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Surprise Volume and Heteroskedasticity
in Equity Market Returns



Abstract

Heteroskedasticity in returns may be explainable by trading volume. We use dif-
ferent volume variables, including surprise volume—i.e. unexpected above-average
trading activity—which is derived from uncorrelated volume innovations. Assum-
ing weakly exogenous volume, we extend the Lamoureux and Lastrapes (1990)
model by an asymmetric GARCH in-mean specification following Golsten et al.
(1993). Model estimation for the U.S. as well as six large equity markets shows
that surprise volume provides superior model fit and helps to explain volatility
persistence as well as excess kurtosis. Surprise volume reveals a significant positive
market risk premium, asymmetry, and a surprise volume effect in conditional vari-
ance. The findings suggest that, e.g., a surprise volume shock (breakdown)—i.e.
large (small) contemporaneous and small (large) lagged surprise volume—relates
to increased (decreased) conditional market variance and return.

Key Words: ARCH, trading volume, return volume dependence, asymmetric
volatility, market risk premium, leverage effect
JEL Classification: C13, G10, G15



1. Introduction

The uncertainty of equity returns is commonly measured by the equity returns’
variance. However, empirical evidence indicates that a stationary normal distri-
bution is an approximate unconditional model for equity returns. In particular,
unconditional return distributions tend to be fat-tailed. As a possible explanation
for the latter phenomenon, conditional return variance may vary over time. Such
return heteroskedasticity may relate to different levels of trading activity as in the
static subordination model of Clark (1973). Furthermore, heteroskedasticity was
found to be a dynamic phenomenon, which is frequently referred to as “volatil-
ity clustering”. While the model of autoregressive conditional heteroskedasticity
(ARCH) as introduced by Engle (1982) has become the most commonly used
model of volatility clustering, it does not offer an economic explanation of the
phenomenon. Part of the literature on volatility clustering suggests that ARCH-
effects in stock returns can be explained by temporal dependence in trading vol-
ume, but evidence is mixed.

This paper examines to what degree fat-tails, ARCH-effects and returns in
equity markets are associated with trading volume. We re-examine the relation-
ship between conditional returns, conditional volatility and trading volume which
is important for an understanding of how new information is transmitted to the
market and embedded in stock prices. Such understanding may also help to better
predict return volatility behavior and its asset pricing implications. We contribute
in several ways to previous work on return-volume dependence, which was mostly
focusing on the U.S. equity market. First, we study dependence for the U.S. as
well as for six additional large international equity markets: Holland, France, Ger-
many, Hong Kong, the U.K., and Japan. This allows for a cross-sectional check
of the robustness of the features found for single markets. Second, we propose
the use of “surprise volume” as a volume variable, which is defined as unexpected
above-average trading activity. This measure of heterogeneity offers an intuitive
proxy for private information arrival as is commonly referred to in the noisy ratio-
nal expectations literature. Finally, using daily data over the period from January
1988 to November 1997, we apply a flexible filtering technique to capture stochas-
tic trends, seasonality, as well as linear dependence in trading volume. We then
retest many of the features as documented for the U.S. market; see e.g. Karpoff
(1987) and Gallant et al. (1992).

Our methodology is an extension of the Lamoureux and Lastrapes (1990)



ARCH-model, which is based on a volume variable which serves as a variance
regressor. For reasons of simplicity as well as robustness of inference, we thereby
assume that our volume variable is weakly exogenous in the sense of Engle et al.
(1983); i.e. inference is based on the conditional return distribution under the
assumption that conditioning on volume does not impact inference about the pa-
rameter vector of interest. Hence, although the parameter estimate for the volume
variable may not have standard statistical properties, results on volatility cluster-
ing as modeled by ARCH can remain valid; see also Omran and McKinzie (2000).
Applying this methodology, we pay particular attention to the interpretation of
the directing process in the underlying subordination model. We argue that it
theoretically seems difficult to justify the assumption of dependence in a directing
process which should represent unobservable information flow, since information
is commonly regarded to be an independent random phenomenon. Hence, the use
of surprise volume in the Lamoureux and Lastrapes framework allows for a test
of the implications of the subordination model. If unobservable information flow
drives volatility clustering, the latter should be better explained by a regressor
variable which is derived from unexpected volume innovations. Additionally, we
extend the Lamoureux and Lastrapes framework to capture “volatility asymme-
try”, i.e. negative unexpected returns may have a stronger impact on conditional
variance than positive unexpected returns. This effect is frequently referred to
as a “leverage-effect”, while it may also relate to a time-varying conditional mar-
ket return expectation; see Bekaert and Wu (2000). Including a time-varying
conditional return, results in an asymmetric ARCH in-mean specification which
follows the work of Engle et al. (1987) and Golsten et al. (1993). The method-
ology also relates to the study of Engle and Patton (2001) who point out that
exogenous variance regressor variables may provide an economic explanation of
ARCH-effects in equity index returns.

When fitting the model, we find that the ARCH cum surprise volume model
dominates the other models. Although the standard ARCH model captures
volatility clustering well, our new surprise volume model specification has two
distinct advantages. First, it helps to explain excess kurtosis jointly with volatil-
ity clustering. Hence, surprise volume can help to explain static as well as dynamic
elements in observed return heteroskedasticity. This yields a model of volatility
clustering where ARCH-type persistence is reduced while excess kurtosis in the
residuals is reduced beyond of what ARCH-models typically accomplish. Sec-
ond, model fit is substantially improved. Under improved fit, the significance of



volatility asymmetry in the ARCH-model substantially increases. Surprise volume
provides improved modelling of conditional market variance and thereby improves
inference on a time-varying market risk premium.

The empirical features are quite robust over our cross-section of markets. Price
variability and volume are significantly related in all markets. Surprise volume
is significantly associated with the variation in conditional market variance. In
fact, while volume per se does not necessarily improve the in-sample performance
of the ARCH-models, surprise volume does so remarkably; this adds to earlier
findings of Gallant et al. (1992) and Bessembinder and Seguin (1993), which were
not based on ARCH-modeling.

Moreover, we find that volume surprises reveal a significant positive risk-return
relation. The latter finding is consistent with volume serving as a proxy of private
information flow which in turn plays an important role in the determination of
equity return premiums. It is also consistent with recent empirical results on
single stock returns for example by Gervais et al. (2001). The introduction of
surprise volume also provides evidence of volatility asymmetry in all markets; the
so-called leverage-effect appears to be a feature which strengthens for the surprise
volume models.

Furthermore, we find evidence of a new “surprise volume effect” in conditional
market variance which occurs jointly with the well-established “leverage effect”.
This surprise volume effect is a significant pattern effect in the association of
surprise volume with conditional variance; i.e. the relation between surprise vol-
ume and conditional variance is conditional on the level of past surprise volume.
Ideally, under a surprise volume shock—i.e. under large contemporaneous and
small lagged surprise volume—our model predicts increased conditional market
variance. Conversely, under a surprise volume breakdown—i.e. under small con-
temporaneous and large lagged surprise volume—our model predicts decreased
conditional market variance. The latter relation is particularly interesting since
standard ARCH-models cannot accommodate sudden drops in conditional vari-
ance.

Finally, as surprise volume is derived based on uncorrelated abnormal volume
innovations, our results suggest that the phenomenon of volatility clustering as
modelled by ARCH has little relation to dependence in the trading process. This
suggestion may help to reconcile the contradicting findings from the Lamoureux
and Lastrapes (1990) GARCH-model and the Lamoureux and Lastrapes (1994)
bivariate mixture model with correlated directing process dynamics. While con-



temporaneous volume can partly explain volatility persistence as measured by
estimated ARCH-parameters, time-series correlation in volume does not seem to
help in the explanation of ARCH-type volatility clustering. We interpret this find-
ing and the occurrence of the surprise volume effect as consistent with empirical
evidence on return-volume causality as documented for example by Hiemstra and
Jones (1994).

The remainder of the paper is organized as follows. A brief review of earlier
findings on return volume and return variability-volume dependence is given in
Section 2. Section 3 introduces the data set and describes the different approaches
to filtering abnormal volume. Section 4 outlines the methodological framework
including the different ARCH-with-volume model specifications. The empirical
results are presented in Section 5. Section 6 concludes.

2. Earlier Empirical Findings

Fat-tailed return distributions may be explained by models with time-varying
variance. Three common approaches to time-varying variance are models of the
generalized autoregressive conditional heteroskedasticity (GARCH) class, mod-
els of stochastic volatility and the subordination model. The first and the second
approaches are based on discrete time series modeling as documented in a vast col-
lection of papers; a classical survey on GARCH is given by Bollerslev et al. (1992),
for stochastic volatility models refer to Taylor (1986) and Harvey et al. (1994),
for example. The third approach provides a theoretical explanation of fat-tailed
return distributions in which the distribution of prices and volume is jointly subor-
dinate to an unobservable directing process. The subordination model goes back
to Clark (1973), among others. An extension within the Grossman and Stiglitz
noisy rational expectations framework is given by Tauchen and Pitts (1983). In
the literature, the model is also referred to as the mixture model or the mixture
of distributions hypothesis. Karpoff (1987) reviews early empirical studies on
trading volume and return variability which provide evidence consistent with the
mixture of distributions hypothesis.

The subordination model is especially appealing from a market microstruc-
ture perspective, since it makes assumptions about the underlying process which
jointly generates price changes and trading volume. Returns over a fixed pe-
riod such as one trading day are given as a random sum of subperiod returns with
common distribution function. The arrival of traders is driven by an unobservable



directing process. An implication of the model is a positive dependence between
return variability and the unobservable directing process, since a higher trading
intensity increases the variability over a fixed return measurement period. The
noisy rational expectations framework offers an economic interpretation of the un-
observable directing process. Assuming that traders share a common information
set and additionally receive noisy private information signals, trading will occur
due to differences in private information sets.! Proxy variables for the unobserv-
able directing process are for example the number of transactions (see e.g. Jones
et al. 1994), order flow (i.e. the net of buyer and seller initiated transactions, see
e.g. Marsh and Rock 1986 and Evans and Lyons 2002) or trading volume, which
is typically reported. Although the return variability-volume relationship experi-
enced extensive empirical examination during recant decades, overall evidence is
still mixed.

Lamoureux and Lastrapes (1990) examine Clark’s subordination hypothesis in
the context of a GARCH model with a weakly exogenous volume variable. The
authors find that volume can explain GARCH effects in U.S. single stocks. In a
later study, Lamoureux and Lastrapes (1994) extend the Tauchen and Pitts bivari-
ate mixture model by assuming a dependent directing process and—in contrast
to their earlier study—find no evidence that volatility persistence in stock returns
is explainable by volume data. There are several studies which refer back to the
original Lamoureux and Lastrapes (1990) methodology. Najand and Yung (1991)
study the U.S. Treasury-bond futures market. Apart from a contemporaneous
return volatility-volume relationship as predicted by theory they also test for a
lagged relationship. In contrast to the original study, the authors only find a weak
positive relation for both contemporaneous as well as lagged volume and ARCH-
effects persist after volume is included in the model. Omran and McKinzie (2000)
follow the approach for U.K. single stocks and conclude that—although estimated
GARCH persistence vanishes as in the Lamoureux and Lastrapes paper—model
residuals exhibit significant levels of heteroskedasticity which indicates that the
model can not fully capture ARCH-effects.

Richardson and Smith (1994) perform a direct test of a joint set of moment
restrictions as imposed by the mixture of distributions model. Under a lognor-

LOf course, there are various other reasons for trading; see e.g. Bessembinder et al. (1996)
for an overview. Important concepts include general forms of heterogeneity between market par-
ticipants, liquidity needs and differences in opinion. For strategic interactions between liquidity
and informed traders see e.g. Admati and Pfleiderer (1988).



mally distributed directing process (where the continuous distribution is regarded
as an approximation to the underlying integer valued directing process), the fit
seems superior as compared to other distributional assumptions, however overall
evidence is not overwhelming. Andersen (1996) adopts a noisy rational expecta-
tions framework and explicitly allows for non-informational trading and common
information arrivals. He shows that this improves the empirical fit of the im-
plemented moment restrictions. In a dynamic setting, the model allows for a
reduction in the estimated volatility persistence of U.S. single stocks. Successive
evidence remains mixed. Liesenfeld (1998) tests Andersen’s model by assuming a
dependent directing process. Like Lamoureux and Lastrapes (1994), he finds no
evidence that volatility persistence is explainable by volume data. Bollerslev and
Jubinski (1999) suggest that long-memory characteristics in the directing process
may help to explain earlier model rejections. Fleming et al. (2001) propose a
further modification of the mixture model again under the original independence
assumption.

Without explicitly relying on the mixture hypothesis, Gallant et al. (1992)
estimate the joint conditional return-volume density for the U.S. market. In line
with the earlier studies, a positive return volatility-volume dependence is found.
Whereas the relation is nearly flat for negative standardized volume realizations,
it is increasing for positive standardized volume. For volume observations above
a level of about two, the relation weakens. The authors also find that a negative
conditional risk-return relation turns into a positive one when volume is incorpo-
rated into the analysis. Additionally, the results suggest that a leverage-effect is
jointly explainable by returns and volume.

3. The Dataset and Volume Adjustments

This section briefly introduces the data set used in the empirical study and de-
scribes the various adjustments made to the raw volume series.

3.1. The Dataset

The dataset consists of daily closing price data and turnover data for seven major
international stock market indices in the time period January 4, 1988 to Novem-
ber 14, 1997, with ¢ = 1,..., 2575. All data were obtained from Datastream.
The countries together with the symbol for the corresponding index, are Holland



(Amsterdam EOE Index, ’AEX’), France (CAC 40, 'CAC’), Germany (DAX 30,
'DAX’), Hong Kong (Hang Seng Index, "HSI’, with a shorter sample starting June
1, 1988), the U.K. (FTSE 100, 'FTS’), the U.S. (Standard and Poor’s 500, ’'SPX’)
and Japan (Topix, "TPX’). Note that the dataset contains several episodes of
regional as well as global “market stress”. Examples are the so-called October
1989 “Mini-Crash”, the 1990/91 oil crisis, the August 1991 “Gorbatchev Crash”
as well as the October 1997 Asian currency crisis; we refer to Marsh and Wagner
(2000) for results on extreme return-volume dependence. A graphical illustration
of the continuously compounded return series for two markets, namely the S&P
500 and the Topix, is given in Figure 1.

(Figure 1 about here)

The study of international capitalization-weighted market index data enables
us to analyze the return-volume behavior of a broad class of stocks which typically
show above average liquidity. The data set represents a local currency perspec-
tive. Apart from the case of the DAX-index, dividends are not included in the
calculation of the indices. Since focus is on return-volume dependence, we do not
regard these as important issues in our following analysis.

3.2. Volume Adjustments

Non-stationarity and time-series dependence of volume data is a major issue in
empirical investigations of the return-volume relationship. In the present appli-
cation the task is to filter a stationary and uncorrelated series of trading activity.

For other investigations on returns and volume which apply adjustments to the
raw volume series see for example Gallant et al. (1992), Campbell et al. (1993),
and Andersen (1996). As also proposed for example in Lo and Wang (2000), we
follow an approach which imposes rather little structure on the raw volume series
of the different markets in our sample. In contrast to these previous studies, we
apply a more flexible filtering technique to capture stochastic trends, seasonality
as well as linear dependence in volume.

3.2.1. Trends in Volume: Filtering Abnormal Volume

In a first step, we transform the volume data by the application of the natural
logarithm. As volume data are restricted to non-negative values, the distribution
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of the resulting series is better approximated by the normal. The transformation
also improves the stationarity properties of the volume series under a long run
constant volume growth rate and a volume variance that relates to the volume
level.

In order to remove a stochastic trend in logarithmic volume, a standard moving
average as well as the Hodrick and Prescott (1997) filtering method is applied.
We use a non-centered 50-day moving average which yields time-{ normal vol-
ume, (W)t MmA, based on time-t information. The Hodrick and Prescott method
minimizes the sum of squared deviations between the original and the smoothed
overall series given a smoothness constraint for the fitted series; a value of 5-10° is
chosen for the smoothing parameter. The output of the method provides a series
of normal trading volume, (In'V); p, which is based on time-T" information. Sen-
sitivity checks suggest that both results for normal volume are not very sensitive
with respect to the choice of these smoothing parameters.

Taking the difference between actual and normal volume yields a detrended
series of abnormal logarithmic volume. The two resulting series, denoted as “ab-
normal volume”, are given as

Uiop =V, — (InV);, with: o € {MA, HP},

where the subscript ‘p’ indicates potential time-series predictability. Note that
the two abnormal volume series show high correlation in the remainder sample.
The estimated correlation coefficients are 0.962, 0.962, 0.931, 0.963, 0.886, 0.965
and 0.901 for the Dutch, French, German, U.K., Hong Kong, U.S. and Japanese
markets, respectively.

3.2.2. Volume Seasonality and Dependence: Filtering Unexpected Ab-
normal Volume

In a second step, the time-series dependence structure of the abnormal volume
series U, is examined within a linear filter framework. Applying the classic
Box/Jenkins-methodology shows that a suitable overall representation of the data
is given by a first order autoregressive moving average with a five-weekday season-
ality component. In order not to overfit, the chosen seasonal ARIMA((1,0,1) x
(1,0,1)5)-model is estimated for all markets’ abnormal volume series Uy, ,. To
keep matters simple, we do not model potential monthly seasonality. Model esti-
mation is carried out by least squares. This can be considered as a useful approach



even in the presence of fat-tailedness in the volume series; see e.g. Embrechts et
al. (1997).

The estimation results show that the volume series exhibit a high degree of
linear predictability. For example, the adjusted R2-statistics for the model fitted
to the U, mpp-series are 0.205, 0.179, 0.326, 0.321, 0.567, 0.283 and 0.526 for the
Dutch, French, German, U.K., Hong Kong, U.S. and Japanese markets, respec-
tively. For the U a4 ,-series the statistics tend to be even larger: 0.223, 0.222,
0.367, 0.351, 0.596, 0.308 and 0.552, respectively. The finding of a statistically
significant weekly seasonality for all markets implies strong volume level effects
for each weekday; for previous results on weekday effects in trading volume see
for example Foster and Viswanathan (1993) and Bessembinder et al. (1996).
Filtering the U, . ,-series by the fitted model, yields a residual series of approxi-
mately uncorrelated abnormal logarithmic volume, U, . r, which may be denoted
as “unexpected abnormal volume”.

(Figures 1 and 2 about here)

In sum, we derive four different abnormal volume series, U;,., with o €
{MA, HP} and e € {p, f}. A graphical illustration of the sample of raw volume
and realized filtered volume, u; gp ¢, for the S&P 500 and the Topix is given in
Figures 2 and 3, respectively.

4. Methodological Framework

This section contains the methodological framework for our empirical investiga-
tion. First, a brief outline of the mixture of distributions hypothesis is given,
focusing on its empirically relevant implications. The corresponding GARCH
model specification follows.

4.1. Return and Volume in the Mixture Model

The evolution of prices and volume in the mixture of distributions model can
either be measured with respect to standard calendar time or with respect to some
operational time measure. A natural measure of operational time is given by the



random number of transactions N(7) in an intra-day time interval [0;7]. Intra-
day equilibrium asset prices F;, and corresponding trade volumes V;, are observed
at random time points. The counting sequence {N(7)}o<,<1 is called directing
process, where N; = Ny(1) denotes the number of transactions for the ¢th trading
day. Observed intra-day prices {P;, }1<s<n, and trade volumes {V;, }1<,,<n, are
subordinated to a common directing process. Assuming continuously compounded
returns, R, = In(P,,/P,,_,), it follows that the cumulative day ¢t return R; and
the cumulative volume V; is given by the random sums R; = Efvztl R, and V; =
Zi\il V., respectively. This setup forms the basis of the mixture of distributions
hypothesis.?

For a comprehensive summary of the model’s moment conditions refer to Har-
ris (1987). Assuming finite second moments, an independent price and direct-
ing process, and independent identically distributed (i.i.d.) intra-day returns for
simplicity, it follows: Var(R;) = Var(N;)E(R:,)*> + E(N;)Var(R,,). The latter
result shows that the unconditional daily return variance is a function of the un-
observable directing process. When the daily return expectation is small, one
can write: Var(R;) =~ E(N;)Var(R,,). For the conditional daily return variance
it follows: Var(R; N, = n;) = nVar(R;,). Another important model impli-
cation is the prediction of a positive covariance between squared returns and
volume, Cov(R%V;) > 0 and hence also between absolute returns and volume,
Cov(|Ry|; V;) > 0. The mixture of distributions hypothesis provides a formal basis
for the assertion that trading volume relates to daily return volatility.

In an empirical setting the unobservable directing process must be specified.
In Clark’s classical model, prices and volume are assumed to be driven by an i.i.d.
directing process that represents the number of transactions. Under the informa-
tion flow interpretation of the directing process, more structure is imposed. Using
an economic model such as the noisy rational expectations framework, trading
volume is explained by two components, namely by individual non-informational
trading and by differences in the traders’ private information sets. In this setting,
the directing process can be characterized as an unobservable flow of noisy private
information. Assuming that non-informational trading volume is given by some
stationary independent random variable V}, one may write: V, = V/ + Efit/l 2%

2In the empirical part of the paper we consider aggregate index returns and volumes which
result as weighted sums of the individual values of R; and V;, respectively. This leaves the
mixture assumptions valid while increasing the number of summands from which the aggregate
terms are obtained.
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Trading volume is obviously a relevant observable variable for the unobservable
information flow, but it serves as a proxy only. When common information events
on day t cause price variability h? without trading, conditional daily variance is

Var(Ry N = n}) = hi + n,Var(R,,). (1)

In order to perform a univariate test of the mixture of distributions hypothesis, the
unobservable directing process in (1) is proxied by realizations of an observable,
weakly exogenous, volume variable V;. The information flow interpretation of the
directing process has two implications. First, above-average volume which proxies
the realizations Zﬁl v} should explain return variance better than volume V;
itself. Second, the same holds for unpredictable volume being a more suitable
proxy for the realized number of day-¢ information arrivals n;.

4.2. The GARCH Model Specification

A GARCH with mean specification is chosen to fit the overall conditional return
variability-volume dependence. Apart from the standard GARCH(1,1) terms, the
variance equation contains an asymmetric ARCH-term. In the base model, no
volume variable enters the conditional variance equation, which yields the GJR-
benchmark specification according to Golsten et al. (1993) and Zakoian (1994). A
volume variable, as motivated by the preceding section, is added in six additional
model specifications.?

4.2.1. Conditional Return

For all model specifications, the conditional return equation contains a constant,
a first order autoregressive and an in-mean term:

Ry =p+pReq + )‘0162,7-} +e, € (OaUZ}}), t=1,..T. (2)

The noise terms ¢; are independent draws from a possibly fat-tailed distribution
function with conditional variance o7 5,. The AR(1) term pR;_ allows for possible
linear dependence in index returns due to asynchronous trading of the member
stocks, a phenomenon that is well-documented in the literature. Conditional
variance is related to conditional return by the in-mean term )\ai 7

3The authors are indebeted to Robert Engle for his specification suggestions.
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A justification for the above in-mean specification (Engle et al. 1987) can
be provided e.g. by the evidence of Gennotte and Marsh (1993) who find an
approximately linear variance return relation in monthly U.S. equity returns. Note
that a theoretical statement about the sign of the relation is ambiguous in a
consumption based asset pricing framework and depends on the risk aversion of
the representative investor. This makes empirical calibration important.

4.2.2. Conditional Variance

The conditional return variance o7 -, = Var(R| ;) in equation (2) is assumed
to follow a discrete Markov process conditioned on the set F; = {€? ;,07 ;} for
given initial (€2, 02). Referring back to equation (1), different model specifications
can be chosen. The base model (M1) defines the variance component h? by

UZE =hi =wy+wie_; + wQE?—l‘[{Gt—1<0} + W3Ut2—1,ft,1a (3)
where wg > 0, w1, w, w3 > 0 and I 4 denotes an indicator variable for the event
A. The term €} ;I , <o is introduced in order to allow a possible asymmetric
response of conditional variance to negative, as opposed to positive, return in-
novations. In case of a positive coefficient ws, a negative return shock in time-t
will cause an increased return variance in time t + 1. This observation is then
frequently denoted as a “leverage-effect”. As pointed out by Bekaert and Wu
(2000), depending on causality, this effect may be due to financial leverage or
a time-varying risk premium as given in the conditional return specification (2)
above.

4.2.3. Conditional Variance with Volume Variable

Based on equation (1), in addition to h?, a stationary random variable U; which
measures contemporaneous abnormal trading activity may enter the conditional
variance equation. Under F; = {€? ;,02 ;,U;}, the conditional variance equation
in the second model (M2) is given by

o7 5, = hi +wU,. (4)

Note that under the relaxed parameter space, w; € R, ¢ = 1,..., 4, and U,
representing abnormal volume as defined in Section 3 with U; € R, the non-
negativity condition on the conditional variance may be violated in (4), depending
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on the parameter magnitudes. Therefore, we may use retransformed abnormal
volume in model 3 (M3) instead and write

o; 7, = hi + wyexpU. (5)

The parameter w, is predicted to be positive under the prediction of the mixture
model. An implication of the mixture of distributions hypothesis based on a noisy
rational expectations framework is that only trading due to private information
arrivals, not overall trading, should relate to return variability. Interpreting the
directing process as an unobservable flow of private information as in equation (1),
it is above average volume that should serve as a potential proxy for information
flow. Using U;I{y,~0; as volume variable, a corresponding non-linear specification
is chosen in model 4 (M4)

O'Z]_—t = h? + W4Ut[{Ut>0}- (6)

The “surprise volume’-specification is defined by model M4 when unexpected
abnormal volume, U, , ¢, enters the conditional variance equation (6). Note further
that surprise volume in the strictest sense follows under unexpected abnormal
volume, Uy pr4,f, which is time-t adapted.

In order to test for the potential effects of lagged abnormal volume jointly
with contemporaneous volume, we can add lagged volume terms to models M2,
M3 and M4. This yields three additional model specifications, namely models
M5, M6 and M7. The conditional variance equation

UZ}} = h? + w4Ut[{Ut>0} + W5Ut71[{Ut_1>0}a (7)

with wy, ws € R, defines model M7, for example.

4.2.4. Model Specifications Summary

The dependence implication of the mixture model in Section 4.1 can be tested via
the relation between the proxy variable for the directing process and a measure of
return variability. If trading volume is related to the underlying directing process
and the relation is linear in the given range of observations, then there should
be a significant correlation between the volume variable and return variability.
An information flow interpretation of the directing process implies characteristics
that differ from those of a pure transaction based interpretation of the directing
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process. Hence, the utilization of volume data in empirical specifications is not
straightforward.

In sum, we propose seven alternative GARCH-M model specifications. Model
M1 as given by equations (2) and (3) serves as the benchmark model and includes
an in-mean as well as leverage term. Model M2 uses all realizations of the abnor-
mal volume variable in order to explain conditional return variance. It is given
by equations (2) and (4). Model M3 uses a strictly positive measure of abnormal
volume in equations (2) and (5). In contrast to these models, model M4 only uses
above-average abnormal volume as a variance regressor and is based on equations
(2) and (6). All models may additionally include lagged volume in the conditional
variance equation yielding models M5, M6 and M?7.

5. Empirical Investigation

The introduction raised a number of issues concerning the relation between return,
return volatility, and volume. Based on our data set and the different filtered
abnormal volume series of Section 3, we examine the empirical properties of our
GARCH-M model based on the specifications M1 to M7 as introduced in Section 4.
We thereby derive results concerning fat-tails and their relation to trading volume,
the information flow interpretation of the directing process and the explanation
of ARCH-effects through volume. We also address the role of volume with respect
to potential volatility asymmetry, i.e. a time-varying conditional market return
expectation as well as a asymmetric response to positive versus negative return
innovations.

Model estimation is based on the quasi maximum likelihood (QML) method-
ology. Deviations from normality in the noise terms are accounted for by using
the Bollerslev and Wooldridge (1992) approach. This yields the parameter esti-
mates (i1, p, X, Wo, W1, W, W3, Wy, W5) and their robust standard errors. Since
the calculation of the moving average in volume requires the first 50 sample vol-
ume observations, the reported results refer to 2525 observations in the sample
t =51, ..., 2575 (for the Hang Seng sample we have: ¢ = 158, ..., 2575).

5.1. Empirical Fit to the Specified Log-Likelihood

Given our benchmark model specification M1 together with six alternative model
specifications (M2 to M7) and four different abnormal volume series Uy, o, an over-
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all of 25 different model permutations results. In order to provide an overview of
the overall empirical fit of these different models, we use the classic Akaike infor-
mation criterion. The latter is defined as the obtained maximized log-likelihood
In L, penalized for the number of parameters in the model and usually defined as
AIC = —2-InL + 2 - #(parameters). Tables 1 to 4 report AIC-statistics for
the models based on the four different abnormal volume variables Ui a4 p, Ur mpp,
Uima,s and Uy gp ¢, respectively. The results show that models M4 and M7 both
with the filtered abnormal volume variable provide the most suitable overall model
specifications.

(Tables 1, 2, 3 and 4 about here)

Using the AIC-statistic to select the model with the best fit for each market,
specification M7 is chosen for all seven markets. The second best fit is provided
by model specification M4 (i.e. M7 without lagged volume). The AIC-statistics
for models M2, M3, M5 and M6 in all tables also demonstrate that volume per
se does not necessarily improve model fit (taking the increased number of model
parameters into account). In contrast, surprise volume as reported in Tables 3
and 4 and modeled by specification M4 or M7 improves model fit for six out of
seven markets. The lowest improvements are given for the French market where
the model fit of the alternative specifications is roughly equivalent and hardly
dominates the model without volume variable (model M1).*

These findings on overall model fit indicate that positive innovations to the
volume variable have superior power in explaining conditional return variance in
the given GARCH model setting. This is somewhat surprising considering the fact
that roughly half of the volume information is neglected. However, it is consistent
with findings in the microstructure literature according to which below average
volume is less informative than above average volume; see for example Espejel
(1997). Furthermore, based on the discussion in Section 3.1, the finding provides
evidence for the information flow interpretation of the directing process. This
interpretation is also consistent with the finding that an underlying uncorrelated
abnormal volume variable, namely U, . s, on average provides a better fit than

4These particular results for the French market may relate to the definition of the CAC
volume series; see www. euronext . fr for details. The authors thank Bertrand Maillet for pointing
out this issue.
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the raw abnormal volume variable U, , ,; see the results for models M4 and M7 in
Table 3 versus Table 1 and Table 4 versus Table 2.

Turning to our two different methodologies for the estimation of abnormal vol-
ume U , o, recall that the Hodrick/Prescott-methodology is based on full sample
foresight whereas the moving average is purely backward looking. Given the re-
ported AIC-statistics, there is some indication—but no strict dominance—which
suggests that the Hodrick/Prescott-methodology provides a better fit than the
backward looking version; see the results in Table 2 versus Table 1 and Table 4
versus Table 3. Also, model specification M7 with unexpected abnormal volume
in Table 3 and 4 yields the best AIC-results for all markets no matter whether
we choose M A or HP abnormal volume. However, when abnormal volume is cal-
culated based on full sample information, the results yield even lower AIC-levels
under model M7 for four of the markets; see Table 4. Hence, with higher precision
in determining abnormal volume, the advantages of surprise volume as a condi-
tional volatility regressor become more distinct. This suggests that determining
the level of abnormal volume based on time-t information only—which implies
a less precise assessment of the level of abnormal volume—model performance
somewhat weakens.

5.2. Performance of Surprise Volume Models

Given the above results on overall model fit, we now pick the benchmark model M1
and the two most promising model specifications, namely model M4 and M7, for
further investigation. Since backward looking abnormal volume strictly confirms
with our definition of surprise volume, we concentrate on the filtered abnormal
volume series U a4, in the following, i.e. on models M4 and M7 as reported in
Table 3. We compare the performance of the two surprise volume models to the
benchmark GARCH model M1.

Estimation of models M1, M4 and M7 yields respective series of standard-
ized model residuals, € /0 7. Table 5 summarizes statistics concerning overall
model fit, the distribution of the standardized model residuals and the time series
properties of their raw as well as squared values. Tables 6, 7 and 8 report the
parameter estimation results for models M1, M4 and M7, respectively.

(Table 5 about here)
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5.2.1. Testing for Volume Effects

Focusing on overall model fit, apart from the AIC-statistic as used above, Table
5 additionally reports likelihood ratio statistics, LR = 2- (lnL In LM1) These
statistics allow for a test of models M4 and M7 against their nested alternative
without volume variable as given by model M1. The results in Table 5 indicate
that, at high confidence levels, the benchmark model has to be rejected against
the alternatives with volume variable in 13 out of 14 cases. This supports the
findings on superior model fit and the role of surprise volume from the previous
section.

5.2.2. Distribution of the Model Residuals

The distributional characteristics of the residuals give an indication on the ex-
tent to which non-normality—including fat-tails—in the return series r; can be
explained by the fitted model specifications. Table 5 reports sample skewness as
well as excess kurtosis for the raw returns as well as for the fitted standardized
model residuals.

First, consider the kurtosis estimates. Results for the raw return series are
reported in the first column of Table 5. These demonstrate significant excess kur-
tosis relative to the normal for all markets. The estimates range from a moderate
value of 2.25 for the U.K. to up to 37.53 for Hong Kong. Table 5 further pro-
vides estimates of excess kurtosis of the standardized residual series. The GARCH
model without volume variable, yields a decrease in the estimated excess kurtosis
of model residuals for four markets (U.K., Hong Kong, U.S. and Japan) while an
increase in the others. Obviously, the GARCH model without volume variable
does not unambiguously explain fat-tailedness of the raw return series. Adding
surprise volume according to models M4 and M7 remarkably reduces excess kurto-
sis in the fitted model residuals. Relatively moderate levels follow for all markets,
where sample kurtosis nearly vanishes for the fitted residuals of the U.K. market.
Second, consider sample skewness as reported in Table 5. Most market return
distributions are negatively skewed, where the U.K. and Japanese markets are ex-
ceptions. Fitting the surprise volume models exhibits negative sample skewness
in all residual series. In contrast to the results on sample kurtosis, the results on
sample skewness do not reveal a common pattern on the relation between skew-
ness and surprise volume effects. A graphical illustration of these results can be
given by quantile/quantile-plots where residual quantiles are plotted against the
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quantiles of a theoretical distribution function; see Marsh and Wagner (2000) for
a visual analysis.

Hence, one of the advantages of the surprise volume models M4 and M7 is
their ability to reduce excess kurtosis in standardized residuals. Hence, fat-tails
can be explained remarkably, though not fully (which is to be expected due to
single outliers). This is not necessarily the case for the standard GARCH model
without volume variable.

5.2.3. Time Series Properties of the Model Residuals

The time series properties of the standardized model residuals give an indication
on the extent to which linear dependence in the return series r; can be explained by
the first-order AR(1)-term in the conditional return equation. Results unreported
here, indicate some linear return dependence beyond the first-order for Germany,
the Hong Kong and Japan. Market microstructure might explain part of these
results; in the Japanese market, limits are imposed on daily stock price changes.
Comparable trading rules are given in Hong Kong, where admissible price ranges
are defined depending on current bid and ask prices, the previous closing price and
the lowest transaction price of the day. The implication of this model violation is
weak. Autocorrelation in the residuals can be reduced by introducing additional
higher order autoregressive terms in the conditional return equation. Additional
estimation results showed that changes in the parameter estimates are small and
do not impact our main conclusions.

In the following, we focus on the time series properties of the squared residuals,
which give an indication on the extent to which ARCH-effects—i.e. volatility clus-
tering, or so-called volatility persistence—in the return series r; can be explained
by the fitted model specifications. Note that unreported Ljung/Box Q-statistics
for the squared returns are highly significant for all markets, which indicates
strong volatility persistence. Given our model estimation results, Table 5 reports
Ljung/Box Q-statistics for the standardized squared residuals and Lagrange mul-
tiplier LM-statistics according to Engle (1982), both at lag 5. The results show
that ARCH-effects are pretty well explained by nearly all of the models.

Considering the benchmark model M1, the () and the L M-statistic reject the
null of uncorrelatedness for none of the markets. Hence, while the standard model
without volume does not necessarily reduce excess kurtosis in the residuals, it ex-
plains volatility persistence, which is its main purpose. In contrast, models M4

18



and M7 mostly manage to explain excess kurtosis jointly with volatility persis-
tence. As our ) and the LM-statistics indicate, this seems not to be the case
for the DAX. Also, model M4 fails for the U.K and Japan. In these cases, the
null of uncorrelatedness has to be rejected based on standard asymptotic argu-
ments. Note that this implies a conservative judgement about the performance of
the surprise volume models. Referring to methods from extreme value statistics
(see e.g. Embrechts et al. 1997), results in Marsh and Wagner (2000, Table III)
point out that, based on common significance levels, the hypothesis of a tail index
smaller than four typically cannot be rejected for the standardized model resid-
uals. Hence, the existence of the fourth moment seems questionable (although
necessary for standard asymptotic theory to hold under the assumption of i.i.d.
random variables with finite variance) and convergence of the sample autocorre-
lation function is expected to be much slower than the usual 1/ VT-rate, since
the limiting distribution will be given by a stable law; see Mikosch and Starica
(2000). As a result, this would also widen the asymptotic confidence bands for
the (Q-statistics.

5.2.4. Parameter Estimation Results

Tables 6, 7 and 8 report the parameter estimation results for models M1, M4 and
M7, respectively. We report the parameter estimates (p, A, Wy, 01, Ws, W3, Wy, Ws)
and their robust standard errors. In order to provide a rough indication of volatil-
ity persistence for each model, we additionally report the estimated persistence
measures, T = W + %@2 + 3.

(Tables 6, 7 and 8 about here)

Conditional Return The results on the conditional market returns for model
M1 in Table 6 show a positive autocorrelation in all index returns; the AR(1)
coefficient is significantly positive for five markets. Comparing the results to
those of Table 7 and Table 8 shows that evidence of a positive autocorrelation
in index returns somewhat weakens. The positive autocorrelation in the Asian
equity market returns remains strong, indicating microstructure issues as outlined
above.
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As the implications of economic theory are ambiguous, it is of particular inter-
est to empirically study conditional market returns and how they relate to volume.
Table 6 illustrates that in the GARCH-M setting without volume, evidence of a
significant conditional risk-return relation is weak. Only the U.K. data show a
significant positive relation. When surprise volume is introduced into the model
in Table 7 and Table 8, the results change to positive coefficients for all markets,
where significance at the 95 percent level is given. This result indicates that sur-
prise volume can substantially increase the significance of the GARCH in-mean
component with a risk premium that is positively depending on conditional mar-
ket variance. This finding of a positive relation is in accordance with the results
for the U.S. market in Gallant et al. (1992).

It appears that the volume variable is essential for the explanation of a positive
conditional risk-return relation. In other words, there is evidence of a positive high
volume premium, i.e. conditional expected returns are related to heterogeneity
among market participants, or to the arrival of—what we interpret as—private
information. In order to explain the positive sign of the relation, on average, the
positive price premium that informed buyers pay to uninformed sellers should tend
to be larger than the negative price premium informed sellers leave to uninformed
buyers. This corresponds to a microstructure finding by, for example, Kalay et
al. (2004) who document that buys are more informative and have a larger price
impact than sells. It therefore seems that surprise volume, as associated with a
positive conditional risk-return relation, may also help to explain, on a market
level and in an economically plausible way, the puzzling empirical evidence of a
positive volume return premium as documented for example in Karpoff (1987)
and more recently in Gervais et al. (2001).

Conditional Variance Tables 6 to 8 also document our estimation results for
conditional market variance, which indicate that the GARCH-term ws is highly
significant throughout supporting the generally strong autoregressive nature of
the volatility dynamics. The results for model M1 in Table 6 show a significant
leverage coefficient wy for all markets but the Dutch and the German.

The introduction of surprise volume in model M4 yields three observations.
First, the estimates of volatility persistence 7 in Table 7 drop remarkably when
compared to those for model M1 in Table 6. This is due to smaller ARCH-
coefficients wy and ws while, and this is the second observation, the magnitude of
the leverage term increases. All parameter estimates of wo in Table 7 are significant
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at the 95 percent confidence level. The results suggest that the leverage-effect is
much stronger than the standard ARCH effect, i.e. there is a significant relation
between conditional market variance and negative return innovations only. Not
that this is in contrast to the findings in Gallant et al. (1992). Third, we observe
that six out of seven parameter estimates of w, in Table 7 are significant at the
95 percent confidence level. Hence, the contemporaneous unexpected abnormal
volume variable provides evidence for the mixture of distributions hypothesis.
Note that unreported results show that model specifications with AIC-fit worse
than for specification M4 typically exhibit insignificant volume coefficients wy.

These strong results for model M4 are not without drawback. While the
estimates of volatility persistence in Table 7 drop especially remarkably for the
DAX, the FTSE100 and the Topix, it is exactly these markets where volatility
clustering prevails and cannot be explained by the model; see the conservative Q-
and LM-statistics in Table 5. Hence, while volume may dominate in explaining
the static aspect of heteroskedasticity in returns it may fail to explain its dynamic
aspect.

The introduction of contemporaneous as well as lagged surprise volume again
yields the three observations which are found for model M4, namely a decrease in
persistence, a significant leverage effect and significant volume coefficients w, and
ws in Table 8. However, the reduction in estimated volatility persistence 7 is much
lower than that for model M4. As it turns out, there is a striking positive net effect
for the CAC and the DAX. While volume lacks significant explanatory power for
the French market throughout, surprise volume models do improve fit but do not
explain volatility clustering for the German market; see Table 5. The results
for the remainder of our markets suggest a remarkable reduction in volatility
persistence measures m as well as reduced excess kurtosis while also volatility
clustering in the residuals remains insignificant. The surprise volume variables
account for roughly 13 percent of the estimated volatility persistence in the U.S.
market, for example. The overall findings let us conclude that specification M7
is a quite robust model, which helps to better explain time-varying returns and
volatility in international equity markets.

6. Conclusion

This paper provides empirical evidence on the return volume and return-variability
volume relationship for a cross-section of seven large international equity markets.
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As opposed to standard applications of volume in financial modeling, it turns out
that surprise volume is important to our understanding of time-varying market
returns and volatility; this adds to earlier findings of Gallant et al. (1992) and
Bessembinder and Seguin (1993), which were not based on ARCH-modeling. Sur-
prise volume is found to be a superior variable which explains ARCH-effects as
well as fat-tails in the model innovations. As surprise volume may be interpreted
as a proxy for unobservable information flow, the results suggest that private in-
formation flow rather than volume per se is related to return heteroskedasticity.
Furthermore, estimation results for our surprise model suggest evidence of a sig-
nificant new effect in conditional market variance. This “surprise volume effect”
is present jointly with the well-established so-called “leverage effect”.

The surprise volume model estimation results (model M7, Table 8) allow for
an interesting tentative interpretation of the empirically documented joint lever-
age and surprise volume effects. The conditional variance equation (7) allows for
various combinations of threshold effects in conditional heteroskedasticity. Table
9 provides a summary scheme for eight different joint effects and outlines the
dominating related change in the level of conditional variance. Upward arrows
indicate a high level of the threshold variables, namely contemporaneous surprise
volume, lagged surprise volume and lagged squared negative return innovation.
Dots indicate that the threshold variable is at a low (near zero) level. Arrows
also indicate the associated change in conditional variance, while a dot here in-
dicates that the associated effect for the conditional variance is small and hence
conditional variance is predicted to remain unchanged. A double arrow indicates
a strong directional effect.

(Table 9 about here)

Focusing first on the “surprise volume effect” in isolation, we find evidence of
a pattern effect in the association of surprise volume with conditional variance;
i.e. the relation between surprise volume and conditional variance is conditional
on the level of past surprise volume. Ideally, under a surprise volume shock—
i.e. under large contemporaneous and small lagged surprise volume—our model
predicts increased conditional market variance. Conversely, under a surprise vol-
ume breakdown—i.e. under small contemporaneous and large lagged surprise
volume—our model predicts decreased conditional market variance. As our re-
sults show as well, there is some evidence of asymmetry, i.e. the absolute effect
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of a surprise volume shock on conditional variance tends to be larger than that
of a surprise volume breakdown; see the parameter estimates of model M7 in
Table 8. The “surprise volume breakdown” relation is particularly interesting
since it predicts a sudden drop in conditional variance, a behavior which standard
ARCH-models cannot accommodate. As such the results suggests that surprise
volume may explain level changes in conditional market variance beyond those
given under standard ARCH: a surprise volume shock relates to a sudden higher
level of market activity as measured by return volatility while a surprise volume
breakdown relates to a sudden lower level. ARCH in turn provides positive level
changes under the leverage effect and explains an exponential decline in condi-
tional variance.

As it turns out, the biggest effect of an increased conditional return variance is
to be expected under the scenario entitled “bad news and surprise volume shock”.
This scenario may relate to a common information arrival which yields to a neg-
ative return innovation in prices under moderate levels of surprise volume at day
t but then is followed by a day ¢ + 1 surprise volume shock. Interestingly, such
behavior is consistent with findings of return-volume causality as documented by
Hiemstra and Jones (1994) and Brooks (1998), among others. As the authors
document, large return innovations on day t cause lagged volume innovations.
Therefore, a possible explanation of our findings is that common information
bad news events with negative return innovation cause day ¢ + 1 surprise volume
shocks which in turn yield increased contemporaneous conditional market volatil-
ity. Hence, surprise volume on day t and ¢ + 1 may exhibit relatively low time
series correlation and still explain lagged increased conditional return volatility.
Our findings also appear to be consistent with evidence by Darrat et. al (2003).
The authors perform multivariate modeling of intra-day U.S. stock returns and
find significant return-volume causality which they suggest to be in accordance
with sequential information arrival. Since overall causality is unclear, and not
examined here, such interpretations are tentative and do not provide a unique
explanation of the observed association between surprise volume and returns.
Further examination of these issues may be a fruitful area for future research.
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Figure 1: Continuously compounded returns for the S&P 500 (left column)
and the Topix (right column); January 4, 1988 to November 14, 1997.
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Figure 2: Logarithmic raw volume for the S&P 500 (left column) and the
Topix (right column); January 4, 1988 to November 14, 1997.
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Figure 3: Hodrick/Prescott-filtered unexpected abnormal volume for the S&P
500 (left column) and the Topix (right column); January 4, 1988 to November 14,
1997.
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Table 1: Model Estimation Results—AIC

GARCH-M models M1 and M2 to M7 with moving average abnormal volume, u; .

M1 M2 M3 M4 M5 M6 M7

AEX

16.69 -6.62° -6.71 -6.72% -6.65 -6.69 -6.77%*
CAC

[16.27* -6.27* -6.27* -6.27* -6.28** -6.23 -6.28%*
DAX

[16.30 -6.27 -6.30 -6.35 -6.36 -6.37* -6.41%*
FTS

[16.91 -6.83" -6.93 -6.95% -6.83" -6.86 -6.97%*
HSI

[15.90 -5.75 -5.91 -5.92% -5.83° -5.86 -6.00%*
SPX

116.94 -6.81 -6.93 -6.97* -6.90° -6.95 -7.04%*
TPX

[16.48* -6.40° -6.48% -6.48% -6.46 -6.42° -6.53%*

** denotes smallest, * denotes second smallest AIC among the model specifications; -

denotes AIC larger than for model M1.



Table 2: Model Estimation Results—AIC

GARCH-M models M1 and M2 to M7 with Hodrick/Prescott abnormal volume, u; s;p,

M1 M2 M3 M4 M5 M6 M7

AEX

16.69 -6.59 -6.71 -6.72 -6.59 -6.73* -6.77%*
CAC

[16.27* -6.27* -6.08 -6.27* -6.28** -6.18 -6.28%*
DAX

[16.30 -6.23 -6.34 -6.35 -6.33 -6.39% -6.45%*
FTS

[16.91 -6.81 -6.91 -6.95% -6.81 -6.87 -6.97%*
HSI

[15.90 -5.72 -5.93 -5.94 -5.80° -6.01* -6.02%*
SPX

116.94 -6.77 -6.93 -6.99% -6.79 -6.96 -7.07**
TPX

[16.48* -6.48% -6.40° -6.48% -6.44 -6.43 -6.52%*

** denotes smallest, * denotes second smallest AIC among the model specifications; -

denotes AIC larger than for model M1.



Table 3: Model Estimation Results—AIC

GARCH-M models M1 and M2 to M7 with moving average unexpected abnormal volume, u; .4 s

M1 M2 M3 M4 M5 M6 M7

AEX

16.69 -6.60 -6.68 -6.74* -6.61 -6.70 -6.79%*
CAC

[16.27 -6.27 -6.27 -6.27 -6.28%* -6.25 -6.29%*
DAX

[16.30 -6.33 -6.39 -6.45% -6.32 -6.20° -6.55%*
FTS

[16.91 -6.82° -6.82° -6.96% -6.80 -6.87 -6.97%*
HSI

[15.90 -5.78 -5.95 -6.00% -5.82 -5.99 -6.07**
SPX

116.94 -6.81 -6.92° -7.00% -6.80 -6.94 S711%*
TPX

16.48 -6.33" -6.47 -6.53* -6.29° -6.49 -6.57%*

** denotes smallest, * denotes second smallest AIC among the model specifications; -

denotes AIC larger than for model M1.



Table 4: Model Estimation Results—AIC

GARCH-M models M1 and M2 to M7 with Hodrick/Prescott unexpected abnormal volume, u, yps

M1 M2 M3 M4 M5 M6 M7

AEX

16.69 -6.58" -6.69 -6.75% -6.59 -6.67 -6.81%*
CAC

[16.27 -6.27 -6.26° -6.27 -6.28%* -6.26 -6.29%*
DAX

[16.30 -6.32 -6.39 -6.45% -6.42 -6.25 -6.55%*
FTS

[16.91 -6.81 -6.89° -6.96% -6.80 -6.86 -6.99%*
HSI

[15.90 -5.80° -5.97 -6.02% -5.78 -5.97 -6.08%**
SPX

116.94 -6.80° -6.93 -7.05% -6.80 -6.94 S711%*
TPX

16.48 -6.28 -6.34° -6.53* -6.29° -6.50 -6.58%*

** denotes smallest, * denotes second smallest AIC among the model specifications; -

denotes AIC larger than for model M1.



Table S: Diagnostics for Standard and Surprise Volume Models

Empirical fit of the GARCH model M1 and the models M4 and M7 each with moving average unexpected abnormal volume, u; . AIC is the
Akaike information criterion derived as the log-likelihood InL at the estimated parameter vector penalized for the number of parameters. LR
denotes the likelihood-ratio statistic for model M4 and M7 each with respect to model M1, which asymptotically follows a central chi-square
distribution with degrees of freedom equal to 1 and 2, and corresponding single-sided critical values at the 95% level are 3.84 and 5.99,
respectively. The s-statistic denotes sample skewness, the k-statistic sample excess kurtosis of the raw returns 7, or the fitted standardized
model residuals. Q(5) and LM(5) denote the Ljung/Box O-statistic and the Engle Lagrange-multiplier LM-statistic for the standardized squared
residuals at lag 5, respectively. Both asymptotically follow a central chi-square distribution with 5 degrees of freedom, where the single-sided
critical value at the 95% level is 11.07. Note that unreported Q(5)-statistics for the squared returns are highly significant for all markets.

7 M1 M4 M7
s AIC s 005) AIC s 005) AIC s 005)
k InL k LM(5) LR k LM(5) LR k LM(5)
AEX ~0.50 —6.69 ~0.78 1.74 —6.74 -0.59 7.65 ~6.79 —0.63 8.81
4.63 8458 5.02 1.73 124+ 3.04 7.71 246+ 2.75 9.03
CAC ~0.19 —6.27 20.46 0.86 —6.27 ~0.45 0.95 ~6.29 -0.33 1.79
328 7927 3.67 0.86 3.41 3.79 0.95 46+ 2.49 1.80
DAX -1.05 -6.30 ~1.34 0.88 —6.45 -0.71 36.45% -6.55 -0.70 13.70%
15.34 7966 15.37 1.05 372%% 2.90 36.67* 618%* 2.09 13.50*
FTS 0.057 691 —0.01 3.93 ~6.96 -0.20 59.40% -6.97 ~0.14 4.40
2.25 8728 1.26 3.97 122%* 0.64 54.46* 165%* 0.47 6.77
HSI ~1.93 -5.90 —0.74 1.78 ~6.00 ~0.71 2.88 ~6.07 -0.70 1.41
37.53 7143 6.42 1.77 236+ 3.96 2.89 404+ 2.87 1.42
SPX ~0.50 —6.94 —0.74 1.04 ~7.00 ~0.53 3.07 —7.11 ~0.54 8.42
6.53 8769 6.48 1.06 140%+ 2.83 343 408+ 1.60 7.69
TPX 0.28 —6.48 0.17 2.78 —6.53 —0.24 11.86* —6.57 -0.23 2.60
6.77 8184 2.57 2.70 124%* 1.71 13.16* 250+ 1.13 2.33

* denotes significance at the 95% level, ** denotes rejection of model M1 against the unrestricted alternative model at the 95% level.



GARCH-M model M1. The t-statistics are based on variance estimates according to Bollerslev and Wooldridge (1992).

Table 6: Estimation Results Model M1—Parameters

p A (o)) ® (0} 3 M4 s
T
AEX 0.0259 2.66 4.57 107%* 0.0551%* 0.0684 0.852* -- --
(0.9413) (1.20) (0.53) (3.04) (2.80) (1.84) (32.25)
CAC 0.0491* 8.22 8.91 107 0.0241 0.0926* 0.853* -- --
(0.9234) (2.32) (133) (2.76) (1.70) (3.32) (27.46)
DAX 0.0483 2.81 1.21 1075% 0.0457 0.158 0.781%* -- --
(0.9057) (1.87) (0.66) (2.39) (1.87) (1.51) (13.22)
FTS 0.0615* 17.81%* 1.87 107 0.0336* 0.0333* 0.919* -- --
(0.9693) 2.91) (2.23) (3.65) (2.88) (2.53) (61.40)
HSI 0.138%* 1.19 1.47 107%* 0.0543 0.193* 0.780* -- --
(0.9308) (5.44) (0.47) (3.21) (1.86) (3.12) (21.32)
SPX 0.0431* 6.66 2.68 107%* 0.0187 0.0908* 0.895* -- --
(0.9591) (2.13) (1.28) (3.13) (1.24) (3.17) (37.02)
TPX 0.120* 0.315 2.03 107%* 0.0304* 0.144%* 0.887* -- --
(0.9894) (5.51) (0.12) (3.66) 2.17) (4.49) (59.51)

* denotes significance for a double-sided test at the 95% confidence level.



Table 7: Estimation Results Model M4—Parameters

GARCH-M model M4 with moving average unexpected abnormal volume, ;. The t-statistics are based on variance estimates according to
Bollerslev and Wooldridge (1992).

p A o o [0} 3 0y s
T
AEX 0.0229 7.25 323107 0.0580* 0.196* 0.711%* 7.62 107°* -
(0.8670) (0.94) (1.84) (2.34) (2.40) (3.16) (17.88) (4.99)
CAC 0.0500* 8.25 9.8810°° 0.0197 0.108* 0.825% 1.9210°
(0.8987) (2.35) (1.20) (1.71) (1.21) (3.68) (16.86) (1.28)
DAX -0.0132 17.80%* 221107 0.0507 0.291* 0.330% 3.84 107**
(0.5262) (-0.49) (3.03) (7.33) (1.65) (4.09) (7.27) (6.49)
FTS 0.0296 38.56* 277 107 0.0061 0.121%* 0.220* 1.87 107
(0.2866) (1.25) (4.48) (8.71) (0.31) (3.36) (3.64) (3.65)
HSI 0.0954* 6.03* 9.62 107 0.0334 0.329* 0.611* 2.57 107
(0.8089) (3.88) (5.66) (1.55) (0.84) (4.75) 9.72) (6.55)
SPX 0.0394 13.63* 224107 0.0019 0.159* 0.826* 2.10 107°*
(0.9074) (1.91) (4.32) (-0.00) (0.11) (4.81) (36.94) (5.17)
TPX 0.111* 16.14* 8.05 107%* 0.0261 0.387* 0.563* 1.77 107
(0.7826) (4.71) (6.34) (3.47) (0.93) (7.53) (15.14) (7.53)

* denotes significance for a double-sided test at the 95% confidence level.



Table 8: Estimation Results Model M7—Parameters

GARCH-M model M7 with moving average unexpected abnormal volume, ;. The t-statistics are based on variance estimates according to
Bollerslev and Wooldridge (1992).

p A o o [0} 3 0y s
T

AEX -0.0009 10.53* 5.95107%* 0.0319 0.117* 0.733* 1.99 107 -1.49 107
(0.8234) (-0.04) (2.02) @.77) (1.59) .71 (10.45) (10.35) (-8.08)

CAC 0.0419* 8.24 6.00 107 0.0109 0.0984* 0.870%* 1.64 1074+ -1.43 107
(0.9301) (2.03) (1.90) (2.64) 0.87) (4.24) (36.55) (3.15) (-2.66)

DAX -0.0483* 17.21%* 1.42 1070 0.0399* 0.0533* 0.860* 4.74 1074 -4.02 107
(0.9266) (-2.50) (4.98) (2.13) (3.60) (2.89) (57.92) (7.18) (-7.17)

FTS 0.0299 22.31% 231107 0.0339* 0.0565* 0.856* 1.13 107* -8.96107°
(0.9182) (1.42) (2.86) (2.32) (2.65) (3.41) (22.74) 1.67) (-1.33)

HSI 0.0611* 6.63* 6.17 107 0.0469 0.124* 0.770* 5.16 1074 -3.86 107
(0.8789) .77) (3.90) (2.12) (1.81) (2.61) (24.41) 9.22) (-7.72)

SPX 0.0235 12.93* 420 107°* 0.0012 0.132* 0.771%* 4.05 107** -3.22107%
(0.8382) (1.24) @.77) (4.24) (0.08) (531 (18.54) (9.30) (-8.35)

TPX 0.0954* 1221% 1.30 107 0.0188 0.150* 0.858* 1.47 1074 -1.14 1074
(0.9581) (4.69) (4.33) (1.96) (1.86) (5.56) (48.34) (5.09) (-4.37)

* denotes significance for a double-sided test at the 95% confidence level..



Table 9: Scheme for Conditional Variance Effects

Approximate scheme of dominating leverage and surprise volume effects in model M7. Arrows and dots indicate the direction of the variables,
namely contemporaneous surprise volume, lagged surprise volume and lagged squared negative return innovations. Double arrows indicate a
stronger associated change in conditional variance.
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