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Abstract

In this paper I present a procedure to approximate the asymptotic distributions of systems

cointegration tests with a prior adjustment for deterministic terms suggested by Lütkepohl,

Saikkonen & Trenkler (2004), Saikkonen & Lütkepohl (2000a, 2000b, 2000c), and Saikkonen

& Luukkonen (1997). The asymptotic distributions are approximated by the Gamma dis-

tribution and the parameters necessary to fit the Gamma distributions are obtained from

response surfaces which I describe in this paper. The approximation can be easily used to

derive arbitrary p-values or percentiles.
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1 Introduction

In this paper I present a procedure to approximate the asymptotic distributions of systems

cointegration tests with a prior adjustment for deterministic terms suggested by Lütkepohl

et al. (2004), Saikkonen & Lütkepohl (2000a, 2000b, 2000c) and Saikkonen & Luukkonen

(1997). The asymptotic distributions are approximated by the Gamma distribution and the

parameters necessary to fit the Gamma distributions are obtained from response surfaces

which I describe in this paper. The approximation can be easily used to derive arbitrary

p-values or percentiles.

The mentioned cointegration tests differ with respect to the deterministic terms they

allow for. The procedures of Lütkepohl et al. (2004) and Saikkonen & Lütkepohl (2000b)

are the most general ones by taking account of shifts in the level of the time series. The

specific feature in Lütkepohl et al. (2004) is that they allow for a level shift at unknown time.

For both test setups there exist one test version which assumes a linear trend and another

one which excludes it. The test by Saikkonen & Lütkepohl (2000c) is the corresponding

procedure without level shifts. It originally incorporates a linear trend but can be adjusted

in order to rule out a trend explicitly. A similar test with a mean term only is due to

Saikkonen & Luukkonen (1997). Finally, Saikkonen & Lütkepohl (2000a) consider a linear

trend that is orthogonal to the cointegration space. Furthermore, seasonal dummy variables

can be incorporated into all procedures without changing the asymptotic results. The idea of

all tests is to estimate the deterministic terms in a first step and to adjust the original time

series by these estimated terms. Then, a likelihood ratio type test like in Johansen (1988) is

applied to the adjusted data. The resulting asymptotic distributions are nonstandard and

functions of Brownian motions. However, their percentiles can be obtained by simulation.

The most recent and extensive set of percentiles is given in Trenkler (2003).

One important problem related to these tabulated sets is that they are restricted in

terms of the number of percentiles which are covered. Accordingly, it is not possible to

obtain p-values. However, p-values are preferable in certain simulation setups and empirical

applications in order to assess the tests’ outcome easily. The cointegrating rank tests based

on Johansen (1988) are affected by the same problem. Their asymptotic distributions are also

functions of Brownian motions. To compute p-values and percentiles for these asymptotic

distributions MacKinnon, Haug & Michelis (1999) determine 221 percentiles by simulation
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methods. Then, arbitrary p-values and percentiles can be derived by interpolation. However,

the method of MacKinnon et al. (1999) involves the computation of more than 20,000 coef-

ficients per test. A more efficient way is to follow a procedure suggested by Doornik (1998)

and Johansen, Mosconi & Nielsen (2000). The basic idea is to approximate the asymptotic

distributions of the Johansen type tests by Gamma distributions. These approximations

work rather well as shown by Doornik (1998). Since the parameters of the Gamma distri-

bution only depend on the first two moments it suffices to determine approximations of the

mean and variance of the asymptotic test distribution. This can be easily done by using

a response surface. The response surfaces derived in Doornik (1998) and Johansen et al.

(2000) are based on less than 150 estimated coefficients. Having obtain an estimate for the

mean and variance one can fit a Gamma distribution and compute arbitrary p-values or per-

centiles. Furthermore, the use of the response surfaces provides much better approximations

to the asymptotic distributions than the standard simulations on which tables of critical

values are usually based.

In line with the discussion I have computed response surfaces according to Doornik (1998)

and Johansen et al. (2000) for the cointegration tests with a prior adjustment for determin-

istic terms. The approximations to the corresponding asymptotic distributions using the

Gamma distribution are also very good for these tests including the asymptotic distribution

of the test versions by Saikkonen & Lütkepohl (2000b) and Saikkonen & Lütkepohl (2000c)

which consists of Brownian Bridges. It has turned out that the response surfaces following

Doornik (1998) produce slightly better fits than the ones by Johansen et al. (2000).

The paper is organized as follows. The next section describes the model framework,

the test procedures, and the limiting distributions. In Section 3 I explain how to use the

Gamma distribution to approximate the asymptotic distributions. The response surfaces are

presented in Section 4. Section 5 contains a comparison of different approaches to compute

response surfaces and, finally, Section 6 summarizes and concludes.

2 Model Framework and Test Procedures

Let us consider a n-dimensional times series yt = (y1t, . . . , ynt)
′ (t = 1, . . . , T ) which is

generated by

yt = µt + xt, t = 1, 2, . . . , (2.1)
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where µt contains the deterministic terms depending on the tests’ assumptions. The term xt

is an unobservable stochastic error process which is assumed to follow a vector autoregressive

process of order p (VAR(p)). The corresponding vector error correction model (VECM) has

the form

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . , (2.2)

where Π and Γj (j = 1, . . . , p− 1) are (n×n) unknown parameter matrices. The error term

εt is assumed to be a martingal sequence such that E(εt|εs, s < t) = 0, E(εtε
′
t|εs, s < t) = Ω

is a non-stochastic positive definite matrix and the fourth moments are bounded. For the

validity of the limiting distributions it suffices that the initial values xt (t = −p + 1, . . . , 0)

have a fixed distribution which does not depend on the sample size. Furthermore, it is

assumed that xt is at most integrated of order one and cointegrated with a rank r implying

the same properties for yt. Moreover, it follows that the matrix Π can be written as Π = αβ′,

where α and β are (n × r) matrices of full column rank. When determining the number of

cointegration relations one tests for the rank of the matrix Π. I consider the trace and

maximum eigenvalue test versions, i.e. the pairs of hypotheses

H0(r0) : rk(Π) = r0 vs. H1(r0) : rk(Π) > r0. (2.3)

and

H0(r0) : rk(Π) = r0 vs. H1(r0) : rk(Π) = r0 + 1. (2.4)

are tested respectively. Note that the maximum eigenvalue version has not been considered

for all of the tests explicitly. One can derive, however, asymptotic distributions free of

nuisance parameters for the relevant cases as discussed later on.

For the proposal of Saikkonen & Lütkepohl (2000b) we have µt = δdt +µ0 +µ1t allowing

for a linear trend and assuming one level shift only. The shift is modelled by the dummy

variable dt which is one for all t ≥ T1 and zero otherwise where T1 is the break point.

The case of several level shifts can be treated in the same way by defining further shift

dummies. Obviously, the remaining two quantities µ0 and µ1t represent the mean and linear

trend terms. The unknown (n× 1) parameter vectors δ, µ0 and µ1 are estimated by a GLS

procedure. To obtain feasible GLS estimators δ̂, µ̂0, and µ̂1 the model (2.1) is transformed
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accordingly by using first stage estimators from a reduced rank (RR) regression of

∆yt = ν +α(β′yt−1 +φdt−1 +τ(t−1))+

p−1∑
j=1

Γj∆yt−j +

p−1∑
j=0

γj∆dt−j +εt, t = p+1, p+2, . . . ,

(2.5)

with ν = −Πµ0 + (In −
∑p−1

j=1 Γj)µ1, φ = −β′δ, τ = −β′µ1, γj = δ for j = 0, and γj = Γjδ

for j = 1, . . . , p − 1. This VECM model for yt is derived from (2.1) using (2.2) and the

aforementioned definition of µt. For the RR regression the rank r0 specified under H0

is applied since the transformation of (2.1) considers the structure of xt under the null

hypothesis. Having estimated the deterministic terms one can adjust yt and compute x̂t =

yt− δ̂dt− µ̂0− µ̂1t. Then, a Johansen-type test is performed on x̂t. Since x̂t is adjusted, the

test version in Johansen (1988) assuming no deterministic terms is applied. Hence, we have

to solve a generalized eigenvalue problem. Using the resulting eigenvalues λ̂1 ≥ · · · ≥ λ̂n the

trace test statistic for the pair of hypotheses in (2.3) is1

TRδ
tr(r0) = −T

n∑
j=r0+1

log(1− λ̂j) (2.6)

and the maximum eigenvalue statistic regarding (2.4) is

MEδ
tr(r0) = −T log(1− λ̂r0+1). (2.7)

If no linear trend is present one proceeds in the same way by making the necessary

adjustments. In line with Saikkonen & Lütkepohl (2000b), µ1 is set to zero, i.e. µt = δdt+µ0

in (2.1), and the intercept term in (2.5) is restricted to the cointegration relations since

ν = Πµ0 and τ = 0 in this case. The resulting test statistics are denoted by TRδ
mean(r0) and

MEδ
mean(r0).

Lütkepohl et al. (2004) use a similar setup as Saikkonen & Lütkepohl (2000b) but they

make the assumption that the breakpoint is unknown. Lütkepohl et al. (2004) have proposed

estimators to locate the shift date based on an unrestricted VAR model. Given the estimated

break point the tests work as described above. Let us denote the corresponding test statistics

as TRun
tr (r0), MEun

tr (r0), TRun
mean(r0), and MEun

mean(r0).

1Note that the generalized eigenvalue problem in Saikkonen & Lütkepohl (2000b) is formulated in a

different way than in Johansen (1988). Therefore, the obtained eigenvalues and the specific form of the test

statistic differ. However, the two kinds of eigenvalue problems can be transformed into each other by an

appropriate redefinition of the respective eigenvalues. Thus, the test statistics based on the two different

sets of eigenvalues are identical apart from minor numerical differences.
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Table 1. Summary of Test Statistics

Deterministic Terms Test Statistics References

Linear Trend (µ1 arbitrary)

Level Shift (δ arbitrary)

Unknown Shift Date TRun
tr (r0),MEun

tr (r0) Lütkepohl et al. (2004)

Known Shift Date TRδ
tr(r0),MEδ

tr(r0) Saikkonen & Lütkepohl (2000b)

No Level Shift (δ = 0) TRtr(r0),MEtr(r0) Saikkonen & Lütkepohl (2000c)

Linear Trend orthogonal

to cointegration space TRort(r0),MEort(r0) Saikkonen & Lütkepohl (2000a)

(µ1 6= 0, β′µ1 = 0, δ = 0)

Mean Term only

(µ1 = 0, µ0 arbitrary)

Level Shift (δ arbitrary)

Unknown Shift Date TRun
mean(r0),MEun

mean(r0) Lütkepohl et al. (2004)

Known Shift Date TRδ
mean(r0),MEδ

mean(r0) Saikkonen & Lütkepohl (2000b)

No Level Shift (δ = 0) TRmean(r0),MEmean(r0) Saikkonen & Lütkepohl (2000c)

In case of no level shifts one can set up cointegration tests as before by setting all terms

associated with the level shift in (2.1) and (2.5) to zero. These tests are due to Saikkonen &

Lütkepohl (2000c) and the test statistics are abbreviated as TRtr(r0), MEtr(r0), TRmean(r0),

and MEmean(r0). For the situation of a mean term only, Saikkonen & Luukkonen (1997)

have proposed to estimate µ0 by a GLS procedure based on first-stage estimators from a VAR

model for yt imposing no rank restriction. Lütkepohl, Saikkonen & Trenkler (2001), however,

have pointed out that using a GLS procedure as suggested by Saikkonen & Lütkepohl (2000c)

results in better size properties in small samples. Note that the alternative way of estimating

µ0 does not change the asymptotic null distributions of TRmean(r0) and MEmean(r0).

The test version of Saikkonen & Lütkepohl (2000a) is similar to the one in Saikkonen &

Lütkepohl (2000c) with a linear trend but considers the restriction that the linear trend is

orthogonal to the cointegration space. Therefore, the restriction τ = β′µ1 = 0 is imposed

within the RR regression and secondly, the adjustment of the data occurs according to the
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Table 2. Asymptotic Distribution of Test Statistics

Deterministic Terms Test Statistics Distributions

Linear Trend TRun
tr (r0), TRδ

tr(r0), TRtr(r0) tr(Dtr)

(µ1 arbitrary) MEun
tr (r0), MEδ

tr(r0), MEtr(r0) λmax(Dtr)

Linear Trend orthogonal TRort(r0) tr(Dort)

to cointegration space MEort(r0) λmax(Dort)

(µ1 6= 0, β′µ1 = 0)

Mean Term only TRun
mean(r0), TRδ

mean(r0), TRmean(r0) tr(Dmean)

(µ1 = 0, µ0 arbitrary) MEun
mean(r0), MEδ

mean(r0), MEmean(r0) λmax(Dmean)

model

∆yt − µ1 = Π(yt−1 − µ0) +

p−1∑
j=1

Γj(∆yt−j − µ1) + εt, t = p + 1, p + 2, . . . , (2.8)

which is obtained from (2.5) by applying τ = β′µ1 = 0 and δ = 0. Otherwise the test-setup

is the same. The corresponding test statistics are denoted as TRort(r0) and MEort(r0). All

described test versions and test statistics are summarized in Table 1.

We now turn to the asymptotic distributions of the considered test statistics. Let Bp(s) =

(B1(s), . . . , Bp(s))
′ be a p-dimensional standard Brownian motion,

Dtr =

(∫ 1

0

B∗dB
′
∗

)′ (∫ 1

0

B∗B
′
∗ds

)−1 (∫ 1

0

B∗dB
′
∗

)
,

Dort =

(∫ 1

0

B̄
s
dB′

(n−r0)

)′ (∫ 1

0

BsBs′ds

)−1 (∫ 1

0

B̄
s
dB′

(n−r0)

)
,

Dmean =

(∫ 1

0

B(n−r0)dB
′
(n−r0)

)′ (∫ 1

0

B(n−r0)B
′
(n−r0)ds

)−1 (∫ 1

0

B(n−r0)dB
′
(n−r0)

)
,

(2.9)

where B∗(s)= B(n−r0)(s)−sB(n−r0)(1) is an (n−r0)-dimensional Brownian bridge, dB∗(s)=

dB(n−r0)(s)−dsB(n−r0), B̄
s
(s) = Bs(s)−∫ 1

0
Bs(u)du, and Bs(s) = [B(n−r0−1)(s)

′ : s]′. Then,

the test statistics have the limiting distributions given in Table 2 where tr(A) and λmax(A)

denote the trace and the maximum eigenvalue of matrix A respectively.

Obviously, the null distributions depend on n− r0, not on n and r0 separately. They are

independent of the actual values of µ0 and, regarding the test versions allowing for a linear

trend (µ1 arbitrary) and level shifts (δ arbitrary), also independent of µ1 and δ respectively.
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Furthermore, only the treatment of the linear trend term is important for distinguishing

the distributions. In contrast, the inclusion of level shifts with known shift dates or one

level shift at unknown time does not change the asymptotic properties of the tests in case

of a linear trend (µ1 arbitrary) and a mean term only (µ1 = 0, µ0 arbitrary). To be

precise, allowing for level shifts does not affect the asymptotic distributions. Thus, TRun
tr (r0),

TRδ
tr(r0), MEun

tr (r0), and MEδ
tr(r0) have the same limiting distributions as TRtr(r0) and

MEtr(r0) respectively. Interestingly, TRmean(r0) and MEmean(r0) follow the same limiting

distributions as the cointegration test statistics proposed by Johansen (1988) which assume

no deterministic terms (µ0 = µ1 = 0).

Keep in mind that MEun
tr (r0), MEun

mean(r0), MEδ
tr(r0), MEδ

mean(r0), and MEort(r0) have

not been considered in the respective references. Nevertheless, the limiting distributions

of MEδ
tr(r0), and MEδ

mean(r0) can be easily obtained. As pointed out in the Appendix of

Saikkonen & Lütkepohl (2000b) one can reduce the problem of deriving asymptotic results

for the trace version to the case of no level shifts. For the latter setup a maximum eigen-

value version exists. Referring to the results and remarks in the Appendix of Saikkonen &

Lütkepohl (2000c) one can derive the limiting distributions of MEδ
tr(r0) and MEδ

mean(r0)

accordingly. The same holds for MEun
tr (r0) and MEun

mean(r0) using the results in the sup-

plement2 which accompanies Lütkepohl et al. (2004). One can see that a derivation of the

limiting distributions is possible similar to the case of a known shift date. By contrast,

the possibility of deriving the asymptotic distribution of MEort(r0) given in Table 2 is less

obvious. Therefore, the Appendix shows how one can obtain the stated limiting distribution.

3 Gamma Distribution

As mentioned the asymptotic distributions are approximated by the Gamma distribution

Γ(y; a, b) =

∫ y

0

ba

Γ(a)
xa−1e−bxdx, y > 0, a > 0, b > 0. (3.1)

Doornik (1998) has demonstrated that Gamma distributions provide a good approximation

for the asymptotic distributions of the cointegration rank tests based on Johansen (1988).

These distributions are functions of Brownian motions like the asymptotic null distributions

given above. Accordingly, the use of the Gamma distribution works also very well for the

2The supplement is available in the internet at http://www.iue.it/Personal/Luetkepohl/Welcome.html.
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Table 3. Comparison of Percentiles for tr(Dtr)

d 1 2 3 5 10

0.90 Response Surface Steps I-III 5.48 13.88 26.07 62.45 223.43

0.90 Gamma Approximation 5.47 13.79 25.88 61.90 220.86

0.90 Tabulated in Trenkler (2003) 5.42 13.78 25.93 61.92 220.92

0.95 Response Surface Steps I-III 6.79 15.76 28.52 66.13 230.24

0.95 Gamma Approximation 6.78 15.64 28.31 65.54 227.62

0.95 Tabulated in Trenkler (2003) 6.79 15.83 28.46 65.66 227.99

0.99 Response Surface Steps I-III 9.73 19.71 33.50 73.42 243.36

0.99 Gamma Approximation 9.74 19.54 33.26 72.73 240.68

0.99 Tabulated in Trenkler (2003) 10.04 19.85 33.76 73.12 241.80

cointegration tests with a prior adjustment of deterministic terms as shown later on. This

also true for the limiting distributions of the test variants with a general linear trend (µ1

arbitrary) which consist of Brownian bridges.

Obviously, the Gamma distribution depends only on the two parameters a and b. Fur-

thermore, a random variable Y following a Gamma distribution has a mean E(Y ) = µ = a/b

and a variance E(Y −µ)2 = σ2 = a/b2 which both depend on a and b. Hence, given the mean

m and variance v of the distribution of interest we can obtain an approximating Gamma

distribution via the relationships a = µ2/σ2 and b = µ/σ by setting µ = m and σ2 = v.

In practice, we have to simulate the first two moments of the relevant distribution.

Denoting the simulated moments by m̂ and v̂ the parameters of the approximating Gamma

distribution are

â = m̂2/v̂, b̂ = m̂/v̂. (3.2)

Since the asymptotic distributions of the cointegration test statistics differ with respect

to the specification of the deterministic terms and the dimensions d = n − r0 one has to

determine different sets of the first two moments. In other words, one has to fit different

Gamma distributions. The fitted Gamma distributions can then be used to compute p-values

or percentiles.

For the practical implementation of the approximation one can also refer to χ2 distribu-

tion with non-integer degrees of freedom instead of the Gamma distribution. The relationship
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between both distributions is given by 2bY ∼ χ2(2a) where Y has a Gamma distribution.

In line with the argumentation we have to distinguish two issues with respect to obtaining

a reliable and applicable approximation. The first question is whether the Gamma distri-

bution is a good approximation to the type of asymptotic distributions we consider. The

second problem is to get reasonable estimates of the means and variances of the asymptotic

distributions.

Since the asymptotic distributions are nonstandard and continuous we can evaluate the

approximating quality of the Gamma distribution only for some simulated finite and discrete

realizations. Such evaluation is presented in Tables 3 and 4. Table 3 shows the 0.90, 0.95,

and 0.99 percentiles3 for tr(Dtr) for different dimensions d tabulated in Trenkler (2003). The

percentiles are based on standard simulation methods for deriving critical values. These sim-

ulations also provide the mean and variance of the simulated asymptotic distributions with

respect to the dimension d.4 I have used the means and variances in order to fit Gamma

distributions. The resulting percentiles are stated in the line Gamma Approximation. Ob-

viously, the percentiles from the Tables in Trenkler (2003) and the Gamma approximation

are rather close.

A second possibility to evaluate the approximation is to compute the p-values of the

tabulated percentiles (critical values) using the fitted Gamma distributions. In Table 4,

which matches Table 2 in Doornik (1998), the frequencies of the absolute errors made by

using the Gamma approximation for dimensions 1 to 15 with respect to tr(Dtr) is given. It

can be seen that the fit for tr(Dtr) is equally good as in Doornik (1998). In only one case for

the 0.90 and 0.95 percentiles the p-values are outside the 0.0975-0.1025 and 0.0475-0.0525

ranges respectively. Thus, the Gamma approximation works also very well for the trace

distribution which consist of Brownian Bridges. The results for the other trace distributions

are similar.

As pointed out by Doornik (1998) the fit for the maximum eigenvalue distributions is

worse because they resemble the distribution of the smallest order statistic. Nevertheless,

the approximation may be still acceptable as shown in Table 4 for λmax(Dtr). The accuracy

of the fit regarding the λmax(Dort) and λmax(Dmean) is again similar.

3Obviously, these percentiles correspond to the 10%, 5%, and 1% critical values.
4The means and variances for the different dimensions are not given in Trenkler (2003) but can be obtained

from the author.
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Table 4. Errors made by using Gamma approximation for tr(Dtr) and λmax(Dtr) with

dimensions 1 to 15

Frequencies for p-values

tr(Dtr) λmax(Dtr)

Error 0.10 0.05 0.01 0.10 0.05 0.01

< 0.0010 10 5 9 5 1 0

0.0010-0.0025 4 9 6 7 0 4

0.0025-0.0050 1 1 0 3 10 11

0.0050-0.0075 0 0 0 0 4 0

> 0.0075 0 0 0 0 0 0

The tabulated percentiles (critical values) for tr(Dtr) from Trenkler (2003) and

from corresponding simulations for λmax(Dtr) are taken as a basis for comput-

ing the p-values using the Gamma approximation. The mean and variance

for each dimension d = 1, . . . , 15 from these simulations are taken to fit the

Gamma distributions.

As mentioned before, given the result that the Gamma distribution provides a good

approximation the next problem is to obtain reasonable estimates of the means and variances

of the asymptotic distributions. These asymptotic moments will be derived from response

surfaces described in the next section.

4 Response Surfaces

The aim of the response surfaces is to relate the means and variances of the asymptotic

distributions to the dimensions d. That allows to obtain values of m̂ and v̂ for any d. This

is done separately for the different specifications of the deterministic terms, i.e. for the three

groups in Table 2 and the Trace and Maximum eigenvalues test variants. Hence, we have to

derive six response surfaces for the means and variances respectively.

The response surfaces for the cointegration tests with a prior adjustment of deterministic

terms presented in this paper follow closely the method suggested by Doornik (1998). I

mention the differences when describing the methodology in the following. I have also

derived response surfaces along the lines of Johansen et al. (2000). However, the procedure

10



Table 5. Simulation Details

Distributions: tr(Dtr), tr(Dort), tr(Dmean), λmax(Dtr), λmax(Dort), λmax(Dmean)

Replications N : 100,000

Dimensions d: 1,2,. . . ,15

2,. . . ,15 for tr(Dort) and λmax(Dort)

Sample Size T : 50, 75, 100, 150, 200, 250, 500, 1000, 2500, 5000

according to Doornik (1998) produces a slightly better fit for the moments. In Section 5 I

briefly describe the procedure due the Johansen et al. (2000) and comment on the comparison

between both approaches.

The response surfaces are obtained in three steps.

Step I

As for the usual simulation of critical values the components of the asymptotic distribu-

tions in (2.9) are replaced by their discrete counterparts. This is practically done by using

T -step random walks for the Brownian motions. Based on the discrete quantities one can

compute the asymptotic expressions. This is repeated a large number of times for different

sets of dimensions d and sample lengths T . Table 5 summarizes the simulations details.

Since we consider 15 dimensions and 10 sample lengths we have 150 simulation sets with

100,000 discrete realization of each of the corresponding asymptotic distribution.

Note that for tr(Dort) and λmax(Dort) we start with dimension d = 2. The reason is

that the cointegrating ranks specified both under the null and the alternative hypothesis

have to be smaller than the system dimension due to the orthogonal trend (see Saikkonen

& Lütkepohl 2000a). Accordingly, we obtain 140 simulation sets for these two distributions.

The simulation setup is in general identical to Doornik (1998). The only difference is

that we have used 100,000 replications throughout all simulation experiments.

The simulations are done with GAUSS V5. In order to obtain independent standard

normal variates for the generation of the the random walks I have used the Monster-KISS

random number generator implemented in GAUSS V5 (compare Marsaglia 2000, Ford &

Ford 2001). For further details on the simulation of the asymptotic distributions see Trenkler

(2003).

11



Step II

The mean and variance of each of the 150 (140 for tr(Dort) and λmax(Dort)) simulation

sets for all of the six distributions are computed. Then, the aim is to obtain estimates of

the asymptotic means and variances for each of the 15 (14) considered dimensions d with

respect to the six distributions. To this end, I regress for each dimension d the different means

regarding the sample lengths T on a constant, 1/T , and 1/T 2. This is done separately for

all distributions. To capture specific effects of smaller sample lengths I also include 1/T 3

and a dummy variable for T = 50 if they are significant. Furthermore, 1/T 2 is dropped if

not significant. In this case, I also omit the term 1/T if it is insignificant. Significance refers

in all cases to the 5% significance level. By letting T → ∞, the estimated intercept terms

in these 15 (14) regressions provide estimates of the asymptotic means for each of the six

distributions depending on the dimension d. Estimates for the 15 (14) asymptotic variances

are obtained accordingly.

In contrast to Doornik (1998) I also consider the term 1/T 3 besides the dummy variable

for T = 50. The term 1/T 3 can be regarded as a smooth dummy variable for small sample

sizes. It often gives a better regression fit than the simple dummy variable. This is in line with

a similar discussion in Johansen et al. (2000) regarding the dimension of the distributions.

Note in this respect that if 1/T 3 and the dummy for T = 50 are only separately significant I

keep the variable with the higher t-ratio. In most of the cases 1/T 3 is the preferable regressor.

Step III

To obtain the response surfaces the estimated asymptotic means and variances are re-

gressed separately for each of the six distributions on polynomials of d. To be specific, we

consider the terms d2, d,
√

d, 1 (constant), and two dummy variables for d = 1 and d = 2.

These regressors, however, are only included if they are significant at the 10% level. The

estimated coefficients with respect to the six considered distributions are given in Tables 6

and 7. The coefficients represent the 12 response surfaces which can be used to compute

estimates of the asymptotic mean and variance for any dimension d.

Finally, the computed means and variances can be used to obtain an approximating

Gamma distribution for the asymptotic distribution of interest. By the help of this Gamma

distribution it is possible to calculate p-values for any value of the test statistic or arbitrary

percentiles.
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Table 6. Response Surfaces for Mean and Variance of Asymptotic Distributions of the Trace

Test Statistics

Mean tr(Dtr) tr(Dort) tr(Dmean)

d2 1.9996 2.0008 2.0000

d 0 −2.0990 −1.0134√
d 0 0.4463 0

1 (constant) 1.0365 0 0.1309

Dummy for d = 1 −0.3469 0 0.0218

Dummy for d = 2 −0.1112 −0.0503 0

Variance tr(Dtr) tr(Dort) tr(Dmean)

d2 2.9715 3.0152 2.9778

d 0 −3.0099 0√
d 0 2.1117 0

1 (constant) 1.4089 0 −1.7144

Dummy for d = 1 0 0 0.9507

Dummy for d = 2 0.4297 −0.8004 0.4259

Note that the response surfaces for tr(Dort) are only valid for d > 1.

Remark I

The comparison of the response surfaces according to Steps I-III and the ones according

to Johansen et al. (2000) in Section 5 includes the computation of a goodness of fit measure

R2
c which can be seen as an analog to the usual R2. Without discussing the details related to

R2
c at this place here we may look at the values of R2

c for the mean and variance estimations

with respect to tr(Dmean). They are shown in the last two columns of Table 8. Obviously,

the values are close to one and therefore the regression fit is very good. This means our

response surfaces describes the simulated moments in dependence on the sample lengths T

and dimensions d rather well. Two further observations can be made. First, in line with

findings in Johansen et al. (2000) the fit is slightly worse with respect to the variance. Second,

the estimation is in general more accurate for higher dimensions. Finally, I have obtained

similar results for the other trace and maximum eigenvalue distributions. Note again that a

good explaining power regarding the asymptotic moments has to be distinguished from the

accuracy issue of the Gamma approximation (compare the discussion in Section 3).
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Table 7. Response Surfaces for Mean and Variance of Asymptotic Distributions of Maxi-

mum Eigenvalue Test Statistics

Mean λmax(Dtr) λmax(Dort) λmax(Dmean)

d2 −0.0039 0 −0.0035

d 6.1600 5.8766 6.1365√
d −3.3281 −1.9791 −3.2161

1 (constant) −0.5071 −4.8042 −2.3701

Dummy for d = 1 0.3725 0 0.5970

Dummy for d = 2 0.0850 0 0.1007

Variance λmax(Dtr) λmax(Dort) λmax(Dmean)

d2 −0.0418 0 −0.0258

d 3.4915 1.3279 2.6655√
d 9.2061 17.6880 12.4462

1 (constant) −8.9114 1.3279 −13.6992

Dummy for d = 1 0.6652 0 0.8563

Dummy for d = 2 0 0 0

Note that the response surface for λmax(Dort) are only valid for d > 1.

Remark II

Regarding the Johansen trace test statistics Doornik (1998) has found that the term d2

enters the response surfaces for the mean and variance with coefficients 2 and 3 respectively.

Approximately, this is also the case here. Because we use a 4-digit precision slight differences

can be observed.

Since the distribution tr(Dmean) is the same like the trace distribution for the Johansen

test without any deterministic terms we can compare the corresponding coefficients in more

detail. With respect to the mean the results of Doornik (1998) (d2: 2, d : -1, constant: 0.07,

dummy for d = 1: 0.07) are very close to ones in Table 6. The inclusion of the term 1/T 3

when estimating the asymptotic moments may explain the deviations for the constant and

the dummy regarding d = 1. The same argument can be given with respect to the variance for

which the differences are more pronounced. In contrast to Doornik (1998) (d2 : 3, d : −0.33,

constant: -0.55) I have to consider dummy variables for d = 1 and d = 2 but do not need the

general regressor d. The differences in the coefficients follow then accordingly. Nevertheless,
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Figure 1. Comparison of p-values from different response surfaces for tr(Dmean) based on

the 0.95 percentiles resulting from the response surface according to Steps I-III.

the resulting means and variances for the dimensions d = 1, . . . , 15 are very close for both

response surfaces given here and in Doornik (1998). Accordingly, the percentiles based on

the estimated asymptotic moments are also very similar. As an example Figure 1 shows the

p-values resulting from the response surfaces in Doornik (1998) for the 0.95 percentiles from

the response surface of this paper. Similar comments can be made for the corresponding

maximum eigenvalue distribution λmax(Dtr).

Remark III

As mentioned above, we obtain, in fact, estimates of the asymptotic moments (moments

of the asymptotic distributions) by letting T → ∞. As pointed out by Doornik (1998),

letting T → ∞ is the reason why the response surfaces give a better approximation to the

asymptotic properties than the usual critical values which have been simulated only with

respect to one sample size. Trenkler (2003) uses a rather large sample size of T = 1000 for

the simulation of the critical values. Therefore, some of his tabulated critical values do not

differ much from the corresponding percentiles obtained from the response surfaces. This

can be seen for example in Table 3 regarding the distribution tr(Dtr). For higher dimensions,

however, the differences are much more pronounced resulting in strong deviations of the p-

values from the intended ones. This is demonstrated in Figure 2. Here, the p-values for the

5% critical values (0.95 percentiles) of tr(Dtr) given in Trenkler (2003) are depicted using
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Figure 2. p-values for tr(Dmean) regarding the 5% critical values (0.95 percentiles) in

Trenkler (2003) using the Gamma distribution and response surface according to Steps I-III.

the Gamma distribution and the response surface of Steps I-III.

5 Comparison of Response Surfaces

Johansen et al. (2000) propose a different design for a response surface. They model the

logarithm of the moments in order to deal with hetereoscedasticity in the error terms of

the regression. The hetereoscedastictiy is due to the increasing levels of the mean and

variance with higher dimension (see Doornik 1998). Therefore, Doornik (1998) performed

the regressions separately for each d. The logarithmic specification allows to use only one

regression for all d together by relating the log of the moments to a third-order polynomial

in d and 1/T .5

I have also derived response surfaces along the lines of Johansen et al. (2000) using the

same values for the dimensions d and the sample lengths T as stated in Table 5. When com-

paring the fit of the two types of response surfaces with respect to the means and variances

one faces two problems. First, the occurrence of heteroscedasticity and the separate regres-

sions regarding d does not allow to give an overall R2 for the response surface applied in this

5Johansen et al. (2000) consider tests with breaks in deterministic terms. Since the tests’ limiting dis-

tributions depend on the break dates Johansen et al. (2000) also include the relative sample lengths of the

break periods in their response surface.
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Table 8. Comparison of Goodness of Fit (R2
c) of Response Surfaces for tr(Dmean)

Dimension According to Johansen et al. (2000) According to Steps I-III

d Mean Variance Mean Variance

1 0.985432 0.963066 0.983675 0.960561

2 0.993625 0.967177 0.998589 0.981171

3 0.981840 0.977182 0.998318 0.932093

4 0.999305 0.985807 0.999772 0.996067

5 0.996203 0.983667 0.999949 0.985111

6 0.997173 0.991496 0.999778 0.991723

7 0.999738 0.995261 0.999942 0.994541

8 0.999465 0.995157 0.999962 0.980212

9 0.998537 0.991262 0.999993 0.994585

10 0.999022 0.994827 0.999988 0.995594

11 0.999935 0.993021 0.999988 0.994029

12 0.999774 0.996992 0.999997 0.995517

13 0.999089 0.992928 0.999992 0.995999

14 0.999647 0.995427 0.999998 0.998875

15 0.999364 0.995382 0.999997 0.998552

paper in contrast to the approach of Johansen et al. (2000). Second, Johansen et al. (2000)

model the logarithm of the moments and I consider the moments directly. Thus, measures

of fit would refer to the variation of different dependent variables and cannot be compared

directly (see Greene 1997, p. 256). Therefore, I compare the response surfaces separately for

each dimension. Following the suggestion of Greene (1997, p. 256), the comparison is based

on an analog to the usual R2:

R2
c = 1−

∑10
i=1 e2

i∑10
i=1(yi − ȳ)2

(5.1)

where the yi’s represent the simulated means (variances) with respect to the 10 sample sizes.

For the setup used in this paper the terms ei are equal to the residuals from the regressions

described in Step II plus the additional error made in Step III when fitting the asymptotic

moments to polynomials of d. With respect to the approach of Johansen et al. (2000) the

terms ei are defined as ei = yi − exp[ln(ŷi)] where ln(ŷi) stands for the fitted log-moments

(means or variances) from the corresponding regression. In other words, the fitted logarithms
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of the mean or variance are converted back to the level. The goodness of fit measured by R2
c

for the distribution tr(Dtr) is displayed in Table 8. Obviously, for most of the dimensions

the fit for the mean and variance is better when using the setup presented in this paper.

The results for the other distributions are similar.

The presented comparison does not take account of the different number of estimated

parameters involved in the response surface. For the current example of tr(Dtr) I have

estimated 57 (mean) and 61 (variance) coefficients according to Steps I-III but only 15

(mean) and 12 (variance) coefficients according to Johansen et al. (2000) when deleting

insignificant regressors. Using an adjusted version of R2
c improves the relative performance

of the response surfaces following Johansen et al. (2000). Nevertheless, for most of the

dimensions the goodness of fit is still inferior.

Figure 1 also shows the p-values for tr(Dmean) obtained from the response surfaces based

on Johansen et al. (2000) when the 0.95 percentiles regarding the response surface of Steps

I-III are used. The p-values oscillate around the 5% value with increasing deviations for

higher dimensions d. For smaller dimensions, however, the differences are less pronounced.

6 Summary

Following Doornik (1998) and Johansen et al. (2000) I have presented a procedure to ap-

proximate the asymptotic distributions of systems cointegration tests with a prior adjust-

ment for deterministic terms suggested by Lütkepohl et al. (2004), Saikkonen & Lütkepohl

(2000a, 2000b, 2000c) and Saikkonen & Luukkonen (1997). These tests make different as-

sumptions on the inclusion of deterministic components like a mean term, a linear trend or

a level shift.

The asymptotic distributions are approximated by the Gamma distribution. To fit a

Gamma distribution one needs the mean and variance of the asymptotic test distributions.

They can be obtained from response surfaces. The corresponding coefficients to compute

the asymptotic moments are presented in this paper. Via the fitted Gamma distributions

one can easily derive arbitrary p-values or percentiles.

Another approach to derive p-values is the use bootstrap procedures. Bootstrap methods

can help to generate more accurate p-values in small samples than ordinary asymptotic

approximations. Recently, Swensen (2004) has derived an asymptotically valid bootstrap
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procedure for Johansen-type cointegration tests. However, Harris & Judge (1998) and van

Giersbergen (1996) have shown that bootstraps regarding the Johansen tests produce a

better approximation than standard critical values only in a few situations.

Appendix

In this appendix I outline how to derive the limiting distribution of MEort(r0). The proof in

Saikkonen & Lütkepohl (2000a) for the limiting distribution of the corresponding trace test

statistic is based on the sum of the eigenvalues. It does not involve the consideration of a

joint limiting distribution of the eigenvalues. Therefore, we cannot use this framework since

we need the distribution of the (r0+1) largest estimated eigenvalue λ̃r0+1. Following the final

remark in the Appendix of Saikkonen & Lütkepohl (2000c), one may refer to the approach

in Johansen (1995, pp. 158-161) using the necessary convergence and distribution results

proven in the Appendix of Saikkonen & Lütkepohl (2000a). That is, one derives the joint

limiting distribution of the eigenvalues so that the maximum eigenvalue distribution can be

easily obtained. In the following I use the notation from Johansen (1995) and Saikkonen &

Lütkepohl (2000a). The reader is referred to these articles for a definition of the expressions

applied here.

The main ingredients of the proof in Johansen (1995, pp. 158-161) are summarized in

Lemma 10.3 of Johansen (1995). Corresponding convergence results regarding the product

moments in (10.13)-(10.15) of Lemma 10.3 can be obtained for the setup of Saikkonen &

Lütkepohl (2000a) by using (A.4) of Lemma A.1 in Saikkonen & Lütkepohl (2000a). Note

in this respect that ∆xt−j = ∆yt−j − µ0 for j = 0, . . . , p − 1. Further, qt in (A.4) does

not contain the term ∆xt but the necessary properties also hold for ∆xt since it is a zero-

mean stationary process. Moreover, we need corresponding expressions for the distribution

results in (10.16) of Lemma 10.3 and for a transformation of (10.17) given in Johansen (1995,

p. 159). I will focus on the derivation of these expressions in the following.

From (10.16) and (10.17) in Johansen (1995) we obtain the following asymptotic results

B′
T (S10 − S11βα′)α⊥ = B′

T S10α⊥
d→

∫ 1

0

G(dW )′α⊥, (A.1)

T−1B′
T S11BT

d→
∫ 1

0

GG′du. (A.2)
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with the definitions given in Johansen (1995). The crucial step in using the framework

of Johansen (1995) for MEort(r0) is to replace the matrix BT in (A.1) and (A.2) by the

expression Tβ⊥D−1
T where D−1

T is defined in the Appendix of Saikkonen & Lütkepohl (2000a).

Thus, we have to analyse

TD−1
T β′⊥S10α⊥ and (A.3)

TD−1
T β′⊥S11β⊥D−1

T . (A.4)

In order to derive the limiting distributions of (A.3) and (A.4) we have first to express S10

and S11 in terms of the quantities used in Saikkonen & Lütkepohl (2000a). To this end, we

have to remember that MEort(r0) is based on the auxiliary VECM

∆yt − µ̃1 = αβ′(yt−1 − µ̃0) +

p−1∑
j=1

Γj(∆yt−j − µ̃1) + et, t = p + 1, p + 2, . . . . (A.5)

where I have replaced µ0 and µ1 in (2.8) by some estimators µ̃0 and µ̃1 which satisfy (2.12)-

(2.15) in Saikkonen & Lütkepohl (2000a). Hence, we apply a Johansen type test on this

model using the the adjusted quantities ∆yt− µ̃1 and yt−1− µ̃0. In terms of the terminology

in Johansen (1995) (A.5) can be written as

Z0t = αβ′Z1t + ΨZ2t (A.6)

applying obvious definitions for Z0t, Z1t, Z2t, and Ψ. Note the fact that Z2t is equal to z̃t

used in Saikkonen & Lütkepohl (2000a).

I now prove the following Lemma.

Lemma A.1. Under the assumptions made in Saikkonen & Lütkepohl (2000a) we obtain

TD−1
T β′⊥S10α⊥

d→
∫ 1

0

F̄(s)dB(s)′α⊥ (A.7)

TD−1
T β′⊥S11β⊥D−1

T
d→

∫ 1

0

F(s)F(s)′ds. (A.8)

where B(s) is a Brownian motion and F̄(s) and F(s) are functions of Brownian motions

defined in (2.9), (A.25), and (A.26) of Saikkonen & Lütkepohl (2000a) respectively.

Let us start with proving (A.7). First, note that S10 = T−1
∑T

t=p+1 R1tR
′
0t where R1t and

R0t are the residuals obtained from regressing Z1t and Z0t on Z2t respectively. In line with

(6.9) of Johansen (1995) we have R0t = αβ′R1t + et. Thus, we can write

S10 = T−1

T∑
t=p+1

R1t(αβ′R1t + et)
′ = T−1

T∑
t=p+1

R1tR
′
1tβα′ + T−1

T∑
t=p+1

R1te
′
t. (A.9)
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Hence, we get for S10α⊥

S10α⊥ = T−1

T∑
t=p+1

R1te
′
tα⊥

= T−1




T∑
t=p+1

Z1te
′
t −

T∑
t=p+1

Z1tZ
′
2t

(
T∑

t=p+1

Z2tZ
′
2t

)−1 T∑
t=p+1

Z2te
′
t


 α⊥

= T−1

T∑
t=p+1

Z1te
′
tα⊥ − T−1

T∑
t=p+1

Z1tZ
′
2t

(
T∑

t=p+1

Z2tZ
′
2t

)−1 T∑
t=p+1

Z2te
′
tα⊥

= A1T − A2T .

(A.10)

where A1T and A2T are described below. I first show TD−1
T β′⊥A2T = op(1) and then

TD−1
T β′⊥A1T

d→ ∫ 1

0
F̄(s)dB(s)′α⊥.

We can write

TD−1
T β′⊥A2T = TD−1

T β′⊥T−1

T∑
t=p+1

Z1tZ
′
2t

(
T∑

t=p+1

Z2tZ
′
2t

)−1 T∑
t=p+1

Z2te
′
tα⊥

= T−1/2D−1
T β′⊥

T∑
t=p+1

Z1tZ
′
2t

(
T−1

T∑
t=p+1

Z2tZ
′
2t

)−1

T−1/2

T∑
t=p+1

Z2te
′
tα⊥

= T−1/2D−1
T β′⊥

T∑
t=p+1

Z1tZ
′
2t ·Op(1) ·Op(1)

= T−1/2D−1
T

T∑
t=p+1

v̄t−1Z
′
2t ·Op(1) ·Op(1)

= op(1) ·Op(1)

= op(1)

(A.11)

where v̄t−1 = β′⊥Z1t = β′⊥(yt−1 − µ̃0). Note, the third line of (A.11) is obtained from (A.4)

and (A.21) in Saikkonen & Lütkepohl (2000a) replacing α̃⊥ by α⊥ and given the definition

of q̃t used there. Moreover, the last but one line is justified owing to (A.16) of Saikkonen &

Lütkepohl (2000a) by replacing β̃⊥ with β⊥.
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Next, we have

TD−1
T β′⊥A1T = TD−1

T β′⊥T−1

T∑
t=p+1

Z1te
′
tα⊥

= D−1
T

T∑
t=p+1

v̄t−1e
′
tα⊥

d→
∫ 1

0

F̄(s)dB(s)′α⊥

(A.12)

where the last line follows from (A.26) of Saikkonen & Lütkepohl (2000a). Thus, (A.12) and

(A.11) prove (A.7).

Now, we turn to prove (A.8). Using S11 = T−1
∑T

t=p+1 R1tR
′
1t we have

TD−1
T β′⊥S11β⊥D−1

T

= D−1
T β′⊥

T∑
t=p+1

R1tR
′
1tβ⊥D−1

T

= D−1
T β′⊥




T∑
t=p+1

Z1tZ
′
1t −

T∑
t=p+1

Z1tZ
′
2t

(
T∑

t=p+1

Z2tZ
′
2t

)−1 T∑
t=p+1

Z2tZ
′
1t


 β⊥D−1

T

= D−1
T β′⊥

T∑
t=p+1

Z1tZ
′
1tβ⊥D−1

T −D−1
T β′⊥

T∑
t=p+1

Z1tZ
′
2t

(
T∑

t=p+1

Z2tZ
′
2t

)−1 T∑
t=p+1

Z2tZ
′
1tβ⊥D−1

T

= D−1
T β′⊥

T∑
t=p+1

Z1tZ
′
1tβ⊥D−1

T − op(1)

= D−1
T

T∑
t=p+1

v̄t−1v̄
′
t−1D

−1
T

d→
∫ 1

0

F(s)F(s)′ds

(A.13)

where the fourth equality follows from arguments used for (A.11) and the last line is obtained

by applying (A.25) similar to (A.27) of Saikkonen & Lütkepohl (2000a). This completes the

proof of Lemma A.1. ¥
Using Lemma A.1 we can derive the joint limiting distribution of the eigenvalues in line

with the approach of Johansen (1995, pp. 158-161). Then, following the argumentation in

Hansen & Johansen (1998, p. 124) we obtain the limiting distribution of MEort(r0) as stated

in Table 2.

References

Doornik, J. A. (1998). Approximations to the asymptotic distributions of cointegration tests,

Journal of Economic Surveys 12: 573–593.

22



Ford, M. P. & Ford, D. J. (2001). Investigation of GAUSS’ random number generators,

http://www.aptech.com/random/rndu36.pdf.

Greene, W. H. (1997). Econometric Analysis, Prentice Hall, New Jersey.

Hansen, P. R. & Johansen, S. (1998). Workbook on Cointegration, Oxford University Press,

Oxford.

Harris, R. I. D. & Judge, G. G. (1998). Small sample testing for cointegration using the

bootstrap approach, Economics Letters 58: 31–37.

Johansen, S. (1988). Statistical analysis of cointegration vectors, Journal of Economic Dy-

namics and Control 12: 231–254.

Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Mod-

els, Oxford University Press, Oxford.

Johansen, S., Mosconi, R. & Nielsen, B. (2000). Cointegration analysis in the presence of

structural breaks in the deterministic trend, Econometrics Journal 3: 216–249.

Lütkepohl, H., Saikkonen, P. & Trenkler, C. (2001). Maximum eigenvalue versus trace tests

for the cointegrating rank of a VAR process, Econometrics Journal 4: 287–310.

Lütkepohl, H., Saikkonen, P. & Trenkler, C. (2004). Testing for the cointegrating rank of a

VAR process with a structural shift at unknown time, Econometrica, 72: 647–662.

MacKinnon, J. G., Haug, A. A. & Michelis, L. (1999). Numerical distribution functions of

likelihood ration tests for cointegration, Applied Econometrics 14: 563–577.

Marsaglia, G. (2000). The monster, a random number generator with period over 102587

as long as the previously touted longest period one, mimeo, Department of Statistics,

Florida State University.

Saikkonen, P. & Lütkepohl, H. (2000a). Testing for the cointegrating rank of a VAR process

with an intercept, Econometric Theory 16: 373–406.

Saikkonen, P. & Lütkepohl, H. (2000b). Testing for the cointegration rank of a VAR process

with structural shifts, Journal of Business & Economic Statistics, 18: 451–464.

23



Saikkonen, P. & Lütkepohl, H. (2000c). Trend adjustment prior to testing for the cointegra-

tion rank of a VAR process, Journal of Time Series Analysis 21: 435–456.

Saikkonen, P. & Luukkonen, R. (1997). Testing cointegration in infinite vector autoregressive

processes, Journal of Econometrics 81: 93–126.

Swensen, A. R. (2004). Bootstrap algorithms for testing and determining the cointegration

rank in VAR models, Working Paper, Department of Mathematics, University of Oslo.

Trenkler, C. (2003). A new set of critical values for systems cointegration tests with a prior

adjustment for deterministic terms, Economics Bulletin 3: 1–9.

van Giersbergen, N. P. A. (1996). Bootstrapping the trace statistic in VAR models: Monte

Carlo results and applications, Oxford Bulletin of Economics and Statistics 58: 391–408.

24


