower bound of I3, namely 0.75. So we
get the same outcome as the one we found in Section 2.2.

We will now show that (wd, pd) equals the direct auction (w ◦ b, p ◦ b) where w

and p are defined as in Section 7.2 and b = (bi)i∈N is the bluff equilibrium.

Theorem 8.4.1. For any realization v = (vi)i∈N of valuations it holds that wd(v) =
(w◦b)(v) and pd(v) = (p◦b)(v). Consequently, truthful bidding is a dominant strategy
in the direct auction (wd, pd).

Proof. Let v = (vi)i∈N be a realization of valuations. By Theorem 7.4.2 we know
that the price will always increase. Consider the round s(v) in which the price is
equal to 1 − (1 − c)s(v)−1 and the query price is equal to 1− (1 − c)s(v). The active
bidders in round s(v) are (w ◦ b)(v), all bidders i with vi ∈ Is(v), and –possibly– one
more bidder i∗ with vi∗ ∈ Is(v)−1 who happened to be the bidder with the lowest
ranking number among those bidders that were active in the previous round and
said yes in that round. We distinguish three cases.
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Figure 8.3: The probability of inefficient allocation.

Case 1. If i∗ exists. Bidder i∗ will say no in this round s(v), and the next
active bidder, say j, in the bidding order will say yes. If j = (w ◦ b)(v) then
all other active bidders say no. So, (w ◦ b)(v) = min{i ∈ N | vi ∈ Ir(v)} and
(p ◦ b)(v) = 1− (1 − c)s(v)−1. If j �= (w ◦ b)(v) then both j and (w ◦ b)(v) say yes in
this round, while all other active bidders say no. In the next round though j will say
no and (w ◦ b)(v) says yes. Hence in this case (w ◦ b)(v) = min{i ∈ N | vi ∈ Ir(v)}
and (p ◦ b)(v) = 1 − (1 − c)s(v).

Case 2. If i∗ does not exist and i > (w ◦ b)(v) for all i ∈ Is(v)(v). In this
case (w ◦ b)(v) says yes in round s(v) while all other active bidders say no. Hence
(w ◦ b)(v) = min{i ∈ N | vi ∈ Ir(v)} and (p ◦ b)(v) = 1 − (1 − c)s(v)−1.

Case 3. When not in Case 1 or 2. Then an active bidder j �= (w ◦ b)(v)
says yes in round s(v) together with (w ◦ b)(v), while all other bidders say no. In
round s(v) + 1 bidder j says no and bidder (w ◦ b)(v) says yes. Hence in this case
(w ◦ b)(v) = min{i ∈ N | vi ∈ Ir(v)} and (p ◦ b)(v) = 1 − (1 − c)s(v).

So we have shown that for any realization of valuations v = (vi)i∈N the outcome
(wd(v), pd(v)) equals the outcome of the c-bisection auction when players, having
these valuations, follow the bluff strategies. Consequently, by the revelation principle
(see e.g. Mas-Colell et al. [41]) truth telling is a dominant strategy in the direct
c-bisection auction. Due to this result the efficiency performance of both the c-
bisection query auction under the bluff equilibrium and the direct c-bisection auction
under the truth telling equilibrium are the same. Thus it suffices to compute the
probability of inefficient allocation and the expected loss of welfare for the direct
c-bisection auction under the truth telling equilibrium.
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8.4.2 The probability of inefficient allocation

We derive a recursive formula for the probability of inefficient allocation and give an
upper bound for the function defined by this formula. First notice that the direct
c-bisection auction restricted to the interval [c, 1) with k players having valuations
uniformly drawn from this interval has identical form and structure as the original
direct auction with k players having valuations uniformly drawn from [0, 1).

Let us denote by Pc(n) the probability that the auction with n players terminates
in an inefficient allocation. First, consider the case where the valuations of all players
are smaller than c. The probability of this event is cn. In this case the auction is
only efficient if the player with the lowest ranking has the highest valuation. By
symmetry this happens with probability 1

n . Thus this case contributes n−1
n cn to

Pc(n). Next consider the case where k players have valuations larger than or equal
to c and n − k players have valuations smaller than c. It happens with probability(
n
k

)
cn−k(1−c)k. For k = 1 the auction is efficient, so this case adds zero to Pc(n). For

k > 1 the auction can be inefficient and due to the structural similarity, inefficiency
takes place with probability Pc(k). Hence,

Pc(n) =
n − 1

n
cn +

n∑
k=2

(
n

k

)
cn−k(1 − c)kPc(k).

This can be rewritten to the following recursive relation, Pc(2) = 1
2 · c

2−c and for
n ≥ 3

[
1 − (1 − c)n

]
Pc(n) =

n − 1
n

cn +
n−1∑
k=2

(
n

k

)
cn−k(1 − c)kPc(k). (8.5)

Direct computation of this expression for different combinations of n and c gives
the values that are plotted in Figure 8.3.

We will show that the probability of inefficiency Pc(n) is smaller than c, and also
bounded away from zero.

Theorem 8.4.2. For all n ≥ 2, Pc(n) ≤ c and Pc(n) ≥ c
2(2−c) · e−Zc where

Zc :=
∑∞

k=3
ck+kλck−1

1−λk−kλck−1−ck with λ = 1 − c.

Proof. First we show that Pc(n) ≤ c. The proof is by induction on n. The basis of
induction holds since Pc(2) = c

2(2−c) ≤ c. Suppose that Pc(k) ≤ c for all 2 ≤ k ≤
n − 1. Then
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Pc(n) =
1

1 − (1 − c)n

[n − 1
n

· cn +
n−1∑
k=2

(
n

k

)
(1 − c)kcn−k · Pc(k)

]

≤ 1
1 − (1 − c)n

[
cn +

n−1∑
k=2

(
n

k

)
(1 − c)kcn−k · c

]
=

1
1 − (1 − c)n

[
cn + c

(
1 − cn − n(1 − c)cn−1 − (1 − c)n

)]
=

c(1 − (1 − c)n)
1 − (1 − c)n

+
cn − cn+1 − n(1 − c)cn

1 − (1 − c)n

= c +
cn(1 − c)(1 − n)

1 − (1 − c)n

≤ c.

The first inequality holds by the induction assumption and the fact that n−1
n < 1.

The last inequality holds since n ≥ 2. This concludes the proof for the upper bound
on Pc(n).

Now we show that Pc(n) ≥ c
2(2−c) · e−Zc . Define Bc(n) as follows. Let Bc(2) :=

c
2(2−c) and for n ≥ 3

Bc(n) :=
1

1 − λn

[
n−1∑
k=2

(
n

k

)
λkcn−kBc(k)

]
.

A simple induction argument shows that Bc(n) ≤ Pc(n) for all n. We will show that
Bc(n) ≥ c

2(2−c) · e−Zc for all n. Define Q2(c) := 1 and for n ≥ 3

Qc(n) :=
1 − λn − nλcn−1 − cn

1 − λn
· Qc(n − 1) =

n∏
k=3

1 − λk − kλck−1 − ck

1 − λk
.

We will first show that for all n ≥ 2, Bc(k) ≥ Bc(2) · Qc(n) holds for all 2 ≤ k ≤ n.
Clearly this holds for n = 2. Take n ≥ 3. Assume that for all 2 ≤ k ≤ n − 1 we
have that Bc(k) ≥ Bc(2) · Qc(n − 1). Since 0 < Qc(n) ≤ Qc(n − 1) we have that
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Bc(k) ≥ Bc(2) · Qc(n) for all 2 ≤ k ≤ n − 1. For k = n,

Bc(n) =
1

1 − λn

[
n−1∑
k=2

(
n

k

)
λkcn−kBc(k)

]

≥ 1
1 − λn

[
n−1∑
k=2

(
n

k

)
λkcn−kQc(n − 1)Bc(2)

]

=
1

1 − λn
· Qc(n − 1) · Bc(2) ·

[
n−1∑
k=2

(
n

k

)
λkcn−k

]

=
1 − λn − nλcn−1 − cn

1 − λn
· Qc(n − 1) · Bc(2) = Bc(2) · Qc(n)

which shows that Bc(n) ≥ Bc(2) · Qc(n). Now notice that Zc > 0. So, Qc(2) = 1 ≥
e−Zc , while for n ≥ 3

log Qc(n) =
n∑

k=3

[
log
(
1 − λk − kλck−1 − ck

)
− log

(
1 − λk

)]
= −

n∑
k=3

[
log
(
1 − λk

)
− log

(
1 − λk − kλck−1 − ck

)]
≥ −

n∑
k=3

kλck−1 + ck

1 − λk − kλck−1 − ck
≥ −Zc,

where the first inequality follows from the fact that log y − log x ≤ y−x
x for y > x.

Hence, since Bc(2) := c
2(2−c) , Pc(n) ≥ Bc(n) ≥ Bc(2) · Qc(n) ≥ c

2(2−c) · e−Zc for all
n ≥ 2.

This theorem shows in particular that by choosing an appropriate fraction c in
the auction we can make the probability of inefficiency as small as we like, indepen-
dent of the number of players!

8.4.3 The expected loss of welfare

The welfare of an auction is equal to the valuation of the winner. Thus given a
realization of valuations v = (vi)i∈N , the welfare achieved by the auction is the
valuation of wd(v) := min{i | vi ∈ Ir(v)}. The maximum welfare, given v, is
max{vi | i ∈ N} = max{vi | vi ∈ Ir(v)}. Thus, the loss L(v) of welfare is

L(v) = max{vi | vi ∈ Ir(v)} − vwd(v).

The expected loss of welfare, denoted by Lc(n), is the expected value of this differ-
ence. To estimate the value of Lc(n) we simulated the direct c-bisection auction and
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Figure 8.4: The expected loss of welfare, 99% confidence interval.

ran it for valuations uniformly and independently drawn from the interval [0, 1). For
each combination of value c and number of players n we ran 10,000 trials. Figure 8.4
shows the 99% confidence interval for the expected loss of welfare. It is interesting
to notice that the maximum expected loss does not arrive at the minimum number
of players.

In general, we show the following statement.4

Theorem 8.4.3. For all n ≥ 2, Lc(n) ≤ c2.

Proof. Let v = (vi)i∈N be a realization of valuations for which the allocation in the
direct c-bisection auction is not efficient. In other words, max{vi | vi ∈ Ir(v)} >

vwd(v). Since the valuation of wd(v) is an element of Ir(v) we get that

L(v) ≤ length (Ir(v)) ≤ c.

Hence, Lc(n) ≤ c · Pc(n). Applying the first result of Theorem 8.4.2 completes
the proof.

As for probability of inefficient allocation, by choosing an appropriate fraction c

in the auction we can limit the expected loss of welfare to an arbitrary chosen level,
independent of the number of players. The following result shows that the expected
loss of welfare even tends to zero when the number of participants becomes large.

4This result can not be generalized to an arbitrary density function F (v) since it is based on the

lengths of intervals Ir which entirely depend on distribution of valuations.
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Theorem 8.4.4. The expected loss of welfare Lc(n) tends to zero for large n.

Proof. Let v = (vi)i∈N be a realization of valuations. Since the valuation of wd(v)
is an element of Ir(v) we get that

L(v) = max{vi | vi ∈ Ir(v)} − vwd(v) ≤ length
(
Ir(v)

)
= c · (1 − c)r(v)−1 .

Thus, conditioning in the direct c-bisection auction on the event that exactly k

bidders have a valuation in Ir(v) and consequently the n− k remaining bidders have
a valuation lower than 1 − (1 − c)r(v)−1, it follows that

Lc(n) ≤ n − 1
n

c · cn +
∞∑

r=2

n∑
k=2

(
n

k

)[
c(1 − c)r−1

]k[
1 − (1 − c)r−1

]n−k · c (1 − c)r−1

≤ cn+1 +
∞∑

r=2

c(1 − c)r−1
n∑

k=0

(
n

k

)[
c(1 − c)r−1

]k[
1 − (1 − c)r−1

]n−k

= cn+1 +
∞∑

r=2

c(1 − c)r−1
[
c(1 − c)r−1 + 1 − (1 − c)r−1

]n
= cn+1 +

∞∑
r=2

c(1 − c)r−1
[
1 − (1 − c)r

]n
.

We will show that

Sc(n) :=
∞∑

r=2

c(1 − c)r−1
[
1 − (1 − c)r

]n
tends to zero for large n. Take an ε > 0. Take r∗ such that

∞∑
r=r∗

c (1 − c)r−1 <
1
2
ε.

Take N such that for all n > N

r∗−1∑
r=2

c (1 − c)r−1
[
1 − (1 − c)r∗

]n
<

1
2
ε.

Then for all n > N ,

Sc(n) =
r∗−1∑
r=2

c(1 − c)r−1
[
1 − (1 − c)r

]n
+

∞∑
r=r∗

c(1 − c)r−1
[
1 − (1 − c)r

]n
≤

r∗−1∑
r=2

c(1 − c)r−1
[
1 − (1 − c)r∗

]n
+

∞∑
r=r∗

c(1 − c)r−1

<
1
2
ε +

1
2
ε = ε

which shows our claim.
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Figure 8.5: The trade-off between (a) the probability of inefficient allocation and
the number of rounds; (b) the probability of inefficient allocation and the number
of queries.

8.5 Concluding remarks: trade-off between efficiency

and running time

From the analysis above we derive the following relation between the value of c, the
level of efficiency and the running time. For a fixed number of players, a smaller
fraction c leads to a lower expected loss of welfare and lower probability of inefficient
allocation. But at the same time it leads to a higher expected number of rounds and
queries. Thus, increasing running time is a price that we have to pay for increasing
efficiency. Depending on the priorities of the auctioneer he may trade off efficiency
against running time. Figure 8.5 shows, for some fixed n, the relation between the
expected running time and the probability of inefficient allocation. These relations
are built on computational results based on recursive formulas 8.2, 8.4 and 8.5.
Figure 8.6 shows, for some fixed n, the relation between the expected running time
and the expected loss of welfare. Because we do not have exact values for the
expected loss of welfare we estimated the values by taking the middle point of the
99% confidence interval from the simulation results reported above. Notice that
in Figure 8.6(a) the trade-off curves drawn for different numbers of players almost
coincide with each other. It means that in order to get the desired level of efficiency
we need to run the auction that in expectation takes the same number of rounds for
any number of players participating in the auction (of course, the choice of c to be
used in this auction will depend on the number of players). This explains why for
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8.5. Conclusion

Figure 8.6: The trade-off between (a) the loss of welfare and the number of rounds;
(b) the loss of welfare and the number of queries.

the same level of efficiency more players require more queries to be asked, which is
demonstrated in Figure 8.6(b).
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8.6 Appendix

Derivation of formula 8.2

Let us denote by Pn
k =

(
n
k

)
(1 − c)kcn−k. Using the facts that e∗c(2) = 1 and

e∗c(k + 1) = ec(k) for all k ≥ 2 we can rewrite formula 8.1 as follows:

ec(n) = 1 +
n−1∑
k=1

Pn−1
k

[
(1 − c)ec(k + 1) + ce∗c(k + 1)

]

= 1 + (1 − c)
n−2∑
k=1

Pn−1
k ec(k + 1) + (1 − c)Pn−1

n−1 ec(n) + c
n−1∑
k=2

Pn−1
k e∗c(k + 1) +

cPn−1
1 e∗c(2)

= 1 + (1 − c)
n−2∑
k=1

Pn−1
k ec(k + 1) + (1 − c)nec(n) + c

n−1∑
k=2

Pn−1
k ec(k) +

(n − 1)(1 − c)cn−1

= 1 + (1 − c)nec(n) + (n − 1)(1 − c)cn−1 + (1 − c)
n−1∑
k=2

Pn−1
k−1 ec(k) +

c
n−1∑
k=2

Pn−1
k ec(k)

= 1 + (1 − c)nec(n) + (n − 1)(1 − c)cn−1 +
n−1∑
k=2

[
(1 − c)Pn−1

k−1 + cPn−1
k

]
ec(k)

= 1 + (1 − c)nec(n) + (n − 1)(1 − c)cn−1 +
n−1∑
k=2

Pn
k ec(k).

This can be rewritten to[
1 − (1 − c)n

]
ec(n) = 1 + (n − 1)(1 − c)cn−1 +

n−1∑
k=2

(
n

k

)
(1 − c)kcn−kec(k).
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Derivation of formula 8.4

Recall that Pn
k =

(
n
k

)
(1− c)kcn−k Using the facts that b∗(2) = 2 and b∗(k + 1) =

b(k) + 1 for all k ≥ 2, we get from formula 8.3 that

bc(n) = n +
n−1∑
k=1

Pn−1
k

[
(1 − c)bc(k + 1) + cb∗c(k + 1)

]

= n + (1 − c)
n−2∑
k=1

Pn−1
k bc(k + 1) + (1 − c)Pn−1

n−1 bc(n) + c
n−1∑
k=2

Pn−1
k b∗c(k + 1) +

cPn−1
1 b∗c(2)

= n + (1 − c)
n−2∑
k=1

Pn−1
k bc(k + 1) + (1 − c)nbc(n) + c

n−1∑
k=2

Pn−1
k

[
bc(k) + 1

]
+

2(n − 1)(1 − c)cn−1

= n + (1 − c)nbc(n) + 2(n − 1)(1 − c)cn−1 + (1 − c)
n−1∑
k=2

Pn−1
k−1 bc(k) +

c

n−1∑
k=2

Pn−1
k bc(k) + c

n−1∑
k=2

Pn−1
k

= n + (1 − c)nbc(n) + 2(n − 1)(1 − c)cn−1 + c − cn − (n − 1)(1 − c)cn−1 +
n−1∑
k=2

[
(1 − c)Pn−1

k−1 + cPn−1
k

]
bc(k)

= n + (1 − c)nbc(n) + (n − 1)(1 − c)cn−1 + c − cn +
n−1∑
k=2

Pn
k bc(k).

Rewriting yields, for any n ≥ 2,

[
1 − (1 − c)n

]
bc(n) = n + (n − 1)(1 − c)cn−1 + c − cn +

n−1∑
k=2

(
n

k

)
(1 − c)kcn−kbc(k).
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Table 8.1: The expected number of rounds ec(n) in the c-bisection auction.

n�c 1/10 1/8 1/6 1/4 1/3 1/2 2/3 3/4 5/6 7/8 9/10

2 5.737 4.733 3.727 2.714 2.200 1.667 1.375 1.267 1.171 1.127 1.101

3 8.901 7.230 5.555 3.873 3.021 2.143 1.663 1.483 1.319 1.240 1.193

4 11.273 9.102 6.927 4.742 3.638 2.505 1.891 1.660 1.446 1.341 1.277

5 13.172 10.600 8.024 5.437 4.131 2.794 2.076 1.807 1.557 1.431 1.353

6 14.753 11.848 8.938 6.016 4.542 3.035 2.230 1.931 1.654 1.512 1.423

7 16.109 12.918 9.721 6.513 4.895 3.241 2.361 2.037 1.738 1.584 1.486

8 17.296 13.854 10.407 6.947 5.203 3.421 2.475 2.129 1.813 1.650 1.545

9 18.350 14.686 11.016 7.334 5.477 3.581 2.576 2.211 1.879 1.709 1.598

10 19.299 15.435 11.565 7.681 5.724 3.726 2.667 2.283 1.939 1.762 1.647

20 25.647 20.443 15.233 10.006 7.373 4.690 3.275 2.760 2.312 2.102 1.971

30 29.417 23.418 17.412 11.387 8.353 5.264 3.637 3.048 2.524 2.281 2.140

40 32.109 25.541 18.967 12.372 9.052 5.673 3.894 3.255 2.681 2.406 2.249

50 34.203 27.194 20.177 13.140 9.596 5.991 4.095 3.414 2.808 2.508 2.333

60 35.918 28.547 21.168 13.768 10.042 6.252 4.260 3.543 2.913 2.595 2.405

70 37.370 29.693 22.007 14.299 10.419 6.472 4.399 3.652 3.002 2.672 2.469

80 38.628 30.686 22.735 14.760 10.746 6.664 4.520 3.747 3.077 2.740 2.527

90 39.740 31.563 23.377 15.167 11.035 6.833 4.627 3.831 3.143 2.801 2.580

100 40.735 32.348 23.952 15.532 11.294 6.984 4.722 3.907 3.201 2.855 2.629

Table 8.2: The expected number of queries bc(n) in the c-bisection auction.

n�c 1/10 1/8 1/6 1/4 1/3 1/2 2/3 3/4 5/6 7/8 9/10

2 11.5 9.5 7.5 5.4 4.4 3.3 2.8 2.5 2.3 2.3 2.2

3 21.8 17.8 13.8 9.7 7.7 5.6 4.4 4.0 3.7 3.5 3.4

4 32.0 26.0 20.0 13.9 10.9 7.8 6.1 5.5 5.0 4.7 4.6

5 42.2 34.2 26.2 18.1 14.0 9.9 7.7 6.9 6.3 6.0 5.8

6 52.4 42.4 32.3 22.3 17.2 12.0 9.3 8.4 7.6 7.2 7.0

7 62.5 50.5 38.5 26.4 20.3 14.1 10.9 9.8 8.8 8.4 8.1

8 72.6 58.6 44.6 30.5 23.4 16.2 12.5 11.2 10.1 9.6 9.3

9 82.7 66.7 50.7 34.9 26.5 18.3 14.1 12.6 11.3 10.8 10.4

10 92.8 74.8 56.8 38.7 29.6 20.4 15.6 14.0 12.6 12.0 11.6

20 193.5 155.4 117.4 79.3 60.1 40.9 31.0 27.7 24.9 23.7 23.0

30 293.8 235.8 177.7 119.6 90.4 61.1 46.3 41.2 37.1 35.3 34.3

40 394.1 316.1 238.0 159.8 120.7 81.3 61.4 54.7 49.2 46.8 45.5

50 494.3 396.3 298.2 200.1 150.9 101.5 76.6 68.1 61.3 58.3 56.7

60 594.5 476.4 358.4 240.2 181.0 121.6 91.7 81.6 73.4 69.8 67.9

70 694.6 556.6 418.5 280.3 211.1 141.7 106.8 95.0 85.5 81.3 79.0

80 794.8 636.7 478.6 320.4 241.2 161.8 121.9 108.4 97.5 92.8 90.2

90 894.9 716.8 538.7 360.5 271.4 181.9 136.9 121.8 109.6 104.3 101.3

100 994.9 796.9 598.8 400.6 301.4 202.0 152.0 135.2 121.6 115.8 112.5

144



Bibliography

[1] L. Ausubel and P. Milgrom. Ascending auctions with package bidding. Frontiers
of Theoretical Economics, 1, 2002.

[2] L. Ausubel and P. Milgrom. The lovely but lonely Vickrey auction. In P. Cram-
ton, Y. Shoham, and R. Steinberg, editors, Combinatorial Auctions. MIT Press,
2006.
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De efficinte verdeling van goederen over economische agenten is een van de cen-
trale thema’s in de economische theorie. Een van de meest gebruikte manieren om
goederen te verdelen is het markt mechanisme. En een van de bekendste vormen
van een markt mechanisme is het veiling mechanisme. Traditiegetrouw worden met
name verzamelobjecten, kunstvoorwerpen, en antiek via veilingen verkocht. Maar
gedurende de laatste jaren zijn zowel de variteit in goederen alsmede het totale vol-
ume sterk toegenomen als gevolg van de toepassing van moderne communicatie en
informatie systemen om veilingen te organiseren. En door de toegenomen popular-
iteit van veilingen wordt er momenteel in de economische wetenschap druk gezocht
naar nieuwe en adequate ontwerpen voor veilingen.

Er zijn verschillende manieren om te vergelijken hoe adequaat verschillende on-
twerpen voor een veiling nu eigenlijk zijn. Pareto efficintie van de resulterende
allocatie is een van de criteria om die vergelijking te maken. Dit criterium is zeker
van belang als een publiek goed wordt uitbesteed aan de private sector. Veel onder-
zoek heeft zich gericht op het ontwerp van veilingen die, ook als bieders uitsluitend
op basis van eigenbelang handelen, toch een efficinte allocatie garanderen. Het
merendeel van dit onderzoek heeft zich onder invloed van het zogeheten Revela-
tion Principle vooral gericht op zogeheten direct revelation mechanisms. Algemeen
wordt aangenomen dat in de private value setting het allocatie probleem is opgelost,
omdat in het VCG mechanisme–een speciaal type direct revelation mechanism–
waarheidsgetrouw rapporteren een zwak dominante strategie is en het evenwicht
dientengevolge resulteert in een efficinte allocatie.

Echter, in het VCG mechanisme eist de implementatie van de evenwichtsstrate-
gie dat bieders hun preferenties volledig en exact rapporteren. En er zijn verschil-
lende redenen waarom bieders niet altijd bereid zijn dit ook inderdaad te doen.
Ten eerste kunnen bieders besluiten niet alle informatie omtrent hun preferenties
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te rapporteren, om op die manier hun concurrentiepositie op de markt te kunnen
handhaven. Ten tweede kan een exacte bepaling van preferenties veel rekencapaciteit
vergen. Tenslotte kan een volledige rapportage van preferenties een onacceptabele
hoeveelheid communicatie met zich mee brengen.

Erkenning dat volledige rapportage van preferenties niet altijd gewenst is heeft
geleid tot een hernieuwde belanstelling voor veilingen waar bieders niet noodzakeli-
jkerwijze verplicht worden al hun informatie prijs te geven. De uitdaging, die ook in
dit proefschrift wordt aangegaan, is dus om veilingen te ontwerpen die een efficinte,
of zo efficint mogelijke, allocatie bewerkstelligen–bij voorkeur via een evenwicht in
zwak dominante strategien–zonder bieders te verplichten volledige en exacte infor-
matie omtrent preferenties te geven.

In dit proefschrift wordt dus onderzocht hoe de vraag naar informatie beperkt
kan worden zonder de efficintie van de allocatie aan te tasten. We beschrijven een
nieuw type iteratieve veiling, de bisectie veiling, en tonen aan dat, als de waarderin-
gen van de bieders voor het te veilen object geheeltallig zijn, de allocatie in deze
veiling inderdaad efficint is, terwijl de benodigde hoeveelheid informatie om deze
allocatie te bewerkstelligen veel lager is dan in alle reeds bekende efficinte veilin-
gen. Voor de setting met geheeltallige waarderingen ontwerpen we een iteratieve
implementatie van het VCG mechanisme die voor het bereiken van een efficinte al-
locatie slechts een minimale hoeveelheid informatie van de bieders vraagt. In de
setting waar waarderingen continue waarden kunnen aannemen laten we zien dat
een beperking van de gevraagde hoeveelheid informatie noodzakelijkerwijze inefficin-
ties in de allocatie met zich meebrengt. We berekenen in het bijzonder de minimale
hoeveelheid informatie die nodig is om een bepaald niveau van efficintie te bereiken.

Het eerste deel van het proefschrift behandelt de setting waar waarderingen
van bieders geheeltallig zijn. We beschrijven en analyseren de bisectie veiling. In
Hoofdstuk 2 tonen we aan dat deze veiling strategisch equivalent is met de Vickrey
veiling en de Engelse veiling. Dientengevolge is ook in deze veiling waarheidsgetrouw
rapporteren een zwak dominante strategie, en is de allocatie efficint in het evenwicht.

Hoewel de bisectie veiling strategisch equivalent is met de Vickrey veiling en de
Engelse veiling, heeft de bisectie veiling minder informatie en communicatie nodig
om de allocatie te bepalen dan de andere twee veilingen. Dit wordt aangetoond
in Hoofdstuk 3, waar wordt berekend wat voor elk van deze drie veilingen precies
de gemiddelde hoeveelheid informatie is die in het evenwicht gerapporteerd moet
worden. In Hoofdstuk 4 vergelijken we hoeveel communicatie een efficinte veil-
ing minimaal nodig heeft om een allocatie te bepalen. Om deze vergelijkingen te
maken hanteren we een nieuw criterium voor de performance van een algoritme.
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Dit criterium is gebaseerd op het begrip stochastische dominantie. We laten zien
dat volgens dit criterium, in de setting met 2 spelers, de bisectie veiling minder
communicatie nodig heeft dan willekeurig welke andere efficinte veiling.

Gegeven de bovengenoemde voordelen van de bisectie veiling ligt het voor de
hand om te kijken hoe goed deze veiling in de praktijk werkt. Daarom is de per-
formance van de bisectie veiling ook in een laboratorium experiment getest. In het
experiment vergelijken we het biedgedrag van de bieders, alsmede de efficintie van
de resulterende allocatie, voor zowel de bisectie veiling als voor de Vickrey en de
Engelse veiling. We kijken in het bijzonder of bieders de dominante strategie volgen
en waarheidsgetrouw rapporteren. Verder bekijken we of het biedgedrag verandert
als bieders meer ervaring hebben met het bieden in deze veilingen. De data tonen
aan dat de bisectie veiling betere resultaten geeft dan de Vickrey veiling. De En-
gelse veiling is alleen volgens enkele specifieke criteria beter dan de bisectie veiling.
Hoofdstuk 5 beschrijft het experiment en presenteert de resultaten die we in dit
experiment vonden.

In het tweede deel van dit proefschrift bestuderen we de performance van zoge-
heten query veilingen in een setting waar waarderingen van bieders een continuum
van waarden aan kunnen nemen. In Hoofdstuk 6 laten we zien dat query veilin-
gen weliswaar een bescheiden hoeveelheid informatie voor allocatie vergen, maar
praktisch gesproken nooit efficint kunnen zijn. We bewijzen dat volledige efficintie
alleen kan worden bereikt als we accepteren dat de looptijd van de veiling oneindig
is voor bijna alle realisaties van de waarderingen. Dit roept de vraag op wat de
prijs is in termen van looptijd van de veiling om een bepaald niveau van efficintie
te kunnen garanderen. De laatste twee hoofdstukken van dit proefschrift geven een
antwoord op deze vraag. In Hoofdstuk 7 introduceren we een algemene klasse van
query veilingen, gegeneraliseerde bisectie veilingen genaamd. Binnen deze klasse
tonen we de existentie van een specifiek type ex post evenwichten-zogeheten bluf
evenwichten–aan, en laten zien dat deze evenwichten onvermijdelijk inefficint zijn.
In Hoofdstuk 8 gaan we voor een speciaal type gegeneraliseerde bisectie veilingen, de
c-bisectie veilingen, nader in op de trade-off tussen looptijd en efficintie in het bluf
evenwicht. We tonen aan dat door een juiste keuze van de parameter c de inefficintie
in het bluf evenwicht willekeurig klein kan worden gemaakt, terwijl de looptijd van
de veiling eindig is voor alle realisaties van de waarderingen van de bieders.
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