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Abstract

We propose a general nonparametric approach for testing hypotheses about the spectral density matrix
of multivariate stationary time series based on estimating the integrated deviation from the null hypothesis.
This approach covers many important examples from interrelation analysis such as tests for noncorrelation
or partial noncorrelation. Based on a central limit theorem for integrated quadratic functionals of the spectral
matrix, we derive asymptotic normality of a suitably standardized version of the test statistic under the null
hypothesis and under fixed as well as under sequences of local alternatives. The results are extended to cover
also parametric and semiparametric hypotheses about spectral density matrices, which includes as examples
goodness-of-fit tests and tests for separability.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many important hypotheses about the second-order properties of a multivariate stationary time
series can be expressed in terms of the spectral density matrix. For instance, two vector processes
are uncorrelated if all cross-spectral densities or, equivalently, all spectral coherences between the
two processes vanish at all frequencies. More general hypotheses about the interrelation structure
in multivariate time series can be formulated in terms of partial coherences; such hypotheses arise,
for example, in graphical interaction modelling based on partial correlation graphs [14,13].
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The formulation of hypotheses in the frequency domain enjoys the advantage of a general
nonparametric framework based on, for example, kernel spectral estimators or the integrated
periodogram. The use of the integrated periodogram for testing the goodness-of-fit of a time
series model has been described in many papers (e.g., [3,1,7,34]). The type of hypotheses that
can be tested with the integrated periodogram, however, is limited, and a more flexible approach
is offered by considering estimates for the spectral density. Taniguchi and Kondo [61], Taniguchi
et al. [62], and Taniguchi and Kakizawa [60] considered test problems of the form

H0 :
∫
�

K
(
f (�)

)
d� = c against Ha :

∫
�

K
(
f (�)

)
d� �= c,

where f (�) is the spectral density matrix, K(·) is an appropriate function, � = [−�, �], and c
is some constant. Although this setting covers a variety of test problems, their results require a
nonvanishing first derivative of the function K(·) under the null hypothesis and thus cannot be
applied to many interesting hypotheses.

As a motivating example, we consider the problem of testing for partial non-correlation among
the components of a multivariate time series. This problem arises, for instance, in the context
of so-called partial correlation graphs [13], which generalize the concept of covariance selection
models and concentration graphs [16,8] to the multivariate time series case and have become a
popular approach for describing the interactions among the components of a multivariate station-
ary process (e.g., [63,30,26,29,58]). 1 More precisely, let {XV (t)} be a multivariate time series
with components {Xv(t)}, v ∈ V . Then the partial correlation graph of {XV (t)} is defined as the
graph G with vertices v ∈ V and edges a–b for distinct a, b ∈ V such that a–b is absent in the
graph if and only if the corresponding series {Xa(t)} and {Xb(t)} are uncorrelated after removing
the linear effects of the remaining components {XV \{a,b}(t)}. In the frequency domain, this is
equivalent to that the partial cross spectrum:

fab|Vab
(�) = fab(�) − faVab

(�)fVabVab
(�)−1fVabb(�)

or, after rescaling, the partial spectral coherency

Rab|Vab
(�) = fab|Vab

(�)√
faa|Vab

(�)fbb|Vab
(�)

are zero for all frequencies � ∈ �, where we have set Vab = V \{a, b} for ease of notation. One
straightforward approach for testing for the absence of an edge a–b in the partial correlation graph
G is to use the integrated sample partial spectral coherence∫

�
|R̂ab|Vab

(�)|2 d� =
∫
�

R̂ab|Vab
(�) R̂ba|Vab

(�) d�

as a test statistic. However, despite its intuitiveness, such a test has not yet been considered in the
literature. In particular, we note that although the test problem resembles the type of problems
discussed by Taniguchi et al. [62] with K

(
f (�)

) = |Rab|Vab
(�)|2 and c = 0, their results are

not applicable since the first derivative of K vanishes under the null hypothesis and thus leads

1 There are other approaches for graphical modelling of multivariate time series, which are more suitable for describing
dynamic dependences and causal relationships, see, e.g., Reale and Tunnicliffe Wilson [54], Moneta and Spirtes [48],
Eichler [22,25,23,21].
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to a zero variance of the asymptotic distribution. An alternative approach for testing for partial
noncorrelation has been considered by Dahlhaus et al. [14] based on the maximum partial spectral
coherence; for this statistic, however, the exact asymptotic distribution is unknown and only a
heuristic approximation has been proposed and used.

In this paper, we consider more generally test problems of the form

H0 : �
(
f (�), �

) ≡ 0 against Ha : �
(
f (�), �

) �≡ 0,

where �(Z, �) is some suitable vector-valued function. Measuring the deviation from the null hy-
pothesis H0 at frequency � by the squared Euclidean norm

∥∥�(f (�), �
)∥∥2, the above test problem

equivalently—under some regularity conditions on f (�) and �(Z, �)—can be
expressed as

H0 :
∫
�

∥∥�(f (�), �
)∥∥2

d� = 0 against Ha :
∫
�

∥∥�(f (�), �
)∥∥2

d� �= 0.

For estimation of such nonlinear functionals, we replace the unknown spectral density matrix by
a nonparametric spectral estimator f̂ (�). We discuss the asymptotic properties of the resulting
test statistics under the null hypothesis as well as for fixed alternatives and sequences of local
alternatives. Since for nonlinear functionals the quality of estimation depends crucially on the bias
of the spectral estimator, we allow the use of data tapers to improve the small sample properties.

As an important generalization, we show that the results can be extended to parametric and
semiparametric hypotheses about the spectral density.Assuming that the unknown parameters can
be estimated

√
T -consistently, it can be shown that estimation of the parameter is asymptotically

negligible and does not affect the asymptotic behaviour of the test statistics. As examples, we
discuss goodness-of-fit tests and a test for separability of the covariance structure of a time series.

The paper is organized as follows. Section 2 contains some basic definitions. In Section 3, we
derive asymptotic normality for a suitably standardized version of the test statistic. In particular,
we discuss hypotheses about partial spectral densities and show their relation to similar hypotheses
about spectral densities. In Section 4, these results are extended to parametric and semiparametric
hypotheses about the spectral density matrix and general discrepancies to measure the deviation
from the null hypothesis. For the investigation of the power of the proposed tests, we derive in
Section 5 the limiting distribution of the test statistic under sequences of nonparametric local
alternatives. In Section 6, we present the results of a Monte Carlo study, and Section 7 concludes.
In the Appendix, we provide a central limit theorem for integrated weighted squared errors, which
is central to all asymptotic results in this paper.

2. The test statistic

Let {X(t), t ∈ Z}, X(t) = (
X1(t), . . . , Xd(t)

)′ be a stationary multivariate time series with
mean zero and continuous spectral density matrix f (�) = (

fab(�)
)
a,b=1,...,d

. The test problems
studied in this paper are of the form

H0 : �
(
f (�), �

) ≡ 0 against Ha : �
(
f (�), �

) �≡ 0,

where �(Z, �) = (
�1(Z, �), . . . ,�r (Z, �)

)′ is some vector-valued piecewise continuous func-
tion. The deviation from the null hypothesis at frequency � can be measured by ‖�(f (�), �

)‖2,
where ‖·‖ denotes the Euclidean norm. Since the spectral matrix f (�) is assumed to be continuous,
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the above null hypothesis is equivalent to∫
�

∥∥�(f (�), �
)∥∥2

d� = 0.

Substituting a nonparametric estimator f̂ (�) for the spectral density matrix f (�), we obtain the
statistic

ST (�) =
∫
�

∥∥�(f̂ (�), �
)∥∥2

d�,

which then can be used to test nonparametrically for H0.
The nonparametric estimation of the spectral density matrix f (�) is usually based on the

periodogram matrix I (T )(�). In order to reduce the bias of the spectral estimator, we use a tapered
version of the periodogram given by

I (T )(�) = (
2�H

(T )
2 (0)

)−1
d(T )(�) d(T )(−�)′,

where

d(T )(�) =
T∑

t=1

h(T )(t) X(t) exp(−i�t)

is the finite Fourier transform of the time series with real-valued data taper h(T )(t) and

H
(T )
k (�) =

T∑
t=1

h(T )(t)k exp(−i�t)

for k ∈ N are the Fourier transforms of the data taper. We assume that the data taper is given by
h(T )(t) = h(t/T ), where h : R → R is a bounded function of bounded variation that vanishes
outside the interval [0, 1]. Although the choice of taper function h does not affect the asymptotic
results presented in this paper, it should be smooth with h(0) = h(1) = 0 in order to improve
the small sample properties of the estimates (e.g., [12]). The effect of tapering when testing for
noncorrelation of two univariate time series has been studied in Eichler [24].

Consistent estimators for the spectral density matrix f (�) can be obtained by smoothing of the
periodogram matrix, which leads to kernel estimates of the form

f̂ (�) =
∫
�

w(T )(� − �) I (T )(�) d�, (1)

where the smoothing kernel is given by the 2�-periodic extension of w(T )(�) = w(�/BT )/BT ,
� ∈ �, for some real-valued kernel function w and bandwidth BT . In the sequel, we will implicitly
consider 2�-periodic extensions of all functions defined on �.

3. Asymptotic properties

In this section, we derive the limiting distribution of the test statistic ST (�) under the null hy-
pothesis H0. Following the approach by Brillinger [5], we impose the following mixing conditions
on the process (cf. [5, Assumption 2.6.2]).
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Assumption 3.1. {X(t)} is a zero mean d vector-valued stationary stochastic process defined on
a probability space (�,F, P). Furthermore, for any k > 0, the kth order cumulants of {X(t)}
satisfy the mixing conditions∑

u1,...,uk−1∈Z

(
1 + |uj |2

)|ca1,...,ak
(u1, . . . , uk−1)| < ∞

for all j = 1, . . . , k − 1 and a1, . . . , ak = 1, . . . , d, where ca1,...,ak
(u1, . . . , uk−1) is the joint

cumulant of Xa1(u1), . . . , Xak−1(uk−1), Xak
(0).

The assumption, which requires the existence of the moments of all orders, is satisfied, for
instance, for ARMA processes of finite order provided that the innovation process has moments
of all orders. Unlike alternative approaches for deriving asymptotic distributions for frequency
domain statistics (e.g., [41,60,15]), which usually get by with moments of fourth or eighth order,
our approach is not restricted to linear processes. For later use, we also note that the condition
on the second-order cumulants implies that the spectral density matrix exists and its entries have
bounded and uniformly continuous second derivatives.

In the next assumption and throughout the paper, we make extensive use of matrix notation. As
usual, for matrices A and B, vec(A) denotes the vector resulting from stacking the columns of the
matrix A on top of each other and A⊗B denotes the Kronecker product of A and B. Furthermore,
we write A∗ for the conjugate transpose of a complex-valued matrix A. Finally, ‖A‖ = tr(A∗A)1/2

denotes the Euclidean norm of A.

Assumption 3.2. Let � : D × � → Cr , where D is an open subset of Cd×d that contains the
spectral density matrices f (�), � ∈ �, of the process {X(t)}.

(i) �(Z, �) is holomorphic with respect to Z.
(ii) �(Z, �) and its first derivative with respect to z = vec(Z),

Dz�
(
Z, �

) = ��(Z, �)

�z′

are piecewise Lipschitz continuous in � ∈ �.
(iii) There exists a positive constant � such that for all � ∈ � the ball B�,� = {Z ∈ Cd×d | ‖f (�)−

Z‖��} is contained in D and

sup
�∈�

sup
Z∈B�,�

∥∥�(Z, �)
∥∥ < ∞.

(iv)
∫
�

∥∥Dz�
(
f (�), �

)∥∥ d� > 0.

The condition ensures that the function � is sufficiently smooth in both its arguments and is defined
in the neighbourhood of every value that the spectral density matrix f (�) of the process {X(t)}
takes. Since usually the domain D comprises the set of all positive-definite Hermitian matrices,
a sufficient condition on f (�) is that the eigenvalues of f (�) are bounded and bounded away
from zero uniformly for all � ∈ �. We note that in special cases D may also include nonnegative
Hermitian matrices. Condition (iv) guarantees that the derived limit distribution of the test statistic
ST (�) will have nonzero variance.
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Assumption 3.3. Let f̂ (�) be the kernel spectral estimator in (1).

(i) The taper function h : R → R is bounded, is of bounded variation, and vanishes outside the
interval [0, 1].

(ii) The kernel function w(�) is bounded, symmetric, nonnegative, and Lipschitz continuous
with∫

R
w(�) d� = 1,

∫
R

�2 w(�) d� < ∞, and lim sup
�→∞

�2 w(�) = 0.

Furthermore, w(�) has continuous Fourier transform W(u) such that

Cw,2 =
∫

R
W(u)2 du < ∞ and Cw,4 =

∫
R

W(u)4 du < ∞.

(iii) Let (BT )T ∈N be a sequence of kernel bandwidths such that B
9/2
T T → 0 and B2

T T → ∞
as T → ∞.

The assumptions on the taper function are standard (e.g., [5, Assumption 4.3.1]) and include
in particular the nontapered case h(x) = 1(0,1](x). In contrast, the conditions on the kernel
function are more restrictive and exclude some commonly used kernels such as the Daniell or
Bartlett window while allowing, for example, the quadratic spectral window or the Parzen window
(e.g., [53]). Similar assumptions can be found in Taniguchi and Kakizawa [60, Chapter 6.1]; our
additional condition Cw,4 < ∞ is due to the quadratic approximations required for the statistics
discussed in this paper. We also note that the simulations in Eichler [24] indicate that violation of
the continuity assumption on the kernel function indeed may lead to a serious bias of our test.

Finally, we note that the conditions on the rate by which the bandwidth BT tends to zero
are rather strict compared with those imposed by other authors (e.g., [40,51]). The conditions
are a consequence of the generality of our approach, which covers a large variety of nonlinear
hypotheses on the spectral matrix. The condition B

9/2
T T → 0, for instance, ensures that the

bias of the kernel spectral estimator f̂ (�) vanishes fast enough in order to not affect the asymp-
totics based on Taylor expansions about the true spectral density f (�). Our assumptions are
slightly weaker than those of Taniguchi and Kondo [61] and Taniguchi et al. [62] (see also [60,
Chapter 6.1], who required BT = O(T −�) with 1

4 < � < 1
2 .

For the formulation of the asymptotic results, we define the matrix-valued function �� : � →
Cd2×d2

with

��(�) = Dz�
(
f (�), �

)∗Dz�
(
f (�), �

)
(2)

for all � ∈ �, where �(Z, �) is a function satisfying Assumption 3.2. We note that for I =
i + (j − 1) d and K = k + (l − 1) d with i, j, k, l ∈ {1, . . . , d} the (I, K)th element of ��(�) is
given by

�ij,kl;�(�) =
(

��(Z, �)

�Zij

)∗ (��(Z, �)

�Zkl

)∣∣∣∣∣
Z=f (�)

.

Furthermore, we set �̃�(�) = Kdd ��(�) Kdd , where Kdd is the d2 × d2 commutation matrix
satisfying vec(A′) = Kdd vec(A) for any d × d matrix A (e.g., [46]). Thus the (I, K)th entry of
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the matrix �̃�(�) is given by

�̃ij,kl;�(�) = �ji,lk;�(�) =
(

��(Z, �)

�Zji

)∗ (��(Z, �)

�Zlk

)∣∣∣∣∣
Z=f (�)

(3)

for i, j, k, l = 1, . . . , d.
The derivation of the limiting distribution of ST (�) is based on the following result, which

shows that ST (�) can be approximated by the integrated weighted squared error with weight
function ��(�).

Lemma 3.4. Suppose that Assumptions 3.1–3.3 hold. Then under the null hypothesis H0

ST (�) =
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
��(�)

d� + oP

(
(B

1/2
T T )−1), (4)

where ‖x‖2
��(�)

= x∗��(�)x.

Proof. Since the function �(Z, �) is holomorphic in D, it has a Taylor expansion about Z0 = f (�)

in an open neighbourhood U ⊆ D. Let

�̂(�) = �
(
f̂ (�), �

)− Dz�(f (�), �
)

vec
(
f̂ (�) − f (�)

)
.

Using Cauchy’s estimate for the derivatives of � (e.g., [60, LemmaA.1.3]) andAssumption 3.2(ii),
we find constants C� and � such that

∥∥�̂(�)
∥∥�C�

∥∥f̂ (�) − f (�)
∥∥2

uniformly in �, whenever max�∈� ‖f̂ (�) − f (�)‖��. It follows that

∣∣∣ST (�) −
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
��(�)

d�
∣∣∣�C

∫
�

∥∥f̂ (�) − f (�)
∥∥3

d�,

whenever max�∈� ‖f̂ (�) − f (�)‖��. Under the assumptions, it follows by the convergence of
the cumulants of

√
BT T

(
f̂ (�) − f (�)

)
[5, Theorems 7.4.1–7.4.4] and the product theorem for

cumulants (e.g., [5, Theorem 2.3.2]) that, for k ∈ N,

E

[
k∏

r=1

(
f̂ir jr (�r ) − fir jr (�r )

)] = O
(
(BT T )−k/2)

uniformly in �1, . . . , �k and hence that

E‖f̂ (�) − f (�)‖2k = O
(
(BT T )−k

)
uniformly in �. Using Cauchy–Schwarz inequality and Fubini’s theorem, we finally obtain∫

�
‖f̂ (�) − f (�)‖k d� = OP

(
(BT T )−k/2) (5)
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for k ∈ N. Since furthermore max�∈� ‖f̂ (�) − f (�)‖ = oP (1) (e.g., [60, Eq. (6.1.17)]), there
exists for every � > 0 a constant 	� such that

P

(∣∣∣ST (�) −
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
��(�)

d�
∣∣∣�	� (BT T )−3/2

)

�P

(
C

∫
�

‖f̂ (�) − f (�)‖3d��	� (BT T )−3/2
)

+P

(
max
�∈�

‖f̂ (�) − f (�)‖ > �

)
< �.

Since B−1
T T −1/2 = o(1) this proves the lemma. �

In the Appendix, it is shown that the integral on the right-hand side in (4) is asymptotically
normally distributed with rate of convergence B

−1/2
T T . Thus we obtain the following central limit

theorem for ST (�).

Theorem 3.5. Suppose that Assumptions 3.1–3.3 hold. Then under the null hypothesis H0, we
have

B
1/2
T T ST (�) − B

−1/2
T 
(�)

D→ N (0, �2(�)),

where


(�) = Ch Cw,2

∫
�

tr
[
��(�)

(
f (�)′ ⊗ f (�)

)]
d� (6)

and

�2(�) = 2� C2
h Cw,4

∫
�

tr
[
��(�)

(
f (�)′ ⊗ f (�)

){
��(�) + �̃�(−�)

+��(−�)′ + �̃�(�)′
}(

f (�)′ ⊗ f (�)
)]

d�, (7)

where Ch = H4/H
2
2 with Hk = ∫ 1

0 h(t)k dt , and ��(�) and �̃�(�) are given by (2) and (3),
respectively.

Proof. The result follows from Lemma 3.4 and Theorem B.2. �

We note that the function ��(�) can also be written as

��(�) =
r∑

j=1

vec

(
��j (Z, �)

�Z

)
vec

(
��j (Z, �)

�Z

)′∣∣∣∣∣
Z=f (�)

.

This leads to alternative expressions for the bias 
(�) and variance �2(�), which we give only for
scalar-valued �(Z, �) as in this case the expressions become particularly simple. For notational

simplicity, we write ��
�Z

(
Z0, �

)
for ��(Z,�)

�Z

∣∣
Z=Z0

, where ��(Z,�)

�Z
=
(

��(Z,�)

�Zij

)
i,j=1,...,d

.
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Corollary 3.6. Suppose that the assumptions of Theorem 3.5 hold. Furthermore let � : D×� →
C. Then the bias 
(�) and the variance �2(�) in Theorem 3.5 are given by


(�) = Ch Cw,2

∫
�

tr

[
��

�Z′
(
f (�), �

)
f (�)

��

�Z

(
f (�), �

)
f (�)

]
d�

and

�2(�) = 2� C2
h Cw,4

∫
�

⎡
⎣
∣∣∣∣∣tr
{

��

�Z′
(
f (�), �

)
f (�)

��

�Z

(
f (�), �

)
f (�)

}∣∣∣∣∣
2

+
∣∣∣∣∣tr
{

��

�Z′
(
f (�), �

)
f (�)

��

�Z′
(
f (−�), −�

)
f (�)

}∣∣∣∣∣
2

+
∣∣∣∣tr
{

��

�Z′
(
f (�), �

)
f (�)

��

�Z

(
f (−�), −�

)
f (�)

}∣∣∣∣
2

+
∣∣∣∣tr
{

��

�Z′
(
f (�), �

)
f (�)

��

�Z′
(
f (�), �

)
f (�)

}∣∣∣∣
2
⎤
⎦ d�. (8)

Proof. The result follows directly from Corollary B.8. �

Remark 3.7. The norm
∥∥�(f (�), �

)∥∥2 measures the deviation of the spectral matrix f (�) from
the null hypothesis at frequency �. Since f (−�) = f (�)′, every hypothesis on f (�) corresponds
to an equivalent hypothesis on f (−�). Consequently, the function �(Z, �) often can be chosen
such that∥∥�(Z′, −�)

∥∥ = ∥∥�(Z, �)
∥∥.

By a Taylor expansion of �(Z, �) about Z0, this leads to the condition∥∥vec(Z − Z0)
∥∥2

�̃�(−�)
= ∥∥vec(Z − Z0)

∥∥2
��(�)

,

which implies that �̃�(�) = ��(−�). It follows that for such functions �(Z, �) the expression
for the asymptotic variance �2(�) in Theorem 3.5 can be simplified to

4� C2
h Cw,4

∫
�

tr
{
��(�)

(
f (�)′ ⊗ f (�)

)(
��(�) + �̃�(�)′

)(
f (�)′ ⊗ f (�)

)}
d�.

The expression for the variance in Corollary 3.6 adapts accordingly.
We note that the asymptotic distribution of the statistic ST (�) depends only on the second-order

spectrum. Thus the bias and the variance can be estimated easily by substituting the consistent
estimate f̂ (�) for f (�). Then Slutsky’s theorem yields that

QT = T ST (�) − B−1
T 
̂(�)

B
−1/2
T �̂(�)

is asymptotically standard normally distributed.
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Although the general expressions for the bias 
(�) and the variance �2(�) look compli-
cated, they often lead to simple expressions for some suitable choice of �(Z, �). We give two
examples.

Example 3.8 (Noncorrelation). The problem of testing whether two multivariate time series
{XA(t)} and {XB(t)} are independent has been considered recently by El Himdi and Roy [27],
Hallin and Saidi [35], Bouhaddioui and Roy [4], and Saidi [57] in the context of multivariate
ARMA processes. Using the general framework presented in this paper, we obtain a nonpara-
metric frequency domain based test for noncorrelation between two multivariate stationary time
series. For univariate time series, this test has been considered in Eichler [24].

Two time series {XA(t)} and {XB(t)} are uncorrelated if the spectral coherence RAB(�) =(
Rab(�)

)
a∈A,b∈B

with components

Rab(�) = fab(�)√
faa(�) fbb(�)

vanishes at all frequencies � ∈ �. Thus, if f (�) denotes the joint spectral density matrix of
the two vector processes, the null hypothesis of noncorrelation can be formulated in the form
H0 : �

(
f (�)

) ≡ 0 by setting

�
(
f (�)

) = vec
(
RAB(�)

)
.

Simple calculations show for ��(�)

�ij,kl;�(�) =

⎧⎪⎨
⎪⎩

�ik�j l

fii(�) fjj (�)
if i ∈ A, j ∈ B,

0 otherwise

and thus

tr
[
��(�)

(
f (�)′ ⊗ f (�)

)] =
d∑

i,j,k,l=1

�ij,kl;� fki(�) fjl(�) = nA nB,

where nA and nB are the number of indices in A and B, respectively. Similarly, recalling that
‖RAA(�)‖2 = trRAA(�)RAA(�)∗, we obtain

tr
[
��(�)

(
f (�)′ ⊗ f (�)

)
��(�)

(
f (�)′ ⊗ f (�)

)] = ‖RAA(�)‖2 ‖RBB(�)‖2,

while

tr
[
��(�)

(
f (�)′ ⊗ f (�)

)
�̃�(�)′

(
f (�)′ ⊗ f (�)

)] = ‖RAB(�)‖2 ‖RBA(�)‖2 = 0

under the null hypothesis of noncorrelation. Since ��(−�)′ = ��(�), the remaining two terms
in the expression for �2(�) lead to similar results and we thus we have


(�) = 2� Ch Cw,2 nA nB
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and

�2(�) = 4� C2
h Cw,4

∫
�

‖RAA(�)‖2 ‖RBB(�)‖2 d�.

In the special case of two univariate time series {Xa(t)} and {Xb(t)}, we have |Raa(�)| =
|Rbb(�)| = 1 and the asymptotic variance �2(�) also becomes independent of the spectral ma-
trix f (�) (cf. [24]). In this case, our test has a similar form as the test by Hong [40], which is
time-domain based and requires prewhitening of the two series.

In some applications, one is particularly interested whether two vector time series {XA(t)} and
{XB(t)} exhibit a relationship over a specific frequency interval. For instance, in the analysis of
electroencephalography (EEG) signals, one commonly differentiates various types of waves as-
sociated with different frequency bands such as alpha waves with frequency spectrum of 8–13 Hz.
In various studies, task-specific differences in the synchronization of brain regions between these
frequency bands have been detected by means of EEG coherence analysis (e.g., [66,49,59,67,65]).
In Eichler [24], the case of two univariate time series has been considered and illustrated by a
neurological application concerning the detection of tremor-related cortical activity. Here, the
frequency band of interest has been the range of typical tremor frequencies (1–8 Hz, see, e.g.,
[63,38]).

Since |Rab(�)|2 = |Rab(−�)|2, it is sufficient to consider intervals [�1, �2] ⊆ [0, �]. The
general test for noncorrelation can be adjusted to the restricted test problem by setting

�∗
(
f (�), �

) = vec
(
RAB(�)

)
1[�1,�2](�),

where 1A(�) denotes the indicator function of the set A. Similarly as above we obtain ��∗(�) =
��(�) 1[�1,�2](�), which after some further calculations yields 
(�∗) = Ch Cw,2 nA nB (�2 − �1)

and

�2(�∗) = 2� C2
h Cw,4

∫ �2

�1

‖RAA(�)‖2 ‖RBB(�)‖2 d�.

Setting �1 = 0 and �2 = � and noting that
∫
� ‖RAB(�)‖2 d� = 2

∫ �
0 ‖RAB(�)‖2 d�, we obtain

the above expressions for 
(�) and �2(�).

Example 3.9 (Equality of spectra). Suppose we are interested in testing whether the spectral
densities of two time series {Xa(t)} and {Xb(t)} are identical. For instance, the two time series
could be measurements of one variable in two experiments under different conditions. In that
case, the null hypothesis signifies that the variable is not affected by the change in conditions.

Let f (�) be the spectral density matrix of the two time series. Then the null hypothesis of equal
spectral densities can be formulated as

H0 : �
(
f (�)

) = faa(�)

fbb(�)
− 1 ≡ 0.

Noting that the first derivative of �(Z, �) is given by

��(Z)

�Z

∣∣∣∣
Z=f (�)

=
(

�ai�aj

fbb(�)
− faa(�) �bi�bj

fbb(�)2

)
i,j=1,...,d

,
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we directly obtain

tr

[
��

�Z

(
f (�)

)′
f (�)

��

�Z

(
f (�)

)′
f (�)

]
= 2

faa(�)2

fbb(�)2

(
1 − |Rab(�)|2).

Since
(
��/�Z

)(
f (�)

)
is real-valued and symmetric, the four terms in (8) take the same value.

Thus the bias 
(�) and the variance �2(�) are given by


(�) = 2 Ch Cw,2

∫
�

(
1 − |Rab(�)|2) d�

and

�2(�) = 32 � C2
h Cw,4

∫
�

(
1 − |Rab(�)|2)2 d�.

In this case, both parameters depend only on the spectral coherence |Rab(�)|2 between the two
processes. In particular, if the two processes are uncorrelated , we have Rab(�) ≡ 0 and the mean
and variance do not depend on the unknown spectral densities faa(�) and fbb(�).

For the analysis of interrelationships in multivariate time series, it is often of interest to dis-
tinguish direct interactions among a couple of time series from indirect relationships that involve
other time series. In the frequency domain, such a distinction can be accomplished by partial-
ization analysis based on the concepts of partial spectra and partial spectral coherencies (e.g.,
[31,5,14,56,44,64]). This leads to nonparametric hypotheses that can be formulated in terms of
partial spectra or partial spectral matrices. More precisely, suppose that we are interested in testing
the null hypothesis

H0 : �
(
fAA|B(�), �

) ≡ 0, (9)

where fAA|B(�) is the partial spectral matrix of a process {XA(t)} after removing the linear effects
of another process {XB(t)}. Denoting the spectral matrix of the joint process by f (�), we define

�
(
f (�)

) = fAA|B(�) = fAA(�) − fAB(�)fBB(�)−1fBA(�) (10)

and ��
(
f (�), �

) = �
[
�
(
f (�)

)
, �
]
. Then the null hypothesis can also be written as H0 : ��

(
f (�),

�
) ≡ 0, and we obtain as a test statistic

ST (��) =
∫
�

∥∥��
(
f̂ (�), �

)∥∥2
d� =

∫
�

∥∥�(f̂AA|B(�), �
)∥∥2

d�.

The following theorem shows that the asymptotic mean 
(��) and variance �2(��) can be derived
from the expressions for
(�) and�2(�)by use of the following lemma. For simplicity, the theorem
is formulated only for functions � such that �̃�(�) = ��(−�). The extension to the general case
is straightforward.

Lemma 3.10. Let � be defined as in (10). Then

Dz vec �
(
f (�)

)(
f (�)′ ⊗ f (�)

)
Dz vec �

(
f (�)

)∗ = fAA|B(�)′ ⊗ fAA|B(�), (11)

where Dzvec �(Z) denotes the vector of first derivatives of vec �(Z) with respect to z = vec(Z).
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Proof. For a1, a2 ∈ A let �a1a2(Z) = Za1a2 − Za1B(ZBB)−1ZBa2 . Then the first derivatives of
�ab(Z) are given by

��a1a2(Z)

�Za1a2

= 1,
��a1a2(Z)

�Za1B

= −Za2B(ZBB)−1,

��a1a2(Z)

�ZBa2

= −(ZBB)−1ZBa1 ,
��a1a2(Z)

�ZBB

= (ZBB)−1ZBa1Za2B(ZBB)−1,

while all other derivatives are zero. Inserting these expressions in (11), we obtain the right-hand
side by straightforward calculations. �

Theorem 3.11. Suppose that the assumptions of Theorem 3.5 hold. Furthermore, suppose
that �̃�(−�) = ��(�). Then under the null hypothesis (9), we have

B
1/2
T T ST (��) − B

−1/2
T 
(��)

D→ N (0, �2(��)),

where


(��) = Ch Cw,2

∫
�

tr
[
��(�)

(
fAA|B(�)′ ⊗ fAA|B(�)

)]
d�

and

�2(��) = 4� C2
h Cw,4

∫
�

tr
[
��(�)

(
fAA|B(�)′ ⊗ fAA|B(�)

)

×(��(�) + �̃�(�)′
)(

fAA|B(�)′ ⊗ fAA|B(�)
)]

d�.

Proof. Since Dz��(Z, �) = Dz�
(
�(Z), �

)
Dz vec �(Z), we have

���
(�) = [

Dz vec �
(
f (�)

)]∗ ��(�) Dz vec �
(
f (�)

)
.

Furthermore, the derivatives of � satisfy

��ab(Z)

�Zij

= ��ba(Z)

�Zji

,

from which it follows that

�̃ij,kl;��
(�) = �ji,lk;��

(�) =
d∑

i′,j ′,k′,l′=1

��i′j ′

�Zji

(
f (�)

) ��k′l′

�Zlk

(
f (�)

)
�i′j ′,k′l′;�(�)

=
d∑

i′,j ′,k′,l′=1

��j ′i′

�Zij

(
f (�)

) ��l′k′

�Zkl

(
f (�)

)
�̃j ′i′,l′k′;�(�)

and thus

�̃��
(�)′ = [

Dzvec �
(
f (�)

)]∗ �̃�(�)′ Dzvec �
(
f (�)

)
.

The result now follows from Theorem 3.5 and Lemma 3.10. �
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Example 3.12 (Partial noncorrelation). We first consider the problem of testing whether two
multivariate time series {XA(t)} and {XB(t)} are uncorrelated after the linear effects of a third
time series {XC(t)} have been removed. Let f (�) be the joint spectral density matrix of the three
processes. Then the null hypothesis of interest can be formulated as

H0 : ��
(
f (�), �

) = vec
(
RAB|C(�)

) ≡ 0.

From Theorem 3.11 and Example 3.8, we find that for the statistic

ST (��) =
∫
�

∥∥R̂AB|C(�)
∥∥2

d�

the constants 
(��) and �2(��) are given by


(��) = 2� Ch Cw,2 nA nB

and

�2(��) = 4� C2
h Cw,4

∫
�

∥∥RAA|C(�)
∥∥2∥∥RBB|C(�)

∥∥2
d�.

In the special case of two univariate time series {Xa(t)} and {Xb(t)}, the limiting distribution of
the statistic ST (��) becomes independent of the unknown spectral matrix f (�). We obtain as a
test statistic

QT (��) = T ST (��) − 2� Ch Cw,2/BT

2� Ch

√
2 Cw,4/BT

,

which does not depend on the unknown spectral matrix and is asymptotically standard normally
distributed.

Example 3.13 (Equality of partial spectra). Next, let {XA(t)} and {XB(t)} be two independent
multivariate time series with joint spectral density matrix f (�). Similarly as in Example 3.9,
equality of the two partial spectral densities faa|A′(�) and fbb|B ′(�), where A′ = A\{a} and
B ′ = B\{b}, can be tested using the statistic

ST (��) =
∫
�

∥∥∥ f̂aa|A′(�)

f̂bb|B ′(�)
− 1

∥∥∥2
d�.

Note, that the independence assumption implies that faa|A′B ′(�) = faa|A′(�) and fbb|A′B ′(�) =
fbb|B ′(�). From Theorem 3.11 and Example 3.9, we now find that the standardized version

QT (��) = T ST − 4� Ch Cw,2/BT

8� Ch

√
Cw,4/BT

,

is asymptotically standard normally distributed.

4. Extensions

In this section, we generalize the nonparametric approach to include also parametric and semi-
parametric hypotheses about the spectral matrix. Furthermore, it is shown that the results are still
valid if the Euclidian norm used to measure departures from the null hypothesis is replaced by
general discrepancies.
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4.1. Parametric and semi-parametric hypotheses

First, we consider hypotheses about the spectral matrix that also depend on an unknown pa-
rameter �0 from a finite-dimensional parameter set �. More precisely, we are interested in testing
the null hypothesis

H0 : �(f (�), �, �0) ≡ 0 for some �0 ∈ � (12a)

against the alternative

Ha : �(f (�), �, �) �≡ 0 for all � ∈ �, (12b)

where � ⊆ Rp. We assume that the unknown parameter �0 is uniquely determined—under the
null hypothesis and the alternative—by the distribution of the process and can be estimated by �̂.
Thus, replacing �0 by its estimator �̂, we can use

ST (�) =
∫
�

∥∥�(f̂ (�), �, �̂
)∥∥2

d�

as a test statistic for the above test problem. We impose the following conditions on the estimator
�̂ and on the function �(Z, �, �).

Assumption 4.1. Let � : D × � × � → Cr , where � ⊆ Rp and D is an open subset of Cd×d .

(i) �(Z, �, �) is holomorphic in Z. There exists a positive constant � such that for all � ∈ � the
ball B�,� = {

Z ∈ Cd×d
∣∣ ‖f (�) − Z‖��

}
is contained in D and

sup
‖�−�0‖��

sup
�∈�

sup
Z∈B�,�

∥∥�(Z, �, �)
∥∥ < ∞.

(ii) �
(
f (�), �, �

)
and Dz�

(
f (�), �, �

)
are piecewise Lipschitz continuous in � ∈ �.

(iii) �
(
f (�), �, �

)
and Dz�

(
f (�), �, �

)
are twice, respectively, once continuously differentiable

in a neighbourhood of �0. The partial derivatives

��i (Z, �, �)

��k

∣∣∣∣
Z=f (�)

,
�2�i (Z, �, �)

��k��l

∣∣∣∣∣
Z=f (�)

and
�2�i (Z, �, �)

��k�Zab

∣∣∣∣∣
Z=f (�)

are uniformly bounded for all � ∈ � and ‖� − �0‖��.
(iv)

∫
�

∥∥Dz�
(
f (�), �, �

)∥∥2
d� > 0.

Assumption 4.2. The parameter �0 lies in the interior of � and its estimator �̂ satisfies ‖�̂−�0‖ =
OP (T −1/2).

The rate of convergence of �̂ guarantees that the error due to estimation of �0 is asymptotically
negligible. More precisely, we have the following version of Lemma 3.4.

Lemma 4.3. Suppose Assumptions 3.1, 3.3, 4.1, and 4.2 hold. Then under the null hypothesis (12)

ST (�) =
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
��(�)

d� + oP

(
(B

1/2
T T )−1),

where ��(�) = Dz�
(
f (�), �, �0

)∗Dz�
(
f (�), �, �0

)
.
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Proof. Using Cauchy’s estimate for the derivatives of �(Z, �, �) with respect to Z, we find that
there exists � > 0 such that

�
(
f̂ (�), �, �̂

) = �
(
f (�), �, �̂

)+ Dz�
(
f (�), �, �̂

)(
f̂ (�) − f (�)

)+ R1(�)

with ‖R1(�)‖�C‖f̂ (�) − f (�)‖2, whenever

‖�̂ − �0‖�� and max
�∈�

‖f̂ (�) − f (�)‖��. (13)

Furthermore, by Assumption 4.2(iii), Taylor approximation of the first two terms about �0 yields

�
(
f̂ (�), �, �̂

)= D��
(
f (�), �, �0

)
(�̂ − �0)

+Dz�
(
f (�), �, �0

)(
f̂ (�) − f (�)

)+ R2(�) + R1(�),

with ‖R2(�)‖�C‖�̂ − �0‖2 + C‖�̂ − �0‖ · ‖f̂ (�) − f (�)‖, whenever (13) holds (possibly with
smaller �). It follows that, still under condition (13) ,

ST (�) =
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
��(�)

d�

+(�̂ − �0)
′
[∫

�

[
D��

(
f (�), �, �0

)]∗ D��
(
f (�), �, �0

)
d�

]
(�̂ − �0)

+(�̂ − �0)
′
[∫

�

[
D��

(
f (�), �, �0

)]∗ Dz�
(
f (�), �, �0

)(
f̂ (�)−f (�)

)
d�

]
+ R3,

where the remainder term R3 is of order OP

(
(BT T )−3/2

)
by the

√
T -consistency of �̂ and

(5). We note that the linear functional in the third term on the right-hand side is of order
OP (T −1/2) (e.g., [60, Theorem 6.1.2]), which together with the

√
T -consistency of �̂ yields

OP (T −1) for the second and the third terms. By a similar argument as in the proof of Lemma 3.4,
it now follows that the difference of ST (�) and the first term on the right-hand side is of order
oP

(
(B

1/2
T T )−1

)
. �

From the lemma and Theorem B.2, it follows that Theorem 3.5 remains valid for test statistics
ST (�) with parameter estimates substituted for any unknown parameters. We give two examples.

Example 4.4 (Separability). Recently, Matsuda and Yajima [47] discussed a test for separability
of the correlation structure of multivariate Gaussian time series. Such models have been considered
in various fields (e.g., [9,33]). The correlation structure of a stationary multivariate time series
{X(t)} is said to be separable if

cov
(
Xa(t), Xb(s)

) = �a �b �1(a, b) �2(t − s),

with �1(a, a) = 1 and �2(0) = 1 for all a, b = 1, . . . , d and t, s ∈ Z or, equivalently, if the
spectral matrix f (�) is of the form

f (�) = � f0(�),
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where � is a d × d positive definite matrix and f0(�) is a scalar-valued function. Without loss of
generality, we can choose � as the variance var

(
X(t)

)
. It follows that

f0(�) = 1

d
tr
[
f (�) V −1

�

]
,

where V� = diag(�2
1, . . . , �

2
d) is the diagonal matrix of variances �2

a . Therefore, the null hypoth-
esis of separability of the correlation structure can be formulated as

H0 : �
(
f (�), �

) = vec

(
f (�)

[
1

d
� tr

(
f (�)V −1

�

)]−1

− 1d

)
= 0,

where 1d denotes the d × d identity matrix. In this case, the variance � is an unknown parameter,
which can be estimated by

�̂ = 1

T

T∑
t=1

X(t)X(t)′,

since {X(t)} is assumed to have zero mean. Similarly, V� can be estimated by V̂� = V�̂ =
diag(�̂2

1, . . . , �̂
2
d), where �̂2

1, . . . , �̂
2
d are the diagonal entries in �̂. This suggests to use

ST (�) =
∫
�

∥∥∥vec
(
f̂ (�)

[ 1

d
�̂ tr

(
f̂ (�)V −1

�̂

)]−1 − 1d

)∥∥∥2
d�

for a test for separability. For the derivation of the limiting distribution, we first note that the
function �(Z, �) can be written as

�
(
Z, �

) = d

tr
(
Z V −1

�

) (�−1 ⊗ 1d) vec
(
Z
)− vec(1d),

which, under the null hypothesis, leads to

Dz�
(
f (�), �) = f0(�)−1

(
�−1 ⊗ 1d − 1

d
vec(1d) vec(V −1

� )′
)

.

Furthermore, we have f (�)′ ⊗ f (�) = f0(�)2
(
� ⊗ �

)
. Simple calculations then show that the

constants 
(�) and �2(�) in Theorem 3.5 are given by


(�) = 2� Ch Cw,2

(
d2 − 2 + �

d

)
and

�2(�) = 4� C2
h Cw,4

(
d2 − 2

�

d
+ �2

d2

)
,

with

� = tr
(
� V −1

� � V −1
�

) =
d∑

i,j=1

�2
ij

�2
i �2

j

,
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where �ij are the nondiagonal entries of �. Note that both constants 
(�) and �2(�) depend only
on the parameter � and thus can be estimated efficiently by substituting the estimator �̂ for �. It
follows from Slutsky’s theorem that the test statistic

QT (�) = T ST (�) − 
̂(�)/BT

�̂(�)/
√

BT

is asymptotically standard normally distributed.

Example 4.5 (Goodness-of-fit). As a second example, suppose that we are interested in testing
the fit of a parametric model. More precisely, we consider the composite hypothesis

H0 : f ∈ F� against Ha : f /∈ F�, (14)

where F� = {f�|� ∈ �} denotes a parametric class of spectral matrix models and � is a
parameter set. For univariate time series, such goodness-of-fit tests have a long history (e.g.,
[53,1,39,50]); more recently, the case of multivariate stationary and cointegrated processes has
been considered by Duchesne and Roy [18], Paparoditis [51], and Duchesne [17]. The general
framework discussed in this paper provides an alternative test for arbitrary multivariate stationary
models.

The test problem (14) can be formulated in the form (12) by setting

�
(
f (�), �0

)= vec
(
f�0(�)−1/2f (�)(f�0(�)−1/2)∗ − 1d

)
= (f�0(−�)−1/2 ⊗ f�0(�)−1/2)vec

(
f (�)

)− vec(1d),

where f�0(�) = f�0(�)1/2(f�0(�)1/2)∗ is the Cholesky decomposition of the Hermitian matrix
f�0(�) and �0 ∈ � is the unknown parameter of the best fitting model. Estimating �0 by some√

T -consistent estimator �̂, the model fit can be evaluated by the statistic

ST (�) =
∫
�

∥∥vec
[
f�̂(�)−1/2f̂ (�)(f�̂(−�)−1/2)′ − 1d

]∥∥2
d�,

which by Lemma 4.3 and Theorem 3.5 is asymptotically normally distributed. For the calculation
of the corresponding bias 
(�) and variance �2(�), we note that Dz�(f (�), �0) = f�0(−�)−1/2⊗
f�0(−�)−1/2, which leads to

��(�) = f�0(−�)−1 ⊗ f�0(�)−1 = (
f�0(�)−1)′ ⊗ f�0(�)−1. (15)

Since under the null hypothesis f (�) = f�0(�), we obtain for the bias and variance


(�) = 2� Ch Cw,2 d2 and �2(�) = 16�2 C2
h Cw,4 d2.

Consequently, the standardized test statistic is given by

QT (�) = T ST (�) − 2� Ch Cw,2 d2/BT

4� Ch d
√

Cw,4/BT

and does not depend on the spectral matrix f (�) or the parameter �0.

Example 4.6 (Goodness-of-fit for partial spectra). While partialization analysis allows identifi-
cation of the direct interactions among the components of a process {XA(t)} by removing the linear
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effects of a second process {XB(t)}, it is sometimes of interest to investigate the nature of these
direct interactions further. For instance, one might be interested in whether the process {XA(t)}
is white noise or whether one component of {XA(t)} Granger-causes another component after re-
moval of the linear effects of {XB(t)} (for the concept of Granger causality, see [32]). This can be
accomplished by fitting appropriate parametric models to the partialized process {XA|B(t)}—that
is, to the residual process obtained by removing the linear effects of {XB(t)}—and applying the
above goodness-of-fit test to the corresponding spectral matrix, namely the partial spectral matrix
fAA|B(�).

In the case of testing whether {XA|B(t)} is white noise, this leads to the null hypothesis

H0 : vec
(
�−1/2

AA|B fAA|B(�) �−1/2
AA|B − 1d

) ≡ 0,

where �AA|B is the covariance matrix of the partialized process XA|B(t) and A1/2(A1/2)′ denotes
the Cholesky decomposition of a symmetric matrix A. Setting �

(
f (�), �

) = vec
(
�−1/2 f (�)

�−1/2 − 1d

)
, it follows from the previous example and Theorem 3.11 that 
(��) = 2�ChCw,2d

2

and �2(��) = 16�2C2
hCw,4d

2.

4.2. General discrepancies

For the construction of test statistics, the deviation from the null hypothesis so far has been
measured by the Euclidean norm, which led to test statistics of the form

ST (�) =
∫
�

∥∥�(f̂ (�), �, �̂
)∥∥2

d�,

where ‖·‖ denotes the Euclidean norm. More generally, other distance measures may be used. For
instance, many authors have considered Whittle’s log-likelihood for estimating the parameters of
a time series model (e.g., [20,19,41,11]), which suggests to assess the goodness-of-fit by a similar
discrepancy measure.

Taniguchi and Kakizawa [60] studied parameter estimation for multivariate processes based on
general discrepancy functions of the form

D(f, �) =
∫
�

K
(
f (�), �, �

)
d�,

where K(Z, �, �) is a complex-valued function that is real-valued and nonnegative for all nonneg-
ative definite Hermitian matrices Z. To extend our approach to this general setting, we consider
the problem of testing the null hypothesis

H0 : K
(
f (�), �, �0

) ≡ 0 for some �0 ∈ � (16a)

against the alternative

Ha : K
(
f (�), �, �

) �≡ 0 for all � ∈ �, (16b)

where K(Z, �, �) has similar properties as above. Integration of K(Z, �, �) then leads to the test
statistic

ST (�, D) =
∫
�

K
(
f̂ (�), �, �̂

)
d�. (17)
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In the following, we show that the results of the previous section can be generalized to this larger
class of test statistics. To this end, we impose the following assumptions on the function K.

Assumption 4.7. Let K : D × � × � → C, where D is an open subset of Cd×d and � ⊆ Rp.

(i) K(Z, �, �) is real-valued and nonnegative for all nonnegative definite Hermitian matrices
Z ∈ Cd×d , � ∈ �, and � ∈ �.

(ii) K(Z, �, �) is holomorphic with respect to Z. There exists a positive constant � such that for
all � ∈ � the ball B�,� = {

Z ∈ Cd×d
∣∣ ‖f (�) − Z‖��

}
is contained in D and

sup
‖�−�0‖��

sup
�∈�

sup
Z∈B�,�

∣∣K(Z, �, �)
∣∣ < ∞.

(iii) K(Z, �, �) and its second derivative with respect to z = vec(Z),

HzzK(Z, �, �) = �2

�z�z′ K(Z, �, �),

are Lipschitz continuous in � except for possibly finitely many points.
(iv) K

(
f (�), �, �

)
and DzK

(
f (�), �, �

)
are twice continuously differentiable with respect to �

in a neighbourhood of �0 with

sup
�∈�

∥∥D�K
(
f (�), �, �0

)∥∥ < ∞, sup
�∈�

∥∥H�zK
(
f (�), �, �0

)∥∥ < ∞

and

sup
‖�−�0‖<�

sup
�∈�

∣∣∣∣∣�
2
K
(
f (�), �, �

)
��i��j

∣∣∣∣∣ < ∞, sup
‖�−�0‖<�

sup
�∈�

∣∣∣∣∣�
3
K
(
f (�), �, �

)
��i��j�Zab

∣∣∣∣∣ < ∞

for some � > 0.
(v) HzzK

(
f (�), �, �

)
is continuously differentiable with respect to � in a neighbourhood of �0

with

sup
‖�−�0‖<�

sup
�∈�

∣∣∣∣∣�
3
K
(
f (�), �, �

)
��i�Zab�Zcd

∣∣∣∣∣ < ∞

for some � > 0.
(v)

∫
�

∥∥HzzK
(
f (�), �, �

)∥∥ d� > 0.

We note that the assumptions imply that K
(
Z, �, �

)
�K

(
f (�), �, �0

)
for every nonnegative

Hermitian matrix Z and � ∈ �. It follows that the directional derivatives

DzK
(
f (�), �, �0

)
vec(Z)

for any nonnegative Hermitian matrix Z with ‖Z‖ = 1 and

D�K
(
f (�), �, �0

)
�
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for any � ∈ Rp with ‖�‖ = 1 both vanish. Furthermore, since K(Z, �, �) takes only real values
for all nonnegative definite Hermitian matrices Z, a power series expansion of K(Z, �, �) about
Z shows that

�K(Z, �, �)

�Zij

= �K(Z, �, �)

�Zji

and
�2

K(Z, �, �)

�Zij�Zkl

= �2
K(Z, �, �)

�Zji�Zlk

.

Consequently, we have HzzK
(
Z, �, �

) = Kdd

[
HzzK

(
Z, �, �

)]∗
Kdd , which implies that the

matrix

�K(�) = 1
2 Kdd HzzK

(
f (�), �, �0

)
is Hermitian. Thus, the conditions on the function K ensure that for nonnegative definite Hermitian
matrices Z close to f (�), the function K(Z, �, �0) can be approximated by a quadratic norm
‖vec(Z − f (�))‖2

�K(�)
. The following lemma shows that this approximation of the discrepancy

can be applied to the general test statistic in (17).

Lemma 4.8. Suppose that Assumptions 3.1, 3.3, 4.2, and 4.7 hold. Then under the null
hypothesis (16)

ST (K) =
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
�K(�)

d� + oP

(
(B

1/2
T T )−1),

where

�K(�) = 1
2 Kdd HzzK

(
f (�), �, �0

)
. (18)

Proof. Expanding K
(
f̂ (�), �, �̂

)
about Z = f (�), we obtain

K
(
f̂ (�), �, �̂

)
= K

(
f (�), �, �̂

)+ DzK
(
f (�), �, �̂

)
vec
(
f̂ (�) − f (�)

)
+ 1

2 vec
(
f̂ (�) − f (�)

)′HzzK
(
f (�), �, �̂

)
vec
(
f̂ (�) − f (�)

)+ R1(�). (19)

Using Cauchy’s estimate for the derivatives with respect to z = vec(Z) we find by Assumption
4.7(iii) that |R1(�)|�C‖f̂ (�) − f (�)‖3 whenever

‖�̂ − �0‖�� and max
�∈�

‖f̂ (�) − f (�)‖��. (20)

Furthermore, conditions (iv) and (v) of the same assumption imply that

K
(
f (�), �, �̂

) = K
(
f (�), �, �0

)+ D�K
(
f (�), �, �0

)
(�̂ − �0) + R2(�)

and

DzK
(
f (�), �, �̂

) = DzK
(
f (�), �, �0

)+ (�̂ − �0)
′H�zK

(
f (�), �, �0

)+ R3(�),
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where both |R2(�)| and ‖R3(�)‖ are bounded by C‖�̂ − �0‖2, while

1
2 vec

(
f̂ (�) − f (�)

)′HzzK
(
f (�), �, �̂

)
vec
(
f̂ (�) − f (�)

)
= ∥∥vec

(
f̂ (�) − f (�)

)∥∥2
�K(�)

+ R4(�),

with |R4(�)|�C‖�̂− �0‖‖f̂ (�)− f (�)‖2, where we have used that Kddvec(Z) = vec(Z) for all
Hermitian d × d matrices Z. Substituting these expressions into (19) and integrating over �, we
get by (5) and the

√
T consistency of �̂

ST (K) =
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
�K(�)

d� +
∫
�

D�K
(
f (�), �, �0

)
(�̂ − �0) d�

+
∫
�

DzK
(
f (�), �, �0

)
vec
(
f̂ (�) − f (�)

)
d�

+(�̂ − �0)
′
[∫

�
H�zK

(
f (�), �, �̂

)
vec
(
f̂ (�) − f (�)

)
d�

]
+ R,

where the remainder R is of order oP

(
(B

1/2
T T )−1

)
whenever (20) holds. As remarked before, by

Assumption 4.7(i) the directional derivatives in the second and third term vanish. Furthermore,
the integral in the fourth term on the right-hand side is of order OP (T −1/2). The statement of the
lemma follows now by a similar argument as in the proof of Lemma 3.4. �

With the previous lemma and Theorem B.2, we can establish the following result, which extends
Theorem 3.5 to the general case.

Theorem 4.9. Suppose that Assumptions 3.1, 3.3, 4.2, and 4.7 hold. Then

B
1/2
T T ST (K) − B

−1/2
T 
(K)

D→ N (0, �2(K)),

where 
(K) and �2(K) are given by (6) and (7), respectively, with �K(�) substituted for ��(�).

Example 4.10. We consider again the problem of assessing the fit of a parametric model.Alterna-
tively to the L2 distance discussed in Example 4.5, the difference between the estimated spectral
matrix f̂ (�) and the fitted spectral matrix f�̂(�) can be measured by the Kullback–Leibler dis-
crepancy [43]

D(f̂ , f�̂) =
∫
�

[
log

(
det f�̂(�)

det f̂ (�)

)
+ tr

(
f̂ (�)f�̂(�)−1 − 1d

)]
d�.

Setting

K(Z, �, �) = log

(
det f�(�)

det Z

)
+ tr

(
Z f�(�)−1 − 1d

)
,

we find for the second derivatives with respect to Z

�2
K(Z, �, �0)

�Zij�Zkl

∣∣∣∣∣
Z=f�0 (�)

= (
f�0(�)−1)

jk

(
f�0(�)−1)

li
.
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It follows that

�K(�) = 1
2 Kdd HzzK

(
f�0(�), �, �0

) = (
f�0(�)−1)′ ⊗ f�0(�)−1,

which is—up to a factor 1/2—the same as ��(�) in (15). Thus we obtain for 
(K) and �2(K)

similar expressions as in Example 4.5.

5. Asymptotic global and local power

In this section, we evaluate the asymptotic behaviour of the nonparametric test discussed in
this paper for fixed alternatives and under a class of local alternatives. As in the previous section,
we consider the general test problem (16) and the corresponding test statistic

ST (K) =
∫
�

K
(
f̂ (�), �, �̂

)
d�.

Let QT (K) be the standardized version of ST (K). We first investigate the power of the test based
on QT (K) under fixed alternatives.

Theorem 5.1. Suppose that Assumptions 3.1, 3.3, 4.2, and 4.7 hold. Then if the null hypothesis
is false,

1

B
1/2
T T

QT (K)
P→ 1

�(K)

∫
�

K
(
f (�), �, �0

)
d� (21)

as T tends to infinity.

Proof. By the assumptions on the function K, we obtain∣∣∣∣ST (K) −
∫
�

K
(
f (�), �, �0

)
d�

∣∣∣∣ �C

[
max
�∈�

∥∥f̂ (�) − f (�)
∥∥+ ∥∥�̂ − �0

∥∥] ,

whenever max�∈�
∥∥f̂ (�)−f (�)

∥∥ < � and ‖�̂−�0‖ < �. The result follows by similar arguments
as in the proof of Lemma 3.4. �

We note that for any spectral density matrix f (�) under the alternative Ha the integrated
discrepancy K

(
f (�), �, �0

)
on the right-hand side in (21) is nonzero since K

(
f (�), �, �0

)
being

a continuous function of � differs from zero on a set of strictly positive measure. Thus the above
theorem shows that the test based on QT (K) is consistent, that is, under the alternative Ha the
null hypothesis is rejected asymptotically with probability one. Furthermore, the power of the
test is monotonically increasing in the integrated discrepancy, which measures the total deviation
from the null hypothesis. This means that, although the proposed test is an omnibus test that is
able to detect any alternative for large enough sample size, it may be designed to focus on certain
directions of departures from the null hypothesis by appropriate choice of the discrepancy K.

Next, we investigate the asymptotic properties of QT (K) for sequences of local alternatives.
More precisely, we consider sequences of processes {X(T )(t)}, T ∈ N, with spectral matrices

f (T )(�) = f (�) + cT g(�), (22)

where (cT )T ∈N is a real-valued sequence such that cT → 0 as T → ∞. We impose the following
conditions on the processes {X(T )(t)}.
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Assumption 5.2. Let {X(T )(t)}, T ∈ N, be a sequence of stationary processes with mean zero
and spectral matrices (22).

(i) The matrices f (�), � ∈ �, are nonnegative definite and Hermitian. Furthermore, f (�) and
g(�) are twice continuously differentiable in �, and f (�) satisfies the null hypothesis H0 in
(16) for �0 ∈ �.

(ii) The parameters �(T ) ∈ �, T ∈ N, associated with the processes {X(T )(t)} satisfy ‖�(T ) −
�0‖ = O(T −1/2).

(iii) Let c
(T )
a1,...,ak

(u1, . . . , uk−1) be the joint cumulant of X
(T )
a1 (u1), . . . , X

(T )
ak−1(uk−1), X

(T )
ak

(0).
For all k�2 there exists a constant Ck > 0 not depending on T such that

∑
u1,...,uk−1∈Z

(
1 + |uj |2

)|c(T )
a1,...,ak

(u1, . . . , uk−1)| < Ck

for all j = 1, . . . , k − 1, a1, . . . , ak = 1, . . . , d, and T ∈ N.

The last assumption implies that the cumulant spectra of the processes {X(T )(t)} are uniformly
bounded in T ∈ N. Thus we have

cum{d(T )
a1

(�1), d
(T )
a2

(�2)} = 2� H(T )
2 (�1 + �2) f (T )

a1a2
(�1) + O(1)

uniformly in T while for all cumulants of higher order we obtain

| cum{d(T )
a1

(�1), . . . , d
(T )
ak

(�k)}|�C L(T )(�1 + · · · + �k)

with a constant C independent of T.

Lemma 5.3. Suppose that Assumptions 3.3, 4.2, 4.7, and 5.2 hold. Then for cT = B
−1/4
T T −1/2,

ST (K) can be approximated by

ST (K) = c2
T

∫
�

∥∥vec
(
g(�)

)∥∥2
�K(�)

d�

+
∫
�

∥∥vec
(
f̂ (�) − f (T )(�)

)∥∥2
�K(�)

d� + oP

(
(B

1/2
T T )−1),

where �K(�) is defined by (18).

Proof. First, we note that the expansion of K
(
f̂ (�), �, �̂

)
about Z = f (�) and � = �0 in the

proof of Lemma 4.8 remains valid in the case of local alternatives. Thus we have

K
(
f̂ (�), �, �̂

) = ∥∥vec
(
f̂ (�) − f (�)

)∥∥2
�K(�)

+ R(�),

with
∫
� |R(�)| d� = oP

(
(B

1/2
T T )−1

)
, whenever max�∈� ‖f̂ (�) − f (�)‖�� and ‖�̂ − �0‖��.

Since

max
�∈�

‖f̂ (�) − f (�)‖� max
�∈�

‖f̂ (�) − f (T )(�)‖ + cT max
�∈�

‖g(�)‖ = oP (1),
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a similar argument as in the proof of Lemma 3.4 shows that

ST (K) =
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
�K(�)

d� + oP

(
(B

1/2
T T )−1)

=
∫
�

∥∥vec
(
f̂ (�) − f (T )(�)

)∥∥2
�K(�)

d� + c2
T

∫
�

∥∥vec
(
g(�)

)∥∥2
�K(�)

d�

+2 cT

∫
�

vec
(
g(�)

)∗�K(�) vec
(
f̂ (�) − f (T )(�)

)
d� + oP

(
(B

1/2
T T )−1).

Here, the integral in the third term on the right-hand side is of order OP (T −1/2); hence the whole
term also becomes oP

(
(B

1/2
T T )−1

)
, which concludes the proof. �

The above lemma now allows us to establish the following result on the asymptotic distribution
of the test statistic under sequences of local alternatives that converge to the null hypothesis with
rate cT = B

−1/4
T T −1/2.

Theorem 5.4. Suppose that Assumptions 3.3, 4.2, 4.7, and 5.2 hold. Then for cT = B
−1/4
T T −1/2

B
1/2
T T ST (K) − B

−1/2
T 
(K)

D→ N (
(K), �2(K))

with


(K) =
∫
�

∥∥vec
(
g(�)

)∥∥2
�K(�)

d�,

and 
(K), �2(K), and �K(�) defined as in Lemma 4.8 and Theorem 4.9.

Proof. Let

�∗
T

(
�K

) =
∫
�

∥∥vec
(
f̂ (�) − f (T )(�)

)∥∥2
�K(�)

d�.

Under the conditions stated in Assumption 5.2, the bounds for the cumulants of �T (�K) derived
in Lemmas B.4, B.5, and B.7 also hold for �∗

T (�K) with constants independent of T. Thus the
standardized statistic satisfies

B
1/2
T T �∗

T

(
�K

)− B
−1/2
T 
T (K)

�T (K)

D→ N (0, 1),

where 
T (K) and �2
T (K) are given by (6) and (7) with f (T )(�) substituted for f (�). By a Taylor

expansion of 
T (K) and �2
T (K) about f (�), we obtain bias 
(K) and variance �2(K) with extra

terms of lower order. Thus �∗
T (�K) has the same asymptotic normal distribution as �T (�K)

under the null hypothesis. The result follows now from Lemma 5.3. �

From the above theorem it follows that for the sequence of processes {X(T )(t)} the standardized
test statistic

QT (K) = T ST (K) − 
(K)/BT√
�2(K)/BT
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is asymptotically normally distributed with mean 
(K)/�(K) and variance 1. Thus the ability
of the test QT (K) to detect the sequence of local alternatives can be assessed similarly as in
Taniguchi et al. [62] by the efficacy of QT (K),

eff
(
QT (K)

) = lim
T →∞ Ef (T )

(
QT (K)

) = 
(K)√
�2(K)

.

We note that with 
(K) and �2(K) the efficacy of QT (K) also depends only on the second-order
spectrum f (�), that is, the asymptotic power of the test is the same for Gaussian and non-Gaussian
processes. Taniguchi et al. [62] called such tests “non-Gaussian robust”.

The relative asymptotic performance of different tests can be evaluated by Pitman’s asymptotic
relative efficiency (ARE) [52, Chapter 7]. More precisely, let Q∗

T be another test for the test
problem (16) and suppose that BT = O(T −�) with 2

9 < � < 1
2 . Then the ARE of QT (K) with

respect to Q∗
T is given by

AREP
(
QT (K), Q∗

T

) =
(

eff
(
QT (K)

)
eff
(
Q∗

T

)
) 2

2−�

and compares the asymptotic power of the two tests
(
QT (K)

)
and Q∗

T to detect local alternatives
of the form (22).

Example 5.5. In order to test for a relationship between two time series {Xa(t)} and {Xb(t)}, we
consider the two statistics

S
(1)
T = 1

2�

∫
�

∣∣R̂ab(�)
∣∣2 d�,

and

S
(2)
T = 1

�2 − �1

∫ �2

�1

∣∣R̂ab(�)
∣∣2 d�.

Here, the latter statistic is typically used if one is particularly interested in dependencies over
the frequency range [�1, �2]. For assessment of the power to detect deviations from the null
hypothesis of noncorrelation in the frequency range [�1, �2], suppose that g(�) in (22) vanishes
outside [�1, �2] for ��0. Then it follows from Example 3.8 that

AREP
(
Q

(1)
T , Q

(2)
T

) =
(�2 − �1

�

) 1
2−� �1.

In other words, the global test based on Q
(1)
T is asymptotically less powerful in detecting depen-

dencies restricted to the frequency range [�1, �2] than the local test based on Q
(2)
T . This is the

price we have to pay for achieving consistency against a larger class of alternatives.

Example 5.6. The asymptotic power of the test QT (�, D) depends on the chosen kernel function
w through the variance �2(�, D). Let Q

(1)
T and Q

(2)
T be the tests obtained for kernel functions w1

and w2, respectively. Then the ARE of Q
(1)
T with respect to Q

(2)
T is given by

AREP
(
Q

(1)
T , Q

(2)
T

) =
(

Cw2,4

Cw1,4

) 1
2−�

. (23)
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For instance, if w1 and w2 are the quadratic spectral kernel and the Parzen window, respectively,
we obtain AREP

(
Q

(1)
T , Q

(2)
T

) ≈ 1.05, that is, the quadratic spectral kernel leads to a slightly
more powerful test than the Parzen window. The same ARE as in (23) has been obtained by Hong
[39,40], who considered tests for serial correlation and tests for noncorrelation; notice, however,
that the optimal kernel determined by Hong [39,40], namely the rectangular kernel (or Daniell
window), is not admissible for our test as it does not satisfy Assumption 3.3.

Alternatively to Pitman’sARE, which is based on local power analysis, relative efficiencies may
also be investigated under fixed alternatives on the basis of Bahadur’s asymptotic slope criterion
[2]. For details, we refer to Hong [39,40], who obtained similar results as in Theorems 5.1 and 5.4
in the special case of tests for serial correlation and tests for noncorrelation; see also Paparoditis
[50] for the case of goodness-of-fit tests. We note that those results have been established under
weaker conditions on the bandwidth BT , namely BT = O(T −�) with 0 < � < 1, which are
partly possible since the bias introduced by smoothing vanishes in those special cases.

6. Simulations

The test statistics for the non- and semi-parametric hypotheses discussed in this paper are based
on L2 distances or discrepancies that are well approximated by L2 distances in the neighbourhood
of the null hypothesis. This poses a possible problem for the finite sample case as it is well known
that even in the univariate case with i.i.d. data such L2-type statistics may converge very slowly to
their asymptotic limits (e.g., [36]). Therefore, in order to investigate the small sample properties of
the proposed tests, we carried out a Monte Carlo study, in which the components of a multivariate
process were tested for partial noncorrelation.

For the simulations, we considered a three-dimensional ARMA(2,1) process {X(t)} given by

(13 − �1 B − �2 B2)X(t) = (13 + � B)�(t), (24)

where B is the backward shift operator and the innovations �(t) are independent and normally
distributed with mean zero and covariance matrix � = 13. The coefficient matrices are given by

�1 =
⎛
⎜⎝

1.3 0.2 0

0 −1.4 0.1

0 0 0.7

⎞
⎟⎠ , �2 =

⎛
⎜⎝

−0.9 −0.1 0

0 −0.9 0.1

0 0 −0.9

⎞
⎟⎠ , � =

⎛
⎜⎝

0.5 0 0

0 0.5 0

0 0 −0.5

⎞
⎟⎠ .

The spectral densities and partial spectral coherences for this process are shown in Fig. 1. Here,
only the partial spectral coherence between processes X1 and X3 given X2 is identical to zero,
that is, the two processes X1 and X3 are partially uncorrelated given the third process X2, denoted
as X1 ⊥ X3 | X2, whereas the same is not true for the other two pairs of processes.

For this model, samples of size T = 200, 500, 1000, 2000, and 5000 were generated. Estimation
of the spectral density matrix was based on the tapered periodogram using a 20% cosine taper
and smoothing with a quadratic kernel. To study the effects of the smoothing bandwidth BT , the
estimates were computed for various bandwidths. As in Example 3.12, we used the integrated
partial spectral coherence

ST =
∫
�

|R̂ab|c(�)|2 d�
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Fig. 1. Theoretical spectral densities and partial spectral coherencies for the model in (24).

to test whether two components Xa and Xb are partially uncorrelated given the third component
Xc. The corresponding normalized test statistic is given by

QT = T ST − 2�ChCw,2/BT

2�Ch

√
2Cw,4/BT

and does not depend on the unknown spectral density matrix of the process.
Table 1 reports the empirical rejection rates of the test at significance levels 5% and 10%, based

on 10,000 replications. For the hypothesis X1 ⊥ X3 | X2 the values give the empirical sizes of the
test while for the other hypotheses X1 ⊥ X2 | X3 and X2 ⊥ X3 | X1 the values yield the empirical
power of the test to detect the alternatives. The results show that the test in general performs well
with empirical sizes that are reasonably close to the nominal ones for a broad range of bandwidths
and high empirical power to detect the two alternatives for samples of size T = 500 and larger. A
closer inspection of the results reveals some important features. Firstly, we note that the empirical
size and power of the test depend on the bandwidth BT : the use of smoother spectral estimates
on the one hand increases the power of the test but on the other hand may lead to a violation
of the nominal significance level, whereas too small bandwidths—and hence too rough spectral
estimates—result in over-rejection of the null hypothesis. Secondly, for sample size T = 200,
the test violates the nominal significance levels regardless of the choice of bandwidth. Additional
simulations have shown that these size distortions become more serious for smaller sample sizes.
These observations show that due to the nonlinearity of the hypothesis on the spectral density
matrix the test requires spectral estimates that are close to the true spectral densities; this is in line
with the theoretical results reflected in the condition in Assumption 3.3(iii) on the rate by which
the bandwidth should converge to zero. Thirdly, comparing the results at significance levels 5%
and 10%, we find that the empirical distribution of the test statistic deviates slightly from the
asymptotic normal distribution even for large sample sizes. This indicates that convergence to the
asymptotic limits is indeed slow.
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Table 1
Rejection rates out of 10,000 replications for the three tests on partial noncorrelation at significance 5% and 10% for
various bandwidths

T BT X1 ⊥ X3 | X2 X2 ⊥ X3 | X1 X1 ⊥ X2 | X3

5% 10% 5% 10% 5% 10%

200 0.08 4.18 9.81 21.83 37.09 95.91 98.69
200 0.10 4.44 10.42 28.39 44.33 98.94 99.70
200 0.15 4.62 9.56 41.05 55.72 99.94 100.00
200 0.20 4.07 8.11 49.02 62.12 100.00 100.00
200 0.25 4.43 8.93 59.20 70.03 100.00 100.00
200 0.30 3.75 7.82 63.39 73.25 100.00 100.00
200 0.35 3.73 7.81 67.91 76.92 100.00 100.00

500 0.06 7.75 15.38 74.12 84.74 100.00 100.00
500 0.08 5.91 11.64 80.58 88.71 100.00 100.00
500 0.10 6.70 12.38 88.03 93.35 100.00 100.00
500 0.12 5.43 10.36 91.01 94.98 100.00 100.00
500 0.15 5.47 10.01 94.49 97.04 100.00 100.00
500 0.20 5.01 9.19 97.14 98.53 100.00 100.00
500 0.25 4.93 8.60 98.30 99.07 100.00 100.00
500 0.30 4.68 8.30 98.93 99.37 100.00 100.00

1000 0.04 7.74 14.54 97.04 98.92 100.00 100.00
1000 0.06 6.69 12.36 99.41 99.78 100.00 100.00
1000 0.08 6.19 11.06 99.83 99.99 100.00 100.00
1000 0.10 5.82 10.50 99.98 100.00 100.00 100.00
1000 0.15 5.29 8.97 100.00 100.00 100.00 100.00
1000 0.20 4.93 8.69 100.00 100.00 100.00 100.00
1000 0.25 4.66 8.24 100.00 100.00 100.00 100.00

2000 0.04 6.92 13.15 100.00 100.00 100.00 100.00
2000 0.06 5.87 11.39 100.00 100.00 100.00 100.00
2000 0.08 5.15 10.29 100.00 100.00 100.00 100.00
2000 0.10 5.18 9.72 100.00 100.00 100.00 100.00
2000 0.15 4.88 8.94 100.00 100.00 100.00 100.00
2000 0.20 4.74 8.74 100.00 100.00 100.00 100.00
2000 0.25 4.68 8.54 100.00 100.00 100.00 100.00

5000 0.02 8.40 15.12 100.00 100.00 100.00 100.00
5000 0.04 6.22 11.17 100.00 100.00 100.00 100.00
5000 0.06 5.90 10.53 100.00 100.00 100.00 100.00
5000 0.08 5.33 9.93 100.00 100.00 100.00 100.00
5000 0.10 5.05 8.97 100.00 100.00 100.00 100.00
5000 0.15 4.76 8.75 100.00 100.00 100.00 100.00
5000 0.20 4.86 8.46 100.00 100.00 100.00 100.00

The simulation demonstrates that the selection of an appropriate bandwidth is an important
step in the application of the proposed tests since the size and power of the test is sensitive to
under- as well as to over-smoothing. Consequently, a data-driven method for choosing an optimal
bandwidth is required. In the literature on nonparametric spectral density estimation, a number
of criteria for bandwidth selection have been proposed; a partial overview and comparison is
given, for example, in Fortin and Kuzmics [28]. In the following, we will consider two methods:
a global version of the iterative procedure (ITP) suggested by Bühlmann [6], and a method by
Lee [45] that combines plug-in and unbiased risk estimation (PURE) ideas. As both methods
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Table 2
Rejection rates out of 10,000 replications for the three tests on partial noncorrelation at significance 5% and 10% with
data-driven choice of bandwidth

Criterion T X1 ⊥ X3 | X2 X2 ⊥ X3 | X1 X1 ⊥ X2 | X3

5% 10% 5% 10% 5% 10%

PURE 200 8.25 14.02 30.10 45.10 96.22 98.17
500 8.54 14.68 80.49 88.47 99.90 99.93

1000 8.04 14.02 98.46 99.22 100.00 100.00
2000 7.67 13.55 99.96 99.99 100.00 100.00
5000 7.55 12.70 100.00 100.00 100.00 100.00

10000 6.66 11.88 100.00 100.00 100.00 100.00
20000 5.89 10.75 100.00 100.00 100.00 100.00

ITP 200 2.49 4.42 75.71 81.76 100.00 100.00
500 4.41 8.28 98.65 99.24 100.00 100.00

1000 5.40 9.98 99.99 100.00 100.00 100.00
2000 5.74 10.34 100.00 100.00 100.00 100.00
5000 5.91 10.58 100.00 100.00 100.00 100.00

10000 5.58 10.62 100.00 100.00 100.00 100.00
20000 5.78 11.00 100.00 100.00 100.00 100.00

originally have been developed only for univariate time series, we used a simple modification by
basically adding the risk functions for each component. We note that Robinson [55] suggested a
multivariate approach for bandwidth selection based on cross validation.

Table 2 reports the empirical sizes and power of the test for partial noncorrelation when the
bandwidth is selected by one of the two methods. For sample sizes T �500, the ITP procedure
leads to a good performance of the test both under the null hypothesis and the alternative although
the null hypothesis is slightly over-rejected even for very large sample sizes. For sample size
T = 200, on the other hand, the bandwidth selection by the ITP procedure seems to perform
quite poorly since the test violates the nominal significance level severely. We note that for even
smaller sample sizes, the ITP procedure failed to converge in most cases, which demonstrates
that this method is not well suited for small sample sizes; similar results have been reported in
Eichler [24]. In comparison, the PURE method leads to a far more conservative but—for small
sample sizes—more stable behaviour of the test.

It should be noted that there are theoretical concerns about the use of common bandwidth
selection methods such as the ITP procedure or the PURE method to our nonparametric test.
Firstly, the asymptotic results in this paper have been derived only for nonstochastic sequences of
bandwidths (BT )T ∈N. Secondly, the optimal bandwidth for spectral density estimation is of order
T −1/5 and thus does not satisfy the restrictions of Assumption 3.3. Therefore, the use of optimal
bandwidths is expected to lead to an additional bias. Nevertheless, the above results indicate that in
practice such methods work well—at least for moderate sample sizes—when used in conjunction
with our test procedure.

7. Concluding remarks

We have presented a general approach for testing non- and semi-parametric hypotheses on the
spectral density matrix of a vector-valued stationary process. The tests are based on integrated
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(squared) deviation measures that accumulate the pointwise departures of the estimated spectral
density matrix—obtained by nonparametric kernel smoothers—from the null hypothesis. This
approach covers not only many test problems that have been considered previously in the literature
such as goodness-of-fit tests or tests for separability but also extends to new important problems;
for instance, it allows considering hypotheses on partial spectral matrices and, in particular, yields
a test for partial noncorrelation which is of interest in the context of graphical interaction models
for multivariate time series.

The frequency domain approach for hypothesis testing presented in this paper offers a number
of advantages. Firstly, the approach allows a completely nonparametric testing of hypotheses and
thus avoids the problem of model misspecification, which typically arises for tests in the time
domain. For example, time domain based tests for noncorrelation between two time series that
have been proposed in the literature ([37,40,42,27,35,4,57]) all require fitting of a univariate or
multivariate autoregressive (AR) or autoregressive moving average (ARMA) models. Secondly,
the limiting distribution of the test statistic depends only on the second-order spectrum and thus
can be easily evaluated. Moreover, in many important situation, the bias and the variance of the test
statistic become also independent of the spectral densities. In contrast, the limiting distribution of
the test statistics considered by Taniguchi et al. [62] typically involve the fourth-order cumulant
spectrum. Thirdly, under any fixed alternative, the standardized test statistic tends to infinity at
a rate faster than the parametric rate

√
T . This implies that the test has asymptotically high

power for detecting any alternatives. On the other hand, tests based on the empirical spectral
distribution function have nontrivial asymptotic power against local alternatives converging to
the null hypothesis with the parametric rate T −1/2 whereas our test requires a strictly larger rate
B

−1/4
T T −1/2, where BT is the bandwidth of the kernel estimator for the spectral matrix. However,

the type of hypotheses discussed in this paper are generally expressed in terms of non-linear
functions of the spectral density and, thus, cannot be expressed directly in terms of the spectral
distribution function.

In simulations, we have shown that the asymptotic results derived in this paper provide rea-
sonable approximations for the distribution of the test statistics for medium and large sample
sizes. Furthermore, the results indicated that one important issue in the practical application of
the tests is the selection of the bandwidth for the kernel spectral estimates, which might have
severe effects on the performance of the test. We have found that an appropriate choice seems the
ITP by Bühlmann [6], which in our simulations led to empirical sizes close to the nominal ones
and achieved high power under the alternatives.
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Appendix A. Data taper

The use of data tapers often improves the small sample properties of spectral estimates (e.g.,
[12,24]). For the discussion of the asymptotic properties of frequency domain statistics based
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on tapered data, we use the following function, which has been introduced by Dahlhaus [10]. Let
L(T ) : R → R be the periodic extension (with period 2�) of

L(T )(�) =

⎧⎪⎨
⎪⎩

T , |�|�1/T ,

1

|�| , 1/T < |�|��.
(A.1)

The properties of these functions are summarized by the following lemma. The proofs are straight-
forward and can be found in Dahlhaus [10,12].

Lemma A.1. Let L(T )(�) be defined as in (A.1), and let �, �, � ∈ R and r, s ∈ N with r − s�2.
We obtain with a constant C independent of T and S

(i) L(T )(�) is monotonically increasing in T ∈ R+ and decreasing in � ∈ [0, �].
(ii) L(T )(c�)�c−1L(T )(�) for all c ∈ (0, 1];

(iii)
∫
�

L(T )(�) d��C log(T );

(iv)
∫
�

L(T )(� + �)L(S)(� − �) d��C max{log(T ), log(S)}L(min{T ,S})(� + �);

(v)
∫
�

|�|sL(T )(�)rd��CT r−s−1;

(vi)
∫
�

L(T )(� + �)rL(S)(� − �)rd��C max{T r−1, Sr−1}L(min{T ,S})(� + �)r .

Let h(T ) be a data taper and let H
(T )
k (�) be its Fourier transform. If the taper function satisfies

Assumption 3.3(i), then H
(T )
k (�) can be bounded by

∣∣H(T )
k (�)

∣∣�C L(T )(�), (A.2)

with a constant C ∈ R independent of T and �. Similarly, we obtain by Assumption 3.3(ii) for the
kernel function

w(T )(�)� C

MT

L(MT )(�)2,

where MT = 1/BT for bandwidth BT and C is again some constant independent of � and T. For
notational convenience, we use MT = 1/BT throughout the appendix. Finally, let {�(T )

2 }T ∈N be
the sequence of function given by

�(T )
2 (�) = |H(T )

2 (�)|2
2�H

(T )
4 (0)

. (A.3)

By Lemma A.1 and the upper bound in (A.2), it can be shown that {�(T )
2 }T ∈N is a Dirac sequence

(e.g., [10]).
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Appendix B. A central limit theorem

In this appendix, we derive the limiting distribution of integrated squared differences between
f̂ (�) and f (�) of the form

�T (�) =
∫
�

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
�(�)

d�,

where ‖x‖2
�(�)

= x∗�(�)x and �(�) is a Hermitian nonnegative definite matrix for all � ∈ �.
Such differences play a central role in the discussion of the asymptotic properties of the class of
nonlinear functionals that has been considered in this paper.

Assumption B.1. � : � → Cd2×d2
is Hermitian nonnegative function that is Lipschitz continu-

ous except for possibly finitely many points � ∈ �.

In the following, we write �(�) = (
�ij,kl(�)

)
i,j,k,l=1,...,d

, where the indices are such that

∥∥vec
(
f̂ (�) − f (�)

)∥∥2
�(�)

=
d∑

i,j,k,l=1

(
f̂j i(�) − fji(�)

)
�ij,kl(�)

(
f̂kl(�) − fkl(�)

)
,

that is, for I = i+(j −1) d and K = k+(l−1) d with i, j, k, l ∈ {1, . . . , d} the (I, K)th element
of �(�) is given by �ij,kl(�). Furthermore, we define the d2 × d2 matrix �̃(�) = Kdd �(�) Kdd ,
where Kdd is the d2 ×d2 commutation matrix (e.g., [46]). Using the same indexation as for �(�),
the (I, K)th entry of �̃(�) is given by

�̃ij,kl(�) = �ji,lk(�) (B.1)

for i, j, k, l = 1, . . . , d.

Theorem B.2. Suppose that Assumptions 3.1, 3.3, and B.1 hold and let MT = 1/BT . Then

M
−1/2
T T �T (�) − M

1/2
T 
�

D→ N (0, �2
�

)
,

where


� = Ch Cw,2

∫
�

tr
[
�(�)

(
f (�)′ ⊗ f (�)

)]
d�

and

�2
� = 2� C2

h Cw,4

∫
�

[
tr
{
�(�)

(
f (�)′ ⊗ f (�)

)(
�(−�) + �̃(�)

)′(
f (�)′ ⊗ f (�)

)}
+tr
{
�(�)

(
f (�)′ ⊗ f (�)

)(
�(�) + �̃(−�)

)(
f (�)′ ⊗ f (�)

)}]
d�.

Remark B.3. We note that the property that�(�) is a nonnegative Hermitian matrix is not required
for the proof of the result. Therefore, the theorem extends easily to statistics of the form

�T (�) =
∫
�

vec
(
f̂ (�) − f (�)

)′ �(�) vec
(
f̂ (�) − f (�)

)
d�

=
∫
�

vec
(
f̂ (�) − f (�)

)∗ [
Kdd�(�)

]
vec
(
f̂ (�) − f (�)

)
d�,
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where the corresponding mean 
� and variance �2
� are obtained by replacing �(�) and �̃(�) by

Kdd�(�) and Kdd �̃(�) = �(�)Kdd , respectively.

Proof of Theorem B.2. In Lemmas B.4, B.5, and B.7 we prove the convergence of the cu-
mulants of first, second, and higher order of �T to the corresponding cumulants of the limit
distribution. �

Lemma B.4. Suppose that the assumptions of Theorem B.2 hold. Then we have for the mean
of �T (�)

E
(
�T (�)

) = Ch Cw,2
MT

T

∫
�

tr
[
�(�)

(
f (�)′ ⊗ f (�)

)]
d� + o

(
M

1/2
T

T

)
. (B.2)

Proof. Since f (�) = f (�)′, we can write �T (�) as

�T (�) =
d∑

i,j,k,l=1

∫
�

�ji,kl(�)
(
f̂ij (�) − fij (�)

)(
f̂kl(�) − fkl(�)

)
d�.

From the product theorem for cumulants (cf. [5, Theorem 2.3.2]) and

E
(
f̂ij (�) − fij (�)

) = O(M−2
T ), (B.3)

it follows that

E

[∫
�

�ji,kl(�)
(
f̂ij (�) − fij (�)

)(
f̂kl(�) − fkl(�)

)
d�

]

=
∫
�

�ji,kl(�) cum{f̂ij (�), f̂kl(�)} d� + O(M−4
T )

= 1

(2�H
(T )
2 (0))2

∫
�3

�ji,kl(�) w(T )(� − �) w(T )(� − �)

× cum{d(T )
i (�) d

(T )
j (−�), d

(T )
k (�) d

(T )
l (−�)} d� d� d� + O(M−4

T ).

Applying again the product theorem, we find for the main term
1

(2�H
(T )
2 (0))2

∫
�3

�ji,kl(�) w(T )(� − �) w(T )(� − �)

×
[

cum{d(T )
i (�), d

(T )
j (−�), d

(T )
k (�), d

(T )
l (−�)}

+ cum{d(T )
i (�), d

(T )
k (�)} cum{d(T )

j (−�), d
(T )
l (−�)}

+ cum{d(T )
i (�), d

(T )
l (−�)} cum{d(T )

j (−�), d
(T )
k (�)}

]
d� d� d�. (B.4)

By Theorem 4.3.2 of Brillinger [5], we have

cum{d(T )
a1

(�1), . . . , d
(T )
ak

(�k)}
= (2�)k−1H

(T )
k (�1 + · · · + �k)fa1...ak

(�1, . . . , �k−1) + O(1) (B.5)
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uniformly in �1, . . . , �k and T. Substituting into (B.4), we find that the first term is of order
O(T −1) while the second term can be bounded by

C

T 2M2
T

∫
�3

L(MT )(� − �)2 L(MT )(� − �)2 L(T )(� + �)2 d� d� d�

� C

T M2
T

∫
�2

L(MT )(� + �)2L(MT )(� − �)2d� d� = O
(
T −1).

The last term in (B.4) can be rewritten as

2�H
(T )
4 (0)

H
(T )
2 (0)2

∫
�3

�(�, �) w(T )(�) w(T )(� − �) �(T )
2 (�) d� d� d� + O

(
T −2)

with �(�, �) = �ji,kl(�) fil(�−�) fkj (�−�). Noting that w(�) and �(�, �) are piecewise Lipschitz
continuous in �, we obtain∫

�3
|�(�, �)| |w(T )(�)w(T )(� + �) − w(T )(�)2| �(T )

2 (�) d� d� d�

�CM2
T

∫
�

|�| �(T )
2 (�) d��

CM2
T

T

∫
�

L(T )(�) d��
C M2

T log(T )

T

and ∫
�2

|�(�, �) − �(�, 0)| w(T )(�)2 d� d�� C

M2
T

∫
�

|�| L(MT )(�)4 d��C,

which, after summation over i, j, k, l, shows the convergence of the last term in (B.4) to the term
on the right side in (B.2). �

For the cumulants of second and higher order, we have

cumr

{
�T (�)

}=
d∑

a11,a12,...,ar1,ar2=1
b11,b12,...,br1,br2=1

∫
�r

r∏
j=1

�bj1aj1,aj2bj2(�j )

×cum

{
2∏

i=1

(
f̂ajibji

(�j ) − fajibji
(�j )

)
, j = 1, . . . , r

}
d�1 · · · d�r .

(B.6)

Using the product theorem for cumulants, we can write the cumulants as

∑
i.p.

n∏
l=1

cum
{(

f̂ajibji
(�j ) − fajibji

(�j )
)
, (j, i) ∈ Ql

}
, (B.7)

where the sum
∑

i.p. extends over all indecomposable partitions {Q1, . . . , Qn} (e.g., [5]) of the
table

(1, 1) (1, 2)
...

...

(r, 1) (r, 2).

(B.8)
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Suppose the partition {Q1, . . . , Qn} contains u sets, Qn−u+1, . . . , Qn say, with only one element.
Then (B.7) can be written as

∑
i.p.

n−u∏
l=1

cum
{
f̂ajibji

(�j ), (j, i) ∈ Ql

} n∏
l=n−u+1

cum
{
f̂ajl il

bjl il
(�jl

) − fajl il
bjl il

(�jl
)
}
.

Substituting (1) for f̂ , we obtain for the right-hand side in (B.6) by application of the product
theorem and (B.5)

d∑
a11,a12,...,ar1,ar2=1
b11,b12,...,br1,br2=1

∑
i.p.

∑
i.p.∗

(
2�H

(T )
2 (0)

)u−2r
∫
�3r−u

r∏
j=1

�bj1aj1,aj2bj2(�j )

×
n∏

l=n−u+1

cum
{
f̂ajl il

bjl il
(�jl

) − fajl il
bjl il

(�jl
)
} n−u∏

l=1

⎡
⎣ ∏

(j,i)∈Ql

w(T )(�j − �ji)

×
ml∏

k=1

(2�)plk−1H(T )
plk

(�̄lk) fclk,1,...,clk,plk
(�lk,1, . . . , �lk,plk−1)

×
∏

(j,i)∈Ql

d�ji

⎤
⎦ d�1 · · · d�r + lower order terms, (B.9)

where, for each partition {Q1, . . . , Qn}, the sum
∑

i.p.∗ extends over all indecomposable partitions
{Pl1, . . . , Plml

} of the tables

ajl1il1 bjl1il1
...

...

ajlql
ilql

bjlql
ilql

(B.10)

for all sets Ql = {(jl1, il1), . . . , (jlql
, ilql

)}. Furthermore, for Plk = {clk,1, . . . , clk,plk
} we have

set �lk,p = �ij and �lk,p = −�ij if clk,p = aij and clk,p = bij , respectively, and �̄lk = �lk,1 +
· · · + �lk,plk

.

Lemma B.5. Suppose that the assumptions of Theorem B.2 hold. Then

lim
T →∞

T 2

MT

var
(
�T (�)

)

= 2� C2
h Cw,4

∫
�

[
tr
{
�(�)

(
f (�)′ ⊗ f (�)

)(
�(−�) + �̃(�)

)′(
f (�)′ ⊗ f (�)

)}

+tr
{
�(�)

(
f (�)′ ⊗ f (�)

)(
�(�) + �̃(−�)

)(
f (�)′ ⊗ f (�)

)}]
d�.

Proof. We evaluate the terms for the different partitions in (B.9) separately. We start by consider-
ing Ql = {(1, l), (2, �l )} with Pl1 = {a1l , a2�l

} and Pl2 = {b1l , b2�l
} for a permutation (�1, �2)
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of (1, 2). Then the corresponding term in (B.9) is given by

(2�)2 H
(T )
4 (0)2

H
(T )
2 (0)4

∫
�6

2∏
j=1

[
�bj1aj1,aj2bj2(�j )w

(T )(�j − �j1)w
(T )(�j − �j2)

]

×
2∏

l=1

[
�(T )

2 (�1l + �2�l
)fa1la2�l

(�1l )fb2�l
b1l

(�1l )
]

d�11 · · · d�22 d�1 d�2. (B.11)

Define

�̃
(T )

4 (�) = w(T )(�1) · · · w(T )(�4) �(T )
2 (�5) �(T )

2 (�1 + �2 − �3 − �4 + �5)

and �T = ∫
�5 �̃

(T )

4 (�) d�1 · · · d�5. Then it can be shown that 2� �T /MT converges to Cw,4.

Furthermore, �(T )
4 (�) = �̃

(T )

4 (�)/�T is a Dirac sequence. Hence (B.11) converges to

2� C2
h Cw,4

MT

T 2

∫
�

�b11a11,a12b12(�) �b21a21,a22b22(−�)

×fa11a2�1
(�) fb2�1b11(�) fa12a2�2

(�) fb2�2 b12(�) d�,

where we have used that H
(T )
k (0)/T → Hk as T → ∞. For (�1, �2) = (1, 2) summation over

all indices aij and bij with i, j ∈ {1, 2} yields for this term

2� C2
h Cw,4

MT

T 2

∫
�

tr
[
�(�)

(
f (�)′ ⊗ f (�)

)
�(−�)′

(
f (�)′ ⊗ f (�)

)]
d�,

whereas for (�1, �2) = (2, 1) we obtain

2� C2
h Cw,4

MT

T 2

∫
�

tr
[
�(�)

(
f (�)′ ⊗ f (�)

)
�̃(−�)

(
f (�)′ ⊗ f (�)

)]
d�,

where �̃(�) is given by (B.1). Next, we consider for the same partition {Q1, Q2} the partitions
defined by Pl1 = {a1l , b2�l

} and Pl2 = {b1l , a2�l
}, for which the corresponding term in (B.9) is

given by

(2�)2 H
(T )
4 (0)2

H
(T )
2 (0)4

∫
�6

2∏
j=1

[
�bj1aj1,aj2bj2(�j )w

(T )(�j − �j1)w
(T )(�j − �j2)

]

×
2∏

l=1

[
�(T )

2 (�1l + �2�l
)fa1la2�l

(�1l )fb2�l
b1l

(�1l )
]
d�11 · · · d�22 d�1 d�2.

By a similar argument as above, it can be shown that this converges to

2� C2
h Cw,4

MT

T 2

∫
�

�b11a11,a12b12(�) �b21a21,a22b22(�)

×fa11b2�1
(�) fa2�1b11(�) fa12b2�2

(�) fa2�2 b12(�) d�.
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For (�1, �2) = (1, 2) this yields

2� C2
h Cw,4

MT

T 2

∫
�

tr
[
�(�)

(
f (�)′ ⊗ f (�)

)
�(�)′

(
f (�)′ ⊗ f (�)

)]
d�,

while for (�1, �2) = (2, 1) we obtain

2� C2
h Cw,4

MT

T 2

∫
�

tr
[
�(�)

(
f (�)′ ⊗ f (�)

)
�(�)

(
f (�)′ ⊗ f (�)

)]
d�.

Combining these results, we obtain the variance stated in the lemma.
To finish the proof, we need to show that for all other partitions the corresponding term in

(B.9) is of lower order. First, let Ql = {l, �l} and P11 = {a11, a2�1}, P12 = {b11, b2�1}, P21 =
{a12, b2�2}, P22 = {b12, a2�2}. By the bounds for H

(T )
k (�) and w(T )(�), the corresponding term is

dominated by

C

T 4 M4
T

∫
�4

2∏
j=1

[
L(MT )(�j − �j1)

2 L(MT )(�j − �j2)
2
]

×L(T )(�11 + �2�1)
2 L(T )(�12 − �2�2)

2 d�11 · · · d�22 d�1 d�2.

Repeated application of Lemma A.1(v) and (vi) shows that this is of order O(T −2). All remaining
partitions with u = 0 and n = 2 can be bounded similarly.

For all other partitions, we note that there is only one set Q1 with q1 > 1. Therefore with (B.3),
the terms are bounded by

C

T 4−u M4+u
T

∫
�6−u

∏
(j,i)∈Q1

L(MT )(�j − �ji)
2

m∏
k=1

L(T )(�̄1k)
∏

(j,i)∈Q1

d�ji d�1 d�2.

Since the partitions are indecomposable, the set Q1 covers all rows in table (B.8). Thus integrating
over �1 and �2 and using L(MT )(�)�M2

T , we obtain

C

T 4−u M3u−2
T

∫
�4−u

m∏
k=1

L(T )(�̄1k)
∏

(j,i)∈Q1

d�ji �
C log(T )�

T 3−u M3u−2
T

,

since the partition {P11, . . . , P1m} of table (B.10) is indecomposable. By Assumption 3.3(iii) this
is of order o(MT /T 2) which concludes the proof. �

For the result on the cumulants of higher order, we need the following lemma, which has been
proved in Eichler [24, Lemma 2].

Lemma B.6. Let {P1, . . . , Pm} be an indecomposable partition of the table

�1 −�1
...

...

�n −�n.

If m = n then for any n − 2 variables �i1 , . . . , �in−2 we obtain∫
�n−2

n∏
j=1

L(T )(�̄j ) d�i1 · · · d�in−2 �CL(T )(�in−1 ± �in )
2 log(T )n−2.
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If m < n then there exist n − 2 variables �i1 , . . . , �in−2 such that∫
�n−2

m∏
j=1

L(T )(�̄j ) d�i1 · · · d�in−2 �CT log(T )n−2.

Lemma B.7. Suppose that the assumption of Theorem B.2 hold. Then for all r �3

cumr

{
�T (�)

} = o

(
M

r/2
T

T r

)
.

Proof. From (B.9) and (B.3), it follows that | cumr{�T (�)}| is dominated by∑
i.p.

∑
i.p.∗

C

T 2r−u M2r+u
T

∫
�3k−u

r∏
j=1

L(MT )(�j − �j1)
2

r−u∏
j=1

L(MT )(�j − �j2)
2

×
n−u∏
l=1

ml∏
k=1

L(T )(�̄lk) d�11 · · · d�r1 d�12 · · · d�(r−u)2 d�1 · · · d�r . (B.12)

It suffices to show the stated rate of convergence for fixed partitions Q1, . . . , Qn and Pl1, . . . , Plml

of tables (B.8) and (B.10), respectively.
Suppose there are 
 sets Ql such that |Plk| = 2 for all k = 1, . . . , ml . Because the partition {Ql}

is indecomposable, we can select subsets Q′
l = {(jl1, il1), (jl2, il2)} ⊆ Ql for l = 1, . . . , 
 such

that Q′
1, . . . , Q

′

 together with the complement of their union, QCU say, is an indecomposable

partition of table (B.8). Similarly, for each of the sets Q
+1, . . . Qn−u, we can choose two elements
such that conditions of Lemma B.6 are satisfied. Then the L(MT )(�j − �ji)

2 for the remaining
2r − 2n + u indices in table (B.8) can be bounded by M2

T . Integrating over the corresponding
variables �ji , we thus obtain by Lemma B.6

C log(T )�
M2r−4n+u

T

T 2r−n+


∫
�r+2(n−u)

n−u∏
l=1

[
L(MT )(�jl1 − �jl1il1)

2L(MT )(�jl2 − �jl2il2)
2
]

×

∏

l=1

L(T )(�jl1il1 ± �jl2il2)
2 d�j11i11 · · · d�j(n−u)2i(n−u)2 d�1 · · · d�r

for some ��0. Integrating first over �j(
+1)1i(
+1)1 , . . . , �j(n−u)2i(s−u)2 and then over the remaining
variables �ji , we have

C log(T )�
M

2(r−n)−

T

T 2r−nMu
T

∫
�r


∏
l=1

L(MT )(�jj2 ∓ �jl1)
2 d�1 · · · d�r .

Because of the indecomposability of the chosen partition {Q′
1, . . . , Q

′

, QCU}, integration over

�1, . . . , �r yields an additional factor of order O(M
+1
T ). Thus for fixed partitions {Ql} and {Plk},

the corresponding summand in (B.12) is bounded by

C
M

r/2
T

T r

(
M2

T

T

)r−n
MT log(T )�

M
r/2+u
T

. (B.13)

If n�r , this is of order o(M
r/2
T /T r) since M2

T /T → 0. Otherwise, we have n = r + 1, which
implies that u�2. We first consider the case u = 2. Then all sets Ql contain exactly two elements,
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which implies that � = 0 as application of Lemma B.6 is not required. Consequently, the term
in (B.13) is of order o(M

r/2
T /T r) since T/M

9/2
T → 0 as T → ∞. Otherwise, if u�3, the same

conclusion follows directly from T/M5
T → 0 and log(T )�/M

1/2
T → 0. �

For the special case of quadratic functionals of the form

�T =
∫
�

∣∣tr[�(�)′
(
f̂ (�) − f (�)

)]∣∣2 d�,

where � : � → Cd×d is some matrix-valued function, we obtain the following result.

Corollary B.8. Suppose that the assumptions of Theorem B.2 hold. Then

M
−1/2
T T �T − M

1/2
T 
�

D→ N (0, �2
�

)
,

where


� = Ch Cw,2

∫
�

tr
[
�(�)′ f (�) �(�) f (�)

]
d�

and

�2
� = 2� C2

h Cw,4

∫
�

[∣∣tr{�(�)′f (�)�(�)f (�)
}∣∣2 + ∣∣tr{�(�)′f (�)�(−�)′f (�)

}∣∣2
+∣∣tr{�(�)′f (�)�(−�)f (�)

}∣∣2 + ∣∣tr{�(�)′f (�)�(�)′f (�)
}∣∣2] d�.

Proof. Note that �T can be written as

�T =
∫
�

∣∣vec
(
�(�)

)′vec
(
f̂ (�) − f (�)

)∣∣2 d� = �T (�),

where �(�) = vec
(
�(�)

)
vec
(
�(�)

)′. Thus the result follows directly from Theorem B.2 and the
relation tr(ABCD) = vec(A′)′(D′ ⊗ B)vec(C). �

Remark B.9. Since the spectral matrix satisfies f (−�) = f (�)′, it seems plausible to consider
weight functions � such that∥∥vec

(
f̂ (−�) − f (−�)

)∥∥2
�(−�)

= ∥∥vec
(
f̂ (�) − f (�)

)∥∥2
�(�)

.

This implies that �ij,kl(−�) = �ji,lk(�) and hence �̃(�) = �(−�). For such weight functions �,
the expression for the asymptotic variance �� of �T (�) in Theorem B.2 can be simplified to

2� C2
h Cw,4

∫
�

tr
{
�(�)

(
f (�)′ ⊗ f (�)

)(
�(�) + �(−�)′

)(
f (�)′ ⊗ f (�)

)}
d�.
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