
econstor www.econstor.eu

Der Open-Access-Publikationsserver der ZBW – Leibniz-Informationszentrum Wirtschaft
The Open Access Publication Server of the ZBW – Leibniz Information Centre for Economics

Nutzungsbedingungen:
Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche,
räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts
beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen
der unter
→ http://www.econstor.eu/dspace/Nutzungsbedingungen
nachzulesenden vollständigen Nutzungsbedingungen zu
vervielfältigen, mit denen die Nutzerin/der Nutzer sich durch die
erste Nutzung einverstanden erklärt.

Terms of use:
The ZBW grants you, the user, the non-exclusive right to use
the selected work free of charge, territorially unrestricted and
within the time limit of the term of the property rights according
to the terms specified at
→ http://www.econstor.eu/dspace/Nutzungsbedingungen
By the first use of the selected work the user agrees and
declares to comply with these terms of use.

zbw Leibniz-Informationszentrum Wirtschaft
Leibniz Information Centre for Economics

Klinke, Sigbert

Working Paper

Statistical user interfaces

Papers / Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE),
No. 2004,35

Provided in cooperation with:
Humboldt-Universität Berlin

Suggested citation: Klinke, Sigbert (2004) : Statistical user interfaces, Papers / Humboldt-
Universität Berlin, Center for Applied Statistics and Economics (CASE), No. 2004,35, http://
hdl.handle.net/10419/22208

Statistical user interfaces

Sigbert Klinke

Humboldt-Universität zu Berlin, School of Business and Administration, Institute
of Statistics and Econometrics, Spandauer Strasse 1, 10178 Berlin, Germany
sigbert@wiwi.hu-berlin.de

1 Introduction

A statistical user interface is an interface between a human user and a statisti-
cal software package. Whenever we use a statistical software package we want
to solve a specific statistical problem. But very often at first it is necessary to
learn specific things about the software package.

Everyone of us knows about the “religious wars” concerning the question
which statistical software package/method is the best for a certain task; see
Marron (1996) and Cleveland and Loader (1996) and related internet discus-
sions. Experienced statisticians use a bunch of different statistical software
packages rather than a single one; although all of the major companies (at
least the marketing departments) tell us that we only need their software
package.

Why do these wars, not only concerning statistical software packages,
evolve? One of the reasons is that we need time to learn about the software
package besides learning the statistical methodology. And the more time we
need to learn to use the software package, the more we are defending “our”
software package. But if we need to spend a lot of time for learning to use a
statistical software package, then the question, whether this software package
really has a good user interface, arises?

The basic problem is that the development of statistical software is started
by experts of statistical methodology. Since they have to have a deep inside
in their special fields, most of them have a very limited view to problems of
other users. We generally do not consider the sex of the users, the ethnic or
cultural background, the statistical knowledge or other factors when we create
a user interface.

Thus the important questions we have to answer when we design a user
interface are: What does the user want to do with this software package? And
how can he do it effectively?

Fortunately, during years of development of software packages, we have
collected a lot of experience about human behavior and specific differences

2 Sigbert Klinke

because of sex, ethnic or cultural background and so on. In the book of Shnei-
derman (1998) a lot of rules have been collected which should help the software
developers to avoid the worst problems. But the best way for developing a user
interface is a development cycle of designing, testing, redesigning, testing, re-
designing, ... This will take a lot of time and money, but redesigning the basic
components of a software package at late development will be much more
expensive or even impossible.

In this chapter only a subset of all statistical software packages, namely
DataDesk 6.0, GGobi 0.99, R 1.7.1, SPSS 11.0 (English version), SYSTAT
10, XploRe 4.6 and Mathematica 4.3 will be used for illustrating purposes
(see also the section “Web references”). It covers a wide range of different
statistical software packages.

In all statistical software packages we can find errors in the user interface
design. User interface design is not a exact science as statistics, but it relies
heavily on the way how we perceive information and how we react to it. That
includes that in every design we will make errors before we can learn to avoid
them in future. Therefore a lot of theories are available, partially explanatory,
partially predicting, which should help us to design user interfaces.

2 The golden rules and the ISO norm 9241

Complex statistical tasks require more and more complex statistical programs.
In consequence more complex user interfaces are needed to be developed.
Software developers recognized that common rules exist in simplifing the use
of software systems. Shneiderman (1998) published a summary of these rules
known as the “golden rules” of user interface design:

1. Achieve consistency
The first rule is the one which is most often violated, especially when
teams of people work together. Users expect that in similar situations the
software behaves similarly and requires the same actions from the user.

2. Use shortcuts
Beginners need a comfortable clear structured way to accomplish their
task, but power users of a software package want to do their work as
quickly as possible.

3. Give informative feedback
Users need to have a feedback on their actions. The amount of the feed-
back depends on the action and the user’s experience. Frequent actions
require only short answers whereas rare actions require more extended an-
swers. Beginners need more feedback whereas power users may just need
acknowlegdement that the task is finished.

4. Design closed actions
Actions should have a clear structure with a start and a well-defined end.
This holds especially for dialogs and forms.

Statistical user interfaces 3

5. Offer error prevention and easy error handling
Software should not support erroneous input from the user and provide
default values. The user should be able to recover easily from errors. If a
user can revert his actions easily then this will increase his trustworthiness
in the software package.

6. Support user control
Users prefer to initiate actions in a software package. If a user believes
that he only reacts to the system he will experience a control loss.

7. Reduce memorization
Humans can only remember seven plus minus two information bits in their
short term memory (Miller, 1956). Extensive memorization to handle a
software package should be avoided.

A formalization of the rules can be found, partially in very detailed instruc-
tion, in the ISO (International Standardization Organization) norm 9241. The
norm itself, which distinguishes between requirements and recommendations,
consists of 17 parts:

1 General introduction 10 Dialogue principles
2 Guidance on task requirements 11 Usability statements
3 Visual display requirements 12 Presentation of information
4 Keyboard requirements 13 User guidance
5 Workstation layout and postural re-

quirements
14 Menu dialogs

6 Environmental requirements 15 Command dialogs
7 Display requirements with reflections 16 Direct manipulation dialogs
8 Requirements for displayed colors 17 Form-filling dialogs
9 Requirements for non-keyboard input

devices

3 Development of statistical user interfaces

In the past we have seen the development of software according to new con-
cepts in computer science. From the end of the 1960s / beginning of the 1970s
when computers became available till now, we can distinguish several phases.
In the beginning we had non-interactive, batch oriented software packages,
e.g. SAS and SPSS. The idea of incremental programming and interaction lead
to systems like PRIM-9 (Tukey et al., 1973, 1974) or programming languages
like BASIC. Another paradigm was that the notation used should be compact,
like in languages as in APL or C. The availability of personal computers with
window systems introduced graphical user interface (GUI) in contrast to com-
mand line interfaces (CLI) also to statistical software packages. As mentioned
in the interview with J.E. Gentle (Härdle, 2004) statistical software packages
nowadays should come with both interfaces. During the last fifteen years we

4 Sigbert Klinke

saw that team programming, reusability of software, network/internet com-
puting and access to databases had their impact on programming languages
(ADA, C++, Java, SQL) as well as on statistical software packages like S/S-
Plus, R, XploRe, Jasp, etc.

Before we start to develop a statistical software package and a user inter-
face (GUI or CLI), we should think about the kind of problems a user may
have:

1. A user could formulate an inadequate goal, e.g. using Excel for semi-
parametric modeling.

2. A user could not find the right tool/method, since the developer uses
inappropriate labels, e.g. the command paf in XploRe should better be
named selectrows.

3. A user could not be able to find or execute a specific method, e.g. in a
statistical programming language with a lot of commands and macros, he
could loose the overview. For example, languages like XploRe or R consist
of a lot of commands, macros and packages.

4. The feedback from the software package to a user action could be inap-
propriate or misleading, e.g. the error message syntax error.

The first problem can not be solved with a better interface design, but so
can the latter three (Franzke, 1995). We have two ways to solve them: either
we make a better user interface or the user has to spend a lot of time for
learning about the interface. One of the most time consuming design error is
a subtle inconsistency, for example if the parameter orders for nearly identical
actions, either in formulas for GUIs or commands in CLIs, are different. The
user will always loose time to look up these subtle differences.

Obviously we can not develop one user interface for all users. The slogan
Know your user (Hansen, 1971) in detail (statistical background knowledge,
cultural background, etc.) is an important building block to the success of a
(statistical) software package. We can distinguish three types of users: novice
users who need to execute a small set of simple exercises and need an infor-
mative feedback from the software package. Periodic users who need support
for forgotten execution sequences and need to know how to extend the current
software package. But they usually need only a short feedback to an executed
task. A power user is mainly interested in fast answers and needs only very
limited feedback. Some statistical software packages, XploRe and R offer even
multiple GUIs for different types of users.

However, basic guidelines for all user types are:

1. consistency in the appearance
2. effective information control by the user
3. minimal memorization and minimal data entry by the user
4. flexible adaption of the data display
5. compatibility between data entry and output

Statistical user interfaces 5

3.1 Graphical user interfaces

For novice users it is clear that they prefer software with GUIs (see Temple,
Barker and Sloane, Inc., 1990), but for power users this is not quite clear, see
Ulich et al. (1991). There are some general drawbacks of GUIs:

1. They need valuable screen space for menus, icons, windows etc.
2. There is no consistent set of menus, icons and windows. We have to relearn

them for each software package.

A look at Fig. 1 shows the entry screens of different statistical software
packages. Here we find all elements forming a modern GUI: menu bar, tool-
bar(s) and multiple windows. Note that a statistical user interface is more
than a GUI: design of the programming language, help system, basically ev-
ery aspect in the interface between a user and a statistical software package.

Some packages try to help a novice user with his next task. SPSS opens,
after starting the program, a dialogue box to load a dataset (see Fig. 1(b)).
For R, which can load all data objects from previous sessions automatically,
such feature is not necessary.

3.2 Toolbars

Although toolbars play a more and more important role in software nowadays,
we immediately notice the sparse toolbars (see Fig. 2), due to the fact that
we have no common set of icons. For example GGobi and DataDesk do not
offer any toolbar, XploRe, SPSS and R offer only toolbars related to standard
tasks, like opening, saving and printing programs, images etc. and special-
ized software functions. Among the considered programs only SYSTAT offers
toolbars for standard statistical graphics (histogram, pie chart, boxplot, scat-
terplot and scatterplot matrices) and tasks (descriptive statistics, two-way-
tables, two-sample t-test, ANOVA, correlations, linear regression, clustering
and non-linear modeling). But to learn the meaning of the icons may take
some time.

3.3 Menus

The first parts of a software package we use are the menu bar, the menus and
the menu items. Menus can give a clear structure to the methods/actions of a
software package. Liebelt et al. (1982) have found that a proper organization
of the menu reduces the error rate to about 50%. Most statistical software
packages have a very clear separation of the tasks in the menu bar (see Fig. 2).

It might be distracting if the position of the menu items changes (Mitchell
and Shneiderman, 1989). For unused menu items (not applicable tasks in the
current situation) it is preferable if they are grayed out and do not vanish from
the menu. Statistical software packages behave very differently. The menu bar

6 Sigbert Klinke

(a
)

(b
)

(c
)

(d
)

Fig. 1. Entry screens of the statistical software packages, (a) XploRe, (b) SPSS, (c)
DataDesk and (d) SYSTAT.

Statistical user interfaces 7

(a)

(b)

(c)

(d)

Fig. 2. Menu bars and toolbars of the main windows of (a) GGobi, (b) SPSS, (c)
DataDesk and (d) SYSTAT.

in XploRe and R changes heavily depending on the active window which
can be very disturbing to the user. It would have been better to attach an
appropriate menu to each window. Also in GGobi the menu changes depending
on the active window: compare Fig. 4(b) to Fig. 2(a). Nevertheless this is less
disturbing to the user because additional menus appear only once in the menu
bar and heavy changes take place in the items of the Display menu which
are invisible to the user. The menu Display is empty after starting GGobi,
but filled when a dataset is loaded.

If we create a menu hierarchy we basically have two possibilities to organize
them: a small, deep hierarchy or a broad, flat hierarchy. Norman and Chin
(1988) found that broad, flat hierarchies lead to a better user performance.
Most software packages follow this concept intuitively, none of the software
packages has a menu depth larger than four.

Several orders of menu items within menus are possible: by time, by num-
bering, by alphabet, by importance or by function. Card (1982) found that an
alphabetical order of menu items is better than a functional order. McDonald
et al. (1983) showed that the advantage of the alphabetical order is lost if
each menu item consists of a one line definition rather than of one meaningful
known word. Nowadays all statistical software packages prefer a functional or-

8 Sigbert Klinke

der by separating the menu items with horizontal lines into menu item groups.
But within a menu item group the order is unclear.

To achieve consistency within a menu system, the same terms should be
used. If we use one word items then they should be clearly separable, like
“insert” and “delete”. The exact difference between “change” and “correct” is
unclear. Cyclic menus, which means we can achieve the same task by different
ways through the menu hierarchy, should be avoided. Users become unsure
where to find a specific action; the same problem is well known from the World
Wide Web.

The approach to put the most used menu items at the top and suppress
the others, may irritate the user. The irritation occurs not with the most used
items, but with the items which are used less often. Their position appears
to be more or less randomly. Thus, Sears and Shneiderman (1994) found that
bringing only the most used items to the top of the menu is an effective
technique.

For power users shortcuts, e.g. through keyboard sequences or toolbars,
are very important. Often used menu items should get short shortcuts, e.g.
Ctrl+O for open a data set, whereas rarely used shortcuts can have longer
keyboard sequences. Most statistical software packages offer only the stan-
dard shortcuts coming from the Windows operating system; only GGobi offers
shortcuts for different view modes. Unfortunately, we have no common sets of
shortcuts for a (statistical) task. We have not even a common naming conven-
tion for menus, e.g. the statistical tasks are in the Calc menu in DataDesk,
in the Statistics menu in SPSS and in the Analyze menu in SYSTAT.

For an effective menu system design it is helpful to log the user choices
and to analyze them for improvements.

3.4 Forms and dialog boxes

The use of menus leads to another form of interaction with the user: forms
and dialog boxes. Basically they should

• have a meaningful title
• use a consistent and for the user well known terminology
• group information in a consistent and meaningful way
• minimize mouse movement and jump from one item to another item in a

useful way
• support error prevention
• allow for fast error correction
• provide default values, if possible
• indicate optional values clearly
• inform when the dialog or form has enough information

Here, a very good example is SPSS. See as example in Fig. 3 four out of
six steps for reading ASCII data into SPSS. The six dialog boxes are grouped
in information about:

Statistical user interfaces 9

(a
)

(b
)

(c
)

(d
)

Fig. 3. Four out of six steps of reading ASCII data in SPSS. They provide a very
clear, intuitive interface even for unexperienced users for reading data.

10 Sigbert Klinke

1. reuse of old format
2. information about the arrangement of the variables
3. information about the arrangement of the cases
4. separation between single data
5. variable formats and names
6. saving the defined format

The forms always provide default values, show the consequence of changing
a value in the bottom and allow easy navigation between forms forward and
backward. We can cancel the whole operation or finish it at any time. The
last form gives a clear signal when we are finished. The SPSS developers have
designed all these forms and dialogs very carefully.

However, we have to keep in mind that pure statistical programming lan-
guages, like R or XploRe, will have to incorporate forms and dialog boxes in
their programming language. This turns out to be a difficult task.

3.5 Windows

Usually statistical software packages use different windows to visualize data
and output. Fig. 4 shows a scatterplot of the variables “percentage of lower
status people” and “median houseprice” of the Boston Housing data (Har-
rison and Rubinfeld, 1978). We easily find that the software packages have
different methods to handle output. SPSS and SYSTAT have a special inde-
pendent output window for text and graphic output. DataDesk, R (by default)
and XploRe use the multiple document interface (MDI) coming with the Win-
dows operating system. Actually R allows to switch between different types of
handling windows (MDI/SDI). GGobi creates a complete set of independent
windows.

In GGobi and DataDesk the data in the windows is linked (see Fig. 5(a)).
Thus interactive brushing is very easy.

A problem of some statistical software packages is that the user can easily
create a lot of windows, see in Fig. 4 and even worse in Fig. 5 for DataDesk.
But a large number of windows can easily irritate the user. Statistical soft-
ware packages have tried to overcome this problem with different approaches:
having separate graphic types, for example the scatterplotmatrix in SPSS or
trellis displays in R; XploRe has a datatype for a graphical display which
consists of single plots. The idea is always the same: statistical information
that belongs together should be in one window. Another strategy is a virtual
desktops (see the software package VanGogh in Keller, 2003) as we find them
under Linux GUIs.

Power users prefer full-screen views (Bury et al., 1985, see). Note that in
Fig. 5 we tried to maximize the size of the graphics in R, SPSS and XploRe.
SPSS and SYSTAT follow partially such a strategy with separating clearly be-
tween spreadsheet presentation of data and variables and output results. But

Statistical user interfaces 11

(a
)

(b
)

(c
)

(d
)

Fig. 4. Scatterplot of the variables “percentage of lower status people” and “median
houseprice” of the Boston Housing data in (a) R, (b) GGobi, (c) DataDesk and (d)
SYSTAT.

12 Sigbert Klinke

Staggers (1993) has shown that users work faster with compact information
on one screen rather than to scroll.

The grouping of information in a window plays an important role in GUI
design. Fitts (1954) developed an effective forecasting model for the time T
for a movement over a distance D to an object with width W

T = C1 + C2 log 2(2D/W)

with device dependent constants C1 and C2.
Maybe approaches like “The CAVE” (Cruz-Neira et al., 1993), a virtual

reality environment, will lead to more screen space.
The question of the contents of the windows is related to showing windows.

Tufte (1983, 1990) has shown proper and improper use of statistical graphics
(see also Chapter ??”). Modern statistical techniques, like data mining, but
also exploratory data analysis, has lead to principles of analysis like get an
overview, zoom, select and look to details.

3.6 Response times

The productivity of a user depends heavily on the response time of a software
package to a user action. To achieve a good productivity we have to balance
between the speed of working and the error rate. Fast response times (<1 sec)
lead to faster user work. Fast working increases the error rate because the user
does not think much about the current action since he is concentrated on the
responses from the software package. Slow response times (>15 sec) lead to
slower user work. Slow working decreases the error rate because the user has
time to think about the next action. But if he makes a mistake he will loose
time.

The right amount of the response time depends also on user experiences,
e.g. if he sees that one software package reads a large dataset in 30 seconds
whereas another software package needs 3 minutes for the same dataset then
he will assume something has gone wrong. A power user is generally more im-
patient than a novice user. A partial solution to the problem of slow response
times is a progress bar which shows how much time it will take till the end of
the action.

Generally a user expects that simple actions, e.g. reading a small dataset,
are done fast and complex actions, e.g. building a model from a large dataset,
can take much longer time. The study of Martin and Corl (1986) found that
the response time for a complex statistical task does not matter much for
productivity, whereas the response time for a simple task (entering data) is
linearly related to productivity. A variation in response times (±50%) does
not matter much. In a set of mixed tasks the user balances out: he thinks
about the task when the response time is slow and works fast if the response
time is fast.

Statistical user interfaces 13

(a
)

(b
)

(c
)

(d
)

Fig. 5. (a) Linked scatterplot, histograms and barcharts in DataDesk. (b) Scat-
terplotmatrix of three variables “average number of rooms”, “percentage of lower
status people” and “median houseprice” in SPSS. (c) Trellis display of the variables
“percentage of lower status people” and “median houseprice” conditioned on the
variable “index of accessibility to radial highways” in XploRe. (d) Trellis display of
the same variables in R.

14 Sigbert Klinke

3.7 Catching the user attention

In Fig. 4(d) we see that in SYSTAT the data editor stays on top, although
we just created a scatterplot in the underlying output window. But the user
attention is still directed to the data editor. Similar problems can be observed
in other software.

Another point in GUI design we should consider is the way how we catch
the attention of the user. In statistical graphics Tufte (1983, 1990) has shown
how the user’s attention can be redirected from the data. In the same manner
a too colorful GUI may distract the user. Wickens (1992) analyzed how to
catch the users attention and gave some hints:

• use 3 different fonts with 4 different sizes in 2 intensities
• use up to 4 standard colors, more colors have to be used with care
• use soft sounds when everything is okay, use hard sounds for warnings and

errors

Nowadays operating systems offer a large variety of true-type fonts, nev-
ertheless most people use only a few fonts in their documents.

Especially the use of colors may create special problems. First, different
user may combine different reactions to the same color (cultural background);
second, it is known that in Europe and North America 8% of the population
have problems in recognizing a color correctly. The largest problem here is
the red-green blindness, both colors appear grey to such people.

The use of sound should only be an additional option. During teaching or
when working in PC-Pools it will distract other users.

3.8 Command line interfaces and programming languages

In the beginning of the computer age all programs only had CLIs. One of
the largest statistical software packages which has survived from these times,
SPSS, still has a CLI. But it is hidden by a GUI and we can reach it via
SPSS syntax editor. Statistical programming languages, like R and XploRe,
are more like CLIs embedded in a GUI. Only statistical software packages
like GGobi and DataDesk are real GUI software, but even DataDesk has a
(visual) programming language.

In the recent past we observed that statistical packages like R or XploRe
have a tendency to be split up between a GUI and a CLI. In fact on the
R-Project page we find more than one GUI for R.

CLI provides some advantages compared to a pure GUI. Some manipula-
tions, for example arithmetic transformation of data, can be done much faster
with the keyboard than with the mouse.

With a programming language we can achieve a precise and compact way
to manipulate and analyze data. We should be able to easily learn, read and
write the programming language. Some problems that can arise are

Statistical user interfaces 15

• the design has too many objects and actions. A hierarchical approach like
organizing objects and actions in libraries may help here. However, R and
XploRe suffer both from an overwhelming number of packages, commands
and programs.

• sometimes the names chosen for an action are to close to computer science
and not to statistics. Do we load, read, open or get a dataset (see also
Table 1)?

• inconsistent order of parameters for operations.

Modern statistical programming languages implement matrix algebra since
we can easily transfer expressions, e.g. for computing the coefficients of a
multiple linear regression, like (X�X)−1(X�Y) into a program (in XploRe:
inv(x’*x)*(x’*y)). This allows for fast error correction and fast learning.

Table 1. Reading ASCII file with the Boston Housing data.

Software Reading ASCII data

R x <- read.table("c:/data/bostonh.dat", header=FALSE)

SPSS GET DATA /TYPE = TXT

/FILE = ’c:databostonh.dat’

/DELCASE = LINE

/DELIMITERS = " "

/ARRANGEMENT = DELIMITED

/FIRSTCASE = 1

/IMPORTCASE = ALL

/VARIABLES = CRIM F7.2 . . . MEDV F5.2 .

SYSTAT IMPORT "c:/data/bostonh.dat.dat" / TYPE=ASCII

XploRe x = read ("bostonh")

Caroll (1982) found that hierarchical (verb-object-qualifier) and symmetric
command sequences, like in Table 3 for linear regression, lead to the best
user performance and can be easily learned and remembered. The reality in
software packages is shown in the Table 2.

Again power users prefer rather short names whereas novice users can find
actions with long names more informative. It is the best to have both available,
like DoLinearRegression and DoLinReg or even dlr. Ehrenreich and Porcu
(1982) suggest rules to make (automatic) abbreviations and Schneider (1984)
proposes possible abbreviation methods :

• use a simple rule to create abbreviations
– truncation (most preferred by users)
– deletion of vocals (DLnrRgrssn)

16 Sigbert Klinke

Table 2. Simple linear regression with intercept between the variable “percentage of
lower status people” (lstat) and the dependent variable “median houseprice” (medv)
of the Boston Housing data in different statistical programming languages.

Software Linear regression commands

R res <- lm (medv ∼ lstat)

SPSS REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT lstat

/METHOD=ENTER medv .

SYSTAT REGRESS

USE "c:/data/bostonh.dat"

MODEL MEDV = CONSTANT + LSTAT

ESTIMATE

XploRe res = linreg (lstat, medv)

Table 3. Example of a hierarchical and symmetric command sequences in the con-
text of linear regression.

do linear regression

do linear regression stepwise

do linear regression forward

do linear regression backward

plot linear regression line

plot linear regression residuals

– use last and/or first letter
– standard abbreviation, e.g. QTY for Quantity
– phonetical abbreviation, e.g. XQT for Execute

• use a (simple) second rule for conflicts
• apply the second rule very rarely
• abbreviations with result from the second rule should have a special symbol

included
• user should know both rules
• abbreviations should have a fixed length
• the software package should always use the long name, e.g. in error mes-

sages

Modern editors, e.g. the Visual Basic editor in Microsoft Office, support
the writing of programs with semi-automatic command completion.

Statistical user interfaces 17

Table 4. Error messages in different software packages.

Software Example Error message

XploRe proc()=test(x) Syntax Error
if(x=1) in test line: 2
"true" Parse Error

else on position 5 in line 2
"false"

endif

endp

test(0)

R if (x=1) "true" else "false" Error: syntax error

SPSS as in Table 2, just /DEPENDENT changed to /INDEPENDENT

Warning
Unrecognized text appears on the REGRESSION command. The only
recognized subcommands are: Global options: DESCRIPTIVES MA-
TRIX MISSING WIDTH; Case selection/weight: REGWGT SELECT;
Variable list: VARIABLES; Equation options: CRITERIA NOORI-
GIN ORIGIN STATISTICS; Dependent variable(s): DEPENDENT;
Equ. methods: METHOD BACKWARD ENTER FORWARD REMOVE
STEPWISE TEST; Residuals: RESIDUAL CASEWISE PARTIALPLOT
SAVE SCATTERPLOT OUTFILE. Text found: INDEPENDENT
This command is not executed
WARNING REGRESSION syntax scan continues. Further diagnostics
from this command may be misleading - interpret with care Misplaced
REGRESSION METHOD subcommand–The METHOD subcommand
must follow a DEPENDENT subcommand or another METHOD sub-
command. It cannot follow any other subcommand. Check for a missing
DEPENDENT subcommand. Text found: METHOD

A future dream is that (statistical) software understands natural language.
What has proven to be valuable to the user is the generation of a report of
results in natural language.

3.9 Error messages

The most crucial response for a user is an error or warning message from the
system. Error messages can be not very helpful, e.g. in XploRe or R syntax
error in Table 4. A better solution would be to tell the user what the problem
exactly was (use x==1 instead x=1). But SPSS tells the user too much and
the problem disappears behind the text. However, the ability of SPSS for
abbreviating is impressive. From the linear regression example in Table 2 the

18 Sigbert Klinke

parameter /NOORIGIN can be shortened to /NOO. Further shortening to /NO
produces an error message.

The language in an error message and warning should be positive, con-
structive, meaningful and precise. Shneiderman (1982) found in a study that
the error rate could be reduced by 28% with well constructed error messages.

Again it is a good idea to log the error message to see which ones are
needed to be improved and which parts of the software package has to be
improved.

3.10 Help system

Nowadays software is always accompanied with online help systems and tuto-
rials, mostly HTML-based. A help system should give the user quick access to
the information he needs. Depending on the type of users, they have different
approaches to use a help system. Reference or alphabetical guides are useful
for power users, but novice users learn most from a lot of examples. Conse-
quently the help system of modern statistical software is mostly composed of
several parts: reference/alphabetical guide, introductory tutorials, indices and
a search engine.

In Fig. 6 we see the entry page of help systems. The variation in the
software packages is large, from very sparse help systems upto detailed expla-
nations how to use the help system.

Finding information in the help system is a crucial task. Thus good nav-
igation, indices and search are essential for any help system. Help systems
based on the windows help system, e.g. used by DataDesk, bring already the
capabilities for an index and searching. Creating a good index, for a book or
a help system is not easy. Especially since the developers of statistical algo-
rithms mostly do not care much about the documentation. The quality of the
help system depends heavily on the contributors to it. Maybe automated ways
of analyzing tutorials and descriptions to create a hierarchy and an index can
improve the help system quality.

One of useful help systems that we have seen is the help system of Math-
ematica which is an inherent part of it. At the top of Fig. 7(d) we see the
detailed navigation, we know always where we are. Mathematica separates
the information well: red background for Mathematica commands and pro-
grams and their descriptions, white background for explanations.

Generally, help systems and tutorials should have a simple language, short
sentences (Roemer and Chapanis, 1982) and a consistent terminology. This
has been proven more helpful to the users and most help systems follow that
suggestion. It is even more important since most help systems and tutorials are
written in English and the majority of the statisticians do not speak English
as native language.

Statistical user interfaces 19

(a
)

(b
)

(c
)

(d
)

Fig. 6. Entry screens of the help systems in (a) XploRe, (b) R, (c) DataDesk and
(d) Mathematica.

20 Sigbert Klinke

(a
)

(b
)

(c
)

(d
)

Fig. 7. Help system entry for statistical distributions of statistical software packages,
(a) XploRe, (b) R, (c) DataDesk and (d) Mathematica.

Statistical user interfaces 21

4 Outlook

There is a wishlist for the statistical user interface of a statistical software
package:

• well-known icons for statistical tasks for useful toolbars
• a consistent and unified terminology for menu bars and items
• well designed dialog boxes and forms
• good editors for statistical programming languages
• a well constructed programming language
• a well designed HTML-based help system with clear structures
• a unique data format for exchanging data with other (statistical) software

packages

In the past we have observed that statistical software packages got various
GUIs. Even SPSS offers a web-based interface now, like the R Web server or
the XploRe Java client version. Currently we observe that statistical software
packages are embedded via direct calls (Excel: XploRe with MD*ReX, R in
the RDCOM server or DataDesk /XL) or via CORBA (R: Omega Hat project)
in other software. In the future statistical software packages will use the GUI
of the “host” software, but the problems we will encounter are the same.

Since the user interface design depends heavily on our perception and
behavior, there is still a lot of experimental research necessary to find answers
to the problems that occur.

Web references

DataDesk http://www.datadesk.com
GGobi http://www.ggobi.org
Jasp http://jasp.ism.ac.jp
Mathematica http://www.wolfram.com
PRIM-9 video http://cm.bell-labs.com/cm/cms/departments/sia/

video-library/prim9.html
R http://www.r-project.org
– GUIs http://www.sciviews.org/ rgui/
– Omega hat/RDCOM http://www.omegahat.org
– Web http://www.math.montana.edu/Rweb
S/S-Plus http://www.insightful.com
SAS http://www.sas.com
SPSS http://www.spss.com
SYSTAT http://www.systat.com
VanGogh http://stats.math.uni-augsburg.de/VanGogh/
XploRe http://www.xplore-stat.de
– Java client http://www.xplore-stat.de/java/java.html
– MD*ReX http://www.md-rex.com

22 Sigbert Klinke

References

Bury, K., Davies, S., and Darnell, M. (1985). Window management: A review
of issues and some results from user testing. Technical report, IBM Human
factors Center Report HFC-53, San Jose, CA.

Card, S. (1982). User perceptual mechanism in the search of computer com-
mand menus. In Proc. Human Factors in Computer Systems, pages 190–196,
Washington D.C.

Caroll, J. (1982). Learning, using and designing command paradigmas. Hu-
man Learning, 1(1):31–62.

Cleveland, W. and Loader, C. (1996). Smoothing by local regression: Princi-
ples and methods. In Härdle, W. and Schimek, M., editors, Statistical The-
ory and Computational Aspects of Smoothing, pages 10–49. Physika Verlag,
Heidelberg, Germany.

Cruz-Neira, C., Sandin, D., and DeFanti, T. (1993). Surround-screen
projection-based virtual reality: the design and implementation of the cave.
In Proc SIGGRAPH’93 Conference, pages 135–142, New York. ACM.

Ehrenreich, S. and Porcu, T. (1982). Abbreviations for automated systems:
teaching operators and rules. In Badre, A. and Shneiderman, B., editors, Di-
rections in Human-Computer Interaction, pages 111–136. Ablex, Norwood,
NJ.

Fitts, P. (1954). The information capacity of the human motor system in
controlling amplitude of movement. Journal of experimental psychology,
47:381–391.

Franzke, M. (1995). Turning research into practice: Characteristcs of display-
based interaction. In Proc. CHI’95 Conference: Human Factors in Com-
puting Systems, pages 421–428. ACM.

Hansen, W. (1971). User engineering principles for interactive systems. In
Proc. Fall Joint Computer Conference, volume 39, pages 523–532, Montvale,
NJ. AFIPS Press.

Härdle, W. (2004). Interview with James E. Gentle. Computational Statistics,
19(1): 1–4. Physika Verlag, Heidelberg, Germany.

Harrison, D. and Rubinfeld, D.L. (1978). Hedonic prices and the demand for
clean air. J. Environ. Economics and Management, 5: 81-102.

Keller, R. (2003). Visualizing augsburg traffic data with vangogh. Presenta-
tion at ’Workshop on Statistical Inference, Visualizing for Graphs’ at Stan-
ford University, CA., University of Augsburg, Dept. of Computer Oriented
Statistics and Data Analysis.

Liebelt, L.-S., McDonald, J., Stone, J., and Karat, J. (1982). The effect of
organization on learning menu access. In Proc. Human Factors Society,
Twenty-Sixth Annual Meeting, pages 546–550, CA.

Marron, J. (1996). A personal view of smoothing and statistics. In Härdle,
W. and Schimek, M., editors, Statistical Theory and Computational Aspects
of Smoothing, pages 1–9. Physika Verlag, Heidelberg, Germany.

Statistical user interfaces 23

Martin, G. and Corl, K. (1986). System response time effects on user produc-
tivity. Behaviour and Information technology, 5(1):3–13.

McDonald, J., Stone, J., and Liebelt, L. (1983). Searching for items in menus:
the effects of organization and type of target. In Proc. Human Factors
Society, Twenty-Seventh Annual Meeting, pages 834–837, Santa Monica,
CA.

Miller, G. (1956). The magical number seven, plus or minus two: some limits
on our capacity for processing information. Psychologocial science, 63:81–
97.

Mitchell, J. and Shneiderman, B. (1989). Dynamic vs. static menus: An ex-
perimental comparison. ACM SIGCHI Bulletin, 20(4):33–36.

Norman, K. and Chin, J. (1988). The effect of tree structure on search in a
hierarchical menu selection system. Behaviour and Information Technology,
8(2):25–134.

Roemer, J. and Chapanis, A. (1982). Learning performance and attitudes as
a function of the reading grade level of a computer-presented tutorial. In
Proc. Conference on Human Factors in Computer Systems, pages 239–244,
Washington D.C. ACM.

Schneider, M. (1984). Ergonomic considerations in the design of text editors.
In Vassiliou, Y., editor, Human Factors and Interactive Computer Systems,
pages 141–161. Ablex, Norword, NJ.

Sears, A. and Shneiderman, B. (1994). Split menus: effectively using selec-
tion frequency organize menus. ACM Transaction on Computer-Human
Interaction, 1(1):27–51.

Shneiderman, B. (1982). System message design: Guidelines and experimen-
tal results. In Badre, A. and Shneiderman, B., editors, Directions in Hu-
man/Computer Interactions, pages 55–78. Ablex, Norword, NJ.

Shneiderman, B. (1998). Designing the User Interface. Addison Wesley Long-
man, Inc.

Staggers, N. (1993). Impact of screen density on clinical nurses’ computer
task performance and subjective screen statisfaction. International journal
of Man-Machine Studies, 39(5):775–792.

Temple, Barker and Sloane, Inc. (1990). The benefits of the graphical user
interface. Multimedia Review, pages 10–17.

Tufte, E. (1983). The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT.

Tufte, E. (1990). Envisioning Information. Graphics Press, Cheshire, CT.
Tukey, J., Friedman, J., and Fishkeller, M. (1973). Prim–9: An interactive

multidimensional data display and analysis system. Video. ASA Statistical
Graphics Video Lending Library.

Tukey, J., Friedman, J., and Fishkeller, M. (1974). Prim–9: An interactive mul-
tidimensional data display and analysis system. Technical Report SLAC-
PUB-1408, Stanford Linear Accelerator Center, Stanford, CA.

24 Sigbert Klinke

Ulich, E., Rautenberg, M., Moll, T., Greutmann, T., and Strohm, O. (1991).
Task orientation and user-oriented dialogue design. International journal
of human-computer interaction, 3(2):117–144.

Wickens, C. (1992). Engineering psychology and human performance. Harper-
collins publisher.

Index

abbreviation method, 15

Boston Housing data, 10, 11, 15, 16
brushing, 10

color, 14
cyclic menu, 8

DataDesk, 21

Fitts forecasting model, 12
font, 14
full-screen view, 10

GGobi, 21

hierarchical command sequence, 15

Jasp, 21

library, 15
linking, 10

Mathematica, 21
menu hierarchy, 7

multiple document interface, 10

order of menu items, 7

productivity, 12
progress bar, 12

R, 21
red-green blindness, 14

S-Plus, 21
SAS, 21
scatterplot, 11
scatterplotmatrix, 13
shortcut, 8
SPSS, 21
symmetric command sequence, 15
SYSTAT, 21

Trellis display, 13

vanGogh, 21
virtual desktop, 10

XploRe, 21

