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Lyapunov exponent for Stohasti Time SeriesAnja M. Busse�Fahbereih Statistik, Universit�at Dortmund, GermanyClaus WeihsFahbereih Statistik, Universit�at Dortmund, GermanyMai, 2004AbstratThis paper deals with the problem of the disrimination betweenstable and unstable time series. One riterion for the separation isgiven by the size of the Lyapunov exponent, whih was originallyde�ned for deterministi systems. However, this paper will show, thatthe Lyapunov exponent an also be analyzed and used for ergodistohasti time series. Experimental results illustrate the lassi�ationby the Lyapunov exponent.Although the Lyapunov exponent is a disriminatory parameterof the asymptoti behavior and an be interpreted as a parameterof the asymptoti distribution in the stohasti ase, it has to beestimated from a given time series, where the proess might still bein the transient state. Experimental results will show that in speialases the estimation leads to mislassi�ations of the time series andthe underlying proess due to the unertainty of estimators for theLyapunov exponent.1 IntrodutionIn onnetion with the desription and the analysis of time series the Lya-punov exponent an be used for the determination of the preditability of�email:busse�statistik.uni-dortmund.de 1



time series (Busse et al. 2001). Another possible �eld of appliation is to dis-riminate between ergodi stohasti proesses with stationary distributionsand proesses, like haoti systems, with loal "instability" of the asymptotidistribution.A formal disrimination between stable and unstable time series an beahieved by analyzing the Lyapunov exponent, whih was suggested in on-netion with the preditability of deterministi proesses and stohasti timeseries with additive noise (Busse et al. 2001).Although the Lyapunov exponent is a disriminatory parameter of theasymptoti distribution, it has to be estimated from a given �nite time se-ries. Consequently the estimation auses the main problem, if the Lyapunovexponent should distinguish between the di�erent kinds of time series. If thesample size does not suÆe or the time series is strongly disturbed by noisethe estimation may be biased. In the literature various approahes for theseparation riterion estimation have been suggested (Kantz and Shreiber(1997), Genay (1996), Sano and Sawada (1985), Ekmann et al. (1986).However, all these methods are suseptible to interferene. Noisy time se-ries, missing numerial stability or limited number of data often yield a badestimator. Consequently the lassi�ation into a stable or unstable systemould be possibly inorret.The remainder of this paper is organized as follows. Neessary notationis desribed in Se. 2. After an introdution of the Lyapunov exponent (Se.3) we will show the onnetion between stable and unstable proesses andthe value of the Lyapunov exponent (Se. 4). Beause of this, it is possibleto analyze deterministi or stohasti proesses with non-neessarily additivenoise.Experimental results with stable and unstable proesses demonstrate theseparation by the Lyapunov exponent (see Se. 5). Additional experimentalresults illustrate the method of disrimination by the Lyapunov exponentand the possible mislassi�ation, if the sample size is not large enough. Aonlusion is drawn in Se. 6.2 Deterministi and stohasti proessesAn intuitive separation between deterministi and stohasti proesses in-ludes the aspets of funtional relationships with and without random errors2



(Tong 1993). The dynamis of deterministi proesses is de�ned byxt+1 = ft(x0) = f(xt) ; (1)with initial point or initial state x0 2 IRk, xt desribes the state at time t.The funtional relationship is desribed by f and it is assumed that f isdi�erentiable everywhere.A haoti proess an be represented by a deterministi proess theasymptoti behavior of whih is loally unstable in ontrast to a regulardeterministi or to an ergodi stohasti system (Abarbanel 1996), (Tong1993), (Ekmann and Ruelle 1982).As a formal de�nition of stability of a series xt we use:A series xt is de�ned to be asymptotially stable if all �xed points or period-ial orbits are asymptotially stable in the following sense (Jetshke (1989),p. 59-60):a) A �xed point x0 = f(x0) is said to be asymptotially stable if9 Æ > 0; so that 8x0 with k x0 � x0 k< Æ :limN!1 k xN � x0 k= 0: (2)b) A trajetory (xi)N�1i=0 of a proess (Xt) is said to be a periodial orbit, iffN(x0) = x0 and f i(x0) 6= x0 for i = 1; : : : ; (N�1) and f i = f Æ � � � Æ f| {z }i times .A periodial orbit C is asymptotially stable, if a point x 2 C is anasymptotially stable �xed point of fN .We all a deterministi proess stable, if all �xed points and periodialorbits are asymptotially stable and the proess is unstable if there is a �xedpoint or the periodial orbit whih is not asymptotially stable or no �xedpoint exists.In ontrast to deterministi proesses a stohasti proess is a funtionalrelationship with random noise, whih readsXt+1 = ft(X0; �) = f(Xt; �): (3)It is assumed that suh a proess is a sequene of random variables, where X0is the random variable realized in the initial point x0. The random variableXt desribes the state at time t, the realization or observation of whih is3



denoted by xt. The funtional relationship f is stohastially disturbed withnon-neessarily additive noise �. The asymptoti behavior of a stohastiproess should ideally be independent of the initial state.We transmit the de�nition of a deterministi stable proess to stohastiproesses. The proper asymptotial stability for a �xed point or periodialorbit is not demanded. We use the asymptotial stohastial stability for thede�nition of a stable stohasti proess. Starting from equation (2) we de�neasymptotial stohastial stability in the following sense:a) A �xed point x0 = f(x0) is said to be asymptotially stohastiallystable if 9 Æ > 0; so that 8x0 mit k x0 � x0 k< Æ :P  limN!1 1N N�1Xt=0 Xt � x0 = 0! = 1: (4)b) A trajetory (xi)N�1i=0 of a stohasti proess (Xt)t2T is said to be astohastially periodial orbit, if jjfN(x0)� x0jj < Æ andjjf i(x0)� x0jj � Æ for i = 1; : : : ; (N � 1) and f i = f Æ � � � Æ f| {z }i times .A periodial orbit C is asymptotially stohastially stable, if a pointx 2 C is an asymptotially stohastially stable �xed point of fN .The de�nition of asymptotial stohastial stability (eq. (4)) is relatedto the de�nition for deterministi proesses(eq. 2).Again, we all a stohasti proess stable, if all �xed points and periodialorbits are asymptotial stohastial stable and the proess is unstable if thereis a �xed point or the periodial orbit whih is not asymptotially stable orno �xed point exists.A spei� stohasti proess is an ergodi stohasti proess, the asymp-toti behavior of whih is uniform and stable and independent of the initialstate. In this ontext a mean stationary disrete random proess Xt withmean EP (X) is alled ergodi (Shlittgen and Streitberg (1994)), ifP  limN!1 1N N�1Xt=0 Xt = EP (X)! = 1: (5)4



The de�nition of ergodi stohasti proesses is the same like the def-inition of ergodi deterministi proesses, if the proess average EP (X) isinserted for the ensemble average.For ergodi proesses Xt it is true thatP  limN!1 1N N�1Xt=0 g(Xt) = E(g(X))! = 1 (6)for any measurable funtion g (Stout (1974), pp. 167, p. 182).It is oneptually possible to transfer a deterministi observation seriesinto a stohasti time series by assuming a funtional relationship and a noise� with a one-point distribution (Busse 2003).3 The Lyapunov exponent in a stohastiontextOne possibility to distinguish between stable and unstable time series is givenby the omputation of the largest Lyapunov exponent (here as often brieyalled the Lyapunov exponent). The Lyapunov exponent �(x0) of a deter-ministi proess is formally de�ned by Ekmann and Ruelle (1982):�(x0) := limN!1 1N N�1Xi=0 ln jf 0(xi)j: (7)This harateristi feature measures an average logarithmi expansion ratealong two di�erent trajetories of the same underlying proess. In Busseet al. (2001) it was been used for lassi�ation of preditable time series.For the separation it is neessary to analyze the Lyapunov exponent ina stohasti framework. Note that the random e�et has not to be ne-essarily additive in the funtional expression of the dynamis of stohastiproesses. It will be shown that the Lyapunov exponent an be interpretedas the expeted value of the asymptoti distribution of an ergodi proess.Let X0 be the random variable realized in the initial point x0. Let Xt bethe random variable, whih desribes the state at time t, the realization ofwhih is denoted by xt.The funtional relationship of the time series is denoted by f(x; �), thetime series is de�ned by xt+1 = f(xt; �) and the random e�et is not-neessarilyadditive (see Se. 2). 5



Now, the Lyapunov exponent an be naturally generalized as the asymp-toti expetation (if existing) of a transformation of the given stohastiproess ~�(x0) := limt!1E[ln jf 0(Xt(x0))j℄: (8)However, this expeted value is mostly unknown and has to be estimated.One obvious possibility is the alulation of the long time average, whih isde�ned for disrete time proesses by�g(x0) := limN!1 1N N�1Xt=0 g(Xt(x0));where g is any arbitrary, measurable funtion. In the ase of the Lyapunovexponent estimation g(x) = ln jf 0(x)j. Note, this �g(x0) is the de�nition ofthe Lyapunov exponent for stohasti proesses in Busse et al. (2001).This long time average is allowed to be dependent on initial state x0.Beause of (6) following from ergodiity (Stout (1974),p. 181), however, inthe ase of ergodi proesses, this long time average is independent of x0 and�g(x0) a:s:= E(g(x)): (9)Thus for ergodi proesses the Lyapunov exponent ~�(x0) in (8) is inde-pendent of the initial state, and is the same as de�ned in Busse et al. (2001)for stohasti proesses with an additive noise. It an be written as~� = Z ln jf 0(x)jp(x)dx; (10)using g(x) = ln jf 0(x)j and p(x) as the density of the underlying proess.The ensemble average an thus obviously be estimated by means of�̂ = 1N N�1Xi=0 ln jf 0(xi)j; (11)whih is also an estimator of the Lyapunov exponent in (7).Consequently, the Lyapunov exponent an be used for any given deter-ministi or stohasti time series. The problem of starting time dependenevanishes due to the equality of the long time average and the ensemble aver-age under the ondition of ergodiity.6



4 Stable and unstable proessesBased on setions 2 and 3 it is possible to use the Lyapunov exponent forthe separation between stable and unstable proesses, beause the Lyapunovexponent an be regarded as onvergene or divergene riterion. Thus anegative Lyapunov exponent suggests a stable proess, beause of the in-dependene of the initial state the same asymptoti behavior is ahieved.Whereas in the ase of a positive Lyapunov exponent the long time behavioris sensitive with regard to the initial state. In that ase we have an unstableproess. Beause we have no information about the true funtional relation-ship, we suggest a default modeling in eah ase. This �rst modeling anbe regarded as starting point for a more detailed analysis of the underlyingproess. More preisely:� Given a stable proess, then �(x0) < 0 (see Appendix A).A stable proess like a mean stationary and average ergodi proessould be used for a default modeling.� Given a proess like a random walk, then �(x0) � 0 (beause oflimN!1 1N PN�1i=0 ln j1j = 0).In this ase the random walk is a good hoie for the default modeling.� Given an unstable proess, then �(x0) > 0.The trajetories of two di�erent, nearby initial points diverge exponen-tially on average by a fator of eN� after N iterations. In this ase, thelimiting behavior is not uniform, it is unstable and in literature it isdenoted by strange attrator (Ekmann and Ruelle 1982), (Grassbergerand Proaia 1983a) (Grassberger and Proaia 1983b).An unstable proess lika a haoti proess ould be used for a defaultmodeling (see details about haoti time series in (Tong 1993)).5 Experimental resultsThe Lyapunov exponent gives a lue for the lassi�ation between stableand unstable proesses. Its omputation is manageable, if the funtionalrelationship of the time series is given. However, the underlying proess isgenerally unknown in ase of real-world problems, i.e. the derivative f 0 in7



equation 7 of the funtion f is often unknown. Consequently, it is neessaryto evaluate a proper estimator from the given time series. On the one handf 0 an be numerially evaluated, on the other hand the divergene of twonearby trajetories an be graphially onsidered. Various approahes aresuggested in the literature (for more details see Abarbanel (1996), Ekmannand Ruelle (1982), Sano and Sawada (1985), Genay (1996) Wolf, Swinney,and Vastan (1985)), Kantz and Shreiber (1997)). The method, whih wasimplemented by Kantz and Shreiber (1997), is applied to the estimation ofthe Lyapunov exponent in the following examples.Note, the Lyapunov exponent is a harateristi of the asymptoti behav-ior. This property implies that the observations should not be taken in theso-alled transient status. The series has to be in the asymptoti state for thedata to be used for the evaluation of f 0. An inadequate evaluation of f 0 maybe due to the observation series still lasting in transient state. Therefore, itis possible that the estimation leads to mislassi�ations between stable andunstable time series, if noisy data or short time series are given.5.1 Experiments with stable and unstable data setsWe applied the method of Lyapunov exponent estimation to di�erent fun-tions (see equations (12) and (13)). These funtions have the advantage thatthe exat Lyapunov exponent an be evaluated analytially.To generate an ergodi, mean stationary stohasti proess as an exampleof a stable proess a uniformly distributed noise term, U [0; 1℄, is added tothe funtional relationship as follows:xt = (0:9xt�1 + 0:05�); � � U [0; 1℄: (12)A deterministi haoti time series as an example of an unstable proess isreated by xt = (2:5xt�1) mod 1: (13)In both ases the initial point x0 = 0:699 is used and a sample size of 1024.The estimation of the Lyapunov exponent yields good results with re-spet to separation. For the ergodi stohasti proess it was estimated�̂ = �0:0945 with a real Lyapunov exponent of � = �0:11, i.e. �̂ < 0, whihdesribes stable stohasti behavior. For the haoti proess the estimationof the Lyapunov exponent leads to �̂ = 0:92 (� = 0:92), i.e. the propertyof �̂ � 0 is ful�lled. These examples show, that the Lyapunov exponentestimations an orretly lassify the di�erent proesses.8



5.2 Experiments with short time seriesIn order to study the inuene of di�erent lengths of time series, variouslengths were generated from the funtions (12) and (13). The aim is toverify the separation in dependene on the length of the data sets. Theevaluation of the Lyapunov exponent an yield bad estimators, if the timeseries is too short, sine in this ase the proesses are likely to be in transientstates. Thus, for short time series it is to deide, whether a lassi�ation isstill possible.
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Figure 1: Classi�ations with respet to the estimation of the Lyapunovexponent for the well-preditable proess (12) are orret for all sample sizes.We applied the method of Lyapunov exponent estimation to sample sizes10, 20, 30, 40, 50, 100, 150, 200; : : : ; 900 independent realizations of thestohasti proess. Fig. 1 illustrates the estimated Lyapunov exponents independene on the sample sizes. The dashed line indiates the lassi�ationriterion. Estimates above this line lead to mislassi�ation, estimationsbelow lassify orretly. The solid line labels the true Lyapunov exponent.It is shown, that every estimation leads to the orret lassi�ation, evenif the values di�er from the true Lyapunov exponent. However, the samplesizes of 10; 20 and 30 are too small for a reliable lassi�ation.For the haoti time series (13), again sample sizes of 10, 20, 30, 40,9
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Figure 2: The results of the Lyapunov exponent estimation for the haotitime series (13) show orret lassi�ation only for sample sizes greater than200.50, 100, 150, 200; : : : ; 900 are used. Again, the dashed line desribes thelassi�ation line. Estimations below this line yield mislassi�ation. Thesolid line indiates the true Lyapunov exponent.It is shown, that short time series lead to mislassi�ations of the under-lying proess. The sample sizes of 10 to 200 yield non-orret lassi�ations.However, sample sizes of 250 to 900 haraterize the time series orretly.Good and nearly exat estimators are generated by sample sizes of 500 andmore.6 ConlusionThe Lyapunov exponent was been analyzed for stohasti proesses with non-neessarily additive noise in the ontext of a separation between stable andunstable time series. This riterion haraterizes the asymptoti behaviorof a proess. It was shown that the statistial de�nition of the Lyapunovexponent an be interpreted as an asymptoti haraterization of the givenstohasti proess. Under the ondition of ergodiity the ensemble average,is equal to the long time average, and an be used for the Lyapunov exponent10



estimation.In this artile examples of stohasti and haoti funtions were inspetedwith respet to separation. It was shown that the estimation yields orretlassi�ations both for ergodi stohasti and haoti proesses. In ase ofunstable time series the estimator was even evaluated exatly with respetto the true Lyapunov exponent.Several sample sizes were studied in order to analyze the e�et of shorttime series. It ould not be expeted due to the transient state that theseparation would be always orretly evaluated. In fat short haoti timeseries yield mislassi�ations. However, in the ase of ergodi stohasti timeseries the estimations never lead to mislassi�ations.AknowledgementsThe �nanial support of the Deutshe Forshungsgemeinshaft (SFB 475,Redution for omplexity in multivariate data strutures) is gratefully a-knowledged.ReferenesAbarbanel, H. D. I. (1996). Analysis of Observed Chaoti Data. Institute forNonlinear Siene. New York: Springer Verlag.Busse, A. M. (2003). Klassi�kation von Datenreihen mitHilfe des Lyapunov{Exponenten. Dortmund: eldorado.uni-dortmund.de:8080/FB5/ls7/forshung/2003/Busse.Busse, A. M., D. Steuer, and C. Weihs (2001). An Approah for the Determi-nation of Preditable Time Series. Tehnial Report 12, SFB 475, FahbereihStatistik, Universit�at Dortmund, 44221 Dortmund, Germany.Ekmann, J. P., S. O. Kamphorst, D. Ruelle, and S. Ciliberto (1986). Liapunovexponents from time series. Physial Review A 34 (6), 4971{4979.Ekmann, J. P. and D. Ruelle (1982). Ergodi theory of haos and strangeattrators. Reviews of Modern Physis 57, 617{657.Genay, R. (1996). A statistial framework for testing haoti dynamis vialyapunov exponents. Physia D 89, 261{266.11
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12



�(x0) = �(x0):�(x0) = limN!1 1N N�1Xi=0 ln jf 0(x0)j (Lyapunov exponent;started in the �xed point)= limN!1 1NN ln jf 0(x0)j (sum is independent of i)= limN!1 ln jf 0(x0)j= ln jf 0(x0)j (independene of N)= ln ���� limx!x0 f(x)� f(x0)x� x0 ����< ln �Æ (see equation (2) and the omment thatall observations of the trajetorylie in a �-neighborhoodof the �xed point for any Æ > � > 0)� ln 1 (� is smaller than Æ, see eq. (2))= 0
(14)

See Setion 2 and Jetshke (1989), p.117.b) Stohasti proess, �xed point:Given a stohasti proess Xt+1 = ft(X0; �) = f(Xt; �) (p. equation (3)).Let the initial point x0 belong to the attration zone of the �xed point x0.Primarily we have to show that �(x0) � �(x0) in terms of unbiased estima-tions.
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�(x0) = limN!1 1N N�1Xi=0 ln jf 0(xi)j (Lyapunov exponent,started in the initial point)= limN!1 1N N�1Xi=0 g(xi) (with transformation g(x) = ln jf 0(x)j)= E[g(X)℄ (p. equation 6)� g[E(X)℄ (Jensen inequality with a onave funtion)= g(x0) (the expeted value of X is set to be x0; E(X) = x0)= ln jf 0(x0)j (bakward transformation)= �(x0) (p. deterministi ase) (15)The further proof is analogial to the deterministi ase. The Lyapunovexponent started in the initial point is smaller than 0.) Deterministi proess, periodial orbit:Given a deterministi proess xt+1 = ft(x0) = f(xt) (p. equation (1)).The initial point x0 belongs to the attration zone of a periodial orbit withperiod K, x1; :::; xK . For a periodial orbit holds true:xk = xk+K and xk+1 = xk+1+K and xk+2 = xk+2+K and so on.In addition, this means that:f 0(xk) = (fK+1)0(xk) and fK+1(xk) = fK(xk+1).It holds true:j(fK)0(xk+1)j = ����� lim�x!0 fK(xk+1 +�x)� fK(xk+1)�x ����� < 1 (periodial orbit,p. deterministi proess, �xed point)j(fK+1)0(xk)j < 1 (beause of fK+1(xk) = fK(xk+1))and the independene of k)jf 0(xk)j < 1 (beause of f 0(xk) = (fK+1)0(xk)): (16)
14



For the Lyapunov exponent follows:�(x0) = 1K KXk=1 ln jf 0(xk)j (attration zone of the periodial orbit)< 1K �K � ln 1 (p. deterministi ase, �xed point)< 0: (17)d) Stohasti proess, periodial orbit:Given a stohasti proess Xt+1 = ft(X0; �) = f(Xt; �) (p. equation 3).The initial point x0 belongs to the attration zone of a periodial orbit withthe period K, (x1); :::(xK) .Without loss of generality holds true�(x0) � �(xk) (p. stohasti ase, �xed point in a loal view).Consequently, for the Lyapunov exponent of a stohasti proess with aperiodial orbit follows:�(x0) � 1K KXi=1 ln jf 0(xi)j (p. deterministi ase, periodial orbit)< 1K �K � ln 1 (p. deterministi ase, �xed point)< 0: (18)
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