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Abstract

List scheduling belongs to the classical and widely used algorithms for schedul-
ing problems, but for resource-constrained project scheduling problems most
standard priority lists do not capture enough of the problem structure, often
resulting in poor performance. We use a well-known Lagrangian relaxation to
first compute schedules which do not necessarily respect the resource constraints.
We then apply list scheduling in the order of so-called α-completion times of jobs.
Embedded into a standard subgradient optimization, our computational results
show that the schedules compare to those obtained by state-of-the-art local search
algorithms. In contrast to purely primal heuristics, however, the Lagrangian re-
laxation also provides powerful lower bounds, thus the deviation between lower
and upper bounds can be drastically reduced by this approach.

1 Introduction

Resource-constrained project scheduling. Within resource-constrained project
scheduling, jobs have to be scheduled subject to both temporal and resource constraints
in order to minimize a given objective function. Temporal constraints are given by
precedence relations between pairs of jobs indicating that the start of a job must not
occur before the completion of its predecessors. While in process, every job requires
a certain amount of renewable resources (e.g., machines and/or personnel), and the
availability of these resources is limited. A schedule is called time- (resource-) feasible if
it respects the temporal (resource) constraints. The objective addressed in this abstract
is to find a time- and resource-feasible schedule minimizing the project makespan, which
is the time required to complete all jobs. (PS|prec|Cmax in the notation of [2].)
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From a Lagrangian relaxation to a series of infeasible schedules. In order to
compute lower bounds on the optimal objective value for resource-constrained project
scheduling problems, Christofides et al. [3] proposed a Lagrangian relaxation where
resource constraints are dualized, and the corresponding Lagrangian multiplier problem
is solved by subgradient optimization. It has recently been shown by Möhring et al. [9]
that each subproblem which has to be solved within the subgradient optimization is
equivalent to a minimum-cut problem in a simple auxiliary graph, and can thus be
solved efficiently. What is important for the thread of the present paper is that in each
iteration of the subgradient optimization procedure, a time-feasible but not necessarily
resource-feasible schedule is computed. Moreover, during its course the subgradient
optimization tends to reduce these resource infeasibilities. The intuition behind our
approach is to exploit the series of these resource-infeasible schedules in order to obtain
priority lists which capture a fair amount of the problem structure.

2 From infeasible to feasible schedules

List scheduling. In the literature, two list scheduling algorithms are distinguished,
the parallel and the serial scheme. In both cases a priority list L of the jobs is given
which determines the order in which the jobs are considered. A job is usually called
available at a time t if all its predecessors have already been completed by t.

• Parallel List Scheduling proceeds over time (starting at time t = 0). At any
time t, as many available jobs as possible are scheduled according to the order
given by L. If no more job can be scheduled at time t, t is augmented to the next
completion time of a job.

• Serial List Scheduling proceeds job by job. In the order given by L, each job
is scheduled as early as possible with respect to the jobs scheduled so far. To
make sure that each job is available at the time it is considered, the priority list
has to be compatible with the precedence constraints.

List scheduling by α-completion times. One possible way of computing a feasible
schedule on the basis of a resource-infeasible one is to apply list scheduling in order
of non-decreasing start times of jobs. However, motivated by several approximation
results in machine scheduling which make use of so-called α-points of jobs [10, 5, 4],
this approach can be refined as follows. Let a time-feasible but resource-infeasible
schedule S = (S1 . . . , Sn) be given, where n is the number of jobs and Sj denotes the
start time of job j. Then, for 0 ≤ α ≤ 1, let Sj + α pj be the α-completion time of job
j, where pj denotes the processing time of job j. For a given α (and a given schedule
S), the ordering according to non-decreasing α-completion times of the jobs can now
be used as a priority list for parallel or serial list scheduling. Note that, since the
original schedule S was time-feasible, the ordering is compatible with the precedence
constraints for all values of α. It is not difficult to see that the number of different
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priority lists one can obtain using different values of α is not more than n · m, where
n is the number of jobs and m is the maximum number of jobs processed in parallel in
schedule S. We call these values of α representative.

The algorithm. In each iteration of the subgradient optimization algorithm, a time-
feasible schedule is computed (by solving a minimum cut problem; see [9]). Using the
priority lists obtained as orderings according to α-completion times for all representa-
tive values of α, we apply both parallel and serial list scheduling. As a folklore trick,
we also apply parallel list scheduling backwards, i.e., we schedule the jobs in decreasing
time according to the reverse order of α-completion times. We finally output the best
schedule found.

3 Computational results

Test set. We have conducted experiments using the well known ProGen test set [8],
consisting of instances with 60, 90, and 120 jobs (480, 480, and 600 instances, respec-
tively). In order to exclude “trivial” instances, we first computed feasible schedules
using a set of 10 standard priority lists from the literature (see, e.g., [7]). We consid-
ered only those instances where the minimal makespan obtained with these priority
lists was above the critical path lower bound. The maximal number of iterations in the
subgradient optimization was set to 50, which means that we have evaluated maximally
50 infeasible schedules per instance. The number of representative values of α (i.e., the
number of different priority lists) for each of these schedules was roughly n/4.

Results. The first two columns of Table 1 show the number of jobs per instance
(jobs), and the number of instances we considered (inst.). The next columns display
the average and maximum computation times per instance in seconds (CPU), and
the average number of iterations in the subgradient optimization (it.). Note that
the computation time refers to the whole subgradient optimization procedure. We
further display the average deviations of the obtained solutions from the critical path
lower bound (dv.LBcp), the lower bound obtained with the Lagrangian relaxation
(dv.LBlg), and the best known solutions (dv.UBbest). The latter are maintained in
[1], and have been obtained by different, partly time-intensive algorithms including
branch-and-bound as well as various local search procedures. Finally, we display the
number of instances that have been solved optimally with our procedure by computing
matching lower and upper bounds (opt.), as well as the number of instances where a
solution was found which matches the currently best known solution (best).

Conclusions. The quality of the solutions we obtain by using Lagrangian relaxation,
resource-infeasible schedules and list scheduling according to α-completion times com-
pares to the most powerful heuristic algorithms that have been recently summarized
in [7] and [6]. The solutions, particularly the quality of the lower bounds, can be fur-
ther improved by allowing more iterations within the subgradient optimization, clearly
at the expense of higher computation times. Most important, however, is that the
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jobs inst. av. CPU mx.CPU it. dv.LBcp dv.LBlg dv.UBbest opt. best
60 266 5.8 18.4 39 22.6 % 12.1 % 2.2 % 88 129
90 253 14.0 39.5 39 22.7 % 11.5 % 2.3 % 102 119

120 563 33.7 147.2 42 38.9 % 16.3 % 3.1 % 107 134

Table 1: Results obtained on a Sun Ultrasparc with 200 MHz clock-pulse. The code
was compiled with the EGCS C++ compiler v. 1.1.2 running under Solaris.

approach provides powerful lower and upper bounds at the same time. Compared to
purely primal heuristics which rely on the critical path lower bound only, the deviation
between lower and upper bounds can thus be drastically reduced.
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