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Network Intrusion Detection

David J. Marchette

Naval Surface Warfare Center

1.1 Introduction

Attacks against computers and the Internet are in the news every week. These
primarily take the form of malicious code such as viruses and worms, or denial
of service attacks. Less commonly reported are attacks which gain access to
computers, either for the purpose of producing damage (such as defacing web
sites or deleting data) or for the opportunities such access provides to the
attacker, such as access to bank accounts or control systems of power stations.
This chapter will discuss some of the areas in which computational statistics
can be applied to these and related problems.

Several books are available that describe the basic ideas in intrusion de-
tection. These include [1], [3], [4], [8], [18], [25] and [28]. Intrusion detection is
typically split into two separate problems. Network intrusion detection typ-
ically looks at traffic on the network, while host based intrusion detection
involves collecting data on a single host. Both involve very large and complex
data sets, and both have aspects that lend themselves to statistical solutions.
We will only touch on a few such; the reader is encouraged to investigate the
references.

There are two basic approaches to network intrusion detection. Most ex-
isting systems rely on signaturcs of attacks. This approach relics on some sct
of features that can be extracted from the data that indicate the existence of
an attack. This is analogous to the virus scanners, which look for a sequence
of bytes that are indicative of a virus. In the network realm, this could be at-
tempts to access services that are denied, malformed packets, too many failed
attempts to log in, et cetera. The second approach is anomaly detection. The
“normal” activity of the network is modeled, and outliers are indicative of
attacks. The definition of “normal” is dependent on the type of attacks that
one is interested in, and requires statistical models.

This chapter will first describe the basics of the TCP /IP protocol, sufficient
to understand the data and the examples given. Then we will look at detecting
denial of service attacks, and estimating the number of attacks on the Internet.



2 David J. Marchette

Network data is streaming data, and we will discuss this and some areas in
which computational statistics can play a part. This will lead to a discussion of
simple visualization techniques applied to network data, with some discussion
of the types of insights that can be gainced from this. We will then take a
detour from network data and consider profiling. This will illustrate a typc of
anomaly detection, which will then be discussed within a network context.

1.2 Basic TCP/IP

When you visit a web site, your request and the response data are sent as
a scrics of packets, cach consisting of a header containing addressing and sc-
quencing information, and a payload or data section in which the information
resides. Packets are typically relatively small (less than 1500 bytes). In order
to analyze the traffic and detect attacks, one needs to collect the packets, and
may need to process either the header or the payload. We will (somewhat
arbitrarily) denote an attack that can be detected by investigating the header
only a “nctwork attack” while leaving thosc that require investigation of the
payload in the “host attack” realm.

One reason for this distinction is encryption. If the data are encrypted (for
example, data from a secure web site), the header remains in the clear, and so
this information is still available for analysis by the statistician. The payload is
inaccessible (assuming a sufficiently strong encryption scheme) and so cannot
be used to detect attacks until it is decrypted at the destination host. For this
reason (and others), we consider any attack that requires investigation of the
data in a packet to be better detected at the host than on the network.

There are several protocols used on the Internet to ensure a level of per-
formance or reliability in the communication. We will briefly discuss TCP
(the Transmission Control Protocol), since it is one of the most important
ones, and will allow us to discuss a class of denial of service attacks. For more
information about the various protocols, see [32].

First, however, it is necessary that we discuss the Internet Protocol (IP).
This protocol is not reliable, in the sense that there is no mechanism in place
to ensure that packets are received. The IP header contains the source and
destination IP addresses, which are 32-bit integers identifying the sending and
receiving computer for the packet. There are other fields in the packet that
arc uscd to control the routing of the packet, ct cetera, but we will not dwell
on these here. As always, interested readers should investigate [32] or any of
the many books on the TCP/IP protocol suite.

Since IP is unreliable, a packet sent may or may not reach its destination,
and if it does not, there is no guarantee that anyone will notice. Thus, a more
reliable protocol is required. TCP implements a reliable two way communica-
tion channel, and is used for web, email, and many other user applications.
The TCP header is shown in Figure 1.1. The important ficlds, for this discus-
sion, are the ports, sequence numbers and flags.
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Source Port Destination Port

Sequence Number

Acknowledgment Number

Length Reserved Flags Window Size

Checksum Urgent Pointer

Options (if any)

Fig. 1.1. The TCP header. The header is to be read left to right, top to bottom.
A row corresponds to 32 bits.

The ports arc a method for identifying a specific scssion, and can be
thought of as a 16-bit addition to the IP address that uniquely determines the
session. Ports are also used to identify the application requested. For example,
port 80 is the standard web port, and web browsers know that in order to
obtain a web page from a server they need to make a connection on this port.

To initiatc and maintain a conncction, the flags and scquence numbers
are used. The TCP protocol requires a three-way handshake to initiate a
connection. First the client sends a SYN packet (in this manner we will denote
a packet with only the SYN flag set; similarly with other flag combinations)
to the server. The server responds with a SYN/ACK packet, acknowledging
the connection. The client then finalizes the connection with an ACK packet.
Sequence numbers are also passed, and tracked to ensure that all sent packets
are received and acknowledged, and to allow the reconstruction of the session
in the correct order. Packets that are not acknowledged are resent, to ensure
that they are ultimately received and processed.

Once a scssion has been instantiated through the three-way handshake,
packets are acknowledged with packets in which the ACK flag is set. In this
manner the protocol can determine which packets have been received and
which need to be resent. If a packet has not been acknowledged within a
given time, the packet is resent, and this can happen several times before the
system determines that something has gone wrong and the session is dropped
(usually by sending a reset (RST) packet). Note that this means that if there
is no response to the SYN/ACK packet acknowledging the initiation of the
session there will be a period (of several seconds) in which the session is kept
open by the destination host as it tries resending the SYN/ACK hoping for
a response. This is the basis of some denial of service attacks, which we will
discuss in the next section.
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1.3 Passive Sensing of Denial of Service Attacks

The TCP protocol provides a simple (and popular) method for denial of service
attacks. The server has a finite number of connections that it can handle at
a time, and will refuse connections when its table is full. Thus, if an attacker
can fill the table with bogus connections, legitimate users will be locked out.

This attack relies on two fundamental flaws in the protocols. The first
is that the source IP address is never checked, and thus can be “spoofed”
by putting an arbitrary 32 bit number in its place. Sccond, the three-way
handshake requires the third (acknowledgment) packet, and the server will
wait scveral scconds before timing out a conncction. With cach requested
connection, the server allocates a space in its table and waits for the final
acknowledgment (or for the connection to time out). The attacker can easily
fill the table and keep it filled by sending spoofed SYN packets to the server.

Thus, the attacker sends many SYN packets to the server, spoofed to
appear to come from a large number of different hosts. The scrver responds
with SYN/ACK packets to these hosts, and puts the connection in its table to
await the final ACK, or a time-out (usually several seconds). Since the ACK
packets are not forthcoming, the table quickly fills up, and stays full for as
long as the attacker continues to send packets.

There are clever ways to mitigate this problem, which can keep the table
from filling up. One, the “SYN-cookie” involves encoding the sequence number
of the SYN/ACK in a way that allows the server to recognize legitimate
ACK packets without needing to save a spot in the table for the connection.
However, even these can be defeated through a sufficiently high volume attack.

These unsolicited SYN/ACK packets can be observed by any network
scnsor, and thus provide a method for estimating the number and severity of
such attacks throughout the Internet. These unsolicited packets are referred to
as backscatter. They may take other forms than SYN/ACK packets, depending
on the type of packet sent in the attack. See [24, 19, 17] for more information.

Typically, the attacker first compromises a large number of computers,
using special distributed attack software, and it is these computers that launch
the attack. This makes it very difficult to block the attack, and essentially
impossible to track down the attacker, at least through information available
to the victim.

Backscatter packets provide several opportunities for statistical analysis.
They allow the estimation of the number of attacks on the Internet in real
time. One may be able to estimate the severity of the attacks and number of
attackers. Finally, it may be possible to characterize different types of attacks
or different attack tools and identify them from the pattern of the packets.
Some initial work describing some of these ideas is found in [12].

A network sensor is a computer that captures packets (usually just the
packet headers) as they traverse the network. These are usually placed either
just before or just after a firewall to collect all the packets coming into a net-
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work. Through such a system, one can observe all the unsolicited SYN/ACK
packets addressed to one of the IP addresses owned by the network.

Note that this means that only a fraction of the backscatter packets re-
sulting from the attack arc scen by any sensor. If we assume that the sensor
is monitoring a class B network (an address space of 65,536 IP addresses),
then we observe a random sample of 1/65,536 of the packets, assuming the
attack selects randomly from all 232 possible IP addresses. This points to sev-
eral areas of interest to statisticians: we observe a subset of the packets sent
to a subset of the victims, and wish to estimate the number of victims, the
number of packets sent to any given victim, and the number of attackers for
any given victim.

1.4 Streaming Data

Network packets arc strcaming data. Standard statistical and data mining
methods deal with a fixed data set. There is a concept of the size of the
data set (usually denoted n) and algorithms are chosen based in part on their
performance as a function of n. In streaming data there is no n: the data
are continually captured and must be processed as they arrive. While one
may collect a set of data to use to develop algorithms, the nonstationarity of
the data requires methods that can handle the streaming data directly, and
update their models on the fly.

Consider the problem of estimating the average amount of data transfered
in a session for a web server. This is not stationary: there are diurnal effects;
there may be seasonal effects (for example at a university); there may be
changes in the content at the server. We’d like a number calculated on a
window of time that allows us to track (and account for) the normal trends
and detect changes from this normal activity.

This requires some type of windowing or recursive technique. The recursive
version of the sample mean is well known:

) 1. 1
X, =2 %, 1+ =X,
n

Replacing n on the right hand side with a fixed constant N implements an
exponential window on the mean. This was exploited in the NIDES intru-
sion detection system ([2]). Similar techniques can be used to compute other
moments. An alternative formulation is:

Xp=(1=6)Xni1 + 0p1,

for 0 < # < 1. § may be fixed or may itself change based on some statistic of
the data.

In fact, the kernel density estimator has a simple recursive version, that
allows the recursive estimate of the kernel density cstimator at a fixed grid of
points. [39, 34] give two versions of this:
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In cither case, fixing n at a constant and h,, cither at a constant or a recursively
estimated value implements an exponentially windowed version of the kernel
estimator. (Similarly, one can phrase this in terms of § as was done with the
mean; see [36]). These can in turn be used to estimate the “normal” activity of
various measurements on the network, and provide a mechanism for detecting
changes from normal, which in turn may indicate attacks. More information
on these issues can be found in [36].

Similar approaches can be implemented for other density estimation tech-
niques. In particular, the adaptive mixtures approach of [27] has a simple
recursive formulation that can be adapted to streaming data.

There are several applications of density estimation to intrusion detection
that one might consider. It is obvious that unusually large downloads (or
uploads) may be suspicious in some environments. While it is not clear that
density estimation is needed for this application, there might be some value in
detecting changes in upload/download behavior. This can be detected through
the tracking of the number of bytes transfered per session.

Pcrhaps a more compelling application is the detection of trojan programs.
A trojan is a program that appears to be a legitimate program (such as a telnet
server) but acts maliciously, for example to allow access to the computer by
unauthorized users. Obviously the detection of trojans is an important aspect
of computer security.

Most applications (web, email, ftp, et cetera) have assigned ports on which
they operate. Other applications may choose to use fixed ports, or may choose
any available port. Detecting new activity on a given port is a simple way to
detect a trojan program. More sophisticated trojans will replace a legitimate
application, such as a web server. It is thus desirable to determine when a
legitimate application is acting in a manner that is unusual.

Consider Figure 1.2. We have collected data for two applications (web and
secure shell) over a period of 1 hour, and estimated the densities of the packet
length and inter arrival times. As can be seen, the two applications have very
different patterns for these two measures. This is because they have different
purposes: secure shell is a terminal service which essentially sends a packet for
every character typed (there is also a data transfer mode to secure shell, but
this mode was not present in these data); web has a data transfer component
with a terminal-like user interaction.

By monitoring these and other parameters, it is possible to distinguish
between many of the common applications. This can then be used to detect
when an application is acting in an unusual manner, such as when a web
server is being used to provide telnet services. See [7] for a more extensive
discussion of this.
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Fig. 1.2. Packet length in bytes (top) and packet inter arrival times in seconds
(bottom) for web (left) and secure shell (right) sessions. Kernel estimators were used
to estimate the densities. The inter arrival times were truncated to show the bulk
of the data.

Note that web traffic has two main peaks at either end of the extremes
in packet size. These are the requests, which are typically small, and the
responses, which are pages or images and are broken up into the largest packets
possible. The mass between the peaks mostly represent the last packets of
transfers which are not a multiple of the maximum packet size, and small
transfers that fit within a single packet.

The inter packet arrival times for secure shell also have two peaks. The
short times correspond to responses (such as the response to a directory list
command) and to characters typed quickly. The later bump probably corre-
sponds to the pauses between commands, as the user processes the response.
These arrival times are very heavy tailed because of the nature of secure shell.
Sessions can be left open indefinitely, and if no activity occurs for a sufficiently
long time, “keep alive” packets are sent to ensure that the session is still valid.
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In [7] it is shown, in fact, that differences in the counts for the TCP
flags can be used to differentiate applications. These, combined with mean
inter packet arrival times and packet lengths (all computed on a window of
n packets for various values of n), do a very creditable job of distinguishing
applications. This is clearly an area in which recursive methods like those
mentioned above would be of value. It also is reasonable to hypothesize that
estimating densities, rather then only computing the mean, would improve
the performance.

By dctecting changes in the densitics of applications it may be possible to
detect when they have been compromised (or replaced) by a trojan program. It
may also be possible to detect programs that arc not performing as advertised
(web servers acting like telnet servers, for example).

1.5 Visualization

Visualization of complex data is important but difficult. This is especially
truc of streaming data. While many complex techniques for visualization have
been developed, simple scatter plots can be used effectively, and should not
be shunned.

Figurc 1.3 shows a scatter plot of source port against time for an 8 hour
period of time. These arc all the SYN packets coming in to a class B network
(an address space of 65, 536 possible IP addresses). This graphic, while simple,
provides quite a few interesting insights.

Note that there are a number of curves in the plot. These are a result of
the fact that each time a client initiates a session with a server, it chooses a
new source port, and this corresponds to the previous source port used by the
client incremented by one. Contiguous curves correspond to connections by a
single source IP. Vertical gaps in the curves indicate that the IP visited other
servers between visits to the network. It is also easy to see the start of the
work day in this plot, indicated by the heavy over plotting on the right hand
side.

The source ports range from 1024 to 65, 536. Diffcrent applications and
opcrating systcms sclect ports from different ranges, so onc can learn quite a
bit from investigating plots like this.

The plot of Figure 1.3 is static. Figure 1.4 is meant to illustrate a dynamic
plot. This is analogous to the waterfall plots used in signal processing. It
displays a snapshot in time that is continuously updated. As new observations
arc obtaincd they arc plotted on the right, with the rest of the data shifting
left, dropping the left most column. Plots like this are required for streaming
data.

Simple plots can also be used to investigate various types of attacks. In
Figurce 1.5 is plotted spoofed IP address against time for a denial of service
attack against a single server. Each point corresponds to a single unsolicited
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Fig. 1.3. Source port versus time for all the incoming SYN packets for an 8 hour
period.
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Fig. 1.4. Source port versus time for a short time period, the last two hours from
Figure 1.3. As time progresses, the plot shifts from right to left, dropping the left
most column and adding a new column on the right.
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Fig. 1.5. Plot of spoofed IP address against time for backscatter packets from a
denial of service attack against a single server. The IP addresses have been converted
to 16-bit numbecrs, since in this casc they correspond to the final two octets of the
Il address.

SYN/ACK packet received at the sensor from a single source. This plot pro-
vides evidence that there where actually two distinct attacks against this
server. The left side of the plot shows a distinctive stripped pattern, indicat-
ing that the spoofed IP addresses have been selected in a systematic manner.
On the right, the pattern appears to be gone, and we observe what looks like
a random pattern, giving cvidence that the spoofed addresses arce sclected at
random (a common practice for distributed denial of service tools). Between
about 0.03 and 0.06 there is evidence of overlap of the attacks, indicating that
this server was under attack from at least two distinct programs simultane-
ously.

Another use of scatter plots for analysis of network data is depicted in
Figure 1.6. These data were collected on completed sessions. The number of
packets is plotted against the number of bytes. Clearly there should be a
(linear) relationship between these. The interesting observation is that there
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Fig. 1.6. Number of bytes transfered within a completed session plotted against
the number of packets within the session. Solid dots correspond to email sessions,
circles correspond to all other applications.

are several linear relationships. This is similar to the observations made about
Figurc 1.2, in which it was noted that different applications usc different packet
lengths.

Figure 1.7 shows the number of bytes transfered within a session plotted
against the start time of the session. There is a lot of horizontal banding in
this plot, corresponding mostly to cmail traffic. It is unknown whether the
distinctive repetitive patterns are a result of spam (many email messages all
the same size) or whether there are other explanations for this. Since these
data are constructed from packet headers only, we do not have access to the
payload and cannot check this hypothesis for these data. Figure 1.8 shows a
zoom of the data. The band just below 400 bytes correspond to telnet sessions.
These arc most likely failed login attempts. This is the kind of thing that onc
would like to detect. The ability to drill down the plots, zooming and selecting
observations to examine the original data, is critical to intrusion detection.
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Fig. 1.8. The portion of the sessions in Figure 1.7 which were less than 1000 bytes.
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High dimensional visualization techniques are clearly needed. Parallel co-
ordinates is one solution to this. In Figure 1.9 we see session statistics for four
different applications plotted using parallel coordinates.

One problem with plots like this is that of over plotting. Wegman solves
this via the use of color saturation (see [35, 38]). Without techniques such
as this it is extremely difficult to display large amounts of data. Figurce 1.9
illustrates this problem in two ways. First, consider the secure shell data in
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the upper left corner. It would be reasonable to conclude from this plot that
secure shell sessions are of short duration, as compared with other sessions.
This is an artifact of the data. For these data there are only 10 secure shell
sessions, and they all happen to be of short duration. Thus, we really need to
look at a lot of data to see the true distribution for this applications. Next,
look at the email plot in the upper right. Most of the plot is black, showing
extensive over plotting. Beyond the observation that these email sessions have
heavy tails in the size and duration of the sessions, little can be gleaned from
this plot.

A further point should be made about the web sessions. Some of the ses-
sions which are relatively small in terms of number of packets and bytes trans-
fered have relatively long durations. This is a result of the fact that often web
sessions will not be closed off at the end of a transfer. They are only closed
when the browser goes to another web server, or a time-out occurs. This is an
interesting fact about the web application which is casy to sce in thesc plots.

1.6 Profiling and Anomaly Detection

We will now briefly consider host based intrusion detection. While the data
considered is not network data, the statistical techniques used are applicable
to network problems, as will be discussed.

One of the important problems of computer security is user authentication.
This is usually performed by requiring the user to type a password at the initial
login. Once a user is logged in, there are generally no checks to ensure that the
person using the terminal is still the authorized person. User profiling seeks to
address this by extracting “person specific” information as the user interacts
with the computer. By comparing the user’s activity with a profile of the uscr,
it is hoped that masqueraders can be detected and locked out before they are
able to do any damage.

We will discuss the usual host-based user profiling problem first, and then
discuss a nctwork bascd profiling application that has a similar flavor. The
mathematics and statistics used for the two problems are very similar, only
the data are different.

Several attempts have been made on this problem. Early work focused
on utilizing keystroke timings. It was hoped that people had characteristic
patterns of typing that could be discovered through measurement of the time
between keystrokes for words or phrases. See for example [5], [26], [16] and
[29].

This type of approach has been applied at the network level to crack
passwords. [31] describes using simple statistical techniques applied to packet
arrival timings to determine the length of passwords in secure shell, and even
to allow for the cracking of passwords. Sccure shell is an application that allows
remote login via an cnerypted pathway. It sends a packet for cach character
typed, to minimize the delay for the user. Thus, by timing the packets, one
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can get an idea of what key combinations are being sent (it takes longer to
type two characters with the same finger than it does if the characters are
typed by fingers on different hands, for example). By utilizing statistics such
as these, the authors were able to show that they could dramatically reduce
the search space needed to crack the passwords.

Other work focuses on tracking user commands. The idea is that the com-
mand streams that users type (ignoring the arguments to the commands)
could be used to authenticate the user in much the same way that keystroke
timings could. A good discussion of this for statisticians can be found in [30].
See also [22, 23] for some critiques of this work and extensions. The former
paper considers arguments to the commands as well.

For Microsoft Windows operating systems, user command sequences are
generally not applicable. Instead, window titles may be used. These corre-
spond roughly to the same information that is contained in the Unix command
lines. They typically contain the application name and the arguments to the
applications such as the file open, the email subject, the web page visited, ct
cetera.

To illustrate this, we consider a set of data taken from six users on seven
Windows NT machines over a period of several months. All window titles
generated from the login to the logout were retained for each user/host pair
(only one of the users was observed on a second host). Each time a window
became active it was recorded. These data are a subset of a larger set. More
information on these data, with some analysis of the data and performance
of various classifiers can be found in [6].

Table 1.1 shows some statistics on these data. Three sessions are shown
for each user/host pair. The length of the login session (in seconds), the name
of the first and last applications used within the session, and the number of
distinct applications, windows and window titles are shown. The task is to
extract statistics from a completed login session that allow one to determine
whether the user was the authorized user indicated by the userid. This is an
easier problem than masquerader detection, in which one tries to detect the
masquerader (or authenticate the user) as the session progresses, and it is not
assumed that the entire session corresponds to a single user (or masquerader).

The table indicates that there is some variability among the sessions of
individual users, and this is born out by further analysis. Table 1.2 shows the
most common window titles. The number of times the title occurs in the data
sct, the number of login scssions in which the title occurs, and the title itsclf
are shown. Some words in the titles have been obfuscated by replacement with
numbers in double brackets, to protect the privacy of the users. All common
application and operating system words were left alone. The obfuscation is
consistent across all sessions: there is a bijection between numbers and words
that holds throughout the data.

Figurc 1.10 shows part of a singlc login scssion. The rows and columns
correspond to the list of words (as they appear in the titles) and a dot is
placed where the word appears in both the row and column. The blocks of
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Table 1.1. Session statistics for three login sessions for each user/host pair.

User Session Login Length 1st App Last App #Apps #Wins #Titles
user1l-host19 3 30794 msoffice msoffice 6 13 134
userl-host19 5 28788 wsoffice msoffice 8 15 194
userl-host19 6 19902 msoffice msoffice 10 25 267
userl-hostb 1 3472.47  explorer explorer 3 6 34
userl-hostb 2 142.98 explorer explorer 2 3 6
userl-host5 40 21912.79  explorer explorer 7 25 187
user19-host10 5 31432.5  msoffice msoffice 7 8 133
user19-host10 6 16886.3  msoffice msoffice 6 7 75
user19-host10 11 2615.55 msoffice acrord32 6 8 45
user25-host4 2 28362.82  explorer explorer 4 19 382
user25-host4 3 45578.82  explorer explorer 5 16 316
user25-host4 12 6788.44  explorer explorer 4 11 102
user4-host17 10 19445.96  wscript explorer 8 21 452
user4-host17 30 6310.72 explorer explorer 3 5 60
user4-host17 44 17326.21  explorer winword 8 10 138
user7-host20 10 23163.6 outlook outlook 5 7 51
user7-host20 11 44004.11  wscript mapisp32 5 ) 72
user7-host20 12 33125.27  wscript outlook 5 7 166
user8-host6 1 31395.08  wscript explorer 7 14 116
user8-host6 4 1207.84 outlook explorer 4 4 14
user8-host6 21 134.01 cmd  explorer 3 4 13

Table 1.2. Window title usage.

# #Sessions Window Title

7002 425 Inbox - Microsoft Outlook
2525 411 Program Manager
2188 215 Microsoft Word

792 126 Netscape

704 156 Print

672 213 Microsoft Outlook

639 156 <<L12761>> <<9227>>

592 170 <<16193>> - Message (<<16184>> <<5748>>)

555 174 <<6893>> <<13916>>

414 297  Microsoft(<<3142>>) Outlook(<<3142>>) <<7469>>
413 36 <<13683>> <<3653>> - Microsoft Internet Explorer
403 33 <<13683>> <<10676>> - Microsoft Internet Explorer
402 309 - Microsoft Outlook

401 61 Microsoft PowerPoint

198 84 http://<<1718>>.<<7267>>.<<4601>> /< <16345>>

diagonal lines are characteristic of a single window in session. The “plus” in the
lower left corner shows a casc of the uscer switching windows, then switching
back. This type of behavior is scen throughout the data.
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Fig. 1.10. First 500 words from a single session. The rows and columns correspond
to words in the order in which they appear (with duplicates). A dot is plotted in
(4, 7) if the same word is in row i and column j.

Many features were extracted from the data, and several feature selec-
tion and dimensionality reduction techniques were tried. The results for these
approaches were not impressive. See [6] for more discussion.

The classifiers that worked best with these data were simple intersection
classifiers. For each session, the total set of window titles used (without regard
to order) was collected. Then to classify a new session, the intersection of its
title set with those from user sessions was computed, and the user with the
largest interscction was deemed to be the user of the session. Various variations
on this theme were tried, all of which performed in the mid to high 90 percent
range for correct classification.

Much more needs to be done to produce a usable system. Most importantly,
the approach must move from the session level to within-session calculations.
Further, it is not important to classify the user as one of a list of users, but
to simply state whether the user’s activity matches that of the userid. It may
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be straight forward to modify the intersection classifier (for example, set a
threshold and if the intersection is below the threshold, raise an alarm) but
it is not clear how well this will work.

We can statc a few gencralitics about user profiling systems. Uscrs arc
quitc variable, and such systems tend to have an unacceptably high falsc
alarm rate. Keystroke timings tend to be much more useful when used with a
password or pass phrase than in free typing. No single technique exists which
can be used reliably to authenticate users as they work.

The intersection classificer leads to interesting statistics. We can construct
graphs using these interscctions, cach nodce of the graph corresponding to a
session, with an edge between two nodes if their sets intersect nontrivially (or
have an intersection of size at least T').

In another context (profiling the web server usage of users) [20] discusses
various analyses that can be done on these graphs. This uses network data,
extracting the source and destination IP addresses from the sessions. In these
data there is a one-to-one correspondence between source IP address and user,
since all the machines considered were single user machines.

In this case the nodes correspond to users and the sets consist of the web
servers visited by the user within a period of a week. A random graph model,
first described in [13] is used as the null hypothesis corresponding to random
selection of servers. The model assumes a set S of servers from which the users
draw. To define the set of servers for a given user, each server is drawn with
probability p. Thus, given the observations of the sets S; drawn by the users,
we must estimate the two parameters of the model: m = |S| and p. These can
be estimated using maximum likelihood (see also [21] for discussion of this
and other types of intersection graphs). With the notation

ki = |Si

M= Sl
=1
ug = My — M;_,

the likelihood is easily shown to be
n
M'_1 m — M'_1 . ks
R
7:1_[1 kj — uj uj

Using data collected for several months, [20] computed the probability
of any given edge, under the null hypothesis, and retained those that had a
significantly large intersection (after correcting for the multiple hypotheses
tested). The most common of these were retained, and the resulting graph is
shown in Figure 1.11.

There are two triangles in Figure 1.11, and it turns out that the users in
these correspond to physicists working on fluid dynamics problems. Users A,
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(B) C

Fig. 1.11. A graph of the users with significantly large intersections. The edges
for which the intersection size was statistically significant for 95% of the weeks are
shown.

D and E are system administrators. Thus, there is some reason to believe that
the relationships we have discovered are interesting.

The model is simplistic, perhaps overly so. It is reasonable to assume that
users have different values of p, and some preliminary investigation (described
in [20]) bears this out. This is an easy modification to make. Further, intuition
tells us that perhaps all web servers should not have the same probabilities
either. This is more problematic, since we cannot have a separate probability
for each server and hope to be able to estimate them all. A reasonable com-
promise might be to group servers into common/rare groups or something
similar.

The above discussion illustrates one of the methodologies used for anomaly
detection. For determining when a service, server, or user is acting in an
unusual manncr, onc first groups the cntitics using somc model, then raiscs
an alert when an entity appears to leave the group. Alternatively, one can
have a single entity, for example “the network” or a given server, and build
a model of the behavior of that entity under normal conditions. When the
behavior deviates from these conditions by a significant amount, an alert is
raised.

Other rescarchers have investigated the profiling of program cxccution, for
the purpose of detecting attacks such as buffer overflows which can cause the
program to act in an unusual way. See for example [11, 10, 9, 33]. Programs
execute sequences of system calls, and the patterns of system calls that occur
under normal conditions are used to detect abnormal execution.
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1.7 Discussion

There are many areas in which computational statistics can play a part in
network intrusion detection and other security arenas. We have seen a few in
this chapter, including modecling denial of scrvice attacks, visualization, the
analysis of streaming data applied to network data and profiling and anomaly
detection.

The biggest problems for intrusion detection systems are the false alarm
rates and the detection of novel attacks. The enormous amount of data that
must be processed requires that false alarm rates must be extremely low.
Typical network data consists of millions of packets an hour, and system
administrators generally do not have time to track down more than a few
false alarms a day. Signature based systems have the advantage that they
rarely false alarm (assuming the signature is properly defined), but they tend
to have poor performance on novel attacks. Thus it is essential that techniques
be found that detect novelty that is “bad” without alarming on novelty that
is benign.

One area we have not discussed is modeling attack propagation. Early
work on this can be found in [14, 15]. See also [37] for a related model. For a
discussion of the slammer worm, see

http://www.cs.berkeley.edu/"nweaver/sapphire/

The slammer worm was interesting because the spread was self-limiting: the
worm spread so fast that the available bandwidth was reduced to the point
that the worm as unable to continue to spread at its initial rate. Models for
these types of worms is an interesting arca of study.
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