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Forecasting Realised Volatility using a Long Memory Stochastic

Volatility Model: Estimation, Prediction and Seasonal Adjustment

Rohit Deo, Clifford Hurvich and Yi Lu

July 14, 2003

Abstract

We study the modelling of large data sets of high frequency returns using a long memory stochastic
volatility (LMSV) model. Issues pertaining to estimation and forecasting of large datasets using the
LMSV model are studied in detail. Furthermore, a new method of de-seasonalising the volatility in high
frequency data is proposed, that allows for slowly varying seasonality. Using both simulated as well as
real data, we compare the forecasting performance of the LMSV model for forecasting realised volatility
to that of a linear long memory model fit to the log realised volatility. The performance of the new

seasonal adjustment is also compared to a recently proposed procedure using real data.

1 Introduction

The availability of high frequency (intra day) data on returns of financial assets has sparked a great amount of
research in modelling both these high frequency returns as well as the realised volatility (RV) computed from
them. It is now well accepted in the literature (see, for example, Andersen, Bollerslev, Diebold and Labys,
2003, henceforth referred to as ABDL) that realised volatility is an important quantity in itself. An important
question which arises is whether there is an advantage to be gained from predicting RV by modelling the
high frequency returns or whether RV is a sufficient statistic by itself, in the sense that it contains almost
all the relevant information useful for predicting its future values. Most of the literature (see for eg., ABDL,
Martens (2001), Martens, Chang and Taylor (2002)) related to this issue has modelled the high frequency
returns using observation driven conditionally heteroscedastic models such as the GARCH model and its
variants fit to seasonally adjusted high frequency returns. Furthermore, the seasonal adjustments considered

in the literature have not allowed for time varying seasonality. However, to the best of our knowledge there



seems to be no work in the literature that attempts to model the high frequency returns with latent variable
conditionally heteroscedastic volatility models such as the stochastic volatility (SV) models, probably due to
the fact that SV type models are not easily manipulable for estimation and forecasting purposes. We attempt
to bridge this gap in the literature by studying in depth issues related to model estimation and prediction of
high frequency returns using the Long Memory SV (LMSV) model (Breidt, Crato, and De Lima, 1998 and
Harvey, 1998). Some newly proposed algorithms for solving large Toeplitz systems are exploited to provide
efficient methods of fitting LMSV models to large data sets. Furthermore, we also propose a new way of
estimating the seasonality in volatility that is present in high frequency returns, allowing for slowly varying
seasonality. We then apply our methods to compare the RV forecasting performance of the LMSV model
fit to high frequency data to that of linear long memory models fit to the log RV itself. The approach of
modelling the log RV by a linear long memory process has been proposed by ABDL. The performance of the
newly proposed seasonal adjustment procedure is also compared to a recently proposed seasonal adjustment

for volatility in high frequency data.
The LMSV model for the returns r; that we consider in this paper is given by

re = o exp (h/2) e, 1)

where g; ~ IID(0,1), 0 > 0 and {h;} is a stationary zero mean Gaussian long-memory process assumed to
be independent of {e;}. Two popular choices for {e;} are the standard normal distribution and a normalised
t-distribution with v degrees of freedom, with the normalisation such that the variance of €; is unity. For the
sake of simplicity, we will assume in this paper that {h;} follows an Autoregressive Fractionally Integrated

Moving Average ARFIMA(p, d, q) given by
®(B)(1- B)dht =0 (B)n,

where B denotes the backshift operator, 7, ~ IID N(0,07), 0 < d < 0.5, ® (B) and © (B) are polynomials
of order p and ¢ respectively with all roots outside the unit circle. It should be emphasised that all of our
procedures can be extended in simple ways to accommodate other long memory model specifications for Ay,

such as a Fractional Exponential model. See Hurvich (2002) for details on the FEXP model.

The fact that the LMSV model is expressed in terms of latent variables makes it extremely amenable to
the establishment of some of its theoretical properties, such as the behaviour of the covariance function of
powers of absolute returns. However, since the conditional variance of r; is not available in analytic form,
unlike in the GARCH family of models, it is not possible to write down the likelihood of the data on returns
as a product of conditional likelihoods. This raises problems in the estimation of the model parameters as
well as in computing forecasts of future squared returns. We thus turn our attention to addressing these

twin problems in the following sections.



2 LMSYV Model Estimation

There are several procedures available in econometrics for the estimation of parameters of SV models. Prime
amongst these are the Generalised Method of Moments (GMM), Efficient Method of Moments (EMM) and

Frequency Domain Quasi Maximum Likelihood (FDQML) estimation, which we discuss next.

2.1 GMM Estimation

For GMM estimation, one specifies a set of sample moments based on n observations denoted by M, =
(Mip, ..., Mgp) , where M;p, = (n -7t E?:].H 9 (1¢,7¢—;) , j is the maximum lag being used, g; is some
smooth function and ¢, the number of selected moments, is at least as large as the dimension of the parameter
vector 8 to be estimated. The GMM estimator, §, minimises the distance (M,, — M (9))' A= (M,, — M (),
where M (8) = E (M,) and A is some suitably chosen weight matrix. Under suitable regularity conditions, 6
is 4/n consistent and asymptotically normal (Hansen 1982). These suitable conditions include the requirement
that the vector of moments M, be a y/n consistent estimator of M (6). In the literature (see, for example,
Andersen and Sorensen 1996), the moment conditions that have been used for SV models are obtained by
using functions g; of the form

[£2]

bi (2)

for some integer valued non-negative a;, b;. Using the form of the LMSV model, one sees for such a choice of

gi (Ttﬂ‘t—j) = |7't Tt—j

g; that

a; b;

Min=(n—3)"" Y 0"V exp ((aih + bihe—;) /2) |es
t=j+1

Et—j

Now appealing to the fact that a;h; + b;hs—; is a stationary Gaussian long memory series with memory
parameter d which is independent of {¢;} and using the moment generating function of a Gaussian random
variable, it is easy to show that Var (M;,) ~ Cn??~1 for some positive constant C, implying that the rate
of convergence of M;, is of order n'/2~¢. Thus, GMM estimation in the LMSV case will result in estimators
which are slower than /n consistent since 0 < d < 0.5. As a matter of fact, since most empirical estimates
of d for the volatility of high frequency returns tend to be between 0.3 and 0.35 (Andersen and Bollerslev,

1997a), the GMM estimators will have a rate of convergence of the order of approximately n%? or n%-15.

2.2 EMM Estimation

In EMM estimation, the score of an approximating likelihood function with a tractable form is used to

generate the moment conditions. In principle, one estimates the parameters of a mis-specified auxiliary



model and then maps the estimates of the parameters of the auxiliary model to the parameters of the
assumed data generating process. The better the auxiliary process is in approximating the assumed true
data generating process, the more efficient the EMM estimators will be. However, in the context of linear
long memory models, Chen and Deo (2003) have shown that the estimators of the parameters of a mis-
specified model fit to a linear long memory process can have a rate of convergence that is slower than \/n.
Chen and Deo (2003) derive the condition under which /n consistency is retained for the estimators of the
parameters of the auxiliary model, but the condition is unverifiable in practice since it depends on the model
parameter values which are unknown. Hence, their work implies that more work needs to be done on the
problem of choosing an appropriate auxiliary model to ensure that EMM estimation provides 1/n consistent

estimators of the LMSV model.

2.3 FDQML Estimation

The QML estimation procedure exploits the fact that for the LMSV model, the transformed series Z; =
log(r?) can be expressed as a sum of a Gaussian long memory signal plus a zero mean noise series, given
by Z; = log(r?) = pu + hy + &, where & = log(e?) — E(log(e?)) and p = log(c?) + E(log(€?)). The QML
estimators are found by treating the series Z; as a Gaussian time series and maximising the Gaussian
log likelihood of Z;. Even though Z; is not a Gaussian process, Deo (1995) has shown that the resultant
estimators are y/n consistent and asymptotically normal. In practice, it is easier to minimise the frequency
domain approximation to the time domain Gaussian negative log likelihood (Brockwell and Davis, 1991),

called the Whittle approximation, and given by

5] _
€0 0= 3 foa(fo(w) + 75} ©

where @ is a candidate parameter vector, I; = (2mn) ™" I> -y Ziexp (—iwjt)|2 is the periodogram of Z; at

the j-th Fourier frequency w; = 2%1 and fy is the theoretical spectral density function of Z;, given by

o2 |© (—iw;) |? of
N m J _g
Jo3) = 5 & (i) PIT — exp(—iwop) P2 * 2 @

where (J'g is the variance of &. We call the resultant estimator 6 the FDQML estimator. The periodogram I;
of Z; can be evaluated at all the Fourier frequencies w; very quickly using the Fast Fourier Transform, even
for large data sets, and hence the FDQML method is extremely easy from a computational viewpoint. When
€¢ is assumed to be standard normal, ag is known to be 72 /2 and hence need not be estimated. When ¢; is
assumed to have the normalised t—distribution with unknown v degrees of freedom, with the normalisation

such that the variance of €; is unity, then ag needs to be estimated. There is a one-to-one relationship



between o7 and v given by o7 = ¢’ (v/2) + 7% /2 where ' is the derivative of the digamma function. Thus,
this relationship in conjunction with an estimate of a? yields an estimate of the degrees of freedom, v. Note
that as v — oo, the t-distribution gets closer to the standard normal and ¢’ (v/2) — 0 and hence 07 — 72 /2,

as is to be expected.

Thus, the FDQML estimator is the only estimator out of the three popular estimators described above that is
guaranteed to be y/n consistent when estimating the parameters of the LMSV model. Though the FDQML
estimator is based on the Gaussian likelihood, one would expect it to be inefficient since the series Z; is
typically non-Gaussian. This prompts us to consider a modified version of the FDQML estimator which we

describe next.

2.4 Enhanced FDQML

Since Z; is non-Gaussian, better estimates might be obtained by applying the Whittle method to some
transformation of high frequency absolute returns which is closer to Gaussianity than log squared returns.
One such potential transformation is |r;|° for a judicious choice of ¢ which, for example, sets the theoretical
skewness of |r;|° to zero, thus making its distribution closer to the Gaussian than that of logr?. To make
FDQML estimation feasible for the transformed series |r;|°, one has to first overcome two issues: (i) The
choice of the power ¢ and (ii) the calculation of the model spectral density of |r;|“. To solve the first issue,
we suggest a two stage procedure. In the first stage, FDQML estimation is employed on logr? to get initial
parameter estimates of the LMSV model. Using these parameter estimates, one can compute the theoretical
skewness of |r¢|® for every value of ¢ as a nonlinear function of the model parameters as follows. First we

note that the skewness E[|r;|° — p)?, where u. = E[|r¢|], can be expressed up to a constant multiple as
Ellre|® = pe]® = Blre** — pc® = 3pcElry|* + 3B Blr|. (5)

By using the moment generating function of a Gaussian random variable and setting o7 = Var(h;), we get
for any positive integer k,

E|r|*¢ = Eley|* exp(on?k*c?/8). (6)
When &; follows a standardised t—distribution with unit variance, we have for ¢ < v,
D(s5r(%59)

L(3)0(3)

whereas when ¢; follows a standard normal distribution we have

2°2T (¢ + 1) /2)
T (1/2)

Eles|® =



These expressions in conjunction with Equation (6) and Equation (5) give us an explicit expression for the
skewness of |r¢|¢. A simple bisection method can be used to find the root of the skewness as a function of c.
One might argue that it might be preferable to find ¢ such that the excess kurtosis of |r;| is zero. However,
our experience suggests that the ¢ which sets the skewness to zero also simultaneously manages to get the
excess kurtosis close to zero. This is exemplified in Fig 1, where we plot the sample skewness and sample

excess kurtosis respectively as a a function of ¢ for seasonally adjusted rf.

Figure 1: Sample Moments of De-seasonalized r{ versus c¢
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Once we find an appropriate ¢ value, the Whittle estimation of the model with transformed data |r|° next
requires the model spectral density of |r¢|°. Unfortunately, there does not exist a simple formula for the
model spectral density of |r;|°, unlike that given in (4) for the density of logrZ. However, it is known that
for any stationary time series with covariances c; (6) at lag j, the spectral density fp(w) at frequency w is

also given by
1 ..
folw) = o Z ¢; () exp(ijw). (7
lil<oo
The model covariance function ¢; (8) of |r;|° can be obtained by noting that for a,b > 0,

2
Elr,|" = 0" Ele|" exp(a®32)

and

2
g .
E(|re|*|re-;|") = 0" Elee|* Bler|” exp((a® + b) 5+ abm(i)/4),



where o7 = Var(hy) and y,(j) = Cov(h¢, hy—j). Though there is no explicit formula for the covariance
function 7y, (j) of an ARFIMA process, Bertelli and Caporin (2002) provide a simple algorithm for computing
it, which we use. Combining this algorithm with the expressions for E|e;|° given above, we can easily compute
the ¢; (0) . Finally, it should be noted that in computing the Whittle likelihood, the infinite sum in expression
(7) needs to be truncated at some value to make the computation of the spectral density feasible. However,
a naive truncation at some point can result in a spectral density which is negative, which is naturally
undesireable. Hence, we choose to weight the covariances ¢; (§) with a properly chosen smooth function w;

before truncating, which ensures a positive spectral density given by

Jom(w) = % |]-|¥M wjc; (0) exp(irw),

where M is the truncation point. In this paper we used a popular weight sequence called the Bartlett
window, which is guaranteed to yield positive densities and is given by w; = 1 — |j| /M. In our study we
chose the trunaction to be M = n, where n is the number of observations. It can be shown that as M — oo,

fo,m(w) = fo(w) for every w > 0.

Though there are no theoretical results on the asymptotic distribution of the Enhanced FDQML estimator
that we have proposed, we have chosen to include it in our study. In Section 6 below, we report on a
simulation study in which we compare the FDQML and the Enhanced FDQML estimators based on log r?

and |r;|® respectively.

3 Forecasting with the LMSV model

We are interested in predicting r2 4z from the available returns r,,r,—1,...,m1 for L > 1. The best such
prediction of 72, ; would be E[r2 ||rn,7n—1,...,71]. Unfortunately, this conditional expectation is not
available in an analytical form for the SV model, unlike in the observation driven models. One solution is
to use the best linear prediction of 72, ; based on |r,|% |rn_1]%,...,|r1|¢ for some value of ¢ < 2. As noted
by Ding, Granger & Engle (1993), the magnitude of the correlations of |r¢|° tends to be stronger for ¢ < 2
than for ¢ = 2. Hence, it might be worthwhile to predict squared returns from |r|® with ¢ < 2. This idea

has similar features as the PARCH model of Ding, Granger & Engle (1993). In order to compute this best

linear predictor, we need coefficients A; 1, for j =0,1,...,n — 1 which minimise
n—1
E{ry,r = B(}) = ) Ajillra—il” = E(rl )]} (8)
=0



Once the coefficients A; 1, have been obtained, the best L-step ahead linear predictor of r2 41 is given by

n—1
e = B07) + Y Ajrllrajl” — E(Ire|°)] 9)
j=0

It is well known that the coefficients A; ;, which minimise (8) are the solution of the set of linear equations
AL =201, (10)
where Ap = (Ao,z,-- ., An—1,1), Be = Cov(|rp|%, ..., |r1]¢) and

Y2,e,L = [COU(’I"?H_L, |Tn|c)7 ey COU(T721+L7 |T1 |C)]I_

Once the parameters of the LMSV model are known, the entries of X and 7, ., can be found as described
in Section 2. It thus remains to solve the set of linear equations in (10), which involve a Toeplitz matrix
3. A numerically efficient algorithm to solve such a system was provided by Levinson (1946). However,
Levinson’s algorithm needs O(n?) operations and with a large high-frequency data set such as ours, is still not
efficient enough. Hurvich and Lu (2003) have proposed a new algorithm for solving the system of equations
(10). Though there are no rigorous results as yet on the order of the number of operations used by this new
algorithm, preliminary numerical experiments suggest that this order is roughly O(nlog(n)). If this is indeed
true, then for n = 30000, the factor of improvement in efficiency afforded by this new algorithm compared

to Levinson’s algorithm is close to 3000.

Though we forecast the squared returns using the best linear forecast, this forecast will not be optimal since
squared returns are not Gaussian. However, as discussed in Section 2, we can find the power ¢ such that
|r¢|° have zero skweness and are closer to normal. This suggests that it might be preferable to get the best
linear forecast of |rp4r|® based on |r,|°, ..., |r1|° and then convert this forecast to one of 72, ;. The best
linear forecast, say |FniL|", of [rnir|® based on |r,| ..., |r1|" is found in a manner similar to that described
above, by solving a system of linear equations. Then, conditional on 7y, ...,r1, the distribution of |r,4 1| is

treated as Gaussian with mean |#,, |° and variance 07 , = E (|rnyr|® — Fnsr])” . Now,
Elr2, Ll rncts -y m] = El(rag 2] st o).
Thus, the forecast of 72, ; based on the power transformation, denoted by 72, ; p, is now computed as
2ee=E (Y1), (11)

where Y is a normal random variable with mean |f,;.|® and variance o7 .. Though there is no explicit
k)

formula for this expectation, it can be computed very easily using numerical integration.

In our simulation study as well as the empirical study in later sections, we study the performance of both

the prediction procedures described above.



4 Seasonal Adjustment of Volatility

It is an empirically observed fact that high frequency returns exhibit seasonality in volatility and any attempt
to model high frequency returns with an eye towards prediction must deal with estimating this seasonal
component. There are several ways in which the seasonal component in volatility has been estimated in the
literature (See, for eg., Martens et al, 2002). However, a common theme in all of the proposed methods of
seasonal adjustment is that the seasonal pattern is assumed to remain constant with some periodicity, be
it a day or a week or a month. Based on our high frequency data, we argue below that the seasonality in
volatility may be actually slowly varying over time and we propose a new way of estimating it which accounts
for this slow variation. The basic model that we will assume to motivate our seasonal adjustment procedure
is

R, = exp (S¢/2) ry, (12)
where R; is the high frequency return which has been demeaned using the sample mean, S; is the seasonal
component and r; is the de-seasonalised high frequency return. We find it convenient for two reasons to
work with the transformed series X; = log R? when estimating the seasonal component. The first reason is
that log squared returns are less prone to outliers and hence, from a data analytic point of view, it seems a
sensible transformation to consider. The second reason is that the log squared de-seasonalised return logr?
has certain desireable properties which can be exploited to construct statistical tests of significance to test
for the presence of seasonality. It should also be noted here that Martens et al (2002) concluded that it
is preferrable to estimate seasonal adjustments based on log squared returns. The fact that we use the
demeaned high frequency data generally assures us that there are no zero values after the demeaning, thus

avoiding any problems with taking logarithms.

In addition to working with the log squared returns, we also find it convenient to study the seasonal pattern
in volatility in the frequency domain. Towards this end, we construct the periodogram of the log squared

returns at Fourier frequencies wj,

2

ZXt exp (—itw;)

t=1

Ix (w;) = (2mn) ™"

In Fig 2(a), we plot the log periodogram of a data set of log squared high frequency returns versus the
Fourier frequencies. The data set which we have considered here, explained in detail in Section 5 below,

consists of 51000 observations of half hourly returns on the S&P500 index, with 12 returns per day.

If the seasonality were exactly periodic with period 12, we would expect a peak in the periodogram at every
Fourier frequency with an index j that is an integer multiple of n/12, n being the sample size of the data set.

However, closer examination of such frequencies in Fig 2(a) shows that their neighbouring Fourier frequencies



Figure 2: Log Periodogram for High Frequency Log Squared Returns

Log Periodgram
Log Periodgram

o 4250 8500 12750 17000 21250 25500 o
Frequency Number Frequency Number
(a) Log Periodogram for log |r¢|? (b) Log Periodogram around the first Peak

also have large periodogram values. This behaviour can be seen in more detail in Fig 2(b), which shows the
log periodogram in the neighbourhood of the Fourier frequency w, /12 = %’r% = /6. We argue next that
this phenomenon, where the log periodogram shows peaks not just at Fourier frequencies with indices that
are integer multiples of n/12 but also at their neighbouring frequencies, is typical of a seasonal component
that is of the form S; = P, F;, where P; is an exactly periodic function with period 12 and F; is a smooth
function which is slowly varying around 1. For any series u, t = 1,2,...,n, let A, ; denote its Discrete

Fourier Transform (DFT) at Fourier frequency w j, given by

1 n
Ayi = — ug exp (—itw;) .
u,J \/zw—ntzzl 4 p( .7)

If the seasonal componant S; does indeed have the form S; = P, Fy, then it is known (Bloomfield, 1976, pg
86) that

n—1

Asj = Z AP kAF,(j—k) mod n- (13)
k=0

Now the DFT of P, would have peaks at exactly the Fourier frequencies with indices that are integer
multiples of n/12, since P; is exactly periodic with period 12. On the other hand, since F; is a smooth
slowly varying function, its DF'T would be peaked at zero frequency and then taper down gradually at other
Fourier frequencies (Bloomfield, 1976, pg 57-60). Thus, from the convolution (13) we see that a peak in the

DFT of P, at a Fourier frequency which is an integer multiple of n/12 will leak into neighbouring Fourier

10



frequencies in the DFT of S, due to the widening of the DFT of F; around zero frequency, resulting in the

observed behaviour of the periodogram.

Having argued that the pattern in seasonality is consistent with a slowly varying function, we next provide
a procedure to remove the seasonality. We model the seasonality S; as a linear combination of sines and

cosines evaluated at the Fourier frequencies that show seasonal peaks. More specifically, we write
k k
St = Zap coswj, t + pr sinwj, t, (14)
p=1 p=1

where B = {wjp}k is the collection of all Fourier frequencies with indices that are integer multiples of

p=1
n/12 and their neighbouring Fourier frequencies that exhibit large values. A statistical test of significance
which can be used to decide which Fourier frequencies to use in this set B is provided later in this section.

The coefficients a, and b, are estimated by
n
a, =2n"" Z X coswy, t
=1

and

n
IA)p =2t ZXt sinw;j,t .

=1
The computation of these coefficients can be done in a numerically efficient manner, using the Fast Fourier
Transform, since a, and 5,, are the just multiples of real and imaginary parts respectively of the DFT of X;
computed at the Fourier frequency wj,. The seasonal component esitmated in this fashion would be identical
to that obtained by running the regression

k k
X = Z ap cos wj, t + Z by sinwj, t + e, (15)

p=1 p=1
since the regressors in at are all orthogonal to each other. The fitted values in this regression yield the
estimated seasonal component S;, while the residuals in this regression yield the de-seasonalised log squared
returns. The seasonal specification in (14) may be easily extended to include dummy variables to account for
any day-specific effect if need be. If dummy variables are included, the seasonal adjustment would have to
be estimated using a regression similar to the one in (15), with dummy variables included, since there is no
simple method of estimating the seasonal effect coefficients in the frequency domain in that case. It should
however be noted that the regression (15) is computationally very efficient, even in the case when dummy
variables are included, since the regressors cosw;,t and sinw;,t are orthogonal to each other. Due to this
fact, the normal equations that one would have to solve would involve a matrix which is almost diagonal,
except for the first several rows and columns, which would correspond to the dummy variables. Solving such

a system of normal equations is a computationally simple task.

11



In Fig 3, we plot the log periodogram of the de-seasonalised log squared returns. On comparing this plot with
Fig 2(a), we note that the de-seasonalised series now no longer shows any seasonal peaks in its periodgram
as is to be expected. One important benefit of our seasonal adjutment worth pointing out at this stage is
that the peridogram of the de-seasonalised series remains untouched at all other frequencies, as is evidenced
by the two plots. In particular, the frequencies closest to the origin are left undisturbed, implying that the

long memory dynamics of the series have not been disturbed in the de-seasonalising procedure.

Figure 3: Logged Periodogram for De-seasonalized log |r|?
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To get an idea of how the estimated seasonal component looks like for our data, we plotted in Fig 4 the
estimated seasonal component for a two week period, at two different points in time in the sample. It is
observed that though the overall pattern of the estimated seasonality remains the same in the two plots, the

exact details vary, as is to be expected.

When one views our proposed seasonal adjustment in the light of the regression (15), it becomes easier to
interpret it as a generalisation of the Flexible Fourier Form (FFF) method of seasonal adjustment, which has
been generally used in the literature (see, for eg., Andersen and Bollerslev, 1997b, Martens et al (2002)). The

simplest form of the FFF essentially runs a regression of the form (15) but only at the Fourier frequencies

12



Figure 4: Seasonal Component in Volatility during Different Time Periods
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whose indices are integer multiples of n/12, viz. {w;}, j = n/12, n/6,...,sn/12, where s is some small
arbitrary integer, necessarily less than L/2, where L, in general, is the number of observations per day (In
our current empirical exercise, L = 12). In addition, the regression also includes a low order polynomial,
such as a quadratic, which is periodic with period L. When s = L/2, this seasonal adjustment is identical to
subtracting the sample means of the data for each of the L periods. In such a case, the low order polynomial
in the regression becomes redundant since the L cosine and sine terms for a basis for the L dimensional
space. However, in the literature, FFF has generally been applied with s quite small relative to the value of
L and the polynomial chosen generally being a quadratic. The rationale behind this approach is to estimate
the seasonal component in a parsimonious and smooth way, rather than by estimating one mean level for
each period within the day. However, FFF does not easily provide a method of identifying the value of s and
the degree of the polynomial, a shortcoming which is overcome by our approach. In the next paragraph, we

provide an objective method of deciding which Fourier frequencies should be included.

The de-seasonalisation procedure we describe above requires us to specify the collection of Fourier frequencies

B which are to be included in the regression (14). Though some of the frequencies to be included could
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possibly be easily detected by visual inspection of the plot of the log periodogram against frequency, there
might be some frequencies which leave room for doubt. Hence, a statistical test of significance is essential to
help make a decision on the inclusion of a frequency for deseasonalising and the following Theorem provides
just such a test. We omit the proof as it is quite simple, exploiting the fact that h; is a Gaussian series
independent of & and that the DFT’s of each of the two series, at distinct Fourier frequencies bounded away
from the origin, are asymptotically Gaussian and independent, with variances that are proportional to their
respective spectral densities evaluated at the corresponding Fourier frequencies. See Moulines and Soulier,

1999.

Theorem 1 For any fized integer k, let {CUjp }’;:1 be a set of Fourier frequencies such that lim inf,,_,, min, w;, >
0. Let fx (wjp , é) be the estimated spectral density of logr?, where 0 is a vector of estimated parameters which

is \/n consistent. Assuming that as = bs = 0 for s = ji, ..., jx, we have

[a—y

Ix (wj,) pl,

=1 fx (wjp,é) 2

where V is a x3;, random variable.

Theorem 1 allows us to test the joint null hypothesis of the lack of seasonal peaks at any specified set of
Fourier frequencies. The test needs some /n consistent estimate 6 of the parameters of the LMSV model.
Our suggestion is that in order to obtain this estimate 6 for the seasonal adjustment stage, the following

modified version of the Whittle likelihood in (3) be used,

St (0) = 3 {log(fo(wy)) + —1—}. (16)

o fo(wj)

where M = {1,2,...,[(n — 1) /2]} N D¢ and D is some initial collection of frequencies which one suspects of
having seasonal peaks. For example, D could consist of the each of the Fourier frequencies with indices j that
are integer multiples of n/12 and 15 Fourier frequencies to the left and right of each of them. The exclusion
of a fixed number of frequencies in D will not affect the asymptotic properties of the initial estimate 6 and

yet at the same time will ensure that it is not affected by any seasonality in the volatility.

In closing this Section, we note that all of our procedures and suggestions generalise to high frequency data

sets with an arbitrary number of observations per day, say L, by merely replacing the ratio n/12 by n/L.

Having described the estimation, forecasting and seasonal adjustment procedures for LMSV models in detail,

we now turn to applying them to real data in the next Section.
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5 Empirical Analysis

In this section, we use real data to compare various procedures with respect to their ability to forecast RV
based on high frequency returns. The data set that we consider was obtained from Tick Data, Inc. and
consists of half hourly returns on the S&P500 index. There were 12 returns per day, computed from 10:00am
to 3:30pm, with the 12th return being the overnight return computed using the closing price at 3:30 pm on
the given day and the 10:00 am closing price on the following day. The data spanned a period from 2/1/1983
to 6/30/2000. From the high frequency data, we also constructed a corresponding series of RV, where
the RV for day ¢t was defined as the sum of squares of the 12 half hourly returns for that day. Andersen,
Bollerslev, Diebold & Labys (2002) proposed RV as an error-free measure of volatility and theoretically
speaking, the finer we sample during the day, the more accurate the measure becomes. However, so-called
market microstructure problems such as bid-ask bounce and asynchronous trading in the equity market
create bias in the estimation of parameters such as aucorrlelation if excessively high frequency financial
return data is used. Thus, there is a trade-off between the crudeness of the realized volatility measure and

the microstructure bias. We choose 30-minute returns as the balance point for these issues.

In Fig 5(a), we plot the autocorrelations for the log squared sample mean adjusted high frequency returns
up to lag 3120, which corresponds to about 1 year. The extremely slow decay of the sample autocorrelations
points to the existence of long memory, while the periodic peaks at lags which are integer multiples of 12,
which is the number of obervations per day, points towards the existence of seasonality. The existence of
long memory is also observed in the strong linear relation between the log periodogram for log(|r;|?) versus

the log frequency(for j = 1 to 1000) in Fig 5(b).

We compare the forecasting performance of our seasonal adjustment in combination with an LMSV model
fit to high frequency data to that of a linear long memory model fit to log realised volatility itself. The
LMSV model that we chose was such that the log volatility process h; followed an ARFIMA(1,d,0) while
the errors e; were assumed to follow a normalised ¢—distribution with v degrees of freedom, where the
normalistion was such that e; had unit variance. In addition, we also include the forecasting performance
of a GARCH(1,1) and a component GARCH (Engle and Lee, 1999) model fit to seasonally adjusted high
frequency data. The component GARCH has two components in the volatility function, one transient and
the other persistent, and is essentially a GARCH(2,2) model with certain restrictions on the parameters.
We include the GARCH(1,1) model and the component GARCH model as competitors, to evaluate how well
they can account for the long memory in the volatility in spite of being, theoretically, short memory models
for volatility. The linear long memory model that we fit to the log realised volatility was an ARFIMA(1,d, 0),
as was done in ABDL.
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Figure 5: Autocorrelations and log(Periodogram) of log(|r¢|?)
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We compare the out-of-sample forecasting performance of the competing models using two different estima-
tion window sizes: 15000 (corresponding to about 5 years of data) and 30000 (about 10 years of data). We

also compare 3 different forecasting horizons: 1 day, 1 week (5 days), and 4 weeks.

We now describe in detail the design of the empirical experiments for the various models. Consider an
estimation window of 15000 and forecast horizon of 1 week as an example. Note that we have a total of

51000 S&P 30-minute returns in our dataset.

5.1 Modelling the high frequency returns

i) First we demeaned the data using the sample mean of the returns, denoted by ji. Henceforth in this section,
when we refer to the returns, we imply the sample mean adjusted returns. One advantage of demeaning
the data in this fashion is that it ensures there are no zero values, thus avoiding problems when making the
logarithmic transformation. Then, we estimated the seasonal component S; using the log squared returns.
In order to do this, we first estimated the parameters of the LMSV model using the modified Whittle log
likelihood £,,ar in (16) and where D consisted of each of the Fourier frequencies with indices j that are
integer multiples of n/12 and 30 Fourier frequencies to the left and right of each of them. Once the initial

estimates were obtained, we tested the periodogram at each Fourier frequency in the set D, uisng the test
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given in Theorem 1 to detect which peaks were statistically significant. The level of significance used at each
frequency was set at 95%. Thus, the frquencies to be included in the set B for the seasonal adjustment using

the regression (14) were determined and the seasonal component S; estimated.

ii) Using the model definition in (12), the high frequency de-seasonalised returns were obtained by the
calculation r; = exp (—S:/2) R, where R; was the original high frequency return. Then the first 15000
seasonally adjusted 30-minute returns {rt}ii(ioo were used to estimate an LMSV, GARCH(1,1) or component

GARCH model.

iii) Next, we constructed a one-step (30-minute) ahead forecast 25,5, of 72550, using the observations
{rt};i(ioo. The exact way in which this forecast was computed depended on the model. For the GARCH(1,1)
and component GARCH, the calculation of the forecast is built into the volatility equation in the model.
For the LMSV model, we used two different methods of forecasting, The first method used the best linear
predictor given in (9). The second method used the predictor based on the power transformation given in
(11). The power ¢ in this procedure was obtained by setting the theoretical skewness of |r;|° to zero, as

described in Section 2 above.

iv) Then we excluded the 1st observation 71 and included the square root of the forecast we just generated,
to get a "new” data set {r;} " U fiégm of 15000 observations. Then step (iii) was repeated to get another
one-step ahead forecast 775095 Of 7750092 We repeated this process 60 times, obtaining a set of forecasts

{r? }1265%01 of seasonally adjusted squared returns {r?}iiﬁ%m for each 30-minute period in the future week.

v) We then re-seasonalised the forecasts {ff}iﬁ%m by extrapolating the most recent in-sample estimated

seasonal component to generate forecasts of future squared high frequency returns with seasonality in them,
denoted by &2, as
R? = exp(S;_e0)7? t = 15001, ..., 15060. (17)

Since we had been working with mean adjusted returns all along, it was essential to undo this mean adjust-

ment to get a forecast of the "unprocessed” high frequency returns, denoted by f%i - This was achieved by

computing
R, =R} + ¢ = 15001, ..., 15060.
. 5o 115060
Finally, we aggregated the 60 forecasts {1} _ .., to get one forecast
15060
7 — 2
Vi= Z R,
#=15001

of the realized volatility, RV, of the future week.

vi) Next, we excluded the data from the very first week in our first estimation window of 30-minute returns,
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and included the data for the week we had just forecast, yielding a new estimation window {rt}ii%ﬁo. Then
steps (i)-(v) above were repeated. This cycle was repeated 150 times and we got 150 out-of-sample forecasts

{V,}i(i for the 150 realized volatility values {RVi}}iq computed from the S&P data directly.

It should be noted here that the maximum number of weekly forecasts we could have computed in this
manner for an estimation window size of 15000 is actually 600. However, the maximum number of monthly
forecasts we can compute is only 150. Thus, we chose to compute only 150 forecasts for all three horizons,
daily, weekly and monthly, when the estimation window size was 15000. This allows us to see how the
various forecasting measures change across the three forecasting horizons based on the same number of
forecasts. When the estimation window size was 30000, we however computed the maximum number of
forecasts permissible across each horizon, viz. 90 monthly (4-week) forecasts, 360 weekly forecasts and 1800

daily forecasts.

In the next subsection, we describe how we modelled the realised volatility directly. Once again, for the sake
of exposition, we describe the procedure for the case where we were predicting the realised volatility one

week ahead.

5.2 Modelling the realised volatility

For modelling the realised volatility, we first calculated all daily realized volatility values, each such value
being the sum of squares of the 30 minute returns on that day. We then fit an ARFIMA(1,d,0) model to the
first 1250 values of daily log RV, in keeping with the approach of ABDL. Using the fitted ARFIMA model,
forecasts were generated of the log RV for the next 5 days, corresponding to one week. These forecasts
were exponentiated to obtain five forecasts of the daily RV and then these five forecasts were aggregated to
obtain a forecast of the future weekly RV. We then rotated the data forward by one week, excluding the
daily realized volatility for the first week and including the daily RV for the week we had just forecast, and
then used this new set of 1250 daily realized volatility values to estimate the ARFIMA(1,d,0) model and
forecast 1-week ahead again. We repeated this process 600 times and obtained 600 forecasts, each forecast

being for non-overlapping weeks.

In the next sub-section, we compare the performance of the different forecasting procedures.
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5.3 Comparion of the forecasts based on different models

There is no universal agreement about the best measure for evaluating the forecasting performance for
volatility models. Hence, we compared the different forecasting procedures based on five measures that have
commonly been used in the literature. These measures were: (i) The R? from the regression of log realized
volatility on the forecast of log realized volatility (ii) The R? from the regression of square root realized
volatility on the forecast of square root realized volatility (iii) The mean squared error (MSE) (iv) The mean

absolute deviation (MAD) (v) Mean absolute percentage deviation (MAPD).

The log and square root transformations were used as variance stabilising transformations in the regressions
since the RV is very heteroscedastic. We did not compute any t—statistics on the slope and intercept
coefficients in these regressions since there is no reason to expect the forecasts to be unbiased after a square

root or log transformation.

The LMSV model was always estimated using the Enhanced FDQML method of Sub-section 2.4 above. For
the LMSV model, the forecasts based on the ¢ power transformation given in (11) are denoted by LMSV-
C. The ¢ was chosen to make the theoretical skewness of the distribution of |r¢|° equal to 0. We denote
the method of using 72 to forecast r;? as given in (9) by LMSV-Square. Forecasts based on fitting an

ARFIMA(1,d,0) model to log realized volatility are denoted by ABDL.

The forecasting results with 15000 (5 years of data) as estimation window size are summarized in Table 1.
The results are based on 150 forecasts for each combination of forecasting model and horizon. The number

in bold corresponds to the best performance for a particular measure for a particular forecasting horizon.

Main observations for Table 1 are:

e Overall, LMSV models forecast better if R? or MSE measures are used. The ABDL procedure generally
forecasts better if MAD or MAPD measures are used, with the ABDL procedure having consistently

the lowest MAPD across all forecasting horizons.

e Better modeling of long memory does improve forecasts significantly as we can see, with the short
memory GARCH(1,1) consistently doing worst, and the long memory ABDL and LMSV procedures

consistently doing best.

e The ABDL model delivers a very impressive performance given that it just fits a simple ARFIMA (1,d,0)

model and does not model the high-frequency seasonality directly.

e The component GARCH model also does well, particularly since it is not a true long memory model.

Its performance is extremly close to and even better than that of the ABDL model especially for weekly
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Table 1: Forecasting Results for S&P 500 Realized Volatility With n=15000

Model Horizon | R? logVol | R? SqrtVol MSE MAD MAPD
LMSV-Square 0.479 0.430 1.042e-06 | 6.137e-04 | 0.570
LMSV-C 0.457 0.497 6.947e-07 | 5.145e-04 | 0.498
ABDL 4 Weeks 0.433 0.390 1.236e-06 | 5.917e-04 | 0.387
Component GARCH 0.430 0.408 9.969e-07 | 5.835e-04 | 0.563
GARCH(1,1) 0.165 0.155 1.291e-06 | 7.136e-04 | 0.758
LMSV-Square 0.287 0.260 7.926e-08 | 1.935e-04 | 0.793
LMSV-C 0.182 0.207 6.596e-08 | 1.684e-04 | 0.698
ABDL 1 Week 0.249 0.242 7.565e-08 | 1.504e-04 | 0.398
Component GARCH 0.274 0.274 6.567e-08 | 1.673e-04 0.674
GARCH(1,1) 0.171 0.155 8.850e-08 | 1.903e-04 | 0.786
LMSV-Square 0.082 0.081 6.901e-09 | 6.747e-05 1.596
LMSV-C 0.038 0.047 5.618e-09 | 4.763e-05 0.896
ABDL 1 Day 0.063 0.067 5.641e-09 | 4.667e-05 | 0.787
Component GARCH 0.074 0.079 5.636e-09 | 5.388e-05 1.118
GARCH(1,1) 0.025 0.020 6.966e-09 | 5.779e-05 1.151

and daily horizons. This seems to suggest that for a horizon up to a week, the component GARCH

model is able to capture the long memory dynamics fairly well.

e RR? as an increasing function of forecast horizon for all procedures.

e LMSV C-Fore performed uniformly better than LMSV-Square across all horizons with respect to the
MSE, MAD and the MAPD, but this uniform superiority over LMSV-Square was not retained for the

R? measures.

e Though we do not report the results here, we also attempted to fit component GARCH and GARCH(1,1)
models directly to the non-seasonally adjusted high frequency data. This appproach performed uni-

formly worse than the other procedures considered here.

The forecasting results with 30000 (10 years of data) as estimation window size are summarized ! in Table 2.

!Component ARCH and GARCH results are not reported due to the memory constraints to run the program in Eviews.
This happens since we need to use Splus to do the seasonal adjustment and stored the seasonal adjusted data in Eviews for

further anlysis
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The results are based on 90 monthly (4-week) forecasts, 360 weekly forecasts and 1800 daily forecasts.

Table 2: Forecasting Results for S&P 500 Realized Volatility with n=30000

Model Horizon | R? logVol | R? SqrtVol MSE MAD MAPD
LMSV-Square 0.694 0.673 7.218e-07 | 4.864e-04 | 0.415
LMSV-C 4 Weeks 0.611 0.575 9.278e-07 6.301e-04 0.635
ABDL 0.710 0.658 1.368e-06 6.166e-04 | 0.336
LMSV-Square 0.631 0.604 7.787e-08 | 1.489e-04 0.558
LMSV-C 1 Week 0.527 0.497 1.024e-07 1.910e-04 0.863
ABDL 0.631 0.593 1.195e-07 | 1.620e-04 | 0.377
LMSV-Square 0.422 0.412 8.158e-09 | 4.656e-05 1.334
LMSV-C 1 Day 0.353 0.338 9.219e-09 5.306e-05 1.820
ABDL 0.417 0.397 9.680e-09 | 4.283e-05 | 0.811

Major observations for Table 2 are:

e Overall, LMSV models forecast better if B2 or MSE measures are used. The ABDL procedure forecasts
better if MAD or MAPD measures are used, with the ABDL procedure having consistently the lowest
MAPD across all forecasting horizons. This is consistent with the results from Table 1 when the

window size was 15000.

e In view of the results from simulation study reported below, it seems the increased forecastiblity from
n = 15000 to n = 30000 is not because of the increase of n, but probably due to the fact that when
n is larger, the seasonality is stronger and seasonal adjustement has much larger effect on forecasting

performance.

It is also of interest to see whether the seasonal adjustment that we propose does better than a naive
adjustment which estimates the seasonal component by using the sample means for each period. As a
comparison, we therefore also generated forecasts of RV using this naive seasonal adjustment in conjunction
with our LMSV model to forecast RV for the window size of 15000. We present the forecasting results using

this approach Table 3.

On comparing the results in Table 3 with those in Table 1, we see that in almost all the cases, forecasts
using the new seasonal adjusment perform better than the seasonal means adjustment method. Forecasts

using LMSV C-Fore always do better using the new adjustment than when using the seasonal means.
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Table 3: Forecasting Results with Seasonal Means Adjustment for n=15000

Model Horizon | R? logVol | R? SqrtVol MSE MAD MAPD
LMSV-Square 0.479 0425 | 9.912e-07 | 5.903e-04 | 0.539
LMSV-C A-Week 77 981 0.223 | 1.357e-06 | 6.787e-04 | 0.620
LMSV-Square 0.249 0219 | 8.173e-08 | 1.955¢-04 | 0.782
LMSV-C I-Weel 770 159 0176 | 7.221e-08 | 1.892e-04 | 0.860
LMSV-Square 0.078 0.070 | 7.665e-09 | 6.953¢-05 | 1.591
LMSV-C IDay 74 010 0.013 | 5.708-09 | 5.485¢-05 | 1.260

However, there are some measures and horizons where forecasts using LMSV-Square perform better when in
conjunction with the seasonal means adjustment than with the new adjustment. In closing, we also present
superimposed time series plots of actual monthly realized volatility and its forecasts based on the different

models in Fig 8 to Fig 12 at the end of paper.

Since seasonality is an inherent part of high frequency data, it is not possible to separate the forecastiblity
of RV due to the modelling of seasonality from that due to the modelling of long memory. To overcome
this problem, we carried out a simulation study in which no seasonality is present, so that we could directly
compare the forecasting performance of two long memory models, namely, the LMSV model and the ABDL
method without any confounding factors. The simualtion study also permitted us to compare the perfor-
mance of FDQML and enhanced FDQML estimation procedure. We report our results from the simulation

study in the next section.

6 Simulation Study with the LMSV model

The model we used to simulate high frequency returns was given by
r = o exp(he/2)eq (18)

where o > 0 and {h;} is a stationary zero mean Gaussian process assumed to be independent of {e;}. The

{€+} series was assumed to be i.i.d. and distributed as 4/ ”;2751,, where t, has a t-distribution with v degrees

of freedom. The log volatility series {h;} was assumed to follow an ARFIMA (1,d,0) given by

(1-aB)(1 - B)*hy =,
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where 7, is i.i.d. gaussian with mean zero and with variance 0727. The model parameters, chosen to correspond
to typical values estimated from seasonally adjusted S&P 500 high frequency return data, were given by

a=0.35, d = 0.370549, 02 = 0.27, 02 = 4.94847, v = 147.3237 and o = 0.00144019.

To be consistent with the way we dealt with the real data, we only considered two choices of 15000 and
30000 as the estimation window size. A window of 15000 corresponds to approximately 5 years of 30-minute
returns data while a window of 30000 corresponds to 10 years of 30-minute returns data. We considered
three choices of lead times: a lead-time of 12 that corresponds to 1-day realized volatility, a lead-time of 60
that corresponds to 1-week realized volatility, and a lead-time of 240 that corresponds to 1-month(4-week)

realized volatility.

6.1 Comparison of Estimation Procedures

We simulated samples of size 30000 from the LMSV model in (18) and estimated the parameters of the
model using the FDQML and Enhanced FDQML procedures described in Section 2 above. This exercise
was replicated 300 times. Boxplots of the estimates of the four parameters across the 300 replications are
shown in Fig 6 and Fig 7. It is immediately apparent from the plots that Enhanced FDQML provides a vast
improvement in the estimation of the AR(1) parameter a as well as the noise variance 072, in the log volatility

process h;.

The mean squared error (MSE) and the absolute bias for the various estimates are shown in Table 4 and
Table 5 respectively. Both the MSE and the absolute bias for the estimates of « is obviously lower using
the Enhanced FDQML method as also observed in Fig 6(a). The MSE for the estimates of d is lower for
enhanced FDQML even though the absolute bias is higher. That indicates the much lower variance of the
estimate for d using Enhanced FDQML as also observed in Fig 6(b). On the other hand, the MSE for
the estimates of 03 is a little higher for Enhaced FDQML even though the absoulte bias is much lower as

observed in Fig 7(a). For estimates of o2, the MSE of Enhanced FDQML is higher due to larger absolute
bias as can be seen from Table 5 and Fig 7(b).

Table 4: Mean Squared Error of Estimation Results with 300 Simulations

MSE & d pe o2

n €

Enhanced FDQML | 0.0140 | 0.000416 | 0.0077 | 0.0057
FDQML 0.0174 | 0.000557 | 0.0076 | 0.0053
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Table 5: Absolute Bias of Estimation Results with 300 Simulations

Absolute Bias & d O'A% cf?
Enhanced FDQML || 0.001885 | 0.003672 | 0.01356 | 0.0400
FDQML 0.050566 | 0.003150 | 0.03127 | 0.0318

6.2 Forecasting Results with Simulated Data

In our simulation study, the three forecasting procedures that we employed were identical to those described
in Subsection 5.3 above, viz. LMSV-Square, LMSV-C and ABDL. The first two procedures, as detailed in
Subsection 5.3, model the high frequency returns to generate predictions of future high frequency squared
returns, which are then aggregated to obtain predictions of future RV, whereas the ABDL procedure fits an

ARFIMA(1,d,0) to the log RV to generate predictions of future RV.

In the comparison of the different forecasting procedures, we chose to use both the estmation methods,
the FDQML as well as the Enhanced FDQML. Furthermore, we also computed forecasts using the true
parameter values, which allows us to quantify the extent to which parameter estimation degrades the quality

of the forecasts across the various procedures.

The estimation window was was allowed to be 15000 and 30000 and for each value of the estimation window,
the forecasts were compared across three different forecasting horizons: daily realized volatility (12 data
periods), weekly (5-day) realized volatility (60 data periods) and monthly(4-week) realized volatility (240
data periods). The measures of comparison of the forecasts were identical to the five used in Subsection 5.3
above. The results, all based on 300 forecasts and 30000 as estimation window size, are given in Table 6.

The numbers in bold correspond to the best performance for a given measure and a given horizon.
For monthly volatility forecasting, our observations based on Table 6 are:

e As is to be expected, knowing the true parameter values helps the forecast, but not by very much for

the LMSV-Square method.

e The Enhanced FDQML estimation method does not help much in terms of forecasting. Specifically, it
does not make much difference for the LMSV Square-Fore method, and it actually makes the forecast
worse for the LMSV-C forecasting method.

For weekly volatility forecasting, our observations based on Table 6 are:
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e Obviously, knowing the true parameter gives the best forecast performance. Somewhat surprisingly,

the LMSV-Square method performs better than the LMSV-C method.

e Again, we see the insensitivity of the LMSV-Square method to parameter estimation. That is both
good and bad: good because it implies that we should not worry too much about parameter uncertainty,
bad since it could be the case that the forecasting method is not powerful enough to make good use of

more accurate parameter estimates

e Now the Enhanced FDQML estimation method does help the LMSV-C forecasting method. The

reason being that the performance of this method is very sensitive to the estimation of c.

e As the horizon becomes shorter, the forecastibility decreases.

For daily volatility forecasting, our observations based on Table 6 are very similar to those at the longer

horizons.

Our observations for the ABDL method based on Table 6 are:

e The forecasting performance of the ABDL method is consistently best at all horizons based on the
MAD measure. It is best at both the weekly and daily horizon based on all measures except the
MSE. However, at the monthly horizon, ABDL gets worse except when using the MAD measure. One
possible explanation for this is that accurate modelling of the long memory is not that important when
forecasting at the ”short” daily and weekly horizons but becomes more crucial at the longer monthly

horizons.

The forecasting results with 15000 as estimation window size are summarized in Table 7. The bold numbers

correspond to the best performance for a given measure at a given horizon.

For monthly volatility forecasting, the use of the true parameter values generally yields the best forecasting
performance. The advantage of using the Enhanced FDQML estimation method is at best only marginal.
Specifically, it does not make much difference for the LMSV Square-Fore method, and it actually makes the
forecast worse for the LMSV C-Fore forecasting method. Similar observations hold for the weekly and daily

horizon.

Noticebly, larger estimation window size (30000 versus 150000) tends to have better forecasting performance
only for short horizons (1 day). There is no significant difference in the forecasting performance for 4-week

or 1-week horizon.
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The ABDL method does fairly well at the daily and weekly horizon, having the best perfomance for almost
all few measures. At the daily horizon, the ABDL method is beaten only by the infeasible LMSV forecasts
which use the true parameter values, but beats all the feasible LMSV forecasts. At the monthly horizon, the
ABDL method is outperformed by the LMSV forecasts using the R? measures and the MAD. Once again,
the superior behaviour of ABDL at the daily/weekly horizon is probably attributable to its ability to capture

the long memory fairly well when forecasting over a short horizon.

7 Conclusion and Future Directions for Research

Predicting RV based on a simple ARFIMA(1,d,0) model applied to the log realized volatility series is a
very good competitor to the method which predicts RV using a long memory stochastic volatility model
applied to high frequency return data while accounting for the strong slowly varying intra-day seasonality
in volatility. It is worth noting that the Component GARCH model, as an approximation of a long memory
model, gives a surprisingly good performance even though still inferior in most cases to the LMSV model.
The simple GARCH(1,1) gets outperformed by all the other models, which is not surprising, considering
that it is not capable of mimicking long memory in a reasonable way. We also feel that our study raises some
questions that are worth pursuing for future research. For example, in our study, we compared the different
forecasting procedures using five different measures. However, it is currently unclear which of these measures
are better at comparing competitive forecasting procedures in the context of RV. Research which attempts
to resolve this issue would be helpful. Also, the data set which we used had 12 observations per day, which
were used in computing daily RV. In studies of exchange rates, (see, for example, ABDL), the RV is based
on 48 observations per day. It would be interesting to compare the ABDL approach to the LMSV model fit
to seasonally adjusted data for such data sets, where the level of aggregation is increased. Furthermore, it
would also be interesting to see what effect seasonal adjustments involving dummy variables to account for

announcements may have on the forecasts.
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Table 6: Forecasting results for Data Simulated from LMSV with n=30000

Estimate(Forecast) Methods Horizon | R? logVol | R? SqrtVol MSE MAD MAPD
True (LMSV-Square) 0.494 0.493 9.797e-08 | 2.286e-04 | 0.361

True (LMSV-C) 0.524 0.549 1.941e-07 2.714e-04 0.303

FDQML (LMSV-Square) 0.494 0.493 9.799¢-08 | 2.283e-04 | 0.360
FDQML (LMSV-C) 4 Weeks 0.451 0.443 1.763e-07 2.623e-04 0.317
Enhanced FDQML (LMSV-Square) 0.494 0.493 9.797e-08 | 2.286e-04 0.361
Enhanced FDQML (LMSV-C) 0.366 0.373 1.908e-07 2.744e-04 0.353
ABDL 0.508 0.493 1.480e-07 2.561e-04 | 0.298

True (LMSV-Square) 0.344 0.330 1.036e-08 | 7.107e-05 | 0.519

True (LMSV-C) 0.337 0320 | 1.167e08 | 6.884e05 | 0.396

FDQML (LMSV-Square) 0.345 0.330 1.037e-08 7.106e-05 0.518
FDQML (LMSV-C) 1 Week 0.278 0.272 1.153e-08 7.183e-05 0.454
Enhanced FDQML (LMSV-Square) 0.344 0.329 1.039e-08 7.119e-05 0.519
Enhanced FDQML (LMSV-C) 0.291 0.289 1.138e-08 7.182e-05 0.475
ABDL 0.373 0.361 1.129¢-08 | 6.822e-05 | 0.382

True (LMSV-Square) 0.317 0.286 9.365e-10 1.950e-05 0.898

True (LMSV-C) 0.285 0.265 1.036e-09 1.847e-05 0.682

FDQML (LMSV-Square) 0.319 0.288 9.288e-10 | 1.942e-05 0.898
FDQML (LMSV-C) 1 Day 0.210 0.185 1.095e-09 1.956e-05 0.786
Enhanced FDQML (LMSV-Square) 0.317 0.286 9.315e-10 1.943e-05 0.901
Enhanced FDQML (LMSV-C) 0.239 0.213 1.051e-09 1.958e-05 0.794
ABDL 0.330 0.295 9.793e-10 | 1.802e-05 | 0.642
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Table 7: Forecasting results for Data Simulated from LMSV with n=15000

Estimate(Forecast) Methods Horizon | R? logVol | R? SqrtVol MSE MAD MAPD
True (LMSV-Square) 0.503 0.478 1.447e-07 | 2.454e-04 | 0.358

True (LMSV-C) 0.418 0.397 1.515e-07 2.621e-04 0.301

FDQML (LMSV-Square) 0.496 0.471 1.459e-07 2.469e-04 0.360
FDQML (LMSV-C) 4 Weeks 0.376 0.363 1.444e-07 2.683e-04 0.347
Enhanced FDQML (LMSV-Square) 0.497 0.471 1.459e-07 2.468e-04 0.361
Enhanced FDQML (LMSV-C) 0.383 0.358 1.802e-07 2.786e-04 0.373
ABDL 0.474 0.450 1.293e-07 | 2.514e-04 0.297

True (LMSV-Square) 0.358 0.329 1.346e-08 7.803e-05 0.499

True (LMSV-C) 0.330 0.298 1.654e-08 7.973e-05 0.391

FDQML (LMSV-Square) 0.360 0.331 1.342e-08 | 7.778e-05 0.498
FDQML (LMSV-C) 1 Week 0.257 0.221 1.660e-08 8.266e-05 0.473
Enhanced FDQML (LMSV-Square) 0.358 0.330 1.342e-08 | 7.791e-05 0.501
Enhanced FDQML (LMSV-C) 0.239 0.213 1.693e-08 8.718e-05 0.520
ABDL 0.377 0.346 1.567e-08 | 7.695e-05 | 0.374

True (LMSV-Square) 0.261 0.245 | 1.912e-09 | 2.077e-05 | 0.896

True (LMSV-C) 0.238 0.208 2.094e-09 | 1.977¢-05 | 0.660

FDQML (LMSV-Square) 0.258 0.242 1.917e:09 | 2.080e-05 | 0.899
FDQML (LMSV-C) 1 Day 0.205 0.191 1.996e-09 | 2.070e-05 | 0.796
Enhanced FDQML (LMSV-Square) 0.259 0.244 1.913e-09 2.079e-05 0.902
Enhanced FDQML (LMSV-C) 0.195 0.174 2.030e-09 2.171e-05 0.857
ABDL 0.259 0.255 1.960e-09 | 1.949e-05 | 0.661
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Figure 8: LMSV-Square Method Forecasting Results
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Figure 9: LMSV-C Method Forecasting Results
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Figure 10: LMSV-C Method Forecasting Results (C = 1.4)
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Figure 11: ABDL Forecasting Results
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Figure 12: Component ARCH(1) Forecasting Results
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Figure 13: GARCH(1,1) Forecasting Results
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