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Two 
onne
ted models for varying amplitudesin BTA-deep-hole-drillingWinfried Theis, Laurie Davies and Claus WeihsSeptember 23, 2005Abstra
tTwo models are proposed to roughly approximate the observed be-haviour of the amplitude of the drilling torque in the BTA-deep-hole-drilling pro
ess. It is shown that these models are 
losely 
onne
ted.1 Introdu
tionBTA-deep-hole-drilling is a pro
ess for the produ
tion of holes with a highlength to diameter proportion. In our 
ase the boring tool has a diameterof 60mm and the holes are 500mm long. The pro
ess produ
es holes of highquality with respe
t to straightness and roughness of the hole-wall. Butbe
ause of the 
exibility of the boring tool/toolbar assembly the pro
ess isvulnerable to dynami
 disturban
es su
h as 
hatter and spiralling. For moredetails see e.g. Weinert et al. (2002).In this paper we fo
us on the modelling of 
hatter. We do not try to ex-pli
itly model this phenomenon, but 
ompare di�erent approa
hes to des
ribethe phenomena observed in the drilling torque of experiments in whi
h 
hat-ter was observed. Figure 1 gives two examples of time series of the drillingtorque. From these series it 
an be seen that there exists more than one statein the pro
ess.
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Figure 1: Two time series (Exp. 1 and 21a) of the drilling torque fromexperiments at the same parameters f = 0:185mm=rev, v
 = 90m=min and_V = 300l=minThe next �gure shows the spe
trograms of the time series above. Thesespe
trograms show 
learly that the 
hatter is dominated by single frequen
ies,whi
h led to the idea of modelling the variation of these frequen
ies.

Figure 2: The spe
trograms of the time series in Figure 1To give an impression of the development of the amplitudes over time themost prominent frequen
ies in these spe
trograms are plotted over time inFigure 3.
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Figure 3: The amplitudes of most prominent frequen
ies 234Hz (bla
k; highin the middle), 703Hz (dark grey; high in the last part) and 1182Hz (lightgrey; high in the beginning) plotted over time2 Approximating the amplitudes by a two-sided logisti
 modelThe main goal in this part of the analysis is to des
ribe the main features ofthe variation of the amplitudes. From Figure 3 it is obvious that the fun
tionmust allow for a very steep as
ent and then staying on a 
ertain level for sometime and then a similar steep des
ent. Another form observed in the data isa small jump and the a long des
ent. Both features had to be in
luded in thefun
tion to approximate the data. The basi
 fun
tional form for the modelis the following:g(x; a;m;d) = a1 + exp ��x+m1d1 �+ exp �x�m2d2 � + exp�� (d2�d1)x+d1m2�d2m1d1d2 �(1)The parameters in the fun
tion have the following e�e
ts: a determines themaximal value of the fun
tion if m1 � m2 whi
h determine the position ofthe middle of the rise or fall, resp., d1 and d2 determine the slopes in m1 andm2.Figure 4 shows two parameter settings for this fun
tion, whi
h exhibitthe requested behaviour.
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Figure 4: g(x; a;m;d) for m1 = 10, m2 = 40, and d1 = 2 = d2 on theleft-hand side, and m1;2 = 10 and d1 = 2 and d2 = 1000 on the right-handside.Sin
e in some experiments several 
hanges in the 
hatter frequen
ies wereobserved, several fun
tions of this form give a 
omplete des
ription of theamplitudes over time. Figure 5 shows �ts of these fun
tions to amplitudesfrom Figure 3.

Figure 5: Upper Panels: Fits of sums of the basi
 fun
tion to the amplitudes;Lower Panels: Observations; Left: 1182Hz from the �rst Experiment; Right:703Hz from se
ond Experiment.
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3 A dynami
 modelIn Weinert et al. (2002) the following di�erential equation was proposed asa general model for the des
ription of the 
hatter:d2M(t)dt2 + h(t)(b2 �M(t)2)dM(t)dt + !2M(t) = W (t) (2)t 2 [0;1) and 200 � ! � 2500 in our appli
ation, h : R ! R an integrablefun
tion, b 2 R, and W (t) a white noise pro
ess. In a �rst step, this equationis 
onsiderably simpli�ed, when M(t) is taken as a harmoni
 pro
ess. LetM(t) := g(t) 
os(!t+ �):dM(t)dt = dg(t)dt 
os(!t+ �)� !g(t) sin(!t+ �);d2M(t)dt2 = d2g(t)dt 
os(!t+ �)� 2!dg(t)dt sin(!t+ �)� !2g(t) 
os(!t+ �)First, we note that the term !2g(t) 
os(!t + �) is eliminated by substitut-ing the derivations in (2). Se
ond, dg(t)dt does not 
ontain high-frequen
y-
omponents and thus, the following holdsZ dg(t)dt 
os(!t+ �)dt � 0:This means that for the solution of the di�erential equation the terms not
ontaining the frequen
y ! have no e�e
t be
ause they are eliminated byintegration. Therefore, (2) 
an be repla
ed by�! sin(!t+ �)�2dg(t)dt + h(t)g(t)(b2 � g(t)2 
os2(!t+ �))� = W (t): (3)Now 
os2(!t+ �) = (1� 
os(2!t+ 2�))=2, and 
os(2!t+ 2�)) has mean 0.So we get:�! sin(!t+ �)�2dg(t)dt + h(t)g(t)(b2 � g(t)22 )� = W (t): (4)Multiply (4) with sin(!t+�), and note that W (t) sin(!t+�) behaves similarto white noise. Moreover, note that sin2(!t + �) � 1=2. It follows for theamplitude that dg(t)dt + h(t)2 g(t)(b2 � g(t)22 ) = W (t)! : (5)This is the amplitude-equation for the di�erential equation in (2), if there isonly one frequen
y in the pro
ess. 5



4 Conne
tion of the di�erential equation tothe logisti
 fun
tionNow assume that the logisti
 fun
tion from se
tion 2 is the right form forg(t). Then it has to be shown that there is a fun
tion h(t) so that equation(5) has a solution. To show this, white noise is repla
ed by 0 to make the
al
ulations more straightforward. Furthermore we redu
e the problem tothe upward jump in the fun
tion for symmetry reasons.Set g(t) := a1 + exp �� t�t0d � ;it follows dg(t)dt =  �exp �� t�t0d �d ! � a�1 + exp �� t�t0d ��2! :Inserting these formulas into (5) we get2 exp �� t�t0d � ad �1 + exp �� t�t0d ��2 +h(t) ab21 + exp �� t�t0d � � a32 �1 + exp �� t�t0d ��3! = 0Subtra
ting the �rst term on both sides:h(t) 2ab2 �1 + exp �� t�t0d ��2 � a32 �1 + exp �� t�t0d ��3 ! = �2 exp �� t�t0d � ad �1 + exp �� t�t0d ��2 :Be
ause the term in bra
kets on the left hand side is never 0, it is possibleto divide by it. It followsh(t) = �2 exp �� t�t0d � �1 + exp �� t�t0d ��d�b2 �1 + exp �� t�t0d ��2 � a22 �This solution is well-de�ned for t 2 R. So (g; h) is a pair of fun
tions, whi
hsolves equation (5).5 Dis
retisation of the amplitude equation andsimulationsThe dis
retisation of equation (5) is given byg(t+ 1)� g(t) = �b2h(t)2 g(t) + h(t)4 g(t)3 + "t (6), g(t+ 1) = �1� b2h(t)2 � g(t) + h(t)4 g(t)3 + "t: (7)6



Here " is a dis
rete white noise pro
ess, e.g. normal white noise.The latter relation is used to estimate h(t) from the amplitudes for fre-quen
y 703 Hz in the experiment displayed in Figure 3 in the right-handpanel. Taking 21 su

essive observations of the amplitude and omitting the
ubi
 term in (6), the slope { whi
h is essentially h(t) { displays the behaviourshown in Figure 6.

Figure 6: Slopes of the linear part in (6) over timeThe horizontal grey 
urve in Figure 6 shows the result of the loess-smoother (Cleveland et al. (1992)) in
luding 75% of the data in the �t ofea
h point. This 
urve is similar to a logisti
 fun
tion like the fun
tion h(t)found in the last se
tion. The sign 
hange indi
ated by the verti
al greyline marks the turnover from stable to instable behaviour of this re
ursiveformula. Obviously it is a lot earlier { at about 170mm { than the a
tualrise of the amplitude whi
h does not happen until 300mm. This makes thisestimate a 
andidate for an alarm signal for 
hatter.As shown by Davies (1983) the a
tual shift from one state of the systemto another is postponed by noise. In Figure 7 this 
an be seen for simulateddata knowing that the 
hange point was set to t0 = 160mm 
ompared to7



the a
tual rise at t = 400mm. Furthermore, Figure 7 demonstrates that thebehaviour of the simulated data is not far from the real data although it doesnot 
apture the obvious trend towards the end of the pro
ess.All these observations 
ombined show the appropriateness of the modeland the possibility to dete
t a 
hange in state of the system long before ittruely has an impa
t on the output of the system.

Figure 7: Comparison of a simulated amplitude (bla
k) to a real amplitude(grey)When h(t) is 
hanged to the fun
tion 
orresponding to the two-sidedlogisti
 fun
tion from equation (1) so that it returns below 0 after some timethe pro
ess will return to the stable state again with a small delay as 
an beseen in Figure 8.
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Figure 8: Simulation of re
ursive formula with h(t) returning below 0; Startof instable pro
ess t0 = 100, end t1 = 400Using the 
al
ulated (one-sided) h(t) from Se
tion 4 with the parametervalues estimated on the real data (again on the data from Figure 3), we gete.g. the result shown in Figure 9.

9



0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

Index

A
m

pl
itu

de

Figure 9: Example for a result of a simulation with the 
al
ulated h(t)From Figure 9 it is obvious that the simulated data does not rea
h themaximal amplitude of the observed data. We tested a broad range of possiblevalues for the free parameter b in (5) between [10�6; 106℄ but did not �nd abetter result. This shows that an appropriate 
hoi
e for the parameters inthe re
ursive formula { and therefore in the di�erential equation { 
annotbe obtained by approximating the observed 
urve by the (one-sided) logis-ti
 fun
tion (or the fun
tion g(x; a;m;d) from equation (1)) and using theparameters from this approximation as estimates.A major drawba
k of the �rst simulated data was its total smoothnesswhen rea
hing its maximum. The real data displays a lot more variationwhen the 
hattering state is rea
hed. Two ways were 
onsidered to in
ludethis feature into the simulation fun
tion. One way was to 
hange the distri-bution of the noise to a �-distribution with a 
hanging expe
ted value andvarian
e whi
h was motivated by the distribution of periodogram ordinatesdetermined in Theis (2004). This turned out to be absolutely inpredi
table
ompared to the �rst approa
h with normal distributed noise. The se
ondapproa
h was to postulate that the varian
e is subje
t to a shift, as well,when the system 
hanges from stable to instable.10
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Figure 10: Simulated amplitudes with time-varying varian
e of the noise, allfrom the same parameters of the simulation fun
tion.Figure 10 gives an impression of di�erent possible behaviours of data with
hanging varian
e. The solid line displays the sought-after higher varian
ein the upper part but again does not rea
h the needed height and the otherlines show 
learly that this in
reased varian
e may eliminate the e�e
t of the
hanged state 
ompletely.6 Con
lusionIt was shown that the 
hosen method for the approximation of the variationof the amplitude is dire
tly 
onne
ted to the proposed phenomenologi
almodel.Furthermore, a possible way to estimate the time of the shift from stableto instable behaviour from the observations of the amplitudes was found byestimating the parameter of the linear part of the amplitude equation fromwindows of the observed data. The smoothed development of this parameter
ould be used as another alarm signal for a 
hattering state.11



The simulations showed that the derived amplitude equation with the
al
ulated fun
tion h is not yet appropriate for the approximation of theobserved behaviour of the amplitudes. Extensions in the sto
hasti
 part ofthe model were tested to in
orporate the fa
t that the observations display ahigher variability in the 
hattering state. Two ways of in
lusion of this featureof the data were tested. On the one hand a �-distribution was used for thedisturban
es, whi
h led to an inadequate behaviour of the simulated series.On the other hand a 
hange in the varian
e parallel to the 
hange of thestability parameter was introdu
ed, whi
h looked slightly more appropriatebut also did not rea
h the goal 
ompletely.A
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