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Limit Distribution of Convex-Hull Estimators of Boundaries

S.-O. Jeong and B.U. Park

Abstract

Given n independent and identically distributed observations in a set G = {(x, y) ∈ [0, 1]p×

IR : 0 ≤ y ≤ g(x)} with an unknown function g, called a boundary or frontier, it is

desired to estimate g from the observations. The problem has several important applications

including classification and cluster analysis, and is closely related to edge estimation in image

reconstruction. It is particularly important in econometrics. The convex-hull estimator of

a boundary or frontier is very popular in econometrics, where it is a cornerstone of a

method known as ‘data envelope analysis’ or DEA. In this paper we give a large sample

approximation of the distribution of the convex-hull estimator in the general case where

p ≥ 1. We discuss ways of using the large sample approximation to correct the bias of

the convex-hull and the DEA estimators and to construct confidence intervals for the true

function.

Key words and phrases. Convex-hull, free disposal hull, frontier function, data envelope

analysis, productivity analysis, rate of convergence.
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1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random variables distributed in a set G ⊂ IRp+1 where

G = {(x, y) ∈ [0, 1]p × IR : 0 ≤ y ≤ g(x)} (1.1)

for some function g ≥ 0 defined on [0, 1]p. The function g is called boundary. This pa-

per addresses the problem of estimating the boundary g based on the random sample

(X1, Y1), . . . , (Xn, Yn). See Korostelev and Tsybakov (1993b) for several important appli-

cations of this problem.

Consider the class, denoted by Gconv, of all sets G under boundaries g which are convex

on [0, 1]p. Here and below, by convexity we mean ‘upward’ convexity, i.e. we say a function g

is convex on a convex set A if g (λx1 + (1 − λ)x2) ≥ λg(x1)+(1−λ)g(x2) for any x1, x2 ∈ A

and 0 ≤ λ ≤ 1. A natural estimator of G in Gconv is the convex-hull of (X1, Y1), . . . , (Xn, Yn)

and [0, 1]p ×{0}, i.e. the smallest convex set containing (X1, Y1), . . . , (Xn, Yn) and [0, 1]p ×

{0}. In fact, it may be shown that it is the maximum likelihood estimator in the case

where (X i, Yi)’s have the uniform density on G. The convex-hull estimator ĝconv of g is

then defined to be the ‘roof’ of the convex-hull. It is the ‘lowest’ convex function on [0, 1]p

that lies above all the observations.

Estimation of the boundary or frontier g is particularly important in econometrics where

it is used to evaluate the performance of an enterprise in terms of technical efficiency. In

this context, Xi describes the input parameter vector of the i-th enterprise, Yi corresponds

to its scalar productivity, and G is the production set of technically feasible pairs of input

vector x and productivity y. The technical efficiency is defined as the relative distance from

the observed productivity to the boundary. Convexity of the boundary is often assumed in

econometrics where it is termed “decreasing returns to scale”. Furthermore, the boundary

is usually monotone nondecreasing, which is due to free disposability of most production

sets. The production set G is said to be free disposable if (x, y) ∈ G implies (x′, y′) ∈ G

for any x′ > x and y′ < y. Throughout this paper, inequalities between two vectors are

to be understood componentwise. The data envelope analysis or DEA approach based

on Farrell’s (1957) idea is a natural nonparametric way of estimating a convex and free

disposable production set. The DEA estimator of G is defined to be the smallest free

disposable set containing the convex-hull estimator described above. The corresponding

estimator of g, which we denote ĝdea, is then its upper boundary. The latter is the ‘lowest’
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monotone nondecreasing convex function on [0, 1]p that lies above all the observations.

The DEA estimator of G is also the maximum likelihood estimator, now in the class Gmc,

provided that (Xi, Yi)’s have the uniform density on G, where Gmc is the class of all sets

G under boundaries which are monotone nondecreasing and convex on [0, 1]p. The DEA

estimator has been extensively used in the economics and business literature since Charnes,

Cooper and Rhodes (1978) popularized it in terms of linear programming techniques.

The convex-hull and the DEA estimator of G are known to achieve the minimax optimal

rate of convergence n−2/(p+2) with respect to the metric d(G1, G2) = mes(G1�G2) in the

corresponding classes Gconv and Gmc, respectively. Here, mes(G1�G2) is the Lebesgue

measure of G1�G2, the symmetric difference between G1 and G2, see Korostelev, Simar

and Tsybakov (1995b). Also, it was shown by Kneip, Park and Simar (1998) that ĝdea(x),

thus ĝconv(x) too, converges to g(x) for a given point x ∈ (0, 1)p at the rate n−2/(p+2).

However, we are not aware of any earlier work for the limit distribution of ĝconv or ĝdea

except Gijbels, Mammen, Park and Simar (1999) which treated only the case where p = 1.

The main purpose of this paper is to provide a large sample approximation of the

distribution of ĝconv in the general case where p ≥ 1. It will be proved in Section 2 that

for each fixed x the DEA estimator ĝdea(x) equals ĝconv(x) with probability tending to one

under the condition that g is strictly increasing in a neighborhood of x. Thus, under that

condition ĝdea(x) has the same limit distribution as ĝconv(x). The convex-hull and DEA

estimators are biased downward. One may use the large sample approximation derived in

this paper to correct the bias of these estimators and to construct confidence intervals for

the true function. This will be treated in this paper, too.

The present paper extends the earlier results of Gijbels et al. (1999) to the case of

higher dimensional data. This generalization is not straightforward, but is much more

involved than the two-dimensional case (p = 1) due to complicated configurations of the

convex-hull estimator in high dimension. We tackle this problem by considering a canonical

transformation of the coordinate system. The techniques used in the proof of the main

theorem may be applied to various problems in boundary or frontier estimation.

The problem we discuss here is closely related to density support estimation. The latter

was first considered by Geffroy (1964) and Rényi and Sulanke (1963, 1964). Geffroy (1964)

studied asymptotic properties of a piecewise-constant support estimator, while Rényi and

Sulanke (1963, 1964) considered the case of convex support G and proposed the convex-hull
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of sample points as an estimator of G. Ripley and Rasson (1977) considered a blown-up

version of the convex-hull to correct the downward bias. All these four papers treated the

two-dimensional case only. Moore (1984) studied Bayesian estimation of a convex set. For

other recent related works, see for example Korostelev and Tsybakov (1993a), Korostelev,

Simar and Tsybakov (1995a), Mammen and Tsybakov (1995), Härdle, Park and Tsybakov

(1995), Hall, Park and Stern (1998), and Hall and Park (2002).

Next section contains the main results. Formal definitions of the convex-hull and the

DEA estimators are given in Subsection 2.1. Also, a proof is provided for the fact that

ĝdea(x) is asymptotically equivalent to ĝconv(x) when g is strictly increasing in a neighbor-

hood of x. The main results for the large sample approximations of the sampling distribu-

tions of the convex-hull and the DEA estimators are presented in Subsection 2.2. In Section

3, a practical guide for application of the proposed large sample approximation is provided,

and some numerical results supporting our findings are illustrated.

2 Main results

2.1. Definitions and basic properties. Here, we introduce formal definitions of the

convex-hull and the DEA estimators together with some of their basic properties. Let

X = {(X i, Yi) : i = 1, . . . , n} be a random sample from a density f on a set G of the form

(1.1) with a unknown boundary g. Throughout this paper, we assume

Assumption (A1). f(x, y) = 0 for y > g(x), and g is convex on [0, 1]p. �

Write conv(X ) for the convex-hull of the random sample X , i.e.

conv(X ) =

{(
n∑

i=1

ξiX i,
n∑

i=1

ξiYi

)
:

n∑
i=1

ξi = 1 and ξi ≥ 0 for i = 1, . . . , n

}
.

The convex-hull estimator of G is defined to be the smallest convex set containing conv(X )

and [0, 1]p × {0}. Thus,

Ĝconv = {(λ1x1 + λ2x2, λ1y1) : (x1, y1) ∈ conv(X ), x2 ∈ [0, 1]p ,

λ1 + λ2 = 1, λ1, λ2 ≥ 0} .

The convex-hull estimator of the boundary g is then defined by

ĝconv(x) = sup {y ≥ 0 : (x, y) ∈ Ĝconv}, (2.1)
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which is the ‘lowest’ convex function on [0, 1]p that lies above all the observations in X .

The DEA estimator of G is the free disposal hull of the convex-hull estimator Ĝconv

which is given by

Ĝdea =
{
(x, y) : x ≥ u and y ≤ v for some (u, v) ∈ Ĝconv

}
.

The DEA estimator ĝdea(x) of the boundary g is defined as at (2.1) with Ĝdea taking the

role of Ĝconv there. By their definitions, ĝdea ≥ ĝconv everywhere. The following proposition

gives a necessary and sufficient condition for ĝdea(x) = ĝconv(x).

Proposition 1. ĝdea(x) = ĝconv(x) if and only if ĝconv(x′) ≤ ĝconv(x) for any x′ ≤ x.

Proof. First, we show ‘only if’ part. Let Ĝdea(x) = {y : (x, y) ∈ Ĝdea}, and define

Ĝconv(x), likewise. Then, ĝdea(x) = ĝconv(x) implies Ĝdea(x) = Ĝconv(x). Thus,

Ĝconv(x′) ⊂ Ĝdea(x′) ⊂ Ĝdea(x) = Ĝconv(x).

The second inclusion follows from free disposability of Ĝdea. Next, we show ‘if’ part. It

suffices to show that Ĝdea(x) ⊂ Ĝconv(x) under the condition. Suppose y ∈ Ĝdea(x). Then,

by the definition of Ĝdea, there exists a (x′, y′) such that y′ ∈ Ĝconv(x′), x′ ≤ x and y′ ≥ y.

By the condition, Ĝconv(x′) ⊂ Ĝconv(x). Thus,

y′ ∈ Ĝconv(x′) ⊂ Ĝconv(x), y′ ≥ y,

which implies y ∈ Ĝconv(x). This completes the proof of the proposition. �

The next proposition enables us to focus on the convex-hull estimator only. It tells us

that the ĝdea(x) has the same limit distribution as the convex-hull estimator ĝconv(x) when

g is strictly increasing in a neighborhood of x. For the proposition, we need in addition

Assumption (A2). The density function f is bounded away from zero and continuous

in a neighborhood, below the boundary, of (x, g(x)). �

Proposition 2. Assume the conditions (A1) and (A2). If g is strictly increasing in

a neighborhood of x, then P {ĝdea(x) = ĝconv(x)} −→ 1 as n goes to infinity.

Proof. Let r and δ be positive numbers. For j = 1, . . . , p, define

cj = (−r, . . . ,−r, δ,−r, . . . ,−r)T
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where δ appears at the j-th position. Let Bj (1 ≤ j ≤ p) be p-dimensional balls with

radius r around x + cj. For a given δ, one may find r small enough such that every point

u in Bj ’s satisfies 1T (u − x) ≥ 0, where 1 is the p-vector with all entries being 1, that is,

1 = (1, 1, . . . , 1)T . Then, by the construction of Bj ’s it follows that, for any combination of

u1, . . . ,up with uj ∈ Bj and x′ ≤ x, there exist λ1, . . . , λp+1 ≥ 0 such that

p+1∑
j=1

λj = 1,
p∑

j=1

λjuj + λp+1x
′ = x. (2.2)

Next, let D = [g(x), g(x) + r] ⊂ IR. Then, the condition (A2) ensures that there exist r

and δ small enough such that the density f is bounded away from zero on Bj × D’s. Also,

from the condition that g is strictly increasing in a neighborhood of x we obtain Bj×D ⊂ G

for all j if r is taken sufficiently small. Let En denote the event that, for each j = 1, . . . , p,

there exists at least one sample point (Xj , Yj) ∈ Bj × D. Then,

P (En) ≥ 1 −
p∑

j=1

{
1 −

∫
Bj×D

f

}n

−→ 1

as n tends to infinity.

We prove that the event En implies ĝdea(x) = ĝconv(x). By Proposition 1, the latter

follows if we show ĝconv(x′) ≤ ĝconv(x) for any x′ ≤ x. Let (Xj, Yj) ∈ Bj × D for j =

1, . . . , p. Note that

Yj ≥ g(x) ≥ g(x′) ≥ ĝconv(x′)

for any x′ ≤ x, where the second inequality follows from the convexity condition in (A1)

and the condition that g is strictly increasing in a neighborhood of x. Thus, from (2.2)

there exist λ1, . . . , λp+1 ≥ 0 with
∑p+1

j=1 λj = 1 such that

p∑
j=1

λjXj + λp+1x
′ = x

p∑
j=1

λjYj + λp+1 ĝconv(x′) ≥ ĝconv(x′).

Since Ĝconv is a convex set containing (x′, ĝconv(x′)) and (Xj , Yj) for j = 1, . . . , p, we obtain⎛
⎝x,

p∑
j=1

λjYj + λp+1 ĝconv(x′)

⎞
⎠ ∈ Ĝconv.

Thus, ĝconv(x) ≥ ∑p
j=1 λjYj + λp+1 ĝconv(x′) ≥ ĝconv(x′), which completes the proof of

Proposition 2. �
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2.2. Large sample approximation. We shall derive a large approximation to the distri-

bution of ĝconv(x0) for a given point x0 ∈ (0, 1)p. For this, we assume in addition to (A1)

and (A2)

Assumption (A3). The boundary g is twice continuously differentiable and strictly

convex in a neighborhood of x0. �

We point out that consistency in terms of L1 distance over [0, 1]p rather than ĝconv(x0)−

g(x0) for a fixed point x0 does not need the differentiability condition, see for example

Korostelev, Simar and Tsybakov (1995b).

To describe the large sample approximation, define f0 = f(x0, g(x0)). Write ∇2g(x0)

for the matrix which has as its entries the second-order partial derivatives of g at x0, i.e.(
∇2g(x)

)
ij = (∂2/∂xi∂xj)g(x). If g is strictly convex in a neighborhood of x0, then the

matrix ∇2g(x0) is negative definite, so that −∇2g(x0)/2 is positive definite. Let Λ denote

the diagonal matrix whose diagonal entries are the eigenvalues of −∇2g(x0)/2, and write

P for the orthogonal matrix formed by its associated orthonormal eigenvectors. Thus,

−∇2g(x0)/2 = PΛP T .

Let x0 be the fixed point at which we want to estimate g. We begin by making a

canonical transformation of the coordinate system. Consider a linear transformation that

takes (Xi, Yi) to

X ′
i = n1/(p+2)Λ1/2P T (Xi − x0)

Y ′
i = n2/(p+2)

{
Yi − g(x0) − bT (X i − x0)

} (2.3)

where b = ∇g(x0), the gradient vector of g at x0. Write X ′ = {(X ′
i, Y

′
i ) : i = 1, . . . , n}.

Let Z̃conv(·) be the roof of the convex-hull conv(X ′), i.e.

Z̃conv(x′) = sup {y′ : (x′, y′) ∈ conv(X ′)}. (2.4)

Lemma 1. With probability tending to one as n goes to infinity,

Z̃conv(0) = n2/(p+2) {ĝconv(x0) − g(x0)} .

Proof. First, we note that, with probability tending to one, ĝconv(x) equals

g̃conv(x) = sup {y : (x, y) ∈ conv(X )}.

Now, we observe from (2.3) that
∑n

i=1 ξiX
′
i = 0 and y′ =

∑n
i=1 ξiY

′
i if and only if x0 =
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∑n
i=1 ξiXi and y′ = n2/(p+2) {∑n

i=1 ξiYi − g(x0)}. This implies

{
y′ : (0, y′) ∈ conv(X ′)

}
=

{
y′ :

(
x0, n−2/(p+2)y′ + g(x0)

)
∈ conv(X )

}
,

so that g̃conv(x0) = n−2/(p+2)Z̃conv(0) + g(x0), i.e. Z̃conv(0) = n2/(p+2) {g̃conv(x0) − g(x0)}.

�

In the new coordinate system obtained from the transformation at (2.3), which we

denote by (x′, y′), the set G has as its boundary the surface with the equation

y′ = gn(x′) (2.5)

where gn(x′) = −x′T x′ + o(1) uniformly on any compact set of x′. Furthermore, the

density, denoted by fn, in the new coordinate system is a bounded, continuous function in

the half-space below the new boundary. For each sequence εn ↓ 0, it satisfies

sup′
∣∣∣ n‖Λ‖1/2fn(x′, y′) − f0

∣∣∣ −→ 0 (2.6)

where sup′ denotes the supremum over pairs (x′, y′) such that

|x′| ≤ εnn1/(p+2) and − εnn2/(p+2) ≤ y′ ≤ −x′T x′.

Define κ = (‖Λ‖/f2
0 )1/(p+2). Consider a new random sample, denoted by X ∗, from the

uniform distribution on

Bκ = {(x′, y′) : x′ ∈ Iκ,−x′T x′ − κn2/(p+2) ≤ y′ ≤ −x′T x′}, (2.7)

where Iκ = [−(
√

κ/2)n1/(p+2), (
√

κ/2)n1/(p+2)]p. Note that the uniform density on Bκ is

given by n−1κ−(p+2)/2 which equals n−1‖Λ‖−1/2f0, and that all points in X ∗ lie below the

perfectly quadratic surface with the equation y′ = −x′T x′. Let Zconv(·) be the version of

Z̃conv(·) as defined at (2.4), now constructed from the new sample X ∗.

Lemma 2. Z̃conv(0) has the same limit distribution as Zconv(0).

Proof. Given c > 0, let Ec denote the event that Z̃conv(0) is completely determined

by those points of X ′ that fall within the region Rc = [−c, c]p+1. Then, it may be shown

that

lim
c→∞

lim inf
n→∞

P (Ec) = 1. (2.8)

The property (2.8) continues to hold for the event E∗
c defined now for the new sample X ∗

and Zconv(0). We prove (2.8) before we go on further.
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Let gn,0 denote the maximum of the function gn on the boundary of the p-dimensional

rectangle [−c, c]p. Note that gn,0 → g0 < 0 as n→ ∞ for any c > 0. Consider the sets in

IRp+1 which take the form A1 × · · · × Ap × [max{−c, gn,0}, c] where Aj are either [−c, 0] or

[0, c]. There are a total of q = 2p sets of this form. Call them Rc,i for i = 1, . . . , q. Let Ec,i

denote the event that there exists at least one sample point in Rc,i. Clearly, ∩q
i=1Ec,i ⊂ Ec

since the convex-hull estimator is determined by p + 1 sample points. Thus, by (2.6)

P (Ec) ≥ P (∩q
i=1Ec,i)

≥
q∑

i=1

P (Ec,i) − (q − 1)

≥
q∑

i=1

[
1 −

{
1 − P ((X ′

1, Y
′
1) ∈ Rc,i)

}n]
− (q − 1)

≥
q∑

i=1

[
1 −

{
1 − n−1ri(c)

}n]
− (q − 1),

where ri(c)→ ∞ as c→ ∞ for each i = 1, . . . , q. Thus,

lim
c→∞

lim inf
n→∞

P (Ec) ≥ lim
c→∞

q∑
i=1

(
1 − e−ri(c)

)
− (q − 1) = 1.

Let Žconv be the version of Z̃conv constructed from the points in S ∩X ′ where S denotes

the half-space below the perfectly quadratic surface with the equation y′ = −x′T x′. Let

Sn denote the half-space below the surface with the equation y′ = gn(x′). Then, by (2.5)

(S�Sn)∩Rc tends to the empty set as n goes to infinity, where A�B denotes the symmetric

difference of the sets A and B. Thus, by (2.6)

P [(X ′
1, Y

′
1) ∈ (S�Sn) ∩Rc] =

∫
(S�Sn)∩Rc

fn(x′, y′)dx′dy′ = o(n−1).

This implies

P [Z̃conv(0) = Žconv(0) | Ec]

≥ 1 − P [there exists a sample point in (S�Sn) ∩Rc | Ec]

→ 1

as n→ ∞ for any c > 0.

Let pc = P [(X ′
1, Y

′
1) ∈ S ∩ Rc]. Let Nc denote the number of points in X ′ ∩ S ∩ Rc.

The random variable Nc has a binomial distribution with n number of trials with success

probability pc. Since npc = O(1) by (2.6), it follows that for any given c > 0

lim
M→∞

lim inf
n→∞

P (Nc ≤ M) = 1. (2.9)
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We note that conditional on the event Nc = m, the m points of X ′ in S∩Rc are independent

and identically distributed with the density

fn(·, ·)IS∩Rc(·, ·)∫
S∩Rc

fn(x′, y′)dx′dy′
=

IS∩Rc(·, ·)
µ(S ∩ Rc)

{1 + o(1)}, (2.10)

where o(1) is uniform on S ∩Rc and µ denotes the Lebesgue measure on IRp+1. Now, define

p∗c and N∗
c in the same way as pc and Nc but with the random sample X ∗. The properties

(2.9) and (2.10) continue to hold for N∗
c and X ∗. By (2.10), the conditional distribution

of Žconv(0) given the event Ec ∩ {Nc = m} is asymptotically the same as that of Zconv(0)

given the event E∗
c ∩ {N∗

c = m} for each finite m. This implies that for any finite M > 0

the conditional distribution of Žconv(0) given the event Ec ∩ {Nc ≤ M} is asymptotically

the same as that of Zconv(0) given the event E∗
c ∩ {N∗

c ≤ M}. This together with (2.8) and

(2.9) completes the proof of Lemma 2. �

From Lemma 1 and Lemma 2 we have the following theorem.

Theorem 1. Let x be a fixed point in (0, 1)p. Suppose that the assumptions (A1) ∼

(A3) hold. Then, n2/(p+2) (ĝconv(x0) − g(x0)) and Zconv(0) have the same limit distribution.

The following corollary is a direct consequence of Theorem 1 since ĝdea(x0) = ĝconv(x0))

with probability tending to one, as is demonstrated in Proposition 2.

Corollary 1. Suppose that g is strictly increasing in a neighborhood of x0, and

that the assumptions for Theorem 1 are satisfied. Then, n2/(p+2) (ĝdea(x0) − g(x0)) and

Zconv(0) have the same limit distribution.

The only unknowns in the asymptotic approximation n2/(p+2) (ĝconv(x0) − g(x0)) ≈

Zconv(0) are f0 and ‖Λ‖. Once these have been determined, Monte Carlo methods may

be used to simulate the distribution of Zconv(0). We shall discuss estimation of f0 and ‖Λ‖

in the next section.

Remark. The results in Theorem 1 and Corollary 1 remain valid when the data

come from a Poisson process with intensity nf(·) where f is supported on G. One may

verify this by going through the arguments in the proofs for the i.i.d. case and making use

of the properties of Poisson processes. For treatments of Poisson process data in boundary

estimation, see Hall, Park and Stern (1998) and Hall and Park (2002).
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3 Applications in Practice

3.1. Estimation of parameters. For the estimate of f0, the density at a point (x0, g(x0)),

we propose an analogue of the estimate proposed by Gijbels et al. (1999). We consider the

hypercube

C(x0, δ) = (x01 − δ/2, x01 + δ/2) × (x02 − δ/2, x02 + δ/2) × · · · × (x0p − δ/2, x0p + δ/2)

for some δ > 0, where x0j denotes by the j-th component of p-vector x0, j = 1, . . . , p. Let

D(x0, δ) = {(u, y) |u ∈ C(x0, δ), ĝconv(x0) − δ ≤ y ≤ ĝconv(u)}.

A simple estimator of f0 is given by

f̂0 =
∑n

i=1 I[(X i, Yi) ∈ D(x0, δ)]
nµ(D(x0, δ))

,

where µ(·) denotes the Lebesgue measure in IRp+1.

Next, we consider estimation of the Hessian matrix of the frontier function g to get an

estimate of ‖Λ‖. Take a positive number h. Define

Xb(x0, h) = {(X i, ĝconv(X i)) |X i ∈ C(x0, h)} ∪ {(x0, ĝconv(x0)}.

It is a collection of ‘boundary points’ in a neighborhood of x0. Fit a second order polynomial

regression surface with the points in Xb(x0, h) by the ordinary least squares method to get

ǧ(u, h) = ǎ + b̌T u − uT B̌u.

The p×p matrix B̌ captures the curvature of the convex-hull near the point (x0, ĝconv(x0)).

Note that positive definiteness of B̌ is insured unless all the points in Xb(x0, h) lie on a

hyperplane. We propose to use

ˆ‖Λ‖ = ‖B̌‖

as an estimator of ‖Λ‖. One may verify that both f̂0 and ˆ‖Λ‖ are consistent estimators

of f0 and ‖Λ‖, respectively, if δ and h are chosen so that both nδp+1 and nhp+2 tend to

infinity as n goes to infinity.

3.2. Bias correction and confidence interval. The convex-hull estimator is biased down-

ward. We may use the distribution of Zconv(0) to quantify this bias, and may improve the

convex-hull estimator by correcting the bias.
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Let {Zb
conv(0)}B

b=1 be the set of B values of Zconv(0), each of which is computed from

a random sample from the uniform distribution on Bκ̂, where κ̂ = ( ˆ‖Λ‖/f̂2
0 )1/(p+2) and

Bκ is defined at (2.7). Since the empirical distribution of {Zb
conv(0)}B

b=1 approximates

the distribution of Zconv(0), we may estimate the asymptotic mean, denoted by ξ, of

n2/(p+2){ĝconv(x0) − g(x0)} by

ξ̂n = B−1
B∑

b=1

Zb
conv(0).

Thus, a bias corrected estimator of g(x0) is given by

ĝconv(x0) − n−2/(p+2)ξ̂n.

The empirical distribution of {Zb
conv(0)}B

b=1 also enables us to construct a confidence

interval for g(x0). Let q̂α be the α-th quantile of the empirical distribution of {Zb
conv(0)}B

b=1.

Then 100(1 − α)% confidence interval for g(x0) is given by
[
ĝconv(x0) − n−2/(p+2)q̂1−α/2, ĝconv(x0) − n−2/(p+2)q̂α/2

]
.

The confidence interval lies above the value ĝconv(x0) since q̂α/2 < q̂1−α/2 < 0. One may

construct confidence intervals using the bias corrected estimator. However, it is easy to

see that the resulting confidence intervals are the same as those based on the un-corrected

ĝconv.

One may use bootstrap techniques as alternatives for estimating the bias of the convex-

hull estimator. However, it is well known that the ordinary bootstrap approximation in fron-

tier estimation is inconsistent, see Bickel and Freedman (1981), Simar and Wilson (2000).

Recently the subsampling bootstrap has been proposed as a consistent alternative, which

gives accurate estimates of confidence intervals in particular, see Politis and Romano (1994),

Kneip, Simar and Wilson (2003), Jeong and Simar (2004). But these are sensitive to the

choice of the subsample size, and the automatic choice of the subsample size is still an open

problem. Another promising resampling technique is the translation bootstrap of Hall and

Park (2002), but it is also sensitive to the choice of the ‘translating amount’ and the value

of the correction factor (the absolute constant κ in their notation) is not available in the

case of the convex-hull estimator.

3.3. Simulation study. We investigate the validity of our large sample approximation

given in Theorem 1 through a simulation study. Also, we address finite sample performance

of the bias corrected estimator and the interval estimator proposed in Subsection 3.2.
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Figure 1: The finite sample distributions of convex-hull estimators and their large sample
approximations. The solid curves are the empirical distribution of n2/(p+2){ĝconv(0.5, 0.5)−
g(0.5, 0.5)} based on M = 1000 samples of size (a) n = 400 and (b) n = 1000, and the
dotted curves are the simulated distributions of Zconv(0, 0).

The simulation setup is as follows. We take p = 2 and

• g(x1, x2) = x0.3
1 x0.2

2 , where (x1, x2) ∈ [0, 1]2.

• (X1,X2) follows the uniform distribution on [0, 1]2, and Yi = g(X1,X2)e−Vi where

Vi ∼ Exp(3), where Exp(θ) denotes the exponential distribution with mean 1/θ.

We simulated M = 1000 samples of size n = 400 and 1000. For each sample we calcu-

lated n2/(p+2){ĝconv(0.5, 0.5) − g(0.5, 0.5)}. The solid curves in Figure 1 are the empirical

distributions of the resulting M = 1000 values. The dotted curves are the distributions of

{Zb
conv(0, 0)}B

b=1 for B = 5000, where the true value of κ was used to generate the uniform

random numbers X ∗. We observe that the actual distributions of n2/(p+2){ĝconv(0.5, 0.5) −

g(0.5, 0.5)} are well approximated by those of Zconv(0, 0) and they are getting closer as n

increases. This supports our large sample approximation given in Theorem 1.
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Next, for investigating the finite sample performance of the bias correction and the

interval estimation proposed in Subsection 3.2, we generated M = 500 samples of size

n = 400 and n = 1000. Based on these Monte Carlo replications, we approximated the biases

and the mean squared errors, at three different locations (0.3, 0.3), (0.5, 0.5) and (0.7, 0.7),

of the convex-hull estimator and its bias corrected version. The results are summarized in

Table 1, where the standard errors of the Monte Carlo biases are also presented in brackets.

The table demonstrates that the proposed approach really works. We also calculated the

coverage probabilities of the confidence intervals for g(0.5, 0.5) at the nominal level 95%.

The computed coverage probabilities were .918 for n = 400 and .944 for n = 1000. We

obtained similar results for other points of (x1, x2). The smoothing parameters δ and h for

this simulation were predetermined. We used δ and h which minimized the mean squared

errors of f̂0 and ˆ‖Λ‖, respectively. These smoothing parameter values were obtained from

a separate simulation study conducted in advance.

Table 1: Comparison of the convex hull estimator and its bias corrected version. Multiplied
by 102 for the biases and standard errors and by 104 for the MSE.

Convex hull Bias-corrected

n x0 Bias (S.E.) MSE Bias (S.E.) MSE

400 (0.3, 0.3) -1.71329 (0.028) 3.31642 0.77069 (0.032) 1.11126

(0.5, 0.5) -1.28232 (0.023) 1.91194 0.19286 (0.029) 0.46112

(0.7, 0.7) -1.08464 (0.019) 1.35921 0.38666 (0.027) 0.50616

1000 (0.3, 0.3) -1.03389 (0.017) 1.21256 0.35360 (0.019) 0.29658

(0.5, 0.5) -0.76730 (0.014) 0.68202 0.15178 (0.017) 0.16211

(0.7, 0.7) -0.68976 (0.012) 0.54473 0.12836 (0.016) 0.13807
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Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von n zufällig gewählten
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