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Abstract. Let X be a nonempty, compact, convex set in Rn and let f be

an upper semicontinuous mapping from X to the collection of nonempty,

compact, convex subsets of Rn. It is well known that such a mapping has

a stationary point on X; i.e., there exists a point X such that its image

under f has a nonempty intersection with the normal cone of X at the

point. In the case where, for every point in X, it holds that the intersec-

tion of the image under f with the normal cone of X at the point is either

empty or contains the origin 0n, then f must have a zero point on X; i.e.,

there exists a point in X such that 0n lies in the image of the point.

Another well-known condition for the existence of a zero point follows

from the Ky Fan coincidence theorem, which says that, if for every point

the intersection of the image with the tangent cone of X at the point

is nonempty, the mapping must have a zero point. In this paper, we

extend all these existence results by giving a general zero-point existence

theorem, of which the previous two results are obtained as special cases.

We discuss also what kind of solutions may exist when no further condi-

tions are stated on the mapping f. Finally, we show how our results

can be used to establish several new intersection results on a compact,

convex set.
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1. Introduction

Whenever a mathematical model of some phenomenon is constructed

(for instance, in engineering or in economics), the first question to ask is

whether a solution to the model exists. A very powerful tool that is often

used to this end, in the case where the model is a system of nonlinear func-

tions, is the Brouwer fixed-point theorem (see Ref. 1). When the model is not

a system of equations but a system of correspondences, often the Kakutani

fixed-point theorem (Ref. 2) is invoked. Sometimes, models allow for a

continuum of solutions and appropriate generalizations of the Brouwer and

Kakutani fixed-point theorems apply, as provided by Browder (Ref. 3) and

Herings, Talman, and Yang (Refs. 4–5). An alternative to fixed-point theo-

rems consists of using intersection theorems, with the lemma of Knaster,

Kuratowski, and Mazurkiewicz (Ref. 6) on the unit simplex being perhaps

the most prominent example.

The existence of a solution to a nonlinear system of functions or corre-

spondences is equivalent to the existence of the zero point of a function or a

correspondence. A zero point is a point in the domain such that the origin

lies in its image. In this paper, we will present a new general condition for the

existence of a zero point.

Let X be a nonempty, convex, and compact set in Rn and let f be a

compact-valued, convex-valued, upper-semicontinuous mapping from X to

Rn. By Eaves (Ref. 7), it has been shown that, with respect to any such corre-

spondence, a solution exists to the variational inequality problem; i.e., there

exists a stationary point. Such a point x in X is such that its image f (x) has a

nonempty intersection with the normal cone N(X, x) to X at x. From this, it

follows immediately that, if at every point of X the intersection of the image

and the normal cone is either empty or contains the origin, then f has a zero

point in X. Fan (Ref. 8) proved a coincidence result, stating a weakly sepa-

rating condition under which there is a point x in X such that f (x) has a

nonempty intersection with the image at x of some other correspondence y
on X. This condition makes use also of the normal cone at any point in X.

When y maps every point of X to the origin and the separating condition is

satisfied, a zero point of f exists.

In this paper, we present a unifying theorem on the existence of zero

points. The theorem puts two conditions on f (x) at every x in X. Both con-

ditions are related to the normal cone. More precisely, the conditions put

restrictions on the set Af (x)˙p (v), where A is a nonsingular n · n matrix, v is

any normalized element of the normal cone at x, and p is an upper hemi-

continuous correspondence defined on the unit ball. The new theorem con-

tains as special cases the two existence results for the zero points mentioned

above. The stationary point condition is obtained when A is the identity
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matrix and p (v) is equal to Rn for every v, while the coincidence point con-

dition is obtained also by taking A equal to the identity matrix and p(v) equal

to the set {y˛Rn|y`v#0}. Other choices for the matrix A and the correspond-

ence p lead to different and new zero-point existence theorems. Further, we

show how the Kakutani fixed-point theorem as well as other fixed-point

theorems on unbounded domains, as presented in Merrill (Ref. 9) and Eaves

(Ref. 10), can be obtained as special cases of our main result. We generalize

also the notion of stationary point in the case where, for at least one point in

X, the two conditions are satisfied for no correspondence p. These results are

exemplified in Sections 2 and 3.

Section 4 treats the special case of the zero-point problem when X is a

polytope. The special structure of the polytope is exploited to obtain a sharp

result on the existence of a zero point. Section 5 shows how a more general

intersection theorem can be derived from our main theorem on the existence

of zero points. This general intersection theorem contains as special cases

several well-known intersection theorems like the ones of Knaster,

Kuratowski, and Mazurkiewicz (Ref. 6), Scarf (Ref. 11), Shapley (Ref. 12),

and Ichiishi (Ref. 13).

2. Zero Point Problem

Consider an arbitrary nonempty, convex, compact set X in the

n-dimensional Euclidean space Rn. For x˛X, the set

N(X , x) = {y˛Rnj(x – x¢ )`y$0, for all x¢˛X}

denotes the normal cone of the set X at the point x. Since X is compact and

convex, N(X, . ) is an upper semicontinuous, convex-valued, and closed-

valued mapping.

Let f be a point-to-set mapping or correspondence from X to the col-

lection of nonempty subsets of Rn. We assume that f is an upper semi-

continuous and bounded mapping and that, for every x in X, the set f (x) is

a compact and convex subset of Rn. We are interested in conditions on

the mapping f, under which f has a zero point, a point x* in X satisfying

0n˛f (x*), where 0n is the n-vector of zeroes. Without any conditions on f,

a zero point may not exist. However, as it has been shown in Eaves (Ref. 7),

a stationary point of f on X exists always.

Definition 2.1. A point x*˛X is a stationary point of f if there exists

y*˛f (x*) such that (x* – x)`y* $ 0 for all x˛X; i.e., f (x*)˙N(X, x*)„;.

From the Eaves result, it follows immediately that, if all the stationary

points of f are zero points of f, then f has at least one zero point.
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Theorem 2.1. For every x˛X, if it holds that f (x)˙N(X, x) is either

empty or contains 0n, then there exists a zero point of f.

The condition in the theorem says that a zero point of f exists if at

any x˛X no nonzero element of the image f (x) lies in the normal cone of X

at x unless the image contains 0n. Although this condition is rather weak,

it has to hold for all elements in every image set. Another existence result

for zero points can be obtained from the coincidence theorem of Fan

(Ref. 8).

Definition 2.2. Let f and y be to correspondences from X to Rn. A

point x*˛X is a coincidence point of f and y if f (x*)˙y (x*)„;.

By Fan (Ref. 8), it has been proved that, if y is also an upper semi-

continuous, bounded, convex-valued, and compact-valued correspondence

from X to Rn, and if, for every x˛X and every v˛N(X, x), there exists y˛f (x)

and z˛y (x) such that v`y#v`z, then f and y have a coincidence point. By

taking y (x) equal to {0n} for all x in X, we obtain the following zero point

result, which is an equivalent form of the Fan coincidence theorem.

Theorem 2.2. For every x˛X and every v˛N(X, x), if there exists

y˛f (x) such that v`y#0, then f has a zero point.

The condition in this theorem says that, for every x in X, the set f (x)

should have a nonempty intersection with any halfspace that is the polar or

dual cone of an element of the normal cone of X at x. The fact that two

rather different conditions lead to the same existence result suggests a more

general zero-point existence result. In Section 3 we give a zero-point exis-

tence theorem that contains as special cases both the theorems above and

several other known existence results.

3. Existence Results

In this section, we give a unifying zero-point existence result on a com-

pact, convex set. Both Theorems 2.1 and 2.2 as well as the Kakutani fixed-

point theorem and other fixed-point and zero-point theorems are special

cases of this theorem. As in Section 2, we assume that the set X is a nonempty,

compact, and convex subset of Rn and that f is an upper semicontinuous,

bounded, compact-valued, and convex-valued correspondence form X to Rn.

Let Bn denote the n-dimensional unit ball.
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Theorem 3.1. Suppose that there exists a nonsingular n · n matrix A

and an upper semicontinuous, convex-valued, closed-valued mapping

p : BnfiRn such that, for every x˛X and every v˛N(X, x)˙Bn, the follow-

ing two properties hold:

(i) The set Af (x)˙p (v)˙{y|y = mv, m $ 0} is either empty or

contains 0n.

(ii) The set Af (x)˙p (v)„;.
Then, there exists a zero point of f in X.

Proof. Let the set Q be defined by

Q = {q˛Rnjkq – xk2 #1, for some x˛X}:

Since X is compact, Q is a compact set. For q˛Q, let p(q) be the orthogonal

projection of q on X. Since X is a nonempty, compact, convex set, p is a

continuous function from Q to X. For every q˛Q, it holds that

kq – p(q)k2 #1:

To prove the convexity of Q, take any q1, q2˛Q and 0#l#1, and let

q(l) = lq1 + (1 – l)q2,

p(l) = lp(q1) + (1 – l)p(q2):

Since X is convex, we have that p(l)˛X. Moreover,

kq(l) – p(l)k2 #lkq1 – p(q1)k2 + (1 – l)kq2 – p(q2)k2 #1:

Therefore, q(l)˛Q; i.e., Q is a convex set. Hence, Q is full-dimensional

compact, convex set in Rn. For q˛Q, let

v(q) = q – p(q):

By construction,

v(q)˛Bn, for each q˛Q,

kv(q)k2 = 1, if and only if q˛bd(Q),

v(q) = 0n, if and only if q˛X :

Since Q is full-dimensional, for q ˛int(Q) it holds that

N(Q, q) = {0n}:

Now, we will show that the normal cone N(Q, q) of Q at any point q on the

boundary of Q is a ray. Since Q is convex and compact, N(Q, q) is nonempty

for every q˛Q. Take any point q˛bd(Q) and consider the ball B( p(q), 1) with

radius one centered at p(q). Clearly, B( p(q), 1) is contained by Q and q lies
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also on the boundary of B( p(q), 1). It follows that N(Q, q) is a subset of

N(B( p(q), 1), q). Since the boundary of B( p(q), 1) is smooth, N(B( p(q), 1), q)

is a ray. Consequently, N(Q, q) must be a ray as well and in fact is equal to

N(B( p(q), 1), q). More precisely, for q˛bd(Q), we have

N(Q, q) = {y˛Rnjy = mv(q), m $0}:

Since p is the orthogonal projection on X, for every q˛Q it holds that

N(Q, q)�N(X , p(q)):

Now, consider the mapping y : QfiRn defined by

y (q) = Af( p(q))˙p (q – p(q)):

From Condition (ii), it follows that, for every q˛Q, the set y (q) is nonempty.

Since A is a regular matrix, p is a continuous function, and both f and p are

upper semicontinuous mappings, y is an upper semicontinuous mapping

from the full-dimensional, compact, convex set Q to Rn. Moreover, being the

intersection of a convex, compact set and a convex, closed set, y (q) is convex

and compact for any q˛Q. From Eaves (Ref. 7), it follows now that y has a

stationary point on Q ; i.e., there exists a point q*˛Q such that

y (q*)˙N(Q, q*)„;:

Take any f * in this intersection. Since

f *˛N(Q, q*),

it holds that

f * = m*v(q*)˛N(X , p(q*)), for some m*$0:

Hence,

f *˛{mv(q*)jm $0}˙Af( p(q*))˙p (v(q*)),

with

v(q*)˛N(X , p(q*))˙Bn:

Since we showed that the intersection of these three sets is nonempty, con-

dition (i) implies that this intersection contains 0n, from which we conclude

that p(q*) is a zero point of Af on X. Since A is a nonsingular matrix, p(q*) is

a zero point of f. u

The theorem says that the mapping f has a zero point on X if there exists

a regular matrix A and an upper semicontinuous, convex-valued, and closed-

valued mapping on the unit ball Bn such that, for every element v of the

normal cone of X at any x with length at most one, the image of Af at x and
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the image of p at v intersect, but this intersection has no points in common

with the ray determined by the vector v unless the origin is in the intersection.

In case f is a continuous function f from X to Rn, conditions (i) and (ii)

reduce to: for every x˛X and v˛N(X, x)˙Bn, it holds that

Af (x)˛p (v) and Af (x)ˇ(p (v)˙{yjy = mv, m $0})n{0n}:

Instead of taking a mapping on the whole unit ball, we may restrict

ourselves to a mapping p on the sphere bd(Bn). Then, the proof is the same,

by extending the mapping p to the whole unit ball as follows: p (0n) contains

every p(v), v˛Bn, and

p (v) = p (v=kvk2), for v˛int(Bn)n{0n}:

The matrix A translates the images f (x) in a linear way, so that Af (x) has the

some properties as f (x) has. Due to the regularity of A, a point x* is a zero

point of f if and only if x* is a zero point of Af.

The use of the matrix A expands the cases to which our result applies.

For example, consider the function f : BnfiRn defined by f (x) = x. Then,

there is no mapping p that satisfies both conditions (i) and (ii), although

f (0n) = 0n. However, when we take A = – I, where I is the n · n identity

matrix, conditions (i) and (ii) are satisfied if we take for example

p (v) = Rn, for all v˛Bn:

In the following, we will show that several known existence results are

special cases of Theorem 3.1.

Example 3.1. When p(v) = Rn for every v˛Bn, then condition (ii) of

Theorem 3.1 is satisfied always and condition (i) reduces to the statement

that Af (x)˙N(X, x) is empty or contains 0n, for every x˛X. For A = I, this

is precisely the condition of Theorem 2.1. However, the result holds for any

regular matrix A; e.g., a zero point exists also when, for every x˛X, it

holds that – f (x)˙N(X, x) is either empty or contains 0n.

Example 3.2. When

p (v) = {y˛Rnjy`v#0}, for every v˛Bn,

then

p (v)˙{y˛Rnjy = mv, m $0} = {0n},

for any v˛Bn, and so condition (i) of Theorem 3.1 is satisfied always, while

when A = I condition (ii) becomes precisely the condition of Theorem 2.2.

Also, now the result holds for any regular matrix A.

JOTA: VOL. 120, NO. 2, FEBRUARY 2004 381



Thus, both Theorem 2.1 and Theorem 2.2 are special cases of Theorem

3.1. For x˛X, let the tangent cone of X at x be defined by

T(X , x) = {z˛Rnjz`y#0, for all y˛N(X , x)}:

The next result says that f has a zero point if, for every x in X, the set

f (x) has a nonempty intersection with T(X, x).

Theorem 3.2. For every x˛X, if it holds that f (x)˙T(X, x)„;, then f
has a zero point.

Proof. We show that the conditions of Theorem 3.1 are satisfied for

p (v) = {y˛Rnjy`v#0} and A = I ,

and so f has a zero point. Condition (i) of Theorem 3.1 is satisfied because

p (v)˙{yjy = mv, m $0} = {0n},

so

f(x)˙p (v)˙{yjy = mv, m $0}

is either empty or contains {0n}. When

v˛N(X , x),

it follows that

T(X , x)�p (v),

so

f(x)˙p (v)„;, if f(x)˙T(X , x)„;,
and condition (ii) follows. u

Obviously, f has also a zero point on X if there exists a regular matrix A

such that

Af(x)˙T(X , x)„;, for every x˛X :

The condition in Theorem 3.2 is very simple and in general easy to check.

From Theorem 3.2, we get immediately the Kakutani fixed-point theorem.

Example 3.3. The Kakutani fixed-point theorem states that, if f is a

correspondence from X into itself, it has at least one fixed point; i.e., there

exists x*˛X satisfying x*˛f (x*). Define the mapping y from X to Rn by

y (x) = f(x) – {x}, for all x˛X :
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Since

X –{x}�T(X , x) and f(x)�X , for all x˛X ,

we have that

y (x)�T(X , x)

and so

y (x)˙T(X , x)„;, for all x˛X :

From Theorem 3.2, it follows that there exists x*˛X such that 0n˛y (x*).

Clearly, x* is a fixed point of f.

The set p (v) is not necessarily a half-space or the whole space as it is

illustrated in the next example.

Example 3.4. Fix some strictly positive vector m˛Rn. Let p (v) be

given by

p (0n) = Rn

and for v˛Bnn{0n} by

p (v) = {y˛Rnjyi #mi(1 – vi=max
j
jvjj), if vi >0;

yi $mi(– 1 – vi=max
j
jvj j), ifvi <0}:

Clearly, p is an upper semicontinuous, convex-valued, and closed-valued

correspondence on Bn. Moreover, for every v˛Bn, it holds that

p (v)˙{y˛Rnjy = mv, m $0} = {0n},

and so condition (i) of Theorem 3.1 is satisfied always. If condition (ii) holds

for this p, then there exists a zero point of f on X.

The result in Example 3.4 was introduced in Herings, van der Laan, and

Talman (Ref. 14) to prove the existence of a continuum of quantity-

constrained equilibria in an exchange economy with prices restricted to an

arbitrary convex, compact set. The next fixed-point theorem is due to Eaves

(Ref. 10) and is used to guarantee the convergence of simplicial homotopy

algorithms.

Example 3.5. Let X be full-dimensional and suppose that there exists

c ˛int(X ) such that, for all x ˛bd(X ), it holds that c˛f (x). Then, there
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exists a fixed point of f in X. Define

y (x) = f(x) – {x}, for all x˛X :

For x˛bd(X ), it holds that

c – x˛T(X , x)˙y (x),

and for x įnt(X ), it holds that

T(X , x) = Rn:
Hence,

T(X , x)˙y (x)„f, for every x˛X ;

i.e., the mapping y satisfies the condition of Theorem 3.2. Therefore, y has a

zero point on X, which is a fixed point of f.

The following fixed-point theorem is due to Merrill (Ref. 9) and has also

applications in constrained and unconstrained optimization.

Example 3.6. Let y be an upper-semicontinuous mapping from Rn to

the collection of compact, convex subsets of Rn. Suppose that there exists

w˛Rn and m >0 such that, for all xˇB(w, m) and f˛y (x),

( f – x)`(w – x)>0:

Then, y has a fixed point in B(w, m). Take

X = B(w, m) and p (v) = {y˛Rnjy`v#0}, for v˛Bn:

For x on the boundary of B(w, m), it holds that x – w˛N(X, x) and there is

f˛y (x) such that

( f –x)`(w – x)$0:

For those x, condition (ii) of Theorem 3.1 holds for the mapping f on X

defined by

f(x) = y (x) – {x}:

For v in the interior of B(w, m), condition (ii) is trivially satisfied. Also, con-

dition (i) is satisfied for f, since for every x˛bd(X ) it holds that

N(X , x) = {y˛Rnjy = m(x – w), m $0} and (x – w)`(x – w)>0:

Hence, there exists x* in X satisfying 0n˛f (x*), and therefore x*˛y (x*).

In Theorem 3.1, we have provided a sufficient condition for the exis-

tence of a zero point of a mapping on an arbitrary compact, convex set. In

case the conditions of Theorem 3.1 are not satisfied, a zero point may not

exist. In this case, it is possible to obtain a generalization of the notion of a

384 JOTA: VOL. 120, NO. 2, FEBRUARY 2004



stationary point, without losing existence of a stationary point under stan-

dard assumptions.

Definition 3.1. Let p : BnfiRn be a convex-valued, closed-valued,

upper-semicontinuous mapping, and let A be any nonsingular n · n matrix.

A point x*˛X is a stationary point with respect to p and A of the mapping

f from X to Rn if 0n˛f (x*) or Af (x*)˙p (v)˙{y|y = mv, m $ 0}„; for some

v˛N(X, x*) or Af (x*)˙p (v) = ; for some v˛N(X, x*).

Notice that, when

p (v) = Rn, for all v˛Bn,

and when A is the identity matrix, then the above definition is reduced to the

usual definition of a stationary point; see Definition 2.1. As a consequence of

Theorem 3.1, we have the following theorem.

Theorem 3.3. Let X be nonempty, compact, and convex, and let f be

upper semicontinuous, bounded, convex-valued, and compact-valued. Then,

for every convex-valued, closed-valued, upper semicontinuous mapping

p : BnfiRn, and for every nonsingular n · n matrix A, f has a stationary

point with respect to p and A.

4. Zero Points on Polytopes

In this section, we consider the case that the compact, convex set X is a

polytope. Let a polytope P be described in polyhedral form by

P = {x˛Rnja i`x#bi, i˛Im},

where for every i˛Im = {1, . . . , m}, the vector ai is a nonzero vector in Rn and

bi˛R. Without loss of generality, we assume that P is full-dimensional,

simple and that there are no redundant constraints. For I�Im, define

F (I) = {x˛Pja i`x = bi, i˛I},

C(I) = y˛Rnjy = �
i Į

mia
i, mi $0, i˛I

� �
:

Notice that

F (;) = P and C(;) = {0n}:

When F(I )„;, we call F(I ) a face of P. Let I be the collection of subsets I of

Im such that F(I ) is a face of P. For x˛P, define

Ix = {i˛Imjai`x = bi};
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i.e., F(I x) is the unique face of P of which x is an interior point. Clearly, C(I x)

is the normal cone of P at x˛P; i.e.,

C(Ix) = N(P, x):

The next theorem gives a sufficient condition for the existence of a zero point

of a mapping on P.

Theorem 4.1. Let P be a polytope and let f be a mapping from P to

Rn satisfying the conditions stated before. Suppose that there exists a non-

singular n · n matrix A and a collection of closed convex cones Y(I ), I˛I,

such that Y(I )�Y(J) whenever J�I and such that the following two prop-

erties hold for every x˛P:

(i) The set Af (x)˙Y(I x)˙C(I x) is either empty or contains 0n.

(ii) The set Af (x)˙Y(I x)„;.
Then, there exists a zero point of f in P.

Proof. Since P is assumed to be simple and there are no redundant

constraints, for every vector v˛Bn there is a unique index set I˛I for which

it holds that v įnt(C(I )). For v˛Bn, define p (v) = Y(I ) for the unique I˛I
for which v įnt(C(I )). Clearly, p(v) is a convex and closed set for every

v˛Bn. To prove upper semicontinuity, let (vk, k˛N) be a convergent

sequence of points in Bn and let v be its limit point. For k˛N, let Ik be such

that vk įnt(C(Ik)) and let I be such that v įnt(C(I )). Since I and all the

Ik, k˛N, are uniquely determined and vk converges to v, it holds that I�Ik
for sufficiently large k˛N. Hence, Y(Ik)�Y(I ) for sufficiently large k˛N

and therefore p is an upper semicontinuous mapping. Moreover, because

of conditions (i) and (ii), p satisfies conditions (i) and (ii) of Theorem 3.1.

Consequently, there exists a zero point of f on P. u

The conditions in the theorem for a point x in P are completely deter-

mined by the set of indices that determines the face of P in which x lies.

5. Intersection Theorems

In this section, we give a general intersection theorem on compact,

convex sets. Let X be again a nonempty, compact, convex set in Rn. For some

finite set of indices J, let {D j| j˛J} be a finite closed covering of X; i.e., for

every j˛J, the set D j is a closed, possibly empty, subset of X and the union

of all these sets is X. Let {c j| j˛J} be some collection of vectors in Rn. For
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a subset J of J, let C(J) be defined by

C(J) = con{c jj j˛J}:

A collection {c j| j˛J} or the set J itself is called balanced if J is a nonempty

subset of J and 0n˛C(J). A point x*˛X is called an intersection point if

x*˛˙ j˛JD
j for some balanced set J. For x˛X, define the index set J x as

J x = { j˛Jjx˛D jj}:
Because {D j| j˛J} is a covering of X, we have that J x is nonempty for every

x˛X. By definition, x* is an intersection point if and only if the index set J x*

is balanced. The next theorem gives a sufficient condition for the existence of

an intersection point.

Theorem 5.1. Let {D j| j˛J} be a finite, closed covering of a non-

empty, compact, convex set X in Rn and let {c j| j˛J} be a collection of

vectors in Rn . Suppose that there exists a closed-valued, convex-valued,

upper semicontinuous mapping p : BnfiRn such that, for every x˛X and

v˛N(X, x)˙Bn, the following two properties hold:

(i) The set C(J x)˙p (v)˙{y|y = mv, m $ 0} is either empty or

contains 0n.

(ii) The set C(J x)˙p (v)„;.
Then, there exists an intersection point.

Proof. Define f: XfiRn by

f(x) = C(J x), x˛X :

Since {D j| j˛J} is a closed covering of X, we have that f is an upper semi-

continuous mapping. Moreover, for every x˛X, since J x is nonempty and

C(J x) is the convex hull of a finite number of points, f (x) is nonempty,

convex, and compact. Because of conditions (i) and (ii), the mapping f
satisfies all the conditions of Theorem 3.1 and therefore there exists x*˛X

satisfying 0n˛f (x*); i.e., x* is an intersection point. u

In the remaining part of this section, we will show that several known

intersection theorems, like the ones of KKM (Ref. 6), Scarf (Ref. 11), Shapley

(Ref. 12), and Ichiishi (Ref. 13), follow as special cases of Theorem 5.1.

The set

Sn = x˛Rn
+j �

n

i=1
xi = 1

� �
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is called the unit simplex, which is a simple example of polytope. For h˛In,

Sh
n denotes the facet

Sn
h = {x˛Snjxh = 0},

and for T�In,

Sn(T ) =
\
h ˛T

Sn
h :

We define the jth unit vector in Rn by e j. The first result is the classical KKM

lemma.

Example 5.1. Let {D j| j˛In} be a collection of closed sets covering

the unit simplex Sn such that, for every T�In, the face Sn(T ) is contained

in ¨ jˇTD j. Then, ˙ j Įn
D j„;.

Proof. From the definition of the simplex,

Sn = {x˛Rnj – xi #0, i˛In, and 1n � x = 1},

it follows immediately that

N(X , x) = v˛Rnjv = a1n – �
{ijxi=0}

b ie
i, a ˛R, b i $0

� �
:

We define

p (v) = {y˛Rnjy`v#0} and c j = (1=n)1n – e j, j˛In:

Notice that the collection {c j| j˛J} is balanced if and only if J = In. To show

the KKM-lemma, it remains to verify the two conditions of Theorem 5.1.

Since

p (v)˙{yjy = mv, m $0}

equals 0n, condition (i) is clearly satisfied.

Consider x˛Sn. If x įnt(Sn), then

N(X , x) = {v˛Rnjv = a1n, a ˛R},

so

v˛N(X , x)n{0n} implies p (v) = {x˛Rnj1n � x = 0},

so

C(J x)˙p (v) = C(J x)„;:
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If x˛bd(Sn), say x˛Sn(T ) with T = { j |xj = 0}, then

x˛D j, for some j˛InnT :

The corresponding c j˛C(J x) satisfies

c
j
j = 1=n – 1 and c

j

k = 1=n, if k„ j:

Whenever v˛N(X, x), it holds that

v = a1n – �
i ˛T

b ie
i,

so

v`c j = – �
i ˛T

b i(1=n)#0:

It follows that c j˛p (v). u

The next example is due to Scarf (Ref. 11) and can be viewed as a dual

version of the KKM lemma.

Example 5.2. Let {D j| j˛In} be a collection of closed sets covering the

unit simplex Sn such that, for every j˛In, the facet Sj
n is contained in D j.

Then, ˙ j Įn
D j„;.

Proof. We define

p (v) = {y˛Rnjy`v#0}

and

c j = e j – (1=n)1n, j˛In:

Notice that the collection {c j| j˛J} is balanced if and only if J = In. To show

the Scarf lemma, it remains to verify the two conditions of Theorem 5.1.

Condition (i) is satisfied for the same reason as in Example 5.1.

Consider x˛Sn. If x įnt(Sn), then

v˛N(X , x)n{0n} implies p (v) = {x˛Rnj1n � x = 0},

so

C(J x)˙p (v) = C(J x)„;:

If x˛bd(Sn), say x˛Sn(T ) with T = { j|xj = 0}, then

x˛D j, for all j˛T :
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The vector c̄˛C(J x) defined by c̄ = �j ˛T (1=jT j)c j satisfies

c̄ j = 1=jT j – 1=n, if j˛T ,

c̄ j = – 1=n, if j˛InnT :

Whenever v˛N(X, x), it holds that

v = a1n – �
j ˛T

b je
j,

so

v` c̄ = – �
j ˛T

(1=jT j – 1=n)b j #0:

It follows that

c̄ ˛p (v): u

We continue with the Shapley lemma. We define the collection of

nonempty subsets of In by In. For S�In, we define eS˛Rn as the vector

satisfying

eS
i = 1, if i˛S,

eS
i = 0, otherwise:

We say that a collection B = {B1, . . . , Bk} of members of I is set-balanced if

there exist nonnegative numbers lj, j = 1, . . . , k, such that

�
k

j=1
l je

Bj = 1n:

Example 5.3. Let {DS|S˛In} be a collection of closed sets covering

the unit simplex Sn such that, for every T�In, the face Sn(T ) is contained

in ¨S�InnTDS. Then, there is a set-balanced family B = {B1, . . . , Bk} of

elements of In for which ˙ j=1
k DBj„;.

Proof. We define

p (v) = {y˛Rnjy`v#0}

and

cS = (1=n)1n – eS, S˛In:

Notice that the collection {cS1, . . . , cSk} is balanced if an only if {S1, . . . , Sk}

is set-balanced. To show the KKMS-lemma, it remains to verify the two

conditions of Theorem 5.1.
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Since

p (v)˙{yjy = mv, m $0}

equals 0n, condition (i) is clearly satisfied.

Consider x˛Sn. If x įnt(Sn), then

v˛N(X , x)n{0n} implies p (v) = {x˛Rnj1n � x = 0},

so

C(J x)˙p (v) = C(J x)„;:

If x˛bd(Sn), say x˛Sn(T ) with T = { j |xj = 0}, then

x˛DS, for some S�InnT :

The corresponding cS˛C(J x) satisfies

cS
j = 1=n – 1=jSj, if j˛S

cS
j = 1=n, if jˇS:

Whenever v˛N(X, x), it holds that

v = a1n – �
i ˛T

b ie
i,

so

v`cS = – �
i ˛T

b ic
S
i = – �

i ˛T
b i(1=n)#0:

It follows that cS˛p (v). u

The next result is due to Ichiishi (Ref. 13), which can be seen as a dual

version of the Shapley intersection lemma.

Example 5.4. Let {DS|S˛In} be a collection of closed sets covering

the unit simplex Sn such that, for every T˛In, the face Sn(T ) is contained

in ¨T�SDS. Then, there is a set-balanced family B = {B1, . . . , Bk} of elements

of In for which ˙ j=1
k DBj„;.

Proof. We define

p (v) = {y˛Rnjy`v#0}

and

cS = eS– (1=n)1n, S˛In:
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Notice that the collection {cS1, . . . , cSk} is balanced if and only if {S1, . . . , Sk}

is set-balanced. To show the Ichiishi lemma, it remains to verify the two

conditions of Theorem 5.1.

Condition (i) is satisfied for the same reason as in Example 5.1.

Consider x˛Sn. If x įnt(Sn), then

v˛N(X , x)n{0n} implies p (v) = {x˛Rnj1n � x = 0},

so

C(J x)˙p (v) = C(J x)„;:

If x˛bd(Sn), say x˛Sn(T ) with T = { j|xj = 0}, then

x˛DS, for some S�T :

The vector cS˛C(J x) satisfies

cS
j = 1=jSj– 1=n, if j˛S

cS
j = – 1=n, if j˛InnS:

Whenever v˛N(X, x), it holds that

v = a1n – �
j ˛T

b je
j,

so

v`cS = – �
j ˛T

(1=jSj – 1=n)b j #0:

It follows that cS˛p (v). u

Finally, we will show that a quite general intersection theorem of

van der Laan, Talman, and Yang (Ref. 15) follows also from Theorem 5.1

as a particular case. To state their result, we define first, for I�Im, the set

A*(I ) by

A*(I) = {y˛Rnjy`x#0 for all x˛A(I)}:

Their theorem reads as follows.

Theorem 5.2. Let {D j| j˛J} be a finite closed covering of a full-

dimensional polytope P = {x˛Rn|ai`x#ai, i˛I} and set {c j| j˛J} be a

collection of vectors in Rn. Suppose that, for every x˛bd(P), it holds that

C(J x)˙A*(I x)„;. Then, there exists a balanced set J�J for which

˙ j˛JD
j„;.
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Proof. Define

p (v) = {y˛Rnjy`v#0}:

Since P is a full-dimensional polytope, it follows that, for x įnt(P), it holds

that N(X, x) = {0n}, so conditions (i) and (ii) of Theorem 5.1 are obviously

satisfied.

Consider x˛bd(P). Condition (i) of Theorem 5.1 is satisfied for the same

reason as in Example 5.1. Let y be an element of C(J x)˙A*(I x). Then,

y`v#0, for all v˛N(X ,x),

so

y˛C(J x)˙p (v), for all v˛N(X , x),

and condition (ii) of Theorem 5.1 is satisfied as well. It follows that there

is an intersection point; i.e., there exists a balanced set J�J for which

˙ j˛JD
j„;. u

Theorem 5.1 generalizes Theorem 5.2 in two respects. First, it treats the

case of an arbitrary nonempty, compact, and convex set X, thereby gen-

eralizing the assumption that X be a polytope. Secondly, it weakens the

boundary condition.

Theorem 5.2 contains generalizations of the lemmas of KKM, Scarf,

Shapley, and Ichiishi to the polytope as special cases, as well as lemmas on

the cube by Freund (Ref. 16) and lemmas on the polytope by Ichiishi and

Idzik (Ref. 17). Since Theorem 5.2 is a special case of Theorem 5.1, these

results follow as special cases of Theorem 5.1 as well. We also refer to Gale

(Ref. 18), Herings and Talman (Ref. 19), and Yang (Ref. 20–21) for other

types of intersection results.
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