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Abstract

Starting with the liberalization of electricity trading, this market grew rapidly over
the last decade. However, while spot and future markets are rather liquid nowadays,
option trading is still limited. One of the potential reasons for this is that the spot
price process of electricity is still puzzling researchers and practitioners. In this pa-
per, we propose an approach to model spot prices that combines mean-reversion,
spikes and stochastic volatility. Thereby we use different mean-reversion rates for
"normal" and "extreme" (spike) periods. Another feature of the model is its ability
to capture correlation structures of electricity price spikes. Furthermore, all model
parameters can easily be estimated with help of historical data. Consequently, we
argue that this model does not only extend academic literature on electricity spot
price modeling, but is also suitable for practical purposes, e.g. as underlying price
model for option pricing.
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1 INTRODUCTION

1 Introduction

Starting with the liberalization of electricity trading about one decade ago, elec-
tricity markets gained huge importance. However, electricity has several pecu-
liarities that distinguish it from other types of commodities. The most notable
difference is its non-storability - or at least the very high costs associated with its
storage. This leads to several problems for the price modeling and especially for
the pricing of related derivatives. Behind the background that electricity mar-
kets are quite young, the fact that research in this important field is still limited is
not surprising.1 Several recent studies address the question how electricity future
prices are formed in the market (e.g. Wilkens and Wimschulte (2007), Redl et al.
(2009), Botterud et al. (2010) or Furio and Meneu (2010)). Unlike futures markets,
which are rather liquid, option trading is still underdeveloped in electricity mar-
kets. One of the potential reasons is that the price behavior of electricity is still
puzzling researchers and practitioners. The price process in this market differs
substantially from other commodity markets, with very high volatility and, even
more important, spikes being far more common (at least partly as a consequence
of the non-storability). Consequently, traditional models which mostly build on
the assumption of Gaussian distributions are not suitable in this case. However,
without a proper understanding of the price process and validated models the
pricing of options is impossible. This is the main motivation of our paper: An
increased understanding of the price process can increase the liquidity of option
trading and the efficiency of the whole electricity market.

In commodity pricing literature, the most common approach is to model the
logarithmic price through a mean-reverting process (Schwarz (1997), Lucia and
Schwarz. (2002)). Like the Black-Scholes-Merton model, the mean-reverting pro-
cess is based on the exponential treatment of the stochastic spot price (Black and
Scholes (1973), Merton (1973)). If these models are applied for electricity, they can
capture the mean-reversion of electricity prices, but fail to account for the huge
and non-negligible observed spikes in this market. In order to capture the spike
behavior of the electricity spot price dynamics, it is necessary to extend the model
by a jump component. Merton (1976) first introduced this class of jump-diffusion
models tomodel equity dynamics. Cartea and Figueroa (2005) apply thismodel to
the English andWelsh electricitymarket andfind that it offers a proper adjustment
to the peculiarities of electricity markets. Geman and Roncoroni (2006) already

1A good overview on the literature about electricity price modeling is provided by Higgs and
Worthington (2008).
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1 INTRODUCTION

discuss and try to fix the drawback of this model, namely that it only uses one
unrealistically high mean-reversion rate, both for the diffusion and the jump pro-
cess. However, a singlemean-reversion rate for these two aspects is only of limited
use because the price of electricity does exhibit spikes instead of classical jumps.2

These spikes tend to revert very quickly, leading to a high rate of mean-reversion
following a spike. In "normal" times without any spikes, the mean-reversion rate
is much lower. Consequently, the use of a single mean-reversion factor results in
a too slow removal of "extreme" price movements (spikes) and a too fast return to
the seasonal trend in periods without "extreme" events.

This problem can be solved by separating the mean-reversion factors for the "ex-
treme" and the "normal" process. A suitable theoretical approach for this pur-
pose is described by Benth et al. (2003).3 The model proposed by Benth et al.
was calibrated by Kluge (2006) for the Scandinavian, British and the German elec-
tricity market. Thereby, he estimates the parameters for the diffusion process
from historical data and assumes a constant volatility over time. However, this
approach has several drawbacks. First, the parameters for the spike process are
not estimated from the time series, but based on expert opinions. Second, this
approach neglects that the volatility in electricity markets is stochastic over time.
Deng (2001) compares the jump-diffusion model of Merton (1976) with constant
and stochastic volatility and derives prices for different energy derivatives using
the Fourier transform and shows that stochastic volatility is important. Escrib-
ano et al. (2002) provide extensive empirical tests on a wide range of markets and
conclude that it is necessary to include jumps and stochastic volatility. Recent
academic work by Chan and Gray (2006) and Bowden and Payne (2008) suggests
that the EGARCH is the best volatility model for electricity prices. Furthermore,
existing electricity price models are not able to account for the fact that spikes in
different time series, e.g. electricity and gas prices, are not independent. We over-
come this problem by modeling the correlation of spikes in different time series.

We contribute to the existing literature by proposing a new approach tomodel the
electricity spot price that overcomes several drawbacks of existingmodels. In par-
ticular, we are - to the best of our knowledge - the first to present a self-contained
model that simultenously (i) includes separate speeds of mean-reversion for the
spike and the "normal" process, (ii) stochastic volatility, (iii) is estimated only with

2Consequently, we will denote these "extreme" events as spikes instead of jumps in the re-
minder of this paper.

3For example, Hambly et al. (2009) use this approach for a practical application, i.e. to value
swing options.
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2 DATA ANALYSIS

historical data, and (iv) considers correlations in the spikes over different time se-
ries. Consequently, we argue that this model is suitable as price process model,
e.g. in the context of option pricing, as (i) all distinct characteristics of the electric-
ity spot price are included, and (ii) the parameters can easily be estimated with
the help of historical price series.

2 Data Analysis

This section focuses on the description of the electricity price data used in this
paper. Our analysis is based on data from the German electricity market, the Eu-
ropean Energy Exchange (EEX), located in Leipzig. The data ranges from January
1st 2002 to December 31st 2009. The EEX distinguishes between peakload con-
tracts, which deliver only in peak times, and baseload contracts, which deliver
24 hours. For our analysis, we use the Phelix peakload index as price indicator.
However, beneath the peakload index two additional block contracts are traded at
the EEX (off-peak 1 and off-peak 2). The prices of these three block contracts are
the arithmetic mean of the delivery periods of the corresponding contracts which
were setteled in the auction taking place on the previous day (“day-ahead mar-
ket”). For the peakload index, this is the time from 8:00 to 20:00 o’clock, for the
off-peak 1 contracts from 0:00 to 8:00 o’ clock and for the off-peak 2 contracts from
20:00 to 24:00 o’clock. Figure 1 shows the spot price dynamics for all three price
processes. In the following sections we will focus on the results for the peakload
price process. The results for the other two process can be found in appendix.
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Figure 1: Peakload, off-peak 1 and off-peak 2 prices in Germany from 01/01/02-
31/12/09

The Black-Scholes-Merton model (Black and Scholes (1973), Merton (1973)) as-
sumes the prices are independently identically log-normally distributed, which
implicates that the log returns of the prices follow a Normal distribution. We
evaluate the validity of their assumptions in this section.

2.1 Negative prices

If the prices are indeed log-normally distributed, there should not be any nega-
tive prices. However, an additional distinctive feature of electricity is the existence
of negative prices. The minimum value over the time series is −139, 96 EUR. Es-
pecially the trading hours early in the morning, represented by the off-peak 1
contracts, are vulnerable to negative prices. This is the time of day with the low-
est demand and, thus, the lowest prices. The negative prices occur due to a low
demand and a (simultaneous) supply shock, for example because of unexpected
high electricity transfers fromwind turbines. Negative prices lead to several prob-
lems with the application of “classical” price process models which were usually
developed for equity markets, where negative prices cannot occur. We solve this
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2 DATA ANALYSIS

problem by an affine transformation of all prices into the positive range. This does
not distort the upcoming results.

2.2 Seasonality and Trend Analysis

We analyze the independence assumption for electricity prices with help of an
autocorrelation test. If the data are in fact independently distributed, the auto-
correlation coefficient should be close to zero. From figure 2 it can be seen that a
strong level of autocorrelation exists in electricity markets (The qualitatively sim-
ilar results for the off-peak 1 and off-peak 2 process are reported in figures 10
and 11). This observed autocorrelation is a result of an underlying seasonality, as
discussed for instance in Pindyck and Rubinfeld (1998). In order to estimate the
parameters of the price process model properly, we remove this seasonality from
the return time series. After we removed the yearly and weekly seasonality, we
analyze the ACF plot of the daily changes again. Without the seasonality, figure
2 shows a (strongly) significant negative autocorrelation only at lag 1 (Figures 10
and 11). However, this is not surprising since a negative autocorrelation at lag 1
is typical for a mean-reversion effect.
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Figure 2: ACF plots of the log price and the log price without seasonality (peak-
load process)
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2.3 Normality test

The last assumption of the Black-Scholes-Merton model is that returns are nor-
mally distributed. Although the analysis of stock markets’ data reveals a higher
probability for an "extreme" event than predicted by the Normal distribution, the
assumption is still embedded in most stochastic models.

However, for electricity spot prices, the deviation from normality is more extreme
than e.g. for equity and most other types of commodities. Figure 3 shows nor-
mality tests for the peakload price process from January 1st 2002 to December 31st

2009 (The qualitatively similar results for the off-peak 1 and the off-peak 2 price
process are reported in figures 8 and 9). If the empirical returns are normally dis-
tributed, we expect to observe a straight line in this figure. However, this is not
the case. Contrary, we find clear indication for fat tails and hence more "extreme"
events than predicted by the Normal distribution. As an example, the probability
for a daily return of +/- 50 percent is virtually zero for the Normal distribution.
However, we observe a non-negligible amount of such events in the time series.

−0.5 0 0.5

0.001
0.003

0.01
0.02

0.05
0.10

0.25

0.50

0.75

0.90
0.95

0.98
0.99

0.997
0.999

Data

Pr
ob

ab
ili
ty

Normal Probability Plot

−1 −0.5 0 0.5 1
0

500

1000

1500

2000

2500
Histogram

Figure 3: Normal probability plot and histogram of the unseperated peakload
process
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2.4 Spikes

Consequently, we argue that electricity spot prices do not follow a Gaussian dis-
tribution because too much "extreme" events occur in the time series. In a next
step we extract these "extreme" events, the spikes, from the original time series by
using a numerical algorithm that recursively filters returns with absolute values
that are greater than 2.3 times the standard deviation of the returns of the series
at that specific iteration. We end up with the "normal" return series consisting of
99 percent of the original returns.

The importance of the spikes in the electricity return series is illustrated by a sim-
ple comparison of figures 3 and 4 (for off-peak 1 and 2, refer to figures 8, 9 and 12,
13 ). After the extraction of the spikes from the original series, the assumption of
a Gaussian distribution is more accurate. In fact, the fat tails nearly disappeared
and the deviation of the empirical returns from the returns predicted by a Gaus-
sian distribution becomes negligible.4
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Figure 4: Normal probability plot and histogram of the diffusion part (peakload
process)

4To be more precise, the deviation is still present, but less extreme. The assumption of a Gaus-
sian distribution despite the fact that there exist small deviations is common, e.g. for equity prices.
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3 THEORETICAL FRAMEWORK

Our descriptive analysis revealed that electricity prices are fluctuating around a
long-termdeterministic seasonal component and are characterized by price spikes
andmean-reversion. Furthermore, our analysis suggest that assuming aGaussian
process is inaccurate for the electricity spot price.

Since the seminal work of Samuelson (1965), Black and Scholes (1973) and Mer-
ton (1973), most stochastic models have tried to offer a solution to the problem
that empirically observed prices do not follow Gaussian distributions. This liter-
ature discussed jump-diffusion processes, stochastic volatility models, and, more
recently, the use of Lévy processes.5 While deviations from the normality assump-
tions are even common in equity and other commodity markets, their magnitude
is far higher for electricity. Consequently, these models cannot be used to model
the price process of electricity. Our model, which is described in the next sec-
tion, addresses this non-normality problem by considering stochastic volatility
and separate mean-reversion parameters for the spikes and the "normal" electric-
ity spot process.

3 Theoretical framework

The data analysis of the previous section reveals three distinctive characteristics
of electricity markets which should be accounted for in the model. First, nega-
tive rates have occurred over time. These is problematic for the application of
geometric models. To cope with this problem, we apply an affine transformation
of the time series into the positive range. An affine transformation by a factor of
Γ = 200 EUR shifts all prices in the positive range and leaves ample room for
future occurrence of negative prices in the subsequent price simulation. At the
end of the simulation, the generated time series must be transformed back by an
inverse transformation to the original price level.

The second characteristic is a seasonality component which reflects a (varying)
long-term equilibrium level.Schwarz (1997) proposes amodel that includesmean-
reversion, and Lucia and Schwarz. (2002) extend this model by including mean-
reversion and a deterministic seasonality. The third characteristic of electricity
spot prices, namely the observation that the randomly fluctuation prices revert
slowly back to the equilibrium level in times without "extreme" events while price
spikes revert very quickly, is addressed by Benth et al. (2003). Their model in-

5See for example Merton (2001), Knight and Satchell (2001) or Shrevel (2004).
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3 THEORETICAL FRAMEWORK

cludes separate rates of mean-reversion for the diffusion and the spike process.
However, none of these models accounts for stochastic volatility and correlation
among the spike processes over different related time series (e.g. electricity peak
and off-peak price). For risk management purposes, the consideration of this cor-
relation is of huge importance, e.g. in the context of the valuation of project fi-
nanced investments. In this paper, we propose a similar model that is able to
handle all these characteristics of electricity spot prices. For this, we extend the
model of Benth et al. (2003) to (i) stochastic volatility, (ii) correlations of spikes,
and (iii) a self-contained estimation of all relevant parameters.

We require that the standard assumptions for stochastic models hold. Formally,
(Ω, P,F , {Ft}tε[0,T ]) is a complete filtered probability space, with T < ∞ a fixed
time horizon. If S(t) denotes the spot price of electricity at time t, then we set

S(t) = (S(0) + Γ)× exp (Λ(t) +X(t) + Y (t))− Γ (1)

where Λ(t) denotes the seasonality function value at time t, X(t) and Y (t) the
values of two Lévy processes at time t.

Several subsequent steps are necessary to calibrate our model. First, we remove
the seasonality component Λ of the original time series. Therefore, we set

Λ(t) = w(t mod 7) + sea(t) (2)

where w(t mod 7) denotes the weekly seasonality function at day k following (4)
and sea(t) the annual seasonality function value at time t following (5). The stan-
dard procedure to model seasonal influences is by trigonometric functions. How-
ever, the weekly behavior of the price of electricity follows a special pattern. It is
significantly higher on weekdays than at the weekend. Therefore, we do not use
trigonometric functions but instead a procedure proposed byWeron (2006). First,
the data are smoothed using a moving average filter:

m(t) :=
1

7
(S(t− 3) + · · ·+ S(t+ 3)) . (3)

9



3 THEORETICAL FRAMEWORK

Second, for each day the average deviation w(t mod 7) from moving average
valuem(t) in (3) is calculated:

w(t mod 7) := average{(S((t mod 7) + 7j)−m(k + 7j)),

3 < (t mod 7) + 7j ≤ n− 3};
(4)

The calculated values of w(t mod 7) are then normalized in a way that they add
up to zero over one week. The resulting weekly seasonality w(t mod 7) is de-
ducted from the original time series. A logarithmic transformation is performed
before analyzing the long term seasonality function as well as the stochastic com-
ponents. The annual seasonality, the trend and the level is included in the follow-
ing function:

sea(t) = ln

(
β1 + β2t+ β3 cos

(
2π(t− β4)

365

))
(5)

Second, we include the trend factors of X and Y into β2 of (5) . For this purpose,
we assume that X and Y are Lévy processes where X is driven by a Brownian
motion and Y by a compound Poisson process. Consequently, X and Y are zero
level mean-reverting stochastic processes which follow the stochastic differential
equations:

dX(t) = −αXX(t)dt+ σ(t)dB(t) (6)

dY (t) = −αY Y (t)dt+ dI(t) (7)

where αX and αY denote the mean-reversion parameter, σ(t) the volatility of
the diffusion process, dB(t) the Brownian motion increments, and dI(t) the in-
crements of a compound Poisson process. Furthermore, we assume the mean-
reversion parameters of (6) and (7) are constant until time T . For the volatility
σ(t), we assume that it can either be constant or stochastic. Stochastic models are
either GARCH-type (Bollerslev (1986)) or EGARCH-type (Nelson (1991)) volatil-
ity models. However, the implementation of other types of volatility models is
straightforward.

10



3 THEORETICAL FRAMEWORK

Third, we separate the spikes from the "normal" diffusion process. For this, we de-
fine a range to classify returns either as "normal" or "extreme", i.e. as spike. The
value of this range is set recursively by removing high/low price movements as
long until the distribution of the diffusion process can be classified as normal. We
end up with a range of +/- 2.3 times the standard deviations of the time series.
About 99% of the price movements lie in this range and are classified as "normal".
Of course, the constant volatility model has a constant range (in absolute terms)
to classify daily changes of σdB as spikes of the process dI . Contrary, GARCH
and EGARCH volatility models have a variable range since the standard devia-
tion is not constant over time. This variable range to classify spikes is determined
each day by the multiplication of the barrier parameter with the volatility at that
day. Consequently, the classification of price movements as "normal" or spike can
vary between the constant volatilitymodel and theGARCHor EGARCHvolatility
models. The reason for this is that in times of high (low) volatility the stochastic
volatility models allow larger (smaller) movements of the process σdB without
classifying them as spikes.

In a next step, we define the process for the spikes. For this, the process I in (7)
is modeled with two separate compound Poisson processes for the positive and
negative spikes.

I(t) = I+(t) + I−(t), (8)

with

I± =

N±(t)∑
i=1

J±
i (9)

with

N±(0) = 0 (10)

E(N±(t)) = λ± × t (11)

V ar(N±(t)) = λ± × t (12)

lnJ±
i ∼ N(µ±, σ±) (13)

11



4 CALIBRATION AND RESULTS

The processes N+ and N− are Poisson Processes which represent the number of
positive or negative spikes until time t. The jump intensities6 λpm for the Poisson
processes are estimated from the number of positive respectively negative spikes
compared to all observed days. J±

i is the jump height i, which is assumed to be
log-normally distributed.

4 Calibration and Results

In this section we demonstrate the calibration of all necessary model parameters.
To take into account the significant differences in the electricity price during a day,
we separately calibrate the parameters for the peak load and the off-peak prices,
i.e. the periods before and after the peak load. Furthermore, we compare the
modeled electricity price process with realized prices.

4.1 Seasonality Function

After the previously described affine transformation in the positive range we an-
alyze the weekly seasonality in the price process S. We calculate the weekly and
yearly seasonality as well as the drift according to (4) and (5) as described in sec-
tion 3. Table 1 shows the seasonal function and trend parameters for the peakload
price process. One distinctive feature of the off-peak 2 process to mention is that
the prices already start to increase on Sunday (Table 10). This can be explained by
the start-up of industrial companies’ machinery.

Seasonality and drift parameter
Weekly seasonality 3.1297 7.9410 8.2671 6.4057 2.3192 −9.2020 −18.8607

Drift 0.0127t+ 229.0927

Yearly seasonality −4.6969 · cos
(

2π(t−129.0719)
365

)
Table 1: Seasonality and drift parameters (peakload process)

6We use the term jump when we describe the properties of the compound Poisson processes
although we use the term spike when we describe the events.

12



4 CALIBRATION AND RESULTS

4.2 Mean-Reversion Rate

After removing the seasonality from the sample time series, we analyze the
stochastic part. We start with determining the mean-reversion rates αX and αY .
We construct Z with

Z(t) = X(t) + Y (t) (14)

and therefore

dZ(t) = dX(t) + dY (t). (15)

Using (6) as well as (7) and the discrete version of (15) it follows

∆Z(t) = ∆X(t) + ∆Y (t) (16)

= −αXX(t)∆t+ σ∆B(t)− αY Y (t)∆t+ ∆I(t)

= −(αXX(t) + αY Y (t))∆t+ σ∆B(t) + ∆I(t) (17)

= −
(
αX

X(t)
X(t)+Y (t)

+ αY
Y (t)

X(t)+Y (t)

)
(X(t) + Y (t)) ∆t+ σ∆B(t) + ∆I(t)

= −αZZ(t)∆t+ (σ∆B(t) + ∆I(t)). (18)

Since the time series consists of daily data, a discretization of the interval length
∆t = 1 is reasonable. Using linear regression of log-prices against the log-returns
as in (19), we find a value for αZ .

∆Z(t) = γZ(t)∆t+ ε(t) (19)

where γ is the regression coefficient and ε describes the daily changes not caused
by the mean-reversion effect. Using αZ = (−1) × γ, it is possible to estimate the
mean-reversion rate.

By removing the mean-reversion effect from the process Z we get the process ε.
From this process, we determine a vector ζ of spikes using the tolerance parameter
of 2.3 times the standard deviation. The mean-reversion rate αZ and the spike
vector ζ are then used to determine the mean-reversion rates αX and αY .

For the calculation of X and Y, the stochastic part needs to be divided between
the processes σdB and dI , first. As the final values of σdB and dI change because

13



4 CALIBRATION AND RESULTS

of the mean-reversion, we name the processes initially σdB0 and dI0. Generally,
we set as a first step σdB0 = dZ and dI0 = 0. However, at the spike points the
value of σdB0 is set to 0 and the values of dI0 at these points equal to the values
of dZ. Afterward, the processes X and Y are calculated recursively. We assume
as starting values X(0) = Z(0) and Y (0) = 0. The stochastic influences of σdB
and dI have to be adjusted for the mean-reversion effect. This adjustment is nec-
essary to offset the movement caused by the mean-reversion by the means of the
stochastic components, to achieve the same movement intensity as in the process
dZ . Generally, the mean-reversion effect is associated with the "normal" part σdB
and is deducted from σdB0 . The only exception are movements, where an associ-
ation with σdB would lead to a new spike. In this case it is associated with spike
process dI . The adaption formulas for σdB and dI are

σdB(t) = σdB0(t)− (−αXX(t)− αY Y (t)) (20)

and in the case that it would lead to a new spike

dI(t) = dI0(t)− (−αXX(t)− αY Y (t)) . (21)

Here, σdB0(t) and dI0(t) on the right hand side of equations (20) and (21) represent
in each case the first assignment and σdB(t)and dI(t) on the left hand side of the
equations (20) and (21) represent the final values. With these values the iterative
update formulas for X (22) and Y (23) are

X(t+ 1) = X(t) + dX(t)

= (1− αX)X(t) + σdB(t) (22)

Y (t+ 1) = Y (t) + dY (t)

= (1− αY )Y (t) + dI(t) (23)

When the recursive filtering procedure is finished the processesX and Y can have
different spikes than we originally assumed for the calculation. Therefore, we de-
termine the spikes in σdB + dI again with a second algorithm. This algorithm
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classifies all price movements that are larger than 2.3 times the standard devia-
tion of the process σdB as spikes, but in contrast to the first algorithm it does not
perform any recursions. Instead the spikes are calculated solely on the specified
volatility. This enables us to take stochastic volatility into account. Although not
using a recursive approachmight result in a very lownumber of pricemoment not
to be identified as spikes, we use this approach because otherwise the run-time
of the algorithm becomes extraordinary long and the accuracy does not increase
significantly. The required stochastic volatility processes are determined by the
maximum likelihood estimation from the process dB .

With the obtained processes X and Y, the mean-reversion factors αX and αY can
be determined in analogy to 19. These parameters will then replace the initial
values for the mean-reversion rates and the calculation of the processes X and Y
starts again until the mean-reversion rates converge, too. In the case of alternat-
ing mean-reversion factors those factors are averaged and the calculation of the
processes X and Y is done again. The procedure gives us as results the mean-
reversion factors αX and αY , the processes X and Y , the spike vector with the
entries of the spikes, and the stochastic parts σdB and dI of the processes X and
Y . The mean-reversion rates for the peakload process and the different volatility
models are shown in table 2.

Volatility Model Constant GARCH EGARCH
αX 0.1064 0.1073 0.1069
αY 0.4802 0.4779 0.4744

Table 2: Mean-reversion parameters with different volatility models (peakload
process)

4.3 Volatility and Correlation analysis

We analyze the distribution of the stochastic part σdB and dI . Figure 5 shows
the division between the two processes σdB and dI for the three different volatil-
ity models. By analyzing the individual stochastic processes, we determine the
stochastic processes B and I for each price processes. The combination of the six
sub-processes results in the overall model with the random changes.
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Figure 5: Spike detection for the three different volatility models

The standard assumption in most models, including the model of Benth et al.
(2003), is to assume independence between the spike processes of different time
series. However, correlation between spikes in different electricity spot prices is a
commonphenomenon. For example, price spikes caused by a shut down of a large
power plant will most likely have an impact on the whole day, i.e. the peakload,
off-peak 1 and off-peak 2 price processes. Even spikes in other price series, e.g.
gas, can lead to spikes in the electricity price series. Consequently, the assumption
of independence for the spike processes over different time series has to be rejected
and a suitable electricity price model has to consider this dependency.

4.3.1 Diffusion process

When analyzing the distribution of σdB, we assume that for the stochastic volatil-
ity models GARCH and EGARCH a normalized process B, with zero mean
and standard deviation of 1, exists. This allows us to use a constant parame-

16
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ter σ, while the volatility of the normalized process B is stochastic. The pa-
rameters for the stochastic volatility are estimated from the normalized process
dB by maximum-likelihood. Table 3 shows the distribution parameters and the
GARCH-parameters for the peakload price process. The results indicate a positive
leverage effect.

Volatility Model Constant GARCH EGARCH
Distribution Parameter

µ 0 0 0
σ 0.0241 0.0245 0.0236

GARCH Parameter
κ 1 0.0304 0.0003
ARCH 0 0.0402 0.0530
GARCH 0 0.9297 0.9673
Leverage 0 0 0.0349

Table 3: Volatility parameters (peakload process)

After analyzing the individual price processes, we analyze the correlation struc-
ture in order to obtain the final parameters for the simulation. Tables 4, 5 and 6
show the correlation structure between the three electricity price processes σdB
using different types of volatility. It is apparent that the correlation is the highest
with EGARCH volatility and the lowest with GARCH volatility.

Peakload Off-Peak 1 Off-Peak 2

Peakload 1 0.3029 0.3207

Off-Peak 1 0.3029 1 0.2146

Off-Peak 2 0.3207 0.2146 1

Table 4: Correlation matrix Σ between the processes using constant volatility

Peakload Off-Peak 1 Off-Peak 2

Peakload 1 0.2950 0.3314

Off-Peak 1 0.2950 1 0.1949

Off-Peak 2 0.3314 0.1949 1

Table 5: Correlation matrix Σ between the processes using GARCH volatility
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Peakload Off-Peak 1 Off-Peak 2

Peakload 1 0.3219 0.3537

Off-Peak 1 0.3219 1 0.2296

Off-Peak 2 0.3537 0.2296 1

Table 6: Correlation matrix Σ between the processes using EGARCH volatility

4.3.2 Spike process

As alreadymentioned dependencies between the spikes are very likely. Two types
of dependencies are possible (i) among the jump intensity, i.e. the point of time,
when a spike occurs, and (ii) the jump height, i.e. the size of the spike. We test
for both dependencies. First, we analyze the jump intensity where a dependency
is likely, because the events that have an effect on the price of electricity at a time
of day may be longer term in nature and, thus, affect the subsequent contracts.

In order to test for the dependency, we identify all days on which one of the pro-
cesses had a positive spike or a negative spike. Both for the positive and the neg-
ative spikes, there are 7 possible combinations7 of spikes in the electricity price
processes. First, there is the possibility that all three processes have a spike at
the same day. Second, there is the possibility that two of the three processes may
spike with variations which two processes spike. Third, there is the possibility
that only one process has a spike. The derived likelihood for all 7 possibilities are
presented in table 7.

The summation of the probabilities for a process leads to the jump
probabilities for each process. For example, the resulting proba-
bilities for a combination of a positive spike of the peakload pro-
cess present a positive spike in one of other processes is 56.67%

(= 5.15% + 8.43% + 13.58% + 29.51%). Multiplying this by the probability
that there is, indeed, a positive spike in the process gives the jump intensity λp

for the peakload process of 8.29%(= 56.67%× 14.63%).

Second, we analyze the dependency among the jump heights. The analysis does
not provide significant values and, therefore, we assume that no dependency ex-

7A total of 23 = 8 spike combinations, less the combination of no spikes results in 7 possible
combinations.
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Volatility model Constant GARCH EGARCH
Combinations Jump probablities

Peak OP 1 OP 2 positive negative positive negative positive negative
x x x 5.15% 6.40% 3.50% 7.09% 4.20% 7.49%
x x 0 8.43% 7.82% 5.75% 7.09% 4.94% 8.45%
x 0 x 13.58% 7.82% 16.50% 9.29% 15.80% 9.90%
x 0 0 29.51% 20.38% 32.00% 22.49% 34.32% 27.78%
0 x x 3.28% 4.27% 1.75% 3.18% 2.72% 2.66%
0 x 0 20.54% 32.94% 18.25% 27.87% 16.79% 21.26%
0 0 x 19.20% 20.38% 22.25% 22.98% 21.23% 22.46%
Jump intensity 14.63% 14.46% 13.70% 14.01% 13.87% 14.18%

Table 7: Probablities of the jump combinations with a GARCH volatility diffusion
process

ists between the jump heights. The jump distributions’ parameters for the peak-
load process are shown in table 8.

Volatility Model Constant GARCH EGARCH
µ+

σ+

λ+

µ−

σ−

λ−

−2.3606
0.6262
0.0829
−2.5387

0.4276
0.0613

−2.3569
0.6415
0.0791
−2.5614

0.4496
0.0644

−2.4091
0.6507
0.0832
−2.6168

0.4442
0.0757

# Jumps 421 (242 | 179) 419 (231 | 188) 464 (243 | 221)

Table 8: Parameters of the jump distributions (peakload process)

4.4 Results

To test themodelwe perform aMonte Carlo simulation for each price series (peak-
load, off-peak 1,off-peak 2) and each volatility model (constant volatility, GARCH,
EGARCH) with K = 100000 simulation paths for the period between January 1st

and June 30th 2010 (T = 181 days). The results are compared to the realized elec-
tricity price for that period. Figure 6 shows the realized peakload prices and a
simulated price path (for off-peak 1 and 2, refer to figures 14 and 15). The model
is able to capture the mean-reversion of the spikes and reverts to its seasonality
function in the long run, as expected from (1) with (6) and (7).
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Figure 6: Spot and Simulated Spot Prices (peakload process)

We use the root mean squared error as goodness-of-fit criteria. It is defined as

SEt,k,v,a =
(
Ssimt,k,v,a − Srelt,a

)2 ∀1 ≤ k ≤ K, 1 ≤ t ≤ T (24)

RMSEi,k,a =

√√√√ 1

T

T∑
t=1

(
SEt,k,v,a − SEk,v,a

)
∀1 ≤ k ≤ K (25)

where SEt,n,v,a denotes squared error and Ssimt,n,v,a the simulated electricity price at
time t for the k simulation path for asset a and volatility model v. Srelt,a denotes the
realized electricity price at time t.

Table 9 shows themean, standard deviation, minimum, andmaximum of the root
mean squared error resulting from simulating the peakload, off-peak 1 and off-
peak 2 price processes, using the three different volatility models. Figure 7 shows
the cumulative distribution of the root mean squared error for all three volatility
models for the peakload price process. As expected by looking at figure 6, figure
7 reveals that the stochastic volatility performs better than constant volatility. It
is apparent that the EGARCH model is better able to capture the behavior of the
spot price. A possible explanation is that the EGARCH allows asymmetry in the
effects on the volatility.
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Figure 7: RMSE using different volatility models (peakload process)

Volatility model Constant GARCH EGARCH
Mean 19.0970 19.2160 17.9402
Std Dev 0.2083 0.1778 0.1034
Min 12.5539 12.6129 12.3645
Max 829.4487 372.3992 116.4280

Table 9: Root mean squared error (peakload process)

5 Conclusion

In this paper, we propose a self-contained model for electricity spot prices that
is able to capture (i) mean-reversion (with different speeds of mean-reversion for
"normal" and "extreme" periods), (ii) spikes, (iii) stochastic volatility, and (iv) cor-
relations among the spike processes in different time series. In this instance, we
extend former models in three major aspects: First, we provide, based on Benth
et al. (2003), a framework that allows us to incorporate a stochastic volatility in
the diffusion process. Second, we use a self-contained estimation procedure for
all necessary distribution and process parameters based only on the realized his-
toric spot prices. Third, the model is able to consider correlations in spikes of
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different time series, e.g. peakload and off-peak electricity prices. For the calibra-
tion and the testing of the performance of the model, we use electricity spot price
data from the German electricity market, i.e. the EEX.

Regarding the model with stochastic volatility, we conclude that, although it has
a higher complexity resulting in a more difficult extraction of parameters from
empirical data, it is worth the effort. Especially in the case of the peakload price
process the EGARCH model, which is the most complex model in our analysis,
outperforms both the GARCH volatility and the constant volatility model. Fur-
thermore, our analysis reveals that modeling the correlation among the spike pro-
cess is a crucial step to capture the specific nature of the electricity spot price. In
our empirical validation, we show that the price paths simulated with this model
have the same characteristics as realized electricity spot price data.

However, future research is necessary to further increase our understanding of
electricity spot price behavior. For example, models with an own stochastic pro-
cess for the volatility might be promising. To sum up, we proposed a mode for
the electricity spot price that explicitly considers all distinct features of this com-
modity. Furthermore, it can easily be estimated only based on the time series, a
fact that makes it interesting for practical applications, e.g. option pricing.
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A Off-peak1 and off-peak2 processes results
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Figure 8: Normal probability plot and histogram of the unseperated off-peak 1
process
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Figure 9: Normal probability plot and histogram of the unseperated off-peak 2
process
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Figure 10: ACF plots of the log price and the log price without seasonality (off-
peak 1 process)
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Figure 11: ACF plots of the log price and the log price without seasonality (off-
peak2 process)
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Figure 12: Normal probability plot and histogram of the diffusion part (off-peak1
process)
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Figure 13: Normal probability plot and histogram of the diffusion part (off-peak2
process)

Seasonality and drift parameter
Off-peak 1 price process

Weekly seasonality −1.2857 2.7180 3.1261 3.6671 2.9411 −1.3487 −9.8179

Drift 0.0077t+ 215.6862

Yearly seasonality 2.2565 · cos
(

2π(t−357.0434)
365

)
Off-peak 2 price process

Weekly seasonality 1.7547 2.5923 2.7773 2.1662 −0.0345 −4.8357 −4.4202

Drift 0.0108t+ 222.0488

Yearly seasonality −2.3967 · cos
(

2π(t−144.5787)
365

)
Table 10: Seasonality and drift parameters (off-peak1 and off-peak2 processes)
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Volatility Model Constant GARCH EGARCH
Off-peak 1 price process

αX 0.0816 0.0969 0.0994
αY 0.7732 0.7991 0.7998

Off-peak 2 price process
αX 0.0524 0.0556 0.0553
αY 0.5197 0.5614 0.5454

Table 11: Mean-reversion parameters (off-peak1 and off-peak2 processes)

Volatility Model Constant GARCH EGARCH
Off-peak 1 price process
Distribution Parameter

µ 0 0 0
σ 0.0167 0.0187 0.0184

GARCH Parameter
κ 1 0.0054 0.00001
ARCH 0 0.0460 0.0735
GARCH 0 0.9489 0.9942
Leverage 0 0 0.0001

Off-peak 2 price process
Distribution Parameter

µ 0 0 0
σ 0.0152 0.0154 0.0153

GARCH Parameter
κ 1 0.0108 −0.0001
ARCH 0 0.0482 0.0575
GARCH 0 0.9411 0.9922
Leverage 0 0.0177

Table 12: Volatility parameters (off-peak1 and off-peak2 processes)
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Figure 14: Spot and Simulated Spot Prices (off-peak1 process)
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Volatility Model Constant GARCH EGARCH
Off-peak 1 price process

µ+

σ+

λ+

µ−

σ−

λ−

−3.0579
0.7049
0.0552
−3.0361

0.8183
0.0743

−2.9780
0.6462
0.0401
−3.0280

0.7786
0.0634

−3.0349
0.8040
0.0397
−2.9377

0.7300
0.0565

# Jumps 378 (161 | 217) 302 (117 | 185) 281 (116 | 165)
Off-peak2 price process

µ+

σ+

λ+

µ−

σ−

λ−

−3.1348
0.5332
0.0603
−3.0916

0.3603
0.0562

−3.1458
0.5107
0.0603
−3.1425

0.3990
0.0596

−3.1276
0.4966
0.0610
−3.1482

0.4126
0.0603

# Jumps 340 (176 | 164) 350 (176 | 174) 354 (178 | 176)

Table 13: Parameters of the jumpdistributions (off-peak1 and off-peak2 processes)
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Figure 15: Spot and Simulated Spot Prices (off-peak2 process)
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Volatility model Constant GARCH EGARCH
Off-peak 1 price process

Mean 30.7696 30.8413 30.7081
Std Dev 0.1590 0.1574 0.1538
Min 14.1359 14.3356 15.0585
Max 57.5053 71.7823 60.1374

Off-peak 2 price process
Mean 28.9948 28.8258 28.5571
Std Dev 0.2263 0.1696 0.1693
Min 13.4463 12.6675 13.7845
Max 807.9479 207.5292 241.4611

Table 14: Root mean squared error (off-peak1 and off-peak2 processes)
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