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Abstract We consider general two-sided matching markets, so-called matching with
contracts markets as introduced by Hatfield and Milgrom (in A Econ Rev, 95(4), 913–
935, 2005), and analyze (Maskin) monotonic and Nash implementable solutions. We
show that for matching with contracts markets the stable correspondence is monotonic
and implementable. Furthermore, any solution that is Pareto efficient, individually
rational, and monotonic is a supersolution of the stable correspondence. In other words,
the stable correspondence is the minimal solution that is Pareto efficient, individually
rational, and implementable.
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394 C.-J. Haake, B. Klaus

1 Introduction

We consider a general class of two-sided (many-to-one) matching markets, so-called
matching with contracts markets (Hatfield and Milgrom 2005; Hatfield and Kojima
2008).1 The matching with contracts model contains classical marriage markets (e.g.,
Gale and Shapley 1962), college admissions markets (e.g., Roth 1985), job matching
markets (e.g., Kelso and Crawford 1982),2 and certain auction markets (e.g., Milgrom
2004). Throughout the article, without loss of generality, we model a matching market
with contracts as a medical job market consisting of two finite and disjoint sets of
agents, which we refer to as doctors and hospitals. Furthermore, there is a set of bilateral
contracts between doctors and hospitals that specify the employment conditions (e.g.,
salary, job profile, retirement plan, etc.). The agents’ strict preferences over (feasible,
legal, etc.) sets of contracts or allocations completes the description of a matching
market with contracts.

In many centralized labor markets, clearinghouses are most often successful if they
produce stable allocations (e.g., Roth 1984a, 1991; Roth and Xing 1994). Loosely
speaking, an allocation is “stable” if it is individually rational [each doctor (hospital)
finds the respective contract(s) acceptable] and satisfies no blocking [no hospital can
block the allocation by offering an alternative set of contracts that itself and all doctors
involved in the new contracts prefer]. It is well-known that for matching markets with
sufficient substitutability instabilities can be ruled out: for one-to-one and many-to-one
matching markets without money see Gale and Shapley (1962) and Roth (1985), for
many-to-one matching markets with money see Kelso and Crawford (1982), and for
many-to-many schedule matching see Alkan and Gale (2003). For matching markets
with contracts Hatfield and Milgrom (2005) prove that substitutability of hospitals’
preferences is sufficient to guarantee stability. In other words, if hospitals’ preferences
are substitutable, then the stable correspondence that assigns to each matching market
with contracts its set of stable matchings is well defined.3

In order to solve a matching problem and determine a stable allocation a central-
ized clearinghouse would need to know all agents’ preferences. An appealing strategic
property for solutions that requires that no agent can ever benefit from misrepresent-
ing his/her preferences is strategy-proofness, i.e., truth-telling is a weakly dominant
strategy for all agents. Unfortunately, there exists no strategy-proof (single-valued)
solution that always assigns stable allocations (Roth 1982). Phrased differently, sta-
ble allocations cannot be reached through weakly dominant “truth-telling equilibria,”
i.e., truth-telling is not always a weakly dominant strategy for all agents in the direct
revelation game. The next question that naturally arises is whether there is another

1 Roth (1984b) considers a more general many-to-many job-matching model with contracts.
2 Roth and Sotomayor (1990) give a comprehensive and complete survey of these and related two-sided
matching models up to 1990.
3 For many-to-one matching markets with substitutable preferences (e.g., matching with contract markets
à la Hatfield and Milgrom 2005, or the subclass of many-to-one matching markets included in the set of
many-to-many job-matching markets considered by Roth 1984b) the set of stable matchings equals the
core. For many-to-many matching markets with substitutable preferences the core may be empty and the
relation between the core, the set of stable matchings, and the set of pairwise stable matchings is more
complex (see for instance Echenique and Oviedo 2006; Klaus and Walzl 2007).
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Monotonicity and Nash implementation 395

way to obtain stable allocations through strategic interaction, a question that is at the
heart of the theory of implementation (for recent surveys see Jackson 2001; Maskin
and Sjöström 2002). A mechanism consists of a collection of strategy spaces (one for
each agent) and an outcome function, which assigns to each profile of chosen strategies
a feasible allocation. Together with agents’ preferences, which are used to evaluate
such allocations, we obtain a game in strategic form. Then, to Nash implement the
stable correspondence means that the set of allocations induced by all Nash equilibria
coincides with the set of stable allocations. Note that “payoffs” in the above games are
reached in two steps: first the outcome function determines an allocation and then each
agent evaluates the allocation using individual preferences. Thus, the mechanism can
be set up independent of agents’ (true) preferences and therefore a centralized clearing-
house would not have to have any particular information about the involved agents and
their preferences. In his seminal paper Maskin (1977, 1999) introduced a necessary,
but not sufficient, condition for Nash implementability: (Maskin) monotonicity. For
economies with at least three agents, Moore and Repullo (1990) formulated a neces-
sary and sufficient condition for Nash implementability: monotonicity in combination
with a weak no veto power requirement (see Maskin 1999).

For two-sided marriage and college admissions markets, Kara and Sönmez (1996,
1997) show that the stable correspondence is Nash implementable. Sönmez (1996)
obtains a corresponding implementability result for so-called generalized matching
markets; a class of one-sided matching problems that include marriage and roommate
markets (Gale and Shapley 1962) as well as housing markets (Shapley and Scarf 1974).
In a recent paper, Ehlers (2004) obtains positive implementation results in generalized
matching markets when agents are allowed to have weak preferences. Apart from the
Nash implementability of the stable correspondence, all mentioned articles discuss
stability in relation to monotonicity, Pareto efficiency, and individual rationality.

In the present article, we focus on Nash implementability of the stable correspon-
dence in matching markets with contracts. The stable correspondence is monotonic
(Theorem 1). Moreover, any Pareto efficient, individual rational, and monotonic
solution is a supersolution of the stable correspondence (Theorem 2). The latter result
implies that the stable correspondence is the smallest possible monotonic solution
(Corollary 1), which implies that by Maskin’s fundamental result it is impossible to
implement any subcorrespondence (e.g., single-valued) of the stable correspondence.
Finally, by verifying Moore and Repullo’s (1990) “condition µ” we prove that the
stable correspondence is Nash implementable in matching markets with contracts
with more than two agents (Theorem 3). Theorem 4 complements Theorem 3 by
showing that the implementation of stable two agent contracts (the two agent case) is
not possible. Finally, apart from obtaining various monotonicity and implementation
results concerning the stable correspondence in matching with contracts markets, we
also provide an alternative proof technique for the Nash implementability result. To
be more precise, all previous papers that demonstrate implementability of the stable
correspondence in various matching models (Kara and Sönmez 1996, 1997; Sönmez
1996; Ehlers 2004) use Yamato’s (1992) “essential monotonicity” of the stable cor-
respondence. We apply Moore and Repullo’s (1990) implementability condition and
show that alternatively monotonicity and a particular no veto power property of the
stable correspondence assures its implementability (see Sect. 4 for further details). In
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396 C.-J. Haake, B. Klaus

addition, we prove that Kara and Sönmez’s (1997) results for many-to-one matching
markets with responsive preferences still hold on the larger domain of substitutable
preferences (a domain of which it is known that various results concerning stable
matchings that hold for many-to-one matching markets with responsive preferences
do not hold; see for instance Martínez et al. 1991).

2 Matching markets with contracts and stability

2.1 Doctors, hospitals, and contracts

We consider a model, in which doctors are matched to hospitals. Let D denote the
finite set of doctors, H the finite set of hospitals, and N = D ∪ H the set of all agents.
By d we denote a generic doctor, by h a generic hospital, and by i, j generic agents.

To model the typical feature of a job-matching market, we assume that each doctor
can be matched to at most one hospital, whereas each hospital may be matched to
several doctors. A (bilateral) contract specifies a match between one doctor and one
hospital and further terms of employment such as, for instance, salary, working time
and schedule, social benefits, or a combination of these and additional contract terms.
Formally, the set of contracts is described by a finite set X together with a mapping
µ = (µD, µH ) : X −→ D × H that specifies the bilateral structure of each contract.
So, for any contract x ∈ X , µ(x) = (d, h) means that contract x is established
between doctor d and hospital h. Note that for two contracts x, x ′ ∈ X, x �= x ′, with
µ(x) = µ(x ′), x and x ′ specify different terms of employment for the same doctor in
the same hospital.

If all hospitals offer the same set of employment specifications K to all doctors, then
the set of contracts X can be represented as a Cartesian product X = D × H × K with
µ being the projection on D × H . An example of such an employment specification K
would be a salary scale that by law has to be employed by all hospitals. However, note
that hospitals may not necessarily use the same employment specification: a public
hospital may not be able to offer the same salaries and social benefits as a private clinic,
but on the other hand it may offer employment in fields of specialization that cannot
be offered by a private clinic. Furthermore, not all hospitals need to offer the same
employment specifications to all doctors, for instance because hospitals condition their
employment specifications on the doctors’ qualifications. Also, we do not assume that
µ is surjective. Thus, a doctor d might not have any contract with some hospital h,
for instance, because his field of specialization does not qualify him for any position
offered by h. For each doctor it is always possible to reject any contract, that is to
stay unemployed. We denote such a null contract by ∅. For each hospital it is always
possible to reject any set of contracts, that is to keep positions vacant. We refer to the
specific situation in which a hospital does not employ any doctors as a null contract,
denoted by ∅.

2.2 Doctors’ and hospitals’ preferences

For d ∈ D let Xd := µ−1
D (d) be the set of contracts in which doctor d is matched to

some hospital, i.e., which are feasible for doctor d. Each doctor d ∈ D has a preference
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relation Rd over feasible contracts, which is a total order over Xd ∪{∅}.4 Alternatively,
we interpret doctor d’s preferences over Xd ∪ {∅} as preferences over doctor d’s sets
of feasible contracts Xd := {{x} | x ∈ Xd ∪ {∅}}.

Recall that ∅ can either describe the null contract or the empty set. Hence, the
feasible contract set Xd = {∅} contains one feasible contract while the feasible contract
set Xd = ∅ is empty. We will simplify notation by allowing for the notation “∅” even
though we mean “{∅}”—since the null contract is always available to any agent no
confusion should arise.

For h ∈ H let Xh := µ−1
H (h) be the set of contracts in which hospital h is matched

to some doctor. No hospital h is allowed to have more than one contract with a doctor
at the same time. Therefore, we define the sets of feasible contracts for hospital h by
Xh := {

X ′ ⊆ Xh | for all d ∈ D, |X ′ ∩ Xd | ≤ 1
}
. Note that X ′ ∈ Xh implies for all

Y ′ ⊆ X ′, Y ′ ∈ Xh . Each hospital h ∈ H has a preference relation Rh over sets of
feasible contracts, which is a total order over Xh .

To summarize, any agent i’s preference relation can be represented by a total order
Ri over Xi . By Pi we denote the asymmetric part of Ri . Hence, given a, b ∈ Xi ,
a Pi b means that a is strictly preferred to b, i.e., a Ri b and a �= b. Furthermore,
a Ri b means that a is weakly preferred to b, i.e., a Pi b or a = b. We denote the set
of all possible total orders for agent i by Ri . Since preference relation Ri ∈ Ri is a
total order, it induces a well-defined choice correspondence Ci : 2X 
⇒ Xi ∪ {∅}
that assigns to each set of contracts X ′ ⊆ X agent i’s most preferred feasible set
of contracts available for it in X ′ ∪ {∅}, i.e., Ci (X ′) ⊆ Xi , Ci (X ′) ∈ Xi , and for
all Y ⊆ Xi , Y ∈ Xi , Ci (X ′) Ri Y . Since Cd(X ′) is single-valued, we alternatively
identify the set Cd(X ′) with its unique element. We write CD(X ′) := ⋃

d∈D Cd(X ′)
and CH (X ′) := ⋃

h∈H Ch(X ′).
Finally, we note that various well-known two-sided matching markets can be mod-

eled as matching with contracts markets by a suitable definition of contracts and prefer-
ences. This includes one-to-one and many-to-one matching markets (Gale and Shapley
1962), job matching markets with a discrete wage schedule (Kelso and Crawford 1982)
or auction markets (e.g., Milgrom 2004). We refer the reader to Haake and Klaus (2008,
Appendix A).

2.3 Matching markets with contracts, allocations, and solutions

Since the set of contracts X and the set of agents N remain fixed throughout this
study, we can denote a matching market (with contracts) by a preference profile R =
(Ri )i∈N ∈ ∏

i∈N Ri . We denote the set of all preference profiles by R = ∏
i∈N Ri .

If not otherwise specified, we denote the associated profile of choice correspondences
for R ∈ R by (Ci )i∈N .

For any subset of contracts Y ⊆ X , let Yi := (Y ∩ Xi ) denote the set of real
contracts available for agent i in Y . If Yi = ∅, then only the null contract is available.

4 A total order over a set M is a binary relation R that satisfies antisymmetry (for all a, b ∈ M , if a R b
and b R a, then a = b), transitivity (for all a, b, c ∈ M , if a R b and b R c, then a R c), and comparability
(for all a, b ∈ M , a R b or b R a).
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398 C.-J. Haake, B. Klaus

An allocation is a set A ⊆ X of contracts such that for all agents all sets of contracts
available in A are feasible, i.e., for all agents i ∈ N , Ai ∈ Xi . In particular, Ad ∈ Ad

implies that at allocation A, there is exactly one contract per doctor (possibly the null
contract). Since contracts are bilateral, A = ⋃

d∈D Ad = ⋃
h∈H Ah . We denote the set

of allocations by A. Clearly, all preference relations Ri induce weak preferences over
allocations in a natural way. We use the same notation for preferences over feasible
contracts/contract sets and allocations: for all agents i ∈ N and allocations A, A′ ∈ A,
A Ri A′ if and only if Ai Ri A′

i .
A solutionϕ is a correspondenceϕ : R 
⇒ A that assigns to each matching market

R a set of allocations ϕ(R). Next we discuss two basic properties for solutions: Pareto
efficiency and individual rationality.

An allocation A ∈ A is Pareto efficient for matching market R ∈ R if there is no
other allocation A′ ∈ A such that for all i ∈ N , A′ Ri A and for some j ∈ N , A′ Pj A.
A solution ϕ is Pareto efficient if it only assigns sets of Pareto efficient allocations.

Since all contracts are based on voluntary participation, at any allocation A ∈ A
each agent i who is assigned a set of real contracts Ai �= ∅ can reject some or all
contracts in Ai . Thus, an allocation A ∈ A is individually rational for matching
market R ∈ R if for all i ∈ N , Ci (A) = Ai or alternatively, CD(A) = CH (A) = A.
A solution ϕ is individually rational if it only assigns sets of individually rational
allocations.

2.4 Stability: stable matchings and substitutable preferences

As described in Sect. 1, an important criterion for an allocation to be accepted as final
outcome in a job-matching market is stability. Consider a matching market R ∈ R.

First, since the matching markets we consider here are based on voluntary partici-
pation, a necessary condition for allocation A to be stable is individual rationality:

(IR) CD(A) = CH (A) = A.

Second, given that allocation A is individually rational, we assume that no hospital
can block allocation A together with a set of doctors, i.e., there is no alternative set
of contracts X ′ ∈ Xh such that X ′ Ph Ah and for all doctors d ∈ D that are being
offered a new contract x ′

d with hospital h, x ′
d Pd Ad . Using the associated profile of

choice correspondences, “no blocking” of hospitals can be expressed as: there is no
hospital h and no set of contracts X ′ ∈ Xh , X ′ �= Ah , such that Ch(A ∪ X ′) = X ′
and for all doctors d ∈ D that are being offered a new contract x ′

d with hospital
h, Cd(A ∪ X ′) = x ′

d . Note that for all doctors d ∈ D that are being offered the
same contract or that are not being offered a contract in X ′, by individual rationality,
Cd(A ∪ X ′) = Ad . Thus,

⋃
d∈D Cd(A ∪ X ′) ⊇ X ′. Hence, we can formulate no

blocking by hospitals comprehensively as follows.

(NB) There is no hospital h and set of contracts X ′ ∈ Xh , X ′ �= Ch(A), such that
X ′ = Ch(A ∪ X ′) ⊆ CD(A ∪ X ′).

An allocation A ∈ A is stable if it is individually rational (IR) and no hospital can
block allocation A together with a set of doctors (NB). By S(R) ⊆ A we denote the set
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Monotonicity and Nash implementation 399

of stable allocations for matching market R. It is a standard observation in (many-to-
one) matching theory that stable allocations are at the same time core allocations in the
sense that no coalition of hospitals and doctors can find another allocation that contains
contracts between members of the coalition that they all weakly and some strictly
prefer. Thus, similarly as in other matching models, the core equals the set of stable
matchings. The stable correspondence S : R 
⇒ A assigns to each matching market
R the set of stable matchings S(R). Note that for the general domain of matching
markets specified so far stability is not guaranteed, i.e., there exist matching markets
R ∈ R with S(R) = ∅ (see Hatfield and Milgrom 2005, Theorem 5). Hatfield and
Milgrom (2005) prove that the set of stable matchings is non-empty if all hospitals’
preferences are substitutable; loosely speaking, a hospital has substitutable preferences
if it does not consider complementarities in the sets of contracts it can offer. To be
precise, the substitutable preference condition states that if a contract is chosen by a
hospital from some set of available contracts, then that contract is still chosen by the
hospital from a smaller set of available contracts that include it. Formally, hospital h’s
preferences Rh are substitutable if

(SUB) for the associated choice correspondence Ch and all sets of contracts
X ′ ⊆ Y ′ ∈ Xh , X ′ ∩ Ch(Y ′) ⊆ Ch(X ′).

Equivalently one can formulate substitutability as follows (see Hatfield and Milgrom
2005). If a contract is not chosen by a hospital from some set of available contracts,
then that contract is still not chosen by the hospital from a larger set of available
contracts. For any set of contracts X ′ ∈ Xh , NCh(X ′) := X ′\Ch(X ′) denotes the set
of all contracts that are not chosen from set X ′ by choice correspondence Ch . One can
easily prove that condition (SUB) is equivalent to the following condition (SUB’).

(SUB’) For all sets of contracts X ′ ⊆ Y ′ ∈ Xh , NCh(X ′) ⊆ NCh(Y ′).
Hatfield and Milgrom (2005) showed that the set of stable matchings is non-empty if

hospitals’ preferences are substitutable. Since for our later results the non-emptiness of
the stable correspondence is important and substitutability is a reasonable assumption
for many matching markets, from now on the domain of substitutable preferences is
our reference domain.5

3 Monotonicity and Nash implementation

So far we have described all ingredients for the implementation environment, which
is given by the set of agents N , the set of alternatives (allocations) A, and the set
of preference profiles R. Before focusing on the Nash implementability of the stable
correspondence, we consider a necessary condition for Nash implementability (Maskin
1999) that in itself has a normative appeal: (Maskin) monotonicity.

5 It is currently an open problem which conditions on preferences characterize a maximal domain on which
the stable correspondence is nonempty. Hatfield and Kojima (2008, Example 1) demonstrate that the domain
of substitutable preferences is not maximal as suggested by Hatfield and Milgrom (2005, Theorem 5).
Furthermore, they present a weakening of the substitutes condition that is necessary to guarantee existence
of a stable allocation (Hatfield and Kojima 2008, Proposition 1); more precisely, if contracts are not weak
substitutes for a hospital, then there exist preferences of other hospitals with single job openings and doctors
such that no stable allocation exists.
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3.1 Monotonicity

Before introducing monotonicity, we need some standard terms and notation. For any
agent i ∈ N , preference relation Ri ∈ Ri , and allocation A ∈ A, the lower contour
set of Ri at A is Li (Ri , A) := {A′ ∈ A | A Ri A′}.

Next, we define monotonic transformations. Loosely speaking, for any preference
profile R and any allocation A, if at a preference profile R′ all agents i ∈ N consider
their allotment Ai to be (weakly) better, then R′ is a monotonic transformation of R at
A. Formally, for preference profiles R, R′ ∈ R and allocation A ∈ A, R′ is a monotonic
transformation of R at A if for all i ∈ N , Li (Ri , A) ⊆ Li (R′

i , A). By MT (R, A)
we denote the set of all monotonic transformations of R at A. For agent i ∈ N ,
preference relation R′

i ∈ Ri , and preference profile R ∈ R, we obtain preference
profile (R′

i , R−i ) by replacing Ri at R by R′
i . By MTi (R, A) we denote the set of all

unilateral monotonic transformations of R at A, i.e., monotonic transformations of R
at A of the specific form (R′

i , R−i ).
A solution ϕ is monotonic if an allocation A that is chosen at preference profile R

is also chosen at a preference profile R′ where A is considered (weakly) better by all
agents. Formally, a solution ϕ is monotonic if for all preference profiles R, R′ ∈ R,
A ∈ ϕ(R) and R′ ∈ MT (R, A) imply A ∈ ϕ(R′). As discussed in the next subsection,
monotonicity is one of the key concepts in implementation theory. Here, we first focus
on the implication that monotonicity has on solutions.

Assume that for a matching market R ∈ R, a given allocation A ∈ A and some set
of contracts X ′ ⊆ X , some agent j ∈ N considers the contract or the set of contracts
A j to be optimal in A ∪ X ′, i.e., C j (A ∪ X ′) = A j . Then, A j becoming even better
according to agent j’s preferences implies that A j is still optimal for j . In other words,
if A j is chosen from A ∪ X ′ by agent j at the original preferences R j , then A j is still
chosen by j after a monotonic transformation of R j . We summarize this useful fact
in the following lemma.

Lemma 1 Let R ∈ R, j ∈ N, A ∈ A, and X ′ ⊆ X be such that C j (A ∪ X ′) =
A j . Then for R′ ∈ MTj (R, A) and agent j’s associated choice correspondence C ′

j ,
C ′

j (A ∪ X ′) = A j .

Theorem 1 The stable correspondence S is monotonic.

The proof consists of showing that the correspondences of allocations satisfying (IR)
and (NB), respectively, are monotonic and hence, so is the stable correspondence as
it is the intersection of the two. For details, we refer to Haake and Klaus (2008).
Observe that we do not have to employ any restrictions on hospitals’ preferences in
the proof of Theorem 1. Hence, Theorem 1 is valid for the general preference domain,
but also applies to our standard domain of matching markets where hospitals always
have substitutable preferences. In addition, Theorem 1 is valid for any other non-
empty preference domain for which the stable correspondence is well defined (i.e.,
non-empty).

Theorem 2 If solution ϕ is a Pareto efficient, individually rational, and monotonic
correspondence, then ϕ ⊇ S, i.e., for all R ∈ R, ϕ(R) ⊇ S(R).
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Monotonicity and Nash implementation 401

We briefly comment on the basic idea of the proof, which can be found in the Appendix.
To see that Theorem 2 is true, we start with an arbitrary matching market R and a sta-
ble allocation A ∈ S(R). Next, doctors’ and hospitals’ preferences are monotonically
transformed at A to a profile R̄ so that R ∈ MT (R̄, A). However, at R̄, A is the only
individual rational and Pareto optimal allocation, thus A ∈ ϕ(R̄). By monotonicity of
ϕ, we obtain A ∈ ϕ(R), and hence, ϕ(R) ⊇ S(R).

Note that in the proof of Theorem 2 we assume hospitals’ preferences to be sub-
stitutable. In the construction of preference profile R̄ in the proof, special care has
to be taken to guarantee that hospitals’ preferences at R̄ are again substitutable. In
addition, Theorem 2 is valid for any other non-empty preference domain for which
the stable correspondence is well-defined and for which the domain is closed with
respect to the monotonic transformations needed in the proof. In particular, Kara
and Sönmez (1997) prove the equivalent of Theorem 2 for the domain of responsive
preferences in college admissions problems (without contracts). Responsiveness is a
stronger condition than substitutability and therefore generates more structure on the
matching market. In the case that the college admission problem is formulated as a
matching market with contracts, the transformation used in the proof of Theorem 2
preserves responsiveness. However, in the presence of contracts, the construction is
more involved, as agents now have preferences over a possibly much larger set of
feasible matches/contracts.
An immediate implication of Theorem 2 is that no strict selection from the stable
correspondence is monotonic.

Corollary 1 Let ϕ ⊆ S, i.e., for all R ∈ R, ϕ(R) ⊆ S(R). If ϕ is monotonic, then
ϕ = S.

Particularly, the well-defined (see Hatfield and Milgrom 2005, Theorem 4) cor-
respondence that always chooses the stable allocation that is most preferred by the
doctors (alternatively, the correspondence that always chooses the stable allocation
that is most preferred by the hospitals) is not monotonic and therefore not Nash
implementable. Next, one can ask how to extend a non-monotonic correspondence
in such a way that it becomes monotonic. Following Sen (1995) and Thomson (1999),
we define the minimal monotonic extension of any correspondence ψ as the smallest
monotonic correspondence containing ψ , i.e.,

mme(ψ) ≡
⋂

{φ | ψ ⊆ φ, where φ is monotonic}.

Hence, the stable correspondence is the minimal monotonic extension of any of its
subcorrespondences.

Finally, we remark that a stronger version of Theorem 2 holds. Instead of requiring
ϕ(R) to only contain Pareto efficient, individual rational allocations, it suffices to
assume that there is at least one Pareto efficient, individual rational allocation in ϕ(R)
for any R ∈ R (see also Kara 1996, Theorems 3 and 5).
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3.2 Nash implementation

A mechanism (for the described implementation environment) is a pair (M, g), where
M := ∏

i∈N Mi denotes a set of message or strategy profiles and g : M −→ A
the so-called outcome function. The outcome function assigns to each strategy profile
an allocation in A. Since g contains all relevant information, we identify a mecha-
nism with its outcome function. A mechanism g together with a preference profile
R induces a non-cooperative game in strategic form, denoted by �(g, R), as follows.
Each strategy profile m ∈ M is mapped to an allocation g(m) ∈ A. These outcomes
of the game are then evaluated using the agents’ preferences at R. Note that the fact
that preferences in our context are ordinal does not limit the game theoretical analysis:
either use ordinal preferences at R to compare outcomes or choose a utility represen-
tation u : A −→ R

n (n = |N |) of agents’ preferences at R and define the payoffs in
�(g, R) by the composition u ◦ g : M −→ R

n .
Mechanism g Nash implements solution ϕ if for all R ∈ R we obtain g(N E(�(g,

R))) = ϕ(R), where N E(·) denotes the Nash equilibrium correspondence. Hence, for
a given preference profile R and any allocation A ∈ ϕ(R) there is a Nash equilibrium
of the induced game �(g, R), the outcome of which is A. Conversely, the outcome of
any Nash equilibrium of �(g, R) belongs to ϕ(R). We say that a solution ϕ is Nash
implementable, if there exists a mechanism that Nash implements it.

Loosely speaking, a mechanism g describes a list of rules for a game in strategic
form. These rules are independent of the true preference profile. Then, for any possible
set of agents, represented by their preference profile R, any (desired) allocation in
ϕ(R) can be achieved by strategic interaction in equilibrium, thus can be obtained in
a non-cooperative fashion.

Maskin (1977, 1999) showed that a Nash implementable solution necessarily has to
be monotonic. However, monotonicity is not a sufficient condition for implementabil-
ity. Moore and Repullo (1990) provide a necessary and sufficient condition for Nash
implementability of a solution. We show that the stable correspondence does satisfy
this condition and hence can be implemented by a version of Maskin’s (1999) mech-
anism (see Moore and Repullo 1990, Appendix).

For any agent i ∈ N , matching market R ∈ R, and subset A′ ⊆ A of allocations
let Bi (R,A′) denote the set of “best allocations for agent i in A′ with respect to
preference relation Ri ”, i.e., Bi (R,A′) := {

A ∈ A′ | Ai Ri A′
i for all A′ ∈ A′} .Note

that if A ∈ Bi (R,A′) and A′ ∈ A′ is such that Ai = A′
i then A′ ∈ Bi (R,A′). That

means that all best allocations in Bi (R,A′) specify the same (set of) contract(s) for
agent i . Note that A′ �= ∅ implies Bi (R,A′) �= ∅.

Definition 1 Condition µ in Moore and Repullo (1990)
A solution ϕ : R 
⇒ A satisfies condition µ, if there exists a set B ⊆ A and for each
i ∈ N , R ∈ R and A ∈ ϕ(R) there is a set Ti (R, A) ⊆ B with A ∈ Bi (R, Ti (R, A))
such that for each R̄ ∈ R and j ∈ N the following three conditions are satisfied:

(µ1) A ∈
⋂

i∈N

Bi (R̄, Ti (R, A)) implies A ∈ ϕ(R̄),

(µ2) A∗ ∈ B j (R̄, Tj (R, A)) ∩
⋂

i∈N\{ j}
Bi (R̄,B) implies A∗ ∈ ϕ(R̄),
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(µ3) A∗ ∈
⋂

i∈N

Bi (R̄,B) implies A∗ ∈ ϕ(R̄).

Moore and Repullo (1990, Theorem 1) show that in the presence of three or more
agents a solution ϕ is Nash implementable if and only if it satisfies condition µ.

Theorem 3 If |N | ≥ 3, then the stable correspondence S is Nash implementable.

Proof We show that the stable correspondence S satisfies condition µ (Definition 1),
given R ∈ R and A ∈ S(R), with B = A and Ti (R, A) = Li (Ri , A). Let R̄ ∈
R, (C̄i )i∈N be the associated profile of choice correspondences, and j ∈ N . Then,
condition µ reads as follows:

(µ1) A ∈
⋂

i∈N

Bi (R̄, Li (Ri , A)) implies A ∈ S(R̄),

(µ2) A∗ ∈ B j (R̄, L j (R j , A)) ∩
⋂

i∈N\{ j}
Bi (R̄,A) implies A∗ ∈ S(R̄),

(µ3) A∗ ∈
⋂

i∈N

Bi (R̄,A) implies A∗ ∈ S(R̄).

Step 1: S satisfies condition (µ1)
Note that by the strictness of agents’ preferences the following statements are equiv-
alent

(i) A ∈
⋂

i∈N

Bi (R̄, Li (Ri , A)),

(ii) {A} =
⋂

i∈N

Bi (R̄, Li (Ri , A)),

(iii) R̄ ∈ MT (R, A).

Hence, condition (µ1) is equivalent to monotonicity (see also Moore and Repullo
1990). Thus, Theorem 1 implies that S satisfies condition (µ1).
Step 2: A∗ ∈ Bi (R̄,A) implies for all X ′ ⊆ X, C̄i (X ′ ∪ A∗) = C̄i (A∗) = A∗

i
Let A∗ ∈ Bi (R̄,A). Since Bi (R̄,A) denotes the set of best allocations for agent i
among all possible allocations A with respect to preference relation R̄i , agent i must
receive the best possible (set of) contract(s) in X . Hence, C̄i (X) = C̄i (A∗) = A∗

i and
for all X ′ ⊆ X , C̄i (X ′ ∪ A∗) = C̄i (A∗).
Step 3: A∗ ∈ Bi (R̄, Li (Ri , A)) implies C̄i (A∗) = A∗

i
Let i = d ∈ D and A∗ ∈ Bd(R̄, Ld(Rd , A)). Let A′ ∈ A be such that A′

d = ∅
and for all i ∈ N\{d}, A′

i = A∗
i . Then, A ∈ S(R) (IR) implies that Ad Rd ∅ and

A′ ∈ Ld(Rd , A). Thus, since A∗ is a best allocation for doctor d in Ld(Rd , A) with
respect to preference relation R̄d , either A∗

d P̄d ∅ or A∗
d = ∅. Thus, C̄d(A∗) = A∗

d .
Let i = h ∈ H and A∗ ∈ Bh(R̄, Lh(Rh, A)). Let X ′ ⊆ Ah and A′ ∈ A be such

that A′
h = X ′ and for all i ∈ N\{h}, A′

i = A∗
i . Then, A ∈ S(R) (IR) implies that

Ah Rh X ′ and A′ ∈ Lh(Rh, A). Thus, since A∗ is a best allocation for hospital h in
Lh(Rh, A) with respect to preference relation R̄h , either A∗

h P̄h X ′ or A∗
d = X ′. Thus,

C̄d(A∗) = A∗
d .
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Step 4: The assumptions in (µ2) as well as the assumptions in (µ3) imply (IR), i.e.,
C̄D(A∗) = C̄H (A∗) = A∗
Let A∗ be either as required in (µ2) or (µ3). Hence, for all i ∈ N either A∗ ∈ Bi (R̄,A)
or A∗ ∈ Bi (R̄, Li (Ri , A)). By Steps 2 and 3, for all i ∈ N , C̄i (A∗) = A∗

i . Hence
C̄D(A∗) = C̄H (A∗) = A∗ and A∗ satisfies (IR) in the definition of stability.
Step 5: The assumptions in (µ2) as well as the assumptions in (µ3) imply (NB),
i.e., there is no hospital h and set of contracts X ′ ∈ Xh, X ′ �= C̄h(A∗), such that
X ′ = C̄h(A∗ ∪ X ′) ⊆ C̄D(A∗ ∪ X ′)
Let A∗ be either as required in (µ2) or (µ3). Let h ∈ H be such that A∗ ∈ Bh(R̄,A)
and X ′ ∈ Xh with X ′ �= C̄h(A∗) such that X ′ = C̄h(A∗ ∪ X ′)[⊆ C̄D(A∗ ∪ X ′)]. By
Step 2, C̄h(A∗ ∪ X ′) = C̄h(A∗), which implies X ′ = C̄h(A∗) – a contradiction.

Let h ∈ H such that A∗ ∈ Bh(R̄, Lh(Rh, A)) and X ′ ∈ Xh with X ′ �= C̄h(A∗)
such that X ′ = C̄h(A∗ ∪ X ′) ⊆ C̄D(A∗ ∪ X ′). Then, by Step 2, for all i ∈ N\{h},
C̄i (X ′ ∪ A∗) = C̄i (A∗) = A∗

i . Thus, C̄D(A∗ ∪ X ′) = C̄D(A∗) = A∗
h and therefore

X ′ ⊆ A∗
h . By Step 3, C̄h(A∗) = A∗

h . Hence, C̄h(A∗ ∪ X ′) = C̄h(A∗) = A∗
h , which

implies X ′ = C̄h(A∗) – a contradiction.
Steps 4 and 5 together show A∗ ∈ S(R̄) given the assumptions in (µ2) or (µ3). ��

Two remarks on Theorem 3 are in order:
First, we did not use any restrictions on hospitals’ preferences in the proof of

Theorem 3. Similarly as before (Theorem 1) we used substitutability of hospitals’
preferences only to guarantee the existence of stable matchings and Theorem 3 is
valid for any other non-empty preference domain for which the stable correspondence
is well defined.

Second, in the implementing mechanism g in Moore and Repullo (1990) the math-
ematical objects B and Ti (R, A) in Condition µ have an intuitive interpretation. The
allocations in B are exactly those that can result from strategic interaction in the mech-
anism. For any A ∈ S(R) let m̄ be an equilibrium with g(m̄) = A. Then Ti (R, A)
contains those allocations that agent i can “enforce” by unilaterally deviating from m̄.
Clearly, with Ti (R, A) = Li (Ri , A), neither agent is willing to deviate. The fact that
B can be set to A shows that in the mechanism every allocation can be an outcome of
the mechanism, i.e., it can be achieved through strategic interaction.

Theorem 3 holds as long as there are at least three agents in the market. Let us
briefly turn to the case in which there is exactly one doctor and one hospital. Hence
the matching with contracts model is interpreted as choosing an appropriate contract
between these two agents. We get a negative implementation result as long as we
consider the whole set of possible preference profiles.

Theorem 4 Suppose |D| = |H | = 1, then S(R) is the set of all Pareto efficient,
individually rational allocations. Moreover, S is not Nash implementable.

Proof The first statement directly follows from the stability conditions (IR) and (NB).
The set of allocations can be identified with X ∪ {∅} and each Ri consists of all strict
orderings over X ∪ {∅}. Substitutability is not a restriction in this case.
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Note that S is not dictatorial.6 Non-implementability of the stable correspondence
then follows from Theorem 1 in Maskin (1999) (see also Hurwicz and Schmeidler
1978), which states that in an environment with two agents and R containing all strict
preference profiles over A, a Pareto optimal solution ϕ that is Nash implementable
necessarily has to be dictatorial. Hence, as S is Pareto efficient and not dictatorial, it
cannot be Nash implementable. ��
Remark 1 Theorem 4 crucially relies on the fact that all strict preferences over allo-
cations are contained in R. However, in specific cases, one can obtain a positive
implementation result for two agents. Suppose, for example, that R contains all pref-
erence profiles, in which the empty contract is always ranked least by the doctor as
well as by the hospital. Thus, it is clear from the beginning that employment under
any conditions is better than staying unemployed: a so-called bad outcome exists. As
noted above, the stable correspondence collects all Pareto efficient, individually ratio-
nal allocations. It is easy to see, that S(·) therefore satisfies “no veto power”, which
states that allocations that are maximal for n − 1 agents at profile R have to belong to
S(R).7 Following Moore and Repullo (1990), this implies a weaker condition called
restricted veto power. Then, by Moore and Repullo (1990, Corollary 3), restricted
veto power in connection with the existence of a bad outcome suffices to show that the
stable correspondence is Nash implementable in the two-agent case. To sum, although
the two agents may be fully informed about each other’s preferences this knowledge
cannot credibly be shared with a third party, as long as we have no restrictions on the
set of possible preference profiles. However, if we can take employment for granted,
there is a mechanism that implements the stable correspondence, which then achieves
a Pareto efficient, individually rational allocation through strategic interaction.

4 Conclusion

One of our main results is that in two-sided matching markets with contracts and
more than two agents the stable correspondence is Nash implementable (Theorem 3).
For two agent markets implementability can no longer be established (Theorem 4).
Furthermore, we show that the stable correspondence is monotonic (Theorem 1) and
minimal among all monotonic, Pareto efficient and individually rational solutions
(Theorem 2). As matching markets with contracts comprise a large class of different
types of matching markets our results extend previous Nash implementability results
in more specific matching markets (e.g., marriage and college admissions markets
as considered by Kara and Sönmez 1996, 1997). This extension is twofold. First,
agents can be matched under different contract conditions where previously only
one contract per match was possible (e.g.,“being matched” was the only available
contract). Second, we extend the preference domain from responsive to substitutable
preferences (an extension that is not trivial and might affect the structure of the set of
stable allocations; see Martínez et al. 1991).

6 A solution ϕ is dictatorial, if there exists i ∈ N such that for all R ∈ R, A ∈ ϕ(R) implies for all A′ ∈ A,
A Ri A′.
7 For all i ∈ N , R ∈ R, and A ∈ A, A ∈ ⋂

j �=i B j (R,A) implies A ∈ S(R).
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An alternative approach to show implementability of the stable correspondence
S is to show that it satisfies essential monotonicity,8 which is a stronger condition
than monotonicity. We could then obtain implementability of the stable correspon-
dence by using Yamato’s (1992) Theorem 2, which states (in our context) that Nash
implementability and essential monotonicity are equivalent.

In contrast to Kara and Sönmez (1996, 1997), Sönmez (1996), or Ehlers (2004),
who rely on Yamato’s (1992) theorem, we apply Moore and Repullo’s (1990) condition
µ (Definition 1). Thus, instead of emphasizing that the stable correspondence satisfies
a stronger version of monotonicity, we focus on a weak “no veto power” property that
the stable correspondence satisfies and that together with monotonicity guarantees that
stable allocations can be achieved through strategic interaction.9

More precisely, in view of condition µ as used in the proof of Theorem 3, we can
interpret (µ2) in the following way. Suppose we have a stable allocation A at preference
profile R. After a change in preferences from R to R̄ there is an allocation A∗, which
is among the best possible allocation for all agents except agent j . Then, this property
alone is not sufficient to identify A∗ as a stable allocation at R̄, since agent j (say j ∈ D)
might prefer the empty contract to his contract in A∗ and is also able to enforce it. Since
A was a stable allocation (at R), the empty contract clearly appears in L j (R j , A). So,
condition (µ2) says that agent j cannot veto against A∗, if he gets his best contract
(at R̄) from L j (R j , A) at R̄. In fact, none of the agents except agent j would want to
block A∗ and stability enables agent j in this situation to choose any contract he can
enforce on his own. Hence, we mainly need the individual rationality property of stable
allocations to satisfy (µ2). Condition (µ3) simply describes a unanimity condition
stating that if there is an allocation that is best for all agents, then this allocation should
be chosen. Clearly, such an allocation satisfies individual rationality and no-blocking.
Thus, stability clearly implies the unanimity principle stated in (µ3).

Appendix: Proof of Theorem 2

Proof summary: We start with a stable allocation A for matching market R. In Step 1
we change doctors’ preferences at R and obtain a preference profile R′ ∈ R such that
R is a monotonic transformation of R′ (and vice versa). By Theorem 1, A is stable
for matching market R′. In Step 2 we change hospitals’ preferences at R′ and obtain
a substitutable preference profile R̄ such that R′ is a monotonic transformation of R̄.
Then, R is also a monotonic transformation of R̄. In Step 3, we show that A is stable
for matching market R̄. In Step 4, we identify A to be the only Pareto efficient and
individual rational allocation for matching market R̄. Hence, A ∈ ϕ(R̄). Finally, since
ϕ is monotonic and R is a monotonic transformation of R̄, A ∈ ϕ(R) (Step 5).

8 Roughly speaking, an allocation A′ ∈ Li (Ri , A) is essential for agent i at preference profile R and
allocation A ∈ S(R) if there exists a profile R̂ such that A′ ∈ S(R̂) and Li (R̂i , A′) ⊆ Li (Ri , A). Denoting
by Ei (R, A) the set of essential allocations for i , the stable correspondence S is essentially monotonic if
the following holds: for all A ∈ A, R, R̂ ∈ R, A ∈ S(R) and Ei (R, A) ⊆ Li (R̂, A) imply A ∈ S(R̂).
9 A solution ϕ : R 
⇒ A satisfies no veto power, if for all i ∈ N we have that A ∈ ⋂

j �=i B j (R,A)
implies A ∈ ϕ(R), i.e., agent i cannot veto A if it is among the best allocations for any other agent.
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Proof Let ϕ be a Pareto efficient, individually rational, and monotonic correspon-
dence. Consider a matching market R ∈ R and a stable set of contracts A ∈ S(R).
We need to show that A ∈ ϕ(R).
Step 1: Transforming doctors’ preferences
Let D′ ⊆ D denote the set of doctors d ′ for whom there exists a contract xd ′ ∈ Xd ′
with Ad ′ Pd ′ xd ′ Pd ′ ∅.

For each doctor d ′ ∈ D′ we define R′
d ′ by moving ∅ just below Ad ′ while not

changing preferences over contracts in Xd ′ , i.e., R′
d ′ is such that

(i) Ad ′ P ′
d ′ ∅,

(ii) for no x̂d ′ ∈ Xd ′ , Ad ′ P ′
d ′ x̂d ′ P ′

d ′ ∅, and
(iii) for all x̄d ′ , x̃d ′ ∈ Xd ′ , x̄d ′ P ′

d ′ x̃d ′ if and only if x̄d ′ Pd ′ x̃d ′ .

For all i ∈ N\D′, R′
i := Ri . Hence, we obtain matching market R′ from R by

transforming preferences of doctors d ′ ∈ D′ according to (i)–(iii). Note that after
transforming the doctors’ preferences, hospitals’ preferences are still substitutable.
Also, note that for all i ∈ N , Li (R′

i , A) = Li (Ri , A). Hence, R is a monotonic
transformation of R′ at A and R′ is a monotonic transformation of R at A. By Theorem 1
and R′ ∈ MT (R, A), A is a stable allocation for matching market R′, i.e., A ∈ S(R′).
Particularly, A is individually rational for matching market R′.
Step 2: Transforming hospitals’ preferences
Recall that for all h ∈ H , R′

h = Rh . To simplify notation, we will use for all h ∈ H ,
Ch instead of C ′

h .

Let Ĥ ⊆ H denote the set of hospitals ĥ for which there exists a contract xĥ , {xĥ} ∈
Xĥ , and a set of contracts Y ∈ Xĥ with Cĥ(A ∪ {xĥ}) = Aĥ and

(
Y ∪ {xĥ}) Pĥ Y . For

any xĥ such that Cĥ(A∪{xĥ}) = Aĥ define Y(xĥ, Rĥ) := {Y ∈ Xĥ | (
Y ∪ {xĥ}) Pĥ Y }.

For each hospital ĥ ∈ Ĥ we fix some contract xĥ such that Cĥ(A ∪{xĥ}) = Aĥ and

Y(xĥ, Rĥ) �= ∅. Then, define R̂ĥ as follows. For all Y ∈ Y(xĥ, Rĥ) we move Y just
above Y ∪{xĥ} while not changing preferences over sets of contracts in Xĥ\Y(xĥ, Rĥ),

i.e., R̂ĥ is such that for all Y ∈ Y(xĥ, Rĥ),

(i) Y P̂ĥ

(
Y ∪ {xĥ}),

(ii) for no Z ∈ Xĥ , Y P̂ĥ Z P̂ĥ Y ∪ {xĥ}, and

(iii) for all Z̄ĥ, Z̃ĥ ∈ Xĥ\Y(xĥ, Rĥ), Z̄ĥ P̂ĥ Z̃ ĥ if and only if Z̄ĥ Pĥ Z̃ĥ .

Denote the associated choice correspondence for ĥ ∈ Ĥ at R̂ by Ĉĥ . Before proving

substitutability of R̂ĥ , we prove the following property of Ĉĥ . For all Z ∈ Xĥ ,

(a) Ĉĥ(Z) = Cĥ(Z ∪ {xĥ})\{xĥ},
which means that the set of chosen contracts at the new preference relation R̂ĥ is
obtained from the set of chosen contracts at the original preference relation R′

ĥ
(= Rĥ)

by deleting contract xĥ (in case xĥ was chosen).
Step 2.1: Proof of (a)
If xĥ �∈ Cĥ(Z∪{xĥ}), then Cĥ(Z∪{xĥ}) ⊆ Z and Cĥ(Z) = Cĥ(Z∪{xĥ}). Furthermore,
xĥ �∈ Cĥ(Z ∪ {xĥ}) implies that Cĥ(Z ∪ {xĥ}) ∈ Xĥ\Y(xĥ, Rĥ). Then, (ii) and (iii) in

the definition of R̂ĥ imply that Ĉĥ(Z ∪{xĥ}) = Cĥ(Z ∪{xĥ}). Since Ĉĥ(Z ∪{xĥ}) ⊆ Z ,
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Ĉĥ(Z) = Ĉĥ(Z ∪ {xĥ}). Thus, Ĉĥ(Z) = Ĉĥ(Z ∪ {xĥ}) = Cĥ(Z ∪ {xĥ}) = Cĥ(Z ∪
{xĥ})\{xĥ}.

If xĥ ∈ Cĥ(Z ∪{xĥ}), then Cĥ(Z ∪{xĥ})\{xĥ} ∈ Y(xĥ, Rĥ). This together with (ii)

and (iii) in the definition of R̂ĥ implies that Ĉĥ(Z ∪{xĥ}) = Cĥ(Z ∪{xĥ})\{xĥ}. Since

Ĉĥ(Z ∪ {xĥ}) ⊆ Z , Ĉĥ(Z) = Ĉĥ(Z ∪ {xĥ}). Thus, Ĉĥ(Z) = Cĥ(Z ∪ {xĥ})\{xĥ}.
Step 2.2: Proof of substitutability
Recall that since preferences Rh are substitutable, we have for all h ∈ H ,

(SUB) for all X ′ ⊆ Y ′ ∈ Xh , X ′ ∩ Ch(Y ′) ⊆ Ch(X ′).

We have to show that for all ĥ ∈ Ĥ ,

(ŜUB) for all X ′′ ⊆ Y ′′ ∈ Xĥ , X ′′ ∩ Ĉĥ(Y
′′) ⊆ Ĉĥ(X

′′).

Let ĥ ∈ Ĥ and X ′′ ⊆ Y ′′ ∈ Xĥ . Consider X ′ ⊆ Y ′ ∈ Xĥ such that X ′ ≡ (
X ′′ ∪ {xĥ})

and Y ′ ≡ (
Y ′′ ∪ {xĥ}). Then we have

X ′ ∩ Cĥ(Y
′)

(SUB)⊆ Cĥ(X
′)

⇒ (
X ′′ ∪ {xĥ}) ∩ Cĥ

(
Y ′′ ∪ {xĥ}) ⊆ Cĥ

(
X ′′ ∪ {xĥ})

⇒ [
(X ′′ ∪ {xĥ}) ∩ Cĥ(Y

′′ ∪ {xĥ})] \{xĥ} ⊆ Cĥ

(
X ′′ ∪ {xĥ}) \{xĥ}

⇒ X ′′ ∩ [
Cĥ(Y

′′ ∪ {xĥ})] \{xĥ} ⊆ Cĥ

(
X ′′ ∪ {xĥ}) \{xĥ}

(a)⇒ X ′′ ∩ Ĉĥ(Y
′′) ⊆ Ĉĥ(X

′′),

which shows (̂SU B). For all i ∈ N\Ĥ , R̂i := R′
i . Hence, we obtain matching market R̂

from R′ by transforming preferences of hospitals ĥ ∈ Ĥ according to (i)–(iii). We have
shown that hospitals’ preferences are still substitutable after the transformation. Also,
note that for all i ∈ N\Ĥ , Li (R̂i , A) = Li (R′

i , A) and for all ĥ ∈ Ĥ , Lĥ(R̂ĥ, A) ⊆
Lĥ(R

′
ĥ
, A). Hence, R′ is a monotonic transformation of R̂ at A. Since R is a monotonic

transformation of R′ at A, it follows that R is a monotonic transformation of R̂ at A.
Finally, for all i ∈ N , Ci (A) = Ĉi (A) = Ai . Thus, ĈD(A) = ĈH (A) = A and A is
individually rational for matching market R̂.

We repeat the transformation of hospitals’ preferences as long as there exists a
hospital h̃, a contract xh̃ , {xh̃} ∈ Xh̃ , and a set of contracts Y ∈ Xh̃ with Ch̃(A∪{xh̃}) =
Ah̃ and

(
Y ∪ {xh̃}) Ph̃ Y . Note that this process stops after finitely many iterations since

the number of contracts xh̃ such that there exists Y ∈ Xh̃ with Ch̃(A ∪ {xh̃}) = Ah̃
and

(
Y ∪ {xh̃}) Ph̃ Y decreases by one in each iteration.

Step 2.3: Matching market R̄
Finally, the transformation of agents’ preferences results in a matching market R̄
and an associated profile of choice correspondences (C̄i )i∈N . Recall that doctors’
preferences at R̄ are the same as in R′. The properties of R̂ in each iteration induce
that at R̄ hospitals’ preferences are substitutable, R is a monotonic transformation of R̄
at A, and C̄D(A) = C̄H (A) = A, i.e., A is individually rational for matching market R̄.
Furthermore, for all hospitals h̄ and contracts xh̄ ∈ Xh̄ such that Ch̄(A ∪ {xh̄}) = Ah̄ ,
we have that
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(b) for all Y ∈ Xh̄ such that xh̄ �∈ Y , Y P̄h̄

(
Y ∪ {xh̄}).

Next we prove A is a stable allocation for matching market R̄.
Step 3: Proof that A ∈ S(R̄)
Suppose, by contradiction, that A �∈ S(R̄). Then, there exists a hospital h̄ and a set
of contracts X̄ ∈ Xh̄ , X̄ �= C̄h̄(A), such that X̄ = C̄h̄(A ∪ X̄) ⊆ C̄D(A ∪ X̄). Since,
C̄D(A ∪ X̄) = CD(A ∪ X̄), X̄ ⊆ CD(A ∪ X̄) (recall how doctors’ preferences were
transformed).
Thus, A ∈ S(R) implies X̄ �= Ch̄(A∪ X̄) = A. Hence, for some d̄ ∈ D and x̄d̄ ∈ X̄\A,
x̄d̄ P̄d̄ Ad̄ . By the stability of A at matching market R, Ch̄(A ∪{x̄d̄}) = Ah̄ . Hence, for
X̄ h̄ ∈ Xh̄ by (b),

(
X̄ h̄\{x̄d̄}) P̄h̄ X̄ h̄ . Since

(
X̄ h̄\{x̄d̄}) ⊆ (

Ah̄ ∪ X̄ h̄

)
, this constitutes a

contradiction to C̄h̄(A ∪ X̄) = X̄ . Hence, A ∈ S(R̄).
Since A ∈ S(R̄), it follows that A is Pareto efficient for matching market R̄. Next, we
show that allocation A is the only Pareto efficient and individually rational allocation
for matching market R̄.
Step 4: Proof that A is uniquely Pareto efficient and individually rational for R̄
Suppose, by contradiction, that Ā ∈ A, Ā �= A, is Pareto efficient and individually
rational for matching market R̄.

Suppose there exists d̄ ∈ D such that Ād̄ P̄d̄ Ad̄ . By the transformation of doctors’
preferences, Ād̄ Pd̄ Ad̄ and Ād̄ �= ∅. Let h̄ be the hospital corresponding to Ād̄ .
Then, since A ∈ S(R), Ch̄(A ∪ Ād̄) = Ah̄ and by (b),

(
Āh̄\{ Ād̄}) P̄h̄ Āh̄ . Thus, in

contradiction to individual rationality of Ā for h̄ at matching market R̄, C̄h̄( Ā) �= Āh̄ .
Hence, for all d ∈ D, Ad R̄d Ād .

Suppose there exists h̄ ∈ H such that Āh̄ P̄h̄ Ah̄ . Since A ∈ S(R̄), there exists d̄ ∈ D
such that Ād̄ ∈ Ā and Ad̄ P̄d̄ Ād̄ . Thus, by the transformation of doctors’ preferences
∅ R̄d̄ Ād̄ . If ∅ P̄d̄ Ād̄ , then we have an immediate contradiction to individual rationality
of Ā for d̄ at matching market R̄. Hence, for all d ∈ D̄ such that Ād̄ ∈ Ā and Ad P̄d Ād ,
Ād̄ = ∅. Then, for all d ∈ D̄ such that Ād̄ ∈ Ā and Ād̄ �= ∅, Ād R̄d Ad . This, together
with Āh̄ P̄h̄ Ah̄ , constitutes a contradiction to the stability of Ā at matching market R̄.
Hence, for all h ∈ H , Ah R̄h Āh .

To summarize, for all i ∈ N , Ai R̄i Āi . Since A �= Ā, for some j ∈ N , A j P̄j Ā j .
These facts establish a contradiction to the assumption that Ā is Pareto efficient.
Step 5: A ∈ ϕ(R)
Since A is the unique individually rational and Pareto efficient allocation for matching
market R̄ it follows that ϕ(R̄) = {A}. Finally, since ϕ is a monotonic solution and R
is a monotonic transformation of R̄ at A, A ∈ ϕ(R). ��
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