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This article provides a new approach to the set of (perfect) equilibria. With the help of
an equivalence relation on the strategy space of each player, Nash sets and Selten sets
are introduced. The number of these sets is finite and each of these sets is 4 polytope,
As a consequence the set of (perfect) equilibria is a finite union of polytopes. © 1994
John Wiley & Sons. Inc.

1. INTRODUCTION

The structure of the set of equilibria of a bimatrix game has been described in several
papers such as Winkels [6], Jansen [1] and Jansen and Jurg [3]. All these authors showed
that the set of equilibria of a bimatrix game is the finite union of polytopes. In [2], one
of the authors, by defining an equivalence relation on the strategy space of each player,
partitioned these strategy spaces in a finite number of equivalence classes. The closure
of each of these classes appeared to be a polytope. By considering the so-called e-proper
pairs within these classes, Jansen [2] proved that the set of proper equilibria of a bimatrix
game is also a finite union of polytopes.

In this article the same approach is used to (re)consider the structure of the set of
(perfect) equilibria of a bimatrix game. Again we obtain a finite number of equivalence
classes in the strategy space of each player. The equivalence relation in question is
defined by the identification of strategies to which the other player has the same (pure)
best replies. Within the closure of the product of two such equivalence classes (one for
each player), we first consider the set of equilibria. We call such a set a Nash set and
show that all equilibria are contained in some Nash set and that such a setis a polytope.,

Next, within the product of two such equivalence classes we consider for a fixed € =
0 the set of e-perfect equilibria. It turns out that the closure of such a set, if nonempty,
is a product of polytopes. The intersection over all € > 0 of these closures will turn out
to be a product of polytopes as well. Furthermore it is proved that the union of all the
polytopes of the latter kind, called Selten sets, is identical to the set of perfect equilibria,
Finally we investigate how Nash (Selten) sets intersect and how Nash sets and Selten
sets are related.

NOTATION: N:= {1, 2, .. .}is the set of positive integers. R’ is the vector space
of ¢ tuples of real numbers and A, := {p ER'p = O, 2.0 pio= 1}. The unit vectors in
R"are denoted by e, €5, . .., ¢ and forx € R, ¥l : = max,. ;> Jx}|. Foraset € C
R"we denote the closure of C by cl(C). For a convex set ¢ C R’ we denote the relative
interior of C by relint(C). Note that ¢ € Cis an element of relint(C') if and only if for
all ¢ € C there exists an € > 1 such that (1 — €)c + e & .
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2. PRELIMINARIES

Let A := [a;] and B : = [b;] be two real m X n matrices. The m X n bimatrix game
(A, B) is defined as the two-person normal form game where player 1 and 2 choose,
independent of each other, a strategy p € A, and g € A, respectively. Here p; (g;) can
be seen as the probability that player one (two) chooses his ith row (jth column). The

(expected) payoffs are defined by
m n
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for player 2. Strategies in &, := {p € A,|p > 0} and &, : = {g € A |g > 0} are called
completely mixed.

An equilibrium of the game (A, B) is a strategy pair (p, q) € A,, X A, such that pAq
= p'Aq for all p’ € A,, and pBq = pBq' for all ¢' € A,. So an equilibrium is a strategy
combination with the property that no player can gain by unilaterally deviating from it.
The set of all equilibria of the game (A, B) is denoted by E(A, B). By a theorem of
Nash [4], this set is nonempty for all bimatrix games. For a strategy p € A,,, we call
C(p) := {ilp; > 0} the carrier of p and PBy(p) := {j|pBe; = pBe, for all I} the set of
pure best replies of player 2 to p. For a strategy ¢ € A, the sets C(g) and PB\(g) are
defined in a similar way. The following result is well known.

|

LEMMA 1. A strategy pair (p, g) is an equilibrium of a bimatrix game (A, B) if
and only if

C(p) C PB|(q) and C(q) C PBy(p).

Unfortunately not all equilibria of a bimatrix game are stable against small perturbations
in the data of the game. In order to overcome this problem several refinements of the
equilibrium concept have been formulated in the literature. For example, by requiring
stability against some mistakes the players can make in choosing their strategies, Selten
[5] defined perfect equilibria. Formally the definition is as follows.

DEFINITION 1: Let (A, B) be an m X n bimatrix game and let € > 0. A pair (p,
q) € A, X A, is called e-perfect if p and g are completely mixed and if for all { € {1,
..,mrandalljE{l,...,n}

ifi & PB)(q), thenp;

IA

€,
and
it j & PBy(p), then ¢; < e.

An equilibrium (p, ¢) of (A, B) is called perfect if there exists a sequence (&)ey in (0,
®) converging to zero and a sequence ((p*, ¢¥))ien in A,, X A, converging to (p, q)
with, for every k € N, (p#, ¢*) is an e,-perfect pair.
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The set of perfect equilibria of the game (A, B), which is nonempty as proved by
Selten, is denoted by PE(A, B).

3. AN EQUIVALENCE RELATION

In this section we introduce for each player an equivalence relation on his strategy
space. The closure of each equivalence class appears to be a polytope and the intersection
of such polytopes is empty or a face of both polytopes.

DEFINITION 2: For a bimatrix game two strategies p and j are called best-reply
equivalent, denoted as p ~gg p, if PBy(p) = PB,(p). In a similar way an equivalence
relation can be defined for the strategies of player 2.

Since for an m X n bimatrix game, PB,(p) is a subset of {1, . . . , m} for all p € A,
corresponding to the equivalence relation ~pg there can be only a finite number of
equivalence classes, say 7], . .., Py, in A,. Similarly, A, is the finite union of the
equivalence classes, say %, . . . , Wy. Foreachs € {1,2, ..., M} and each t € {1, 2,
..., N} we choose representants p* in %; and ¢' € %,. Since PB(q) and PBy(p) are
given by linear inequalities, is it straightforward to prove that the closure of each equiv-
alence class is a polytope. In order to show that the intersection of two of such polytopes,
if nonempty, is a face of both polytopes, we need the following lemma.

LEMMA 2: Let G be a face of the polytope cl(¥;). Then all the elements of relint(G)
are best-reply equivalent.

PROOF: Take p(0), p(1) € relint(G). Let j, & PB,(p(0)) and suppose that j, €
PB,(p(1)). For € > 1 we introduce p(e) : = (1 — €)p(0) + ep(1). Since p(1) is an element
of the relative interior of G, there is an € > 1 such that p(e) € G and

p(e)Be, = (1 — €)p(0)Be;, + ep(1)Be;, > (1 — €)p(0)Be;, + ep(1)Be;, = p(€)Be,,

for some j, € PBy(p*) C PB,y(p(0)). Therefore j, & PB,(p(e)), contradicting the fact
that PBy(p(e)) D PBy(p'). So jo & PBy(p(1)). Hence PBy(p(1)) C PBy(p(U)). By
interchanging the roles of p(0) and p(1) it follows that p(0) ~ggr p(1). ]

LEMMA 3: If the intersection of the closure of two equivalence classes is nonempty,
then this intersection is a face of both polytopes.

PROOF: We give a proof for the strategy space of player 1. Suppose that F :=
(%) N cl(#y) # ¢ for s # s'. Let G be the smallest face of cl(¥;’) containing F. Note
that for this face G, G N relint(F) is nonempty. The proof is complete if we can show
that G C cl(77;). So let p(0) € relint(G) and consider p(e) := ep® + (1 ~ €)p(0) for
0 < € < 1. We will show that p(e) ~pg p* for all 0 < e < 1.

1. Let j, € PBy(p*). Then for an element p(1) € F N relint(G) we have j, € PB,(p(1)), and
Lemma 2 implies that j, & PBo{p(0)). So, forall 0 < e < 1,

p(e)Be;, = ep'Be, + (1 — e)p(0)Be;, = ep*Be; + (1 — €)p(0)Be; = p(e)Be;,
for all . Consequently, j, € PBy(p(e)), for all 0 < e < 1.
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2. Lletj, & PBy(p*). Take j; € PBy(p*). As in part (1) one can show that j; € PBy(p(0)). This
implies that p(e) Be,, < p(€)Be;,. for all0 < e < 1. So jy & PBy(p(e)).

3. From (1) and (2) of this proof we may conclude that p(e) € 7; for all 0 < € < 1. Hence p(0)
= lim..y p(€) is an element of cl(#;). So relint(G) C cl(¥;) and obviously G C cl(¥}).

4. ON THE SET OF EQUILIBRIA

In this section we consider the set of equilibria contained in the closure of the product
of two of the equivalence classes (one for each player) as introduced in the foregoing

section.
Forse{l,2,...,M}landt€{1,2,..., N}, the set

o= p, q) € W) X clW)|p; =0, ifi & PB(q)
and ¢; =0 if | & PBy(p")},

if nonempty, is called a Nash set. Obviously a Nash set is a polytope and each equilibrium
is contained in some Nash set. Further, if (p, ¢) is an element of some Nash set. A4,
then p; = 0if i & PB\(q) D PBi(q") and q; = 0if j & PB,(p) D PBy(p*). In view of
Lemma 1 this implies that (p, ¢) is an equilibrium. So we have the following theorem.

THEOREM 1: The set of equilibria of a bimatrix game is the finite union of poly-
topes.

In the following example it appears that a Nash subset may be included in another
Nash set.

EXAMPLE 1: Let (A, B) be the 2 X 3-bimatrix game defined by

_ @2 1,0 (0,0
(4, B) = [(z, 2) (0,0) (1,0)}'

Let V= {p € M|PBy(p) = {1}} = A,,
Wy = {q € M|PBi(g) = {1, 2}} = {g € Adlg, = g3},
and
Wy i=1{q € M|PBi(q) = {21} = {q € Ajlg, < g3},
Then we have the Nash sets
Ny i=A{(p, q) €AV) x dW)gy = g5 = 0} = A, X {ei}
and
Ny i={(p, q) € ) x AW py =0 and g, = g5 = 0} = {(e, e))}-

A Nash subset not properly contained in another Nash set is called a maximal Nash set.
Since the number of Nash sets is finite, each Nash set is contained in a maximal one.
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Note that a Nash set f;, is the Cartesian product of the two polytopes

N ={pEd)|p =0, if i & PB(qg)}
and
AL = {g€cdW)g; =0, if j & PByp"}

Since A"}, is a face of cl(¥;) and A2, is a face of cl(#,), Lemma 3 implies the follow-
ing.

LEMMA 4: The intersection of two (maximal) Nash sets is empty or a face of both
Nash sets.

More particularly, we have the following.

COROLLARY 1: If A/ = 4] X A, is a Nash set contained in the (maximal) Nash
set.# = M, X M, then #;is a face of A&, fori = 1, 2.

5. ON THE SET OF PERFECT EQUILIBRIA

In this section the equivalence relations introduced in Section 3 again play an important
role. We show that when we take the intersection over all € > 0 of the closure of
the collections of e-perfect pairs which are contained in a particular product of two
equivalence classes (one for each player), we get a subset of PE(A, B). Such a subset
turns out to be the product of two polytopes and the union over all these subsets is
PE(A, B).

Because completely mixed strategies are crucial in the definition of perfect equilibria,
we need a small adjustment of the equivalence classes introduced before: for s € {1,
..., M}yand t € {1, ..., N}, 7} is the set of completely mixed strategies in %;
and 77 is the set of completely mixed strategies in #/. Note that some of these sets
might be empty. However, if %' ¥ is nonempty, then cl(#?°f) = cl(¥;) and cl(#}) is a
polytope. Naturally, the same result holds for cl(/) if # ) is nonempty.

Forse{l,...,M},t€{1,..., N}, and € > () we introduce the set

L€ i={(p,q) €EVIXWilp=e if i ¢ PBi(q)andq;=eifj & PByp)}
of e-perfect pairs in %, X #,. Note that cl(.£ (e€)) is a polytope for each € > 0. Finally,

Ses = N (A (€)),
e>()

if nonempty, is called a Selten set. .
After these preparations we prove that the set of perfect equilibria is the union of the

Selten sets.

THEOREM 2: Let (A, B) be an m X n bimatrix game. An equilibrium (p, ¢q) is
perfect if and only if there is a pair (s, ¢) such that (p, g) € .
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PROOF: (1) Let (p, ¢) be a perfect equilibrium. Then we can find a decreasing
sequence (€ )ey in (0, ) converging to zero and a sequence ((p*, g*))ren in A,, X A,
converging to (p, q) such that (p*, ¢¥) is g-perfect for every k € N. For every k € N

there is a pair (s(k), #(k)) such that (p*, ¢¥) € Auy(&). Because {1, . .., M} x {1,
..., N}is a finite collection, we may assume that for some s and ¢, s = s(k) and t =
t(k), for every k € N. Because €, €, . . . is a decreasing sequence, ./ (&) D/ (&) D

-+ -, This implies in particular that .7 (¢,) contains, for all k, a tail of the sequence (p',
q"), (p% ¢%), . . . and therefore

(p, q) € c(S(€)), for every k € N.

Now we can conclude that
(. 9) € N dllAided) = A

() If (p, q) € 4, for some pair (s, t), then (p, q) € cl(S (1/k)) for ail k£ € N. This
means that we can find a sequence (§)ien converging to zero and for all k a pair (p,
g*) such that (p¥, ¢¥) € £ ,(1/k) and |(p% ¢*) — (p, Pll= < & But (p*, ¢*) € A4 ,(1/
k) means that ( p*, g*) is a 1/k-perfect pair. Since the sequence ((p*, ¢*))rex converges
to (p, q) as k — =, (p, q) is a perfect equilibrium. [ ]

In order to show that a Selten set is a polytope, for € = 0 we introduce the sets

PI(E) = m {P € Amlpi = E},

ie PBgh
and

Qx(f) = m {q € Anlqj = E}'

Jeruah
Note that these sets are polytopes. Furthermore, for € > 0,
Sl€) = (VN PLe) x W N Qyle)).
LEMMA 5: If for some pair (s, ), /, is nonempty, then for e > 0
(A AL€) = ((7F) N Ple)) x (c#F) N Qyle)).
PROOF: Let € > 0. In view of the observation preceding this lemma,
cl(A(€) = 7§ 0 Pe)) x clW' ! N Oy(e)).

Next we prove that cl(?'f N P(e)) = cl(¥7¥) N P(e). It is obyious that cI(?"F N P(e))
Ccl@¥) N P(e). In order to prove the other inclusion, we take a p(1) € cl(?'}) N
P(€). Because ./, # ¢, we can find a point p(0) € %"} N P(€). Now for A € [0, 1], we
introduce p(A) := Ap(1) + (1 — A)p(0). Then p()) is a completely mixed element of
P(e), for all A € [0, 1). Furthermore it is easy to check that for every A € [0, 1), p(A)
~gr P*- So, for such A, p(A) € 7'} N P(e). Because lim,_,, p(A) = p(1), we find that
p() €7} N PJe). |

———
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By the description in the foregoing lemma, a Selten set ./, can be written as

B

Ha = ﬂu (l(A£(e) = ﬂo (cl(7'}) N Pfe)) X ﬂos(cl(’W 1) N Oy(e)

(01(7/3") N ﬂo Pz(f)) X (CI(W?‘ )0 ﬂo Qs(E))

]

(cl(73) N PLO)) x () N Q(0)). 1)

Since the four sets occurring in this last expression are polytopes, /4 , is the product of
two polytopes, and therefore is a polytope itself. In combination with Theorem 2 we
find the following.

THEOREM 3: For a bimatrix game the set of perfect equilibria is the union of a
finite number of polytopes.

Furthermore, the description given in (1) implies that a Selten set is also a Nash set.
Hence a Selten set /= /|, X /5 is contained in a (unique) maximal Nash set, say A" =
N X A3, and Corollary 1 implies that./ is a face of A; fori = 1, 2.

The bimatrix game introduced in Example 1 has two Selten sets. For this game and
an € > 0 all e-perfect pairs are contained in

S ={(p.q) EV* x Wilg<e and q; = ¢

b, x{geblp=9=<¢

or

i

Ae) ={(p,q) EV* X W3lga= e, ¢q3=< ¢ and p, = ¢}

{pebdp=é x{ge g < gs=¢.

I

This leads to the Selten sets

Si= ﬂu cl(A(e) = & x {e)}

and

Sy

{(ea2, e)}.

i

N dl(A(9)

Observing that the second Selten set is properly contained in the first one, we introduce
maximal Selten sets in a similar way as we did for Nash sets.
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