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Abstract

This paper gives a new proof of the index formula established by [Momi, T., 2003. The index theorem
for a GEI economy when the degree of incompleteness is even. Journal of Mathematical Economics 39,
273–297] for an economy with incomplete asset markets where the difference between the number of states
(S) and the number of assets (J) is an even number. The proof uses a single globally defined homotopy
function on the asset pseudo-equilibrium manifold connecting the excess demand of a given economy to the
individual excess demand of the unconstrained agent. We show that the asset pseudo-equilibrium manifold is
orientable if the number S − J is even and deduce the index formula from the homotopy invariance theorem
for the degree of a map.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The index theorem was first introduced into economics by Dierker (1972). The theorem states
that the indices of the individual equilibria in a regular Arrow–Debreu economy add up to +1.
Recently Momi (2003) has proved the index formula for asset market economies where the
difference between the number of states (S) and the number of available assets (J) is an even
number.
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The essential difficulty involved in the proof of the index formula for incomplete markets is
the discontinuity of the excess demand function, caused by changes in the rank of the asset return
matrix, as prices vary. While for the Arrow–Debreu economy the index formula is implied by
the fact that the aggregate excess demand function is homotopic to the individual excess demand
function of a single agent via a proper homotopy map, Momi (2003) has to rely on the system of
switching homotopies introduced by Brown et al. (1996) and on the system of local homotopy
functions of Demarzo and Eaves (1996).

This paper presents a new proof of the result by Momi (2003). We introduce a single globally
defined homotopy function between the excess demand of a given economy and the excess demand
of an unconstrained agent. The domain of the homotopy function is the so-called asset pseudo-
equilibrium manifold as introduced in Zhou (1997). Assuming that the number S − J is even, we
prove the asset pseudo-equilibrium manifold to be orientable and derive the index formula from
the homotopy-invariance property of the degree of a map.

The rest of the paper is organized as follows. In Section 2 the economy with incomplete asset
markets is presented. In Section 3 the index formula is stated and some motivation for the new
proof of this result is provided. Section 4 discusses the mathematical concepts used in the proof of
the index formula. In Section 5 we show the asset pseudo-equilibrium manifold to be an orientable
manifold, provided that the number S − J is even. Section 6 completes the proof of the index
formula.

2. The economy

We consider two-period economies with uncertainty represented by a finite set {1, . . . , S} of
states of nature. There are L goods in period 0 and L goods in each state of nature in period 1. The
total number of time and state-contingent commodities in the economy is therefore M = (S + 1)L.
There are I agents in the economy, agent i characterized by a utility function ui : R

M++ → R and a
vector of initial endowments ei ∈ R

M++. In addition, there are J assets in the economy characterized

by an (SL × J)-dimensional matrix A of payoffs. The entry a
j
sl of the matrix A specifies the amount

of commodity l paid by asset j in the state of nature s.
We impose the following assumptions.

(A1). Functions ui are twice continuously differentiable.

(A2). For each xi ∈ R
M++ the vector dui(xi) of partial derivatives of ui at xi belongs to R

M++.

(A3). For each x̄i ∈ R
M++ the closure of the set {xi ∈ R

M++|ui(xi) ≥ ui(x̄i)} is contained in R
M++.

(A4). If xi ∈ R
M++ and h ∈ R

M\{0} are such that dui(xi)h = 0 then
h�d2ui(xi)h < 0.

Assumptions (A1)–(A4) are standard in the theory of incomplete markets. In particular, this
set of assumptions is employed in Duffie and Shafer (1985) to demonstrate generic existence of
GEI-equilibrium.

We introduce some notation. Given natural numbers N and K we write M(N, K) to denote the
set of all (N × K)-dimensional matrices. The symbol Mj(N, K) denotes the subset of (N × K)-
matrices having rank j. ForD ∈ M(N, K) we write spanD to denote the linear space spanned by the
columns of D and Dk to denote the kth column of the matrix D. Given two M-dimensional vectors
p = (psl) and z = (psl) where s = 0, 1, . . . , S and l = 1, . . . , L, the symbol p�z denotes an S-
dimensional vector with components

∑L
l=1 pslzsl for s = 1, . . . , S. Given a matrix A ∈ M(SL, J)
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of asset payoffs and a vector p ∈ R
M of prices we write VA(p) to denote the (S × J)-matrix of

asset payoffs in units of account. That is, V
j
A(p) = p�Aj for all j = 1, . . . , J . Given a vector

z ∈ R
M we write ż to denote an [M − 1]-vector obtained from z by deleting the last component,

corresponding to the commodity L in state S. Finally, we let Y = R
M−1.

We parameterize the economies by the initial allocation e = (e1, . . . , eI ) and the matrix of asset
returns A. The space of economies can therefore be identified with the set Ω = R

MI++ × M(SL, J).

3. The index formula

We proceed by defining the excess demand function of an economy ω = (e, A) ∈ Ω. We rely
on the formulation of the excess demand function corresponding to the concept of no-arbitrage
equilibrium and use Cass trick to ensure the properness of the excess demand functions. Let P be
the set of prices p ∈ R

M++ such that pM = 1. Given a vector p ∈ P and a linear subspace L of R
S

define the individual excess demand functions as

z1
ω(p) = arg max

{
u1(e1 + z1)|pz1 = 0

}
zi
ω(p, L) = arg max

{
ui(ei + zi)

∣∣∣∣∣ pzi = 0

p�zi ∈ L

}
,

where 2 ≤ i ≤ I. The aggregate excess demand at prices p is given by the vector

zω(p) = z1
ω(p) +

I∑
i=2

zi
ω(p, spanVA(p)).

The set

E(ω) = {p ∈ P |zω(p) = 0}
is the set of no-arbitrage equilibrium prices of the economy ω.

It is well-known that the excess demand function zω may be discontinuous at prices p where
the rank of the matrix VA(p) is less than J . Whenever p is such that the matrix VA(p) has full
column rank J , however, the function zω can be shown to be continuous, and, under the maintained
assumptions, continuously differentiable at point p. Theorem 1 below is a well-known result. We
therefore state the theorem without a proof.

Theorem 1. There exists a subset Ω∗ of the set Ω with a complement of Lebesgue measure zero
such that for each ω = (e, A) ∈ Ω∗ the set E(ω) is finite and for each p ∈ E(ω) the matrix VA(p)
has rank J. It follows that the function zω is continuously differentiable around each of its zeros.

Given an economy ω ∈ Ω∗ we define the index of the equilibrium p ∈ E(ω) as

indexω(p) = sign det

[
−∂zωm(p)

∂pm′

]
,

where m and m′ vary within the index set {1, . . . , M − 1}. The index theorem as stated below is
due to Momi (2003).

Theorem 2 (The index theorem). Suppose that S > J and that the number S − J is even. Then
for each ω ∈ Ω∗ the index formula holds:∑

p∈E(ω)

indexω(p) = 1.
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The index formula can be restated as saying that the degree of the function żω at 0 ∈ Y equals
+1 or −1 according to whether the number M is odd or even.

The major difficulty involved in the proof of Theorem 2 is the discontinuity of the excess
demand. The “naive” approach to the proof of Theorem 2 would be to restrict the domain of żω to
prices p such that the matrix VA(p) has rank J , and to connect it to the individual excess demand
of agent 1 via a straight-line homotopy. The problem with this approach is that the zero set of
the naive homotopy is not, in general, a compact set as it hits the set of prices where the matrix
VA(p) has rank less than J . As is argued in Brown et al. (1996), the compactness property cannot
be restored by perturbing the parameters of the economy.

The original proof of Momi (2003) relies on the system of switching homotopies constructed
in Brown et al. (1996) and on the system of local homotopy functions introduced in Demarzo and
Eaves (1996). The author shows that passing through a point of discontinuity does not affect the
index of the homotopy, provided that the number S − J is even.

This paper presents a different approach to the proof of Theorem 2. As a domain of func-
tions zi

ω, we consider the combinations of prices p and J-dimensional linear subspaces L

of R
S such that the columns of the return matrix VA(p) span a subspace of L. This set of

prices and linear spaces is known as the asset pseudo-equilibrium manifold, see Zhou (1997).
We show asset pseudo-equilibrium manifold to be an orientable manifold, provided that the
number S − J is even. Furthermore, the excess demand function of a given economy is con-
tinuous everywhere on the asset pseudo-equilibrium manifold and it is connected to the in-
dividual excess demand function of the unconstrained agent by a proper homotopy. We are
thus able to derive Theorem 2 from the homotopy-invariance theorem for the degree of a
map.

4. Oriented manifolds and the degree of a map

Oriented manifolds and the degree of a map are the key tools used in the proof of Theorem 2.
For a comprehensive discussion of these concepts we refer to Dold (1980) and Hirsch (1976).

An n-dimensional manifold is a Hausdorff space X which has an open cover {Uα} such that for
each α there exists a homeomorphism ϕα : Uα → R

n. The pair (Uα, ϕα) is called a chart on X,
and the collection A = {(Uα, ϕα)} of all such charts is called an atlas on X. If for any pair of charts
(Uβ, ϕβ) and (Uα, ϕα) the transition map ϕβ ◦ ϕ−1

α : ϕα(Uα

⋂
Uβ) → ϕβ(Uα

⋂
Uβ) is smooth, the

atlas A is called smooth. If all these transition maps preserve orientation, then the atlas is called
oriented. The manifold X is called smooth if it has a smooth atlas. It is called orientable if it has
an oriented atlas. An orientable manifold together with an oriented atlas is called an oriented
manifold.

Theorem 3 (The preimage theorem). Let X be a smooth n-dimensional manifold and f : X → R
m

be a smooth function. Suppose that zero is a regular value of f. Then f−1(0) is an [n − m]-
dimensional manifold. If X is orientable, so is f−1(0).

Let C be the set of tuples (X, Y, f, y), where X and Y are oriented manifolds of the same
dimension, f : X → Y is a continuous map, y is a point of Y, and the set f−1(y) is compact. Any
tuple (X, Y, f, y) in C is said to be suitable for the degree theory.

Theorem 4 (The degree theorem). There exists a map deg from the set C to the integers, called
the degree theory, satisfying the axioms (P1)–(P7) below.
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(P1). If (Y, Y, f, y) ∈ C and f is the identity map, then deg(Y, Y, f, y) = 1.

(P2). Let (X, Y, f, y) ∈ C, let U be an open set of X containing f−1(y), and let V be an open set
of Y containing f (U). Then deg(X, Y, f, y) = deg(U, V, f |U, y).

(P3). Let (X, Y, f, y) ∈ C and letU be a finite partition of X into open sets such that (U, Y, f |U, y) ∈
C for each U ∈ U. Then deg(X, Y, f, y) = ∑

U∈U deg(U, Y, f |U, y).

(P4). Let (X, Y, f, y) and (X, Y, g, y) be elements of C. Suppose that there exists a homo-
topy function H : X × [0, 1] → Y between f and g such that H−1(y) is a compact set. Then
deg(X, Y, f, y) = deg(X, Y, g, y).

(P5). Let (X, Y, f, y) ∈ C. Suppose K is a compact connected subset of Y containing y and f−1(K)
is a compact set. Then deg(X, Y, f, y) = deg(X, Y, f, ȳ) for all ȳ ∈ K.

(P6). Let (X, Y, f, y) and (Y, Z, g, z) be the elements of C. Suppose that Y is a connected space,
and that f is a proper function. Then deg(X, Z, g ◦ f, z) = deg(Y, Z, g, z) × deg(X, Y, f, y).

(P7). If (X, Y, f, y) ∈ C and deg(X, Y, f, y) 	= 0, then the set f−1(y) is non-empty.

Properties (P1)–(P7) imply that for X an open subset of R
n, for Y = R

n and a continuously
differentiable map f : X → Y , the degree of f at a regular value y can be computed as

deg(X, Y, f, y) =
∑

x∈f−1(y)

sign det[df (x)],

if the set f−1(y) is non-empty, and deg(X, Y, f, y) = 0 otherwise.

5. The domain of the homotopy

Let GJ (RS) be the set of all J-dimensional linear subspaces of R
S . One introduces an identifi-

cation topology on GJ (RS) by considering it a quotient space of MJ (S × J) where matrices B and
B′ are equivalent if spanB = spanB′. Then GJ (RS) is a compact topological space. Following
Zhou (1997) we define an asset pseudo-equilibrium manifold of an economy ω = (e, A) ∈ Ω as

Xω =
{

(p, L) ∈ P × GJ (RS)|spanVA(p) ⊂ L
}

.

The space Xω is the domain of our homotopy function connecting the aggregate excess demand
of the economy ω to the individual excess demand of the unconstrained agent. The main result of
this section is Lemma 3 that shows Xω to be an orientable manifold in the case S − J is an even
number. As a preliminary step, we consider the space Z defined as

Z =
{

(L, K) ∈ GJ (RS) × M(S, J)|spanK ⊂ L
}

.

Lemma 1. The space Z is a smooth [SJ]-dimensional manifold. If S − J is an even number then
the manifold Z is orientable.

Proof. We construct a smooth atlas A on Z and verify that A is oriented when S − J is even. Let
(Lα, Kα) be a point in Z. Let an [S × J]-dimensional matrix Bα represent a basis of the linear
space Lα, and let an [S × (S − J)]-dimensional matrix B⊥

α represent a basis of the orthogonal
complement to the linear space Lα. We can choose these matrices in such a way that the [S × S]-
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matrix [Bα, B⊥
α ] is orthogonal and its determinant is equal to +1. Let Uα be an open neighborhood

of the point (Lα, Kα) in Z defined as

Uα =
{

(L, K) ∈ Z

∣∣∣∣∣ det(B�
α B) 	= 0 for each matrix

B ∈ M(S, J) representing a basis of L

}
.

Define the map φα : M(S − J, J) × M(J, J) → Uα as follows. Given (E, Q) ∈ M(S − J, J) ×
M(J, J) let an [S × J]-dimensional matrix BEα be given by BEα = B⊥

α E + Bα. We let
φα(E, Q) = (L, K) where

L = span[BEα]

K = [BEα]Q.

Observe that the matrix BEα has rank J , so its columns span a J-dimensional linear subspace of
R

S . Moreover, B�
α BEα is the identity matrix. Hence, the point φα(E, Q) is indeed an element of

the set Uα.
Define the map ϕα : Uα → M(S − J, J) × M(J, J) as follows. Given (L, K) ∈ Uα let

ϕα(L, K) = (E, Q) where

E = B⊥�
α B[B�

α B]−1

Q = B�
α B[B�B]−1B�K,

and B is an [S × J]-dimensional matrix representing a basis of the linear space L. Observe that
ϕα is well-defined: the value for ϕα(L, K) depends only on the linear space L and matrix K and
not on the particular choice of the basis for L.

It is straightforward to check that φα is the inverse of ϕα. Since both ϕα and φα are continuous,
one concludes that ϕα is a homeomorphism, and that the pair (Uα, ϕα) is a chart on Z. Let the
atlas A on Z consist of all such charts.

Choose a pair of charts, say (Uα, ϕα) and (Uβ, ϕβ), from the atlas A and consider the transition
map t = ϕβ ◦ ϕ−1

α : ϕα(Uα

⋂
Uβ) → ϕβ(Uα

⋂
Uβ). Given (E, Q) in the domain of t, we can write

t(E, Q) = (t1(E), t2(E, Q)) where

t1(E) = B⊥�
β BEα[B�

β BEα]−1

t2(E, Q) = [B�
β BEα]Q.

The transition map t is clearly a smooth map. This proves that Z is a smooth [SJ]-dimensional
manifold.

Next we demonstrate that, when S − J is an even number, the transition map t is an orientation-
preserving diffeomorphism. We compute the Jacobian matrix of t and prove its determinant to be
positive. For the purpose of differentiation we identify all the involved matrices with the vectors
of the Euclidean space by means of a vectorization operator. With this convention, the Jacobian
matrix of t at point (E, Q) can be written as

dt(E, Q) =
[

dEt1(E) 0

dEt2(E, Q) dQt2(E, Q)

]
.

To compute the upper-left block of dt(E, Q), we notice that the map t1 is implicitly defined by

the equation
[
t1B

�
β − B⊥�

β

]
BEα = 0. The Implicit Function Theorem applies to show that

dEt1(E) = −[(B�
EαBβ) ⊗ IS−J ]−1[IJ ⊗ (t1(E)B�

β − B⊥�
β )B⊥

α ],
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where the symbol ⊗ denotes the Kronecker product and IJ is the J-dimensional identity matrix.
Using the assumption that the matrix [Bβ, B⊥

β ] is orthogonal and that its determinant is +1, one
shows the equality

det dEt1(E) = det[B�
β BEα]−S.

The computation of the lower-right block of dt(E, Q) is trivial, for t2 depends linearly on Q. We
have

det dQt2(E, Q) = det[B�
β BEα]J .

Finally, the determinant of dt(E, Q) is given by the product of the determinants of its upper-left
and lower-right blocks. It is clearly positive, if the number S − J is even. �
Lemma 2. The set Xω is closed in P × GJ (RS).

Proof. Let q : MJ (S, J) → GJ (RS) be a quotient map, and let 1P be the identity map on P .
Since P is a locally compact Hausdorff space, the Cartesian product 1P × q : P × MJ (S, J) →
P × GJ (RS) is a quotient map, see Munkres (1984), p. 113, Theorem 20.1. The full preimage of
Xω under the map 1P × q is given by

{(p, B) ∈ P × MJ (S, J)|spanVA(p) ⊂ spanB},
a closed subset of P × MJ (S, J). The result follows. �

In the sequel we shall abbreviate the phrase “there exists a subset Ω∗ of Ω with a complement
of Lebesgue measure zero such that for each ω ∈ Ω∗ property P holds” to a phrase “for generic
ω, property P holds”. With this convention, our next result is as follows.

Lemma 3. For generic ω, the space Xω is an [M − 1]-dimensional smooth manifold. If S − J

is an even number then the manifold Xω is orientable.

Proof. Consider a smooth function

Ω × P × Z
f→M(S, J)

(e, A, p, L, K) → VA(p) − K.

To see that the function f is a submersion, write VA(p) = QA where Q is an [S × SL]-dimensional
matrix given by

Q =

⎡
⎢⎢⎢⎢⎣

p11 · · · p1L 0 · · · 0 · · · 0 · · · 0

0 · · · 0 p21 · · · p2L · · · 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · 0 · · · pS1 · · · pSL

⎤
⎥⎥⎥⎥⎦ .

Identifying all involved matrices with the vectors of the Euclidean space by means of a vector-
ization operator, we can write the derivative of f with respect to A as IJ ⊗ Q. Here the symbol ⊗
denotes the Kronecker product. Since the matrix Q has full row rank S, the matrix IJ ⊗ Q has
full row rank SJ.

The Transversality theorem applies to show that for generic ω = (e, A), zero is a regular value
of the function fω, where fω is the restriction of f to the set {ω} × P × Z. By the preimage
theorem, f−1

ω (0) is a smooth submanifold of P × Z with codimension SJ. If the manifold Z is
orientable, so is the manifold f−1

ω (0). Now observe that the space f−1
ω (0) is homeomorphic to
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Xω. Given a smooth (oriented) atlas on f−1
ω (0), this homeomorphism induces a smooth (oriented)

atlas on the space Xω, in a natural way. �
Given an economy ω = (e, A) ∈ Ω define

P∗
ω = {p ∈ P |rank VA(p) = J} and Xω

∗ = Xω ∩ (P∗
ω × GJ (RS)).

In the rest of this section we prove that P∗
ω is a path-connected space. To do so, we first establish

an auxiliary Lemma 4.

Lemma 4. Let C1, . . . , Cm be smooth submanifolds of R
n each having a codimension greater

than one. Then R
n\ ⋃m

i=1 Ci is a path-connected set.

Proof. Let x and x′ be any points in R
n\ ⋃m

i=1 Ci. Consider a family of curves cy in R
n param-

eterized by y ∈ R
n connecting points x and x′, cy(t) = (1 − t)x + tx′ + (1 − t)ty. The function

(t, y) → cy(t) is transversal to each manifold Ci. By Transversality theorem there exists some
ȳ ∈ R

n such that cȳ is transversal to Ci for all i = 1, . . . , m. Since the codimension of Ci is
greater than one, the intersection of cȳ([0, 1]) with Ci must be empty. Thus, the curve cȳ is
entirely contained in the set R

n\ ⋃m
i=1 Ci. �

Lemma 5. Suppose that S > J . Then for generic ω, P∗
ω is a path-connected space.

Proof. Notice that P∗
ω = P\ ⋃J−1

j=0 P
j
ω, where P

j
ω = {p ∈ P | rankVA(p) = j}. By the preceding

lemma, it is sufficient to demonstrate that each P
j
ω is a smooth submanifold of P with codimension

greater than one.
The set Mj(S × J) of (S × J)-dimensional matrices having rank j is a smooth manifold with

codimension (S − j)(J − j) in M(S, J), see Jongen et al. (2000), p. 310. By a similar argument
as that in the proof of Lemma 3, the function

Ω × P
g→M(S × J)

(e, A, p) → VA(p)

is a submersion, and is therefore transversal to each Mj(S × J). The Transversality theorem
applies to show that for generic ω = (e, A) the function gω intersects the manifolds Mj(S × J)
transversally for each j = 0, . . . , J − 1, where gω denotes the restriction of g to the set {ω} × P .
Therefore P

j
ω, being the preimage of Mj(S × J) under the function gω, is a smooth submanifold

of P with codimension (S − j)(J − j) > 1 for all j = 0, . . . , J − 1. �

6. The homotopy

Let the economy ω = (e, A) ∈ Ω be given. Lemma 6 below summarizes the relevant properties
of the individual excess demand functions zi

ω as defined in Section 3. As all five properties are
well-known, the proof is omitted. For the rest of this section we use the symbol z0

ω rather than zω

to denote the aggregate excess demand of the economy ω.

Lemma 6.

1. The function z1
ω is continuously differentiable throughout P. The function z0

ω is continuously
differentiable on P∗

ω. For each 2 ≤ i ≤ I, the function zi
ω is continuous on P × GJ (RS).

2. For each 1 ≤ i ≤ I the function zi
ω is bounded from below by −ei.

3. For each 1 ≤ i ≤ I the function zi
ω satisfies Walras’ law.
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4. The function z1
ω is proper.

5. There exists a unique price vector p ∈ P satisfying the equation z1
ω(p) = 0. Moreover,

sign det

[
∂z1

ωm(p)

∂pm′

]
= (−1)M−1,

where m and m′ vary within the index set {1, . . . , M − 1}.

Define the maps f 0
ω, f 1

ω, . . . , f I
ω : Xω → Y by letting f 1

ω(p, L) = ż1(p) for agent 1,
f i

ω(p, L) = żi(p, L) for each 2 ≤ i ≤ I and f 0
ω = f 1

ω + · · · + f I
ω. We remark that each zero of

the function f 0
ω is a pseudo-equilibrium of the economy ω as defined in Duffie and Shafer (1985).

Lemma 7. Let S − J be even. For generic ω ∈ Ω the tuples (Xω, Y, f t
ω, 0) for t = 0, 1 are suitable

for the degree theory, i.e. (Xω, Y, f t
ω, 0) ∈ C. Furthermore, deg(Xω, Y, f 0

ω, 0) = deg(Xω, Y, f 1
ω, 0).

To prove Lemma 7 we show that for each ω ∈ Ω the zero set of a straight-line homotopy map
between the functions f 0

ω and f 1
ω is a compact set (Lemma 8 below). It then follows immediately

that the zero set of each function f t
ω is a compact set. This shows that for each ω as in Lemma 3 both

tuples (Xω, Y, f t
ω, 0) for t = 0, 1 are suitable for the degree theory. The equality of the respective

degrees follows from the homotopy-invariance (P4). Recall that a straight-line homotopy between
the functions f 0

ω and f 1
ω is defined as Ht

ω = f 1
ω + t[f 2

ω + · · · + f I
ω].

Lemma 8. Let Hω : Xω × [0, 1] → Y be a straight-line homotopy map between the functions
f 0

ω and f 1
ω. Then H−1

ω (0) is a compact set.

Proof. Given an economy ω = (e, A) ∈ Ω let K be a compact subset of R
M defined as K = {z ∈

R
M | − e1 ≤ z ≤ e2 + · · · + eI}, and let C ⊂ P denote the preimage of K under the function z1

ω.
Since K is a compact set, and z1

ω is a proper function, the set C is compact.
If Hω(p, L, t) = 0, then the Walras’ law implies that z1

ω(p) + t[z2
ω(p, L) + · · · + zI

ω(p, L)] is a
zero vector of R

M . Since each zi
ω is bounded below by −ei, the vector z1

ω(p) is an element of K, and
so the price vector p is an element of C. We have thus showed that H−1

ω (0) ⊆ C × GJ (RS) × [0, 1].
Now the set H−1

ω (0) is a closed subset of Xω × [0, 1], by continuity of the function Hω. The
set Xω × [0, 1] is closed in P × GJ (RS) × [0, 1] by Lemma 2. Thus H−1

ω (0) is closed in P ×
GJ (RS) × [0, 1]. In particular, it is closed in C × GJ (RS) × [0, 1]. Since C × GJ (RS) × [0, 1]
is a compact set, H−1

ω (0) is a compact set as well. �

Lemma 9. For generic ω, the following conditions hold: For each t = 0, 1 (a) zero is a regular
value of the function żt

ω|P∗
ω, (b) the zero set of the function żt

ω is entirely contained in P∗
ω, and

(c) the zero set of the function f t
ω is entirely contained in Xω

∗.

Each part of Lemma 9 is obtained by an easy application of the Transversality theorem. In
particular, the fact that the zero set of the function ż0

ω is entirely contained in P∗
ω is a restatement

of Theorem 1. That the zero set of the function f 0
ω is contained in Xω

∗ follows from another
well-known result: every pseudo-equilibrium (p, L) of a generic economy ω = (e, A) is such that
the matrix VA(p) has rank J . For a proof of this result see, for example, Demarzo and Eaves
(1996).

Lemma 10. Let S > J and suppose that S − J is even. Then for generic ω ∈ Ω the tuples
(P∗

ω, Y, żt
ω|P∗

ω, 0) for t = 0, 1 are suitable for the degree theory and deg(P∗
ω, Y, ż0

ω|P∗
ω, 0) =

deg(P∗
ω, Y, ż1

ω|P∗
ω, 0).
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Proof. Let t = 0, 1. The tuple (P∗
ω, Y, żt

ω|P∗
ω, 0) is suitable for the degree theory because P∗

ω can
be seen as an open subset of Y, the function żt

ω is continuously differentiable throughout P∗
ω and

because zero is a regular value of żt
ω|P∗

ω.
To show an equality of the respective degrees, observe that a natural projection Xω

∗ → P∗
ω is

a homeomorphism. We let ι : P∗
ω → Xω

∗ denote its inverse. Since P∗
ω (and therefore Xω

∗) is a
connected space by Lemma 4, Property (P5) of the degree theory shows that deg(P∗

ω, Xω
∗, ι, x)

is the same for all x ∈ Xω. We let deg(ι) denote this common degree.
As Xω

∗ is an open subset of Xω that contains all zeros of the function f t
ω, Property (P2)

of the degree theory implies that deg(Xω, Y, f t
ω, 0) = deg(Xω

∗, Y, f t
ω|Xω

∗, 0). Furthermore, the
map żt

ω|P∗
ω is a composite map that equals ι followed by f t

ω|Xω
∗. Thus Property (P6) im-

plies that deg(P∗
ω, Y, żt

ω|P∗
ω, 0) = deg(Xω

∗, Y, f t
ω|Xω

∗, 0) × deg(ι). The result now follows from
Lemma 7. �

To complete the proof of the index theorem we observe that for generic ω ∈ Ω,

deg(P∗
ω, Y, ż0

ω|P∗
ω, 0) = (−1)M−1 ∑

p∈E(p) indexω(p)

deg(P∗
ω, Y, ż1

ω|P∗
ω, 0) = (−1)M−1.
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