-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Research Papers in Economics

E E D I‘l : ‘I‘ D R T p——

Der Open-Access-Publikationsserver der ZBW - Leibniz-Informationszentrum Wirtschaft
The Open Access Publication Server of the ZBW - Leibniz Information Centre for Economics

Davies, P. Laurie; Theis, Winfried; Weihs, Claus

Working Paper

Two connected models for varying
amplitudes in BTA-deep-hole-drilling

Technical Report / Universitat Dortmund, SFB 475 Komplexitatsreduktion in Multivariaten
Datenstrukturen, No. 2005,36

Provided in cooperation with:
Technische Universitat Dortmund

Suggested citation: Davies, P. Laurie; Theis, Winfried; Weihs, Claus (2005) : Two connected
models for varying amplitudes in BTA-deep-hole-drilling, Technical Report / Universitat
Dortmund, SFB 475 Komplexitatsreduktion in Multivariaten Datenstrukturen, No. 2005,36, http://
hdl.handle.net/10419/22626

Nutzungsbedingungen: Terms of use:

Die ZBW raumt lhnen als Nutzerin/Nutzer das unentgeltliche, The ZBW grants you, the user, the non-exclusive right to use
raumlich unbeschrankte und zeitlich auf die Dauer des Schutzrechts the selected work free of charge, territorially unrestricted and
beschrankte einfache Recht ein, das ausgewahlte Werk im Rahmen within the time limit of the term of the property rights according
der unter to the terms specified at

— http://www.econstor.eu/dspace/Nutzungsbedingungen — http://www.econstor.eu/dspace/Nutzungsbedingungen
nachzulesenden vollstandigen Nutzungsbedingungen zu By the first use of the selected work the user agrees and
vervielfaltigen, mit denen die Nutzerin/der Nutzer sich durch die declares to comply with these terms of use.

erste Nutzung einverstanden erklart.

Mitglied der

-3 B UJ Leibniz-Informationszentrum Wirtschaft
[ Leibniz Information Centre for Economics Leibniz-Gemeinschaft ;


https://core.ac.uk/display/6785938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Two connected models for varying amplitudes
in BTA-deep-hole-drilling

Winfried Theis, Laurie Davies and Claus Weihs
September 23, 2005

Abstract

Two models are proposed to roughly approximate the observed be-
haviour of the amplitude of the drilling torque in the BTA-deep-hole-
drilling process. It is shown that these models are closely connected.

1 Introduction

BTA-deep-hole-drilling is a process for the production of holes with a high
length to diameter proportion. In our case the boring tool has a diameter
of 60mm and the holes are 500mm long. The process produces holes of high
quality with respect to straightness and roughness of the hole-wall. But
because of the flexibility of the boring tool/toolbar assembly the process is
vulnerable to dynamic disturbances such as chatter and spiralling. For more
details see e.g. Weinert et al. (2002).

In this paper we focus on the modelling of chatter. We do not try to ex-
plicitly model this phenomenon, but compare different approaches to describe
the phenomena observed in the drilling torque of experiments in which chat-
ter was observed. Figure 1 gives two examples of time series of the drilling
torque. From these series it can be seen that there exists more than one state
in the process.



Figure 1: Two time series (Exp. 1 and 21la) of the drilling torque from
experiments at the same parameters f = 0.185mm/rev, v, = 90m/min and
V' = 300l/min

The next figure shows the spectrograms of the time series above. These
spectrograms show clearly that the chatter is dominated by single frequencies,
which led to the idea of modelling the variation of these frequencies.
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Figure 2: The spectrograms of the time series in Figure 1
To give an impression of the development of the amplitudes over time the

most prominent frequencies in these spectrograms are plotted over time in
Figure 3.
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Figure 3: The amplitudes of most prominent frequencies 234Hz (black; high
in the middle), 703Hz (dark grey; high in the last part) and 1182Hz (light
grey; high in the beginning) plotted over time

2 Approximating the amplitudes by a two-
sided logistic model

The main goal in this part of the analysis is to describe the main features of
the variation of the amplitudes. From Figure 3 it is obvious that the function
must allow for a very steep ascent and then staying on a certain level for some
time and then a similar steep descent. Another form observed in the data is
a small jump and the a long descent. Both features had to be included in the
function to approximate the data. The basic functional form for the model
is the following:

a

14 exp <—_m;—lml> + exp <x_d—;nz> + exp <_(d2—d1)$;1dé:12—d2m1>
()
The parameters in the function have the following effects: a determines the
maximal value of the function if m; < my which determine the position of
the middle of the rise or fall, resp., d; and dy determine the slopes in m; and
mo.
Figure 4 shows two parameter settings for this function, which exhibit
the requested behaviour.
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Figure 4: g(z;a,m,d) for my = 10, my = 40, and d; = 2 = dy on the
left-hand side, and m;, = 10 and d; = 2 and dy = 1000 on the right-hand
side.

Since in some experiments several changes in the chatter frequencies were
observed, several functions of this form give a complete description of the
amplitudes over time. Figure 5 shows fits of these functions to amplitudes
from Figure 3.
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Figure 5: Upper Panels: Fits of sums of the basic function to the amplitudes;
Lower Panels: Observations; Left: 1182Hz from the first Experiment; Right:
703Hz from second Experiment.



3 A dynamic model

In Weinert et al. (2002) the following differential equation was proposed as
a general model for the description of the chatter:

d*M (1) dM (1)
dt? dt
t € [0,00) and 200 < w < 2500 in our application, h : R — R an integrable

function, b € R, and W (¢) a white noise process. In a first step, this equation
is considerably simplified, when M (#) is taken as a harmonic process. Let

+h(t)(b* — M(1)*) W M(t) =W () (2)

M(t) = g(t)cos(wt+ ).
dM(t dg(t
dt( ) _ % cos(wt + @) — wg(t) sin(wt + ¢),
d*M(t) d’g(t) dg(1) 2
= —9 ' _
o7z 7 cos(wt + ¢) — 2w o sin(wt + @) — w?g(t) cos(wt + @)
First, we note that the term w?g(t) cos(wt + ¢) is eliminated by substitut-

ing the derivations in (2). Second, d%—f) does not contain high-frequency-

components and thus, the following holds

/ dz(tt) cos(wt + ¢)dt =~ 0.

This means that for the solution of the differential equation the terms not
containing the frequency w have no effect because they are eliminated by
integration. Therefore, (2) can be replaced by

—wsin(wt + ¢) <2dz_(tt) + h(t)g(t)(b* — g(t)? cos®(wt + ¢))) =Wi(t). (3)

Now cos?(wt + @) = (1 — cos(2wt + 2¢))/2, and cos(2wt + 2¢)) has mean 0.
So we get:

dg(t t)?

—wsin(wt + ¢) (2% + h(t)g(t)(b* — 9() )> = W(t). (4)
Multiply (4) with sin(wt+ ¢), and note that W () sin(wt + ¢) behaves similar
to white noise. Moreover, note that sin®(wt + ¢) ~ 1/2. It follows for the
amplitude that

dg(t) | h(t) o9 W)
— 4+ —=g(t)(b° — = . 5
1) M0 gy — 20y = B )
This is the amplitude-equation for the differential equation in (2), if there is
only one frequency in the process.



4 Connection of the differential equation to
the logistic function

Now assume that the logistic function from section 2 is the right form for
g(t). Then it has to be shown that there is a function h(t) so that equation
(5) has a solution. To show this, white noise is replaced by 0 to make the
calculations more straightforward. Furthermore we reduce the problem to
the upward jump in the function for symmetry reasons.

Set

it follows

(=) (e
a d (e (-52)°)

Inserting these formulas into (5) we get

L G ) 2+h<t>< - . 3>:0
d (1 + exp (—=R)) 1+ exp (—5°) 2 (1+exp (—512))
Subtracting the first term on both sides:
h(t) (W (L+exp (= ”°))2—a3) N X G ) L
2 (1+ exp (~54)° 4 {1+ exp (-52))’

Because the term in brackets on the left hand side is never 0, it is possible
to divide by it. It follows

exp (512 (1 + exp (—Lh))
a (02 (1+ exp (—50))° - 22)

This solution is well-defined for t € R. So (g, h) is a pair of functions, which
solves equation (5).

h(t) = —2

5 Discretisation of the amplitude equation and
simulations

The discretisation of equation (5) is given by

ot+1)—gt) = T2 gy 4 Mgy )
Sgt+1) = <1 - bg}g”) o)+ Doy sc. @)



Here ¢ is a discrete white noise process, e.g. normal white noise.

The latter relation is used to estimate h(t) from the amplitudes for fre-
quency 703 Hz in the experiment displayed in Figure 3 in the right-hand
panel. Taking 21 successive observations of the amplitude and omitting the
cubic term in (6), the slope — which is essentially h(¢) — displays the behaviour
shown in Figure 6.
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Figure 6: Slopes of the linear part in (6) over time

The horizontal grey curve in Figure 6 shows the result of the loess-
smoother (Cleveland et al. (1992)) including 75% of the data in the fit of
each point. This curve is similar to a logistic function like the function h(t)
found in the last section. The sign change indicated by the vertical grey
line marks the turnover from stable to instable behaviour of this recursive
formula. Obviously it is a lot earlier — at about 170mm — than the actual
rise of the amplitude which does not happen until 300mm. This makes this
estimate a candidate for an alarm signal for chatter.

As shown by Davies (1983) the actual shift from one state of the system
to another is postponed by noise. In Figure 7 this can be seen for simulated
data knowing that the change point was set to {; = 160mm compared to



the actual rise at t = 400mm. Furthermore, Figure 7 demonstrates that the
behaviour of the simulated data is not far from the real data although it does
not capture the obvious trend towards the end of the process.

All these observations combined show the appropriateness of the model
and the possibility to detect a change in state of the system long before it
truely has an impact on the output of the system.
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Figure 7: Comparison of a simulated amplitude (black) to a real amplitude
(grey)

When h(t) is changed to the function corresponding to the two-sided
logistic function from equation (1) so that it returns below 0 after some time
the process will return to the stable state again with a small delay as can be
seen in Figure 8.
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Figure 8: Simulation of recursive formula with h(¢) returning below 0; Start
of instable process t; = 100, end ¢; = 400

Using the calculated (one-sided) h(t) from Section 4 with the parameter
values estimated on the real data (again on the data from Figure 3), we get
e.g. the result shown in Figure 9.
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Figure 9: Example for a result of a simulation with the calculated h(t)

From Figure 9 it is obvious that the simulated data does not reach the
maximal amplitude of the observed data. We tested a broad range of possible
values for the free parameter b in (5) between [107°,10°] but did not find a
better result. This shows that an appropriate choice for the parameters in
the recursive formula — and therefore in the differential equation — cannot
be obtained by approximating the observed curve by the (one-sided) logis-
tic function (or the function g(z;a, m,d) from equation (1)) and using the
parameters from this approximation as estimates.

A major drawback of the first simulated data was its total smoothness
when reaching its maximum. The real data displays a lot more variation
when the chattering state is reached. Two ways were considered to include
this feature into the simulation function. One way was to change the distri-
bution of the noise to a I'-distribution with a changing expected value and
variance which was motivated by the distribution of periodogram ordinates
determined in Theis (2004). This turned out to be absolutely inpredictable
compared to the first approach with normal distributed noise. The second
approach was to postulate that the variance is subject to a shift, as well,
when the system changes from stable to instable.
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Figure 10: Simulated amplitudes with time-varying variance of the noise, all
from the same parameters of the simulation function.

Figure 10 gives an impression of different possible behaviours of data with
changing variance. The solid line displays the sought-after higher variance
in the upper part but again does not reach the needed height and the other
lines show clearly that this increased variance may eliminate the effect of the
changed state completely.

6 Conclusion

It was shown that the chosen method for the approximation of the variation
of the amplitude is directly connected to the proposed phenomenological
model.

Furthermore, a possible way to estimate the time of the shift from stable
to instable behaviour from the observations of the amplitudes was found by
estimating the parameter of the linear part of the amplitude equation from
windows of the observed data. The smoothed development of this parameter
could be used as another alarm signal for a chattering state.
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The simulations showed that the derived amplitude equation with the
calculated function A is not yet appropriate for the approximation of the
observed behaviour of the amplitudes. Extensions in the stochastic part of
the model were tested to incorporate the fact that the observations display a
higher variability in the chattering state. Two ways of inclusion of this feature
of the data were tested. On the one hand a I'-distribution was used for the
disturbances, which led to an inadequate behaviour of the simulated series.
On the other hand a change in the variance parallel to the change of the
stability parameter was introduced, which looked slightly more appropriate
but also did not reach the goal completely.
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