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Bowker’s Test for Symmetry and Modifications

within the Algebraic Framework

Anne Krampe, Sonja Kuhnt

Fachbereich Statistik, Institut für Mathematische Statistik und industrielle

Anwendungen, Universität Dortmund, 44221 Dortmund, Germany

Abstract

Categorical data occur in a wide range of statistical applications. If the data are

observed in matched pairs, it is often of interest to examine the differences between

the responses. We concentrate on tests of axial symmetry in two-way tables.

A commonly used procedure is the Bowker test which is a generalization of the

McNemar test. The test decision is based on a χ2-approximation which might not

be adequate, for example if the table is sparse. Therefore modifications of the test

statistic have been proposed. We suggest a test of symmetry based on Bowker’s

test and Markov Chain Monte Carlo methods following the algorithm of Diaconis

and Sturmfels (1998). We carry out a simulation study to determine and com-

pare the performance of the simulation test, the Bowker test and two modifications.

Keywords: Computational commutative algebra, Diaconis-Sturmfels algorithm,

matched-pairs data, MCMC, Metropolis-Hastings algorithm, test for symmetry.

1 Introduction

Categorical data occur in many different fields of applications and methods for

the analysis of such data are necessary and useful, see e.g. Agresti (2002). In this

article we consider data that consist of two dependent samples: each observation

in one sample matches an observation of the other. According to Agresti (2002) we

will call such data ”matched-pairs data”. As an example consider rater agreement

studies. Suppose that two people, A and B, judge a sample of n subjects or

objects into I different, predetermined categories. The resulting data is given in an

I×I-contingency table. The cell entry nij is the number of subjects or objects that

are classified into category i by rater A and to j by B, i, j = 1, . . . , I, see Rapallo

(2002). Matched-pairs data occur also in genetics such as in associating-mapping
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studies, e.g. to assess the role of candidate genes. Using the genome of individuals

that are known to be affected with the disease of interest and of unaffected

individuals, the counts of the corresponding alleles or genotypes are summarized in

a two-dimensional contingency table, see Boehnke and Langefeld (1998) for details.

An interesting question is whether the contingency table is symmetric. For rater

agreement studies this means to check if the number of subjects that are classified

as (i, j) differ significantly from the number of individuals that are classified

as (j, i). For a 2 × 2-table this corresponds to examine marginal homogeneity.

McNemar (1947) provided a test for axial symmetry in this specific case. But often

we have to deal not only with two but with I, I > 2, different categories. Bowker

(1948) introduced a generalization of McNemar’s test to check for symmetry in

two-way tables. The decision is based on a χ2-approximation of the distribution

of the test statistic. This might not be appropriate e.g. when the table is sparse.

Edwards (1948) recommended to use a continuity correction. May and Johnson

(2001) proposed a modified Wald statistic as an alternative to Bowker’s test.

This article is organized as follows. In section 2 we describe tests for symmetry in a

square contingency table and emphasize the need of an exact test for an I×I-table,

I > 2. We suggest a test of symmetry based on Bowker’s test using the results from

computational commutative algebra in section 3. Diaconis and Sturmfels (1998) in-

troduced an algorithm that establishes a relationship between computational com-

mutative algebra and statistics. Using the Markov Chain Monte Carlo (MCMC)

approach, the algorithm enables sampling from a conditional distribution of an ex-

ponential family given a sufficient statistic. In particular Gröbner bases are utilized

to construct a Markov Chain. Hence computational commutative algebra provides

a valuable alternative to traditional asymptotics for sufficiently large samples and

exact inference for small samples. We describe the main concept of this algorithm

as well as the used MCMC method to set up Bowker’s test for symmetry within

the algebraic framework. In addition we include two modifications of Bowker’s test.

We carry out a simulation study to determine and compare the performances of the

approximate and the simulated tests in section 4. Furthermore we are interested

in a rule of thumb for the adequacy of the approximation. In addition, we analyze

data provided by the Research Network ”Quiet Traffic”.
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2 Tests for symmetry in an I × I-table

Suppose the underlying data is represented in an I × I-contingency table.

Let the cell counts nij come from random variables Nij , i, j = 1, . . . , I, and

assume that {Nij} follows a multinomial distribution with
∑
i

∑
j

Nij = n and

Nij ∈ {0, 1, . . . , n}. We refer to πij as the probability of the occurence of the

event (i, j), i.e. to be classified into category i by rater A and to j by B, respectively.

We start with the simple case of I = 2 different categories. The underlying data

can be summarized in a 2 × 2-table. One wants to know if there is an agreement

in the classification of the subjects or objects. For a 2 × 2-table this corresponds

to testing for axial symmetry or equivalently for marginal homogeneity, see e.g.

Agresti (2002) for details. The cells of interest are the cells that report a change

of judgement, i.e. n12 and n21. If the two raters agree about the classification

of the n subjects, n12 and n21 are both equal to zero. In case of disagreement,

these cell entries specify the different classifications. Thus we check whether the

expected values of the corresponding cell entries differ significantly, i.e. we examine

the hypothesis H0 : E(N12) = E(N21) and the alternative H1 : E(N12) 6= E(N21).

McNemar (1947) introduced a test based on the usual χ2−test. The standardized

sum of the squared differences between the cell entries Nij and their expected values

is used as a test statistic:

χ2 =
2∑

i=1

2∑

j=1

(Nij − E(Nij))2

E(Nij)
.

Since we are testing for symmetry, the expected value of Nij is E(Nij) = Nij+Nji

2 ,

i, j = 1, 2, and the test statistic becomes

χ2 =
(N12 −N21)2

N12 + N21
.

Under the hypothesis H0, χ2 is approximately χ2−distributed with 1
2 ·2 ·(2−1) = 1

degrees of freedom. But this approximation might not be adequate, e.g.

when the table is sparse. As a rule of thumb, Agresti (2002) recommended

a sample size of n > 10. If the approximation is inappropriate, we have to

apply an exact test. Assuming H0, N12|N12 + N21 is binomially distributed

with P (N12 = n12) = n12
n12+n21

= 1
2 . Therefore the Binomial test is an intuitive

choice for an exact test procedure, see e.g. Sheskin (2000) for a detailed description.

In general we consider I, I > 2, different categories. Thus the data can be presented

in an I × I-table. We are interested in axial symmetry since it is more informative
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than marginal homogeneity, see e.g. May and Johnson (2001). Analogously to

the simple case we test H0 : E(Nij) = E(Nji) for all i, j = 1, . . . , I versus H1 :

E(Nij) 6= E(Nji) for at least one pair (i, j). The test statistic of the standardized

sum of the squared differences between Nij and E(Nij) = Nij+Nji

2 , i, j = 1, 2, . . . , I

can be simplified to

χ2 =
I∑

j=i+1

I−1∑

i=1

(Nij −Nji)2

Nij + Nji
.

Assuming H0, χ2 is approximately χ2-distributed with 1
2 · I · (I − 1) degrees of

freedom, see e.g. Bowker (1948). Furthermore we consider two modifications of the

Bowker test. Edwards (1948) suggested a continuity correction for the McNemar

test which can be extended for I × I-tables, I > 2

χ2
korr =

I∑

j=i+1

I−1∑

i=1

(| Nij −Nji | −1)2

Nij + Nji
.

Assuming the underlying table is symmetric, χ2
korr is approximately χ2

1
2 I(I−1)

dis-

tributed. May and Johnson (2001) introduced an alternative to Bowker’s test

by modifying the Wald test for symmetry with test statistic χ2w = δ′V −1δ, with

δ = Nij−Nji

n . In particular they suggested using the modified covariance matrix

Vmw =
1
n




λ12 − δ2
12 δ13δ12 · · · δ(I−1)Iδ12

δ12δ13 λ13 − δ2
13

. . .
...

...
. . . . . . δ(I−1)Iδ(I−2)(I−1)

δ12δ(I−1)I · · · δ(I−2)(I−1)δ(I−1)I λ(I−1)I − δ2
(I−1)I




,

with λij = Nij+Nji

n . Thus the modified Wald test statistic becomes

χ2
mw =

I∑

j=i+1

I−1∑

i=1

n · (Nij −Nji)2

n · (Nij + Nji)− (Nij −Nji)2
.

Supposing the considered I × I-table is symmetric, χ2mw is approximately χ2
1
2 I(I−1)

distributed.

It is an interesting question to determine and compare the performances of these

tests. Connected with this is the inspection of the approximation. So far no rule

of thumb seems to be available in the literature for the adequacy of the χ2
1
2 I·(I−1)

approximation. In addition we have not found an appropriate exact equivalent of

the Bowker test for the general case of an I × I-table. In order to overcome this

problem we suggest a test of symmetry based on the χ2-test and MCMC methods by

using computational commutative algebra. Moreover we also employ this approach
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for the continuity corrected test χ2
korr as well as the modified Wald test χ2mw to

evaluate and to compare these tests of symmetry.

3 MCMC and algebra

Markov Chain Monte Carlo (MCMC) methods are a tool to sample from the

distribution of interest, the ”target distribution”. For this purpose we construct a

Markov Chain with stationary distribution proportional to the target distribution.

We refer to Ewans and Grant (2001), Fahrmeir et al. (1981) and Sørensen and

Gianola (2002) for an introduction to Markov Chain Monte Carlo methods. Dia-

conis and Sturmfels (1998) proposed an algorithm that establishes a relationship

between computational commutative algebra and MCMC methods. We will briefly

describe the main concept of the Diaconis-Sturmfels algorithm. For further details

see e.g. Diaconis and Sturmfels (1998) or Rapallo (2003).

Let H be a finite sample space. Densities that can be expressed as

Pθ(X = x) = a(θ)e
Pd

l=1 θlTl(x)c(x), x ∈ H , θ ∈ Θ ⊂ Rd

with normalizing constant a(θ), sufficient statistic T := (T1, . . . , Td)′, T : H → Nd

and c : H → N belong to the exponential family.

In general we consider N random variables X1, . . . , XN . Suppose they are i.i.d.

with density Pθ(Xk = xk), k = 1, . . . , N . Thus their joint density is given by

Pθ(X1 = x1, . . . , XN = xN ) =
N∏

k=1

a(θ) · e
Pd

l=1 θlTl(xk) · c(xk)

= a(θ)N · e
Pd

l=1 θl

PN
k=1 Tl(xk)

N∏

k=1

c(xk).

It can be shown that
N∑

k=1

T (Xk) is a sufficient statistic for the parameter vector

θ ∈ Θ (Witting (1985), Korollar 3.20). We will be interested in the set of all data

sets with the same value of the sufficient statistic t =
N∑

k=1

T (xk). Based on Diaconis

Sturmfels (1998) we use the following notation:

Zt := {z : H → N|
∑

x∈H

z(x)T (x) = t}.

If z ∈ Zt every z(x), x ∈ H , is a data set whose sufficient statistic takes value

t. Notice that Zt is finite, nonempty and that the probability function on Zt is

hypergeometric, see Diaconis and Sturmfels (1998) and Rapallo (2003) for details.
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In accordance with the literature we use t to denote the test statistic as well as

its outcome. For illustration we will apply the theory to the special case we are

interested in: testing symmetry in an I × I-contingency table. If the cell entries

{Nij} are multinomially distributed, their joint density is given by

f(n11, n12, . . . , nII) =
n!

n11!n12! . . . nII !

I∏

i=1

I∏

j=1

p
nij

ij .

Under H0 this density can be rewritten in terms of an I · (I − 1) parametric expo-

nential family with sufficient statistic t = (Nii, i = 1, . . . , (I − 1); (Nij + Nji), j =

(i + 1), . . . , I, i = 1, . . . , (I − 1))′. Zt is the set of all I × I-tables with cell entries

nij ∈ N and value t of the sufficient statistic given above. The finite sample space

of such a table is H = {(i, j), i, j ∈ {1, . . . , I}}. Supposing the underlying table

is symmetric, T ((i, j)) is a vector of length (I − 1) + 2 ·
I−1∑
v=1

(I − v). A detailed

description of T ((i, j)) is given in the appendix. Assuming H0, the density function

on Zt is hypergeometric:

H(z) =
n!
|Zt|

∏

x∈H

1
z(x)!

,

see Diaconis and Sturmfels (1998).

To investigate the symmetry of the underlying I × I−table, we sample from H(z).

For this purpose we will apply the Metropolis-Hastings algorithm as a MCMC

method. We will briefly introduce the main concept of this algorithm, a detailed

description can be found e.g. in Chib and Greenberg (1995). Subsequently we

will combine computational commutative algebra and the Metropolis-Hastings

algorithm by using the Diaconis-Sturmfels algorithm.

Metropolis-Hastings algorithm

The procedure of the Metropolis-Hastings algorithm can be divided into two parts:

i) generate a candidate as a potential new state of the Markov Chain and

ii) accept or reject the proposed candidate.

Let π denote the invariant distribution of the Markov Chain with density π∗, E

the state space of the Markov Chain and q(r, s), r, s ∈ E the proposal distribution

(candidate generating distribution) with
∫

q(r, s)ds = 1. Assuming the Markov

Chain is presently in state r, state s is proposed in the next step with probability

q(r, s). In this setting it might happen that the Markov Chain moves more often
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in one direction, i.e. from r to s than vice versa. In order to adjust this potential

imbalance, the acceptance probability α is introduced. Thus the chain moves from r

to s, r 6= s, r, s ∈ E with probability p(r, s) = q(r, s) ·α(r, s). Using the reversibility

condition π∗(r)p(r, s) = π∗(s)p(s, r) it can be shown that

α(r, s) =





min(π∗(s)q(s,r)
π∗(r)q(r,s) , 1), if π∗(r)q(r, s) > 0

1, otherwise,

see Chib and Greenberg (1995) for details. The generated Markov Chain is reversible

due to the design of this algorithm. If also some mild regularity conditions (ape-

riodicity and irreducibility) are fulfilled, π∗ is the invariant density of the Markov

Chain. Recall that in our case π∗ equals H, the density function on Zt. The dif-

ficult task now is to find a suitable proposal distribution q(·, ·). For this purpose

Diaconis and Sturmfels (1998) introduced the Markov Basis. A Markov Basis is a

set of functions m1,m2, . . . , mL : H → Z, called moves, such that

i)
∑

x∈H

mi(x)T (x) = 0 for all 1 ≤ i ≤ L and

ii) for any t and z, z′ ∈ Zt there is a sequence of moves (mi1 , . . . , miA
) as well as

a sequence of directions (ε1, . . . , εA) with εj = ±1 such that

z′ = z +
A∑

j=1

εjmij and z +
a∑

j=1

εjmij ≥ 0 1 ≤ a ≤ A.

Both conditions ensure that the sufficient statistic t remains the same for the

new state z′. The second constraint also guarantees the irreducibility of the

chain. Using this definition, we can set up an appropriate Markov Chain for the

hypergeometric probability function H on Zt:

Construction of the Markov Chain

Suppose a Markov Basis m1, . . . ,mL is given. Select a move mU by choosing U

uniformly in {1, . . . , L} and the direction of the move ε = ±1 with probability 1
2

independently of U . Therefore the proposal distribution q(·, ·) is symmetric and

corresponds to a random walk. If the chain is currently in state z ∈ Zt, it moves

to z′ = z + εmU ∈ Zt with probability

α = min




∏
x∈H

z(x)
∏

x∈H

(z(x) + εmU (x))
, 1


 ,

see Rapallo (2003) for a detailed derivation. If the proposed new state z′ is not

element of Zt, e.g. if an entry of z′ is negative, the chain stays at z.
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In this manner we get an aperiodic, irreducible, reversible Markov Chain on Zt

with stationary probability function proportional to H, see Diaconis and Sturmfels

(1998) for a proof and a brief discussion for the rates of convergence. Thus the

problem to ascertain the proposal distribution is reduced to propose an appropriate

Markov Basis. Diaconis and Sturmfels (1998) suggested to apply results from

computational commutative algebra to solve this problem. In particular they

showed that the Markov Basis is equal to the reduced Gröbner Basis of an ideal

IT which will be specified later. In the following we will briefly describe the

algebraic background and refer to Cox et al. (1992) and Pistone et al. (2001) for

an introduction to computational commutative algebra.

Computational commutative algebra

Recall that H is a finite set. For each element x ∈ H we introduce an

indeterminate also denoted x. The basis for our consideration is k[H ], the

ring of polynomials in x ∈ H . Note that any function g : H → N can be

represented as a monomial
∏

x∈H

xg(x). In general a monomial involves more

than one indeterminate. To achieve comparability of monomials, we introduce

a monomial ordering which will be symbolized by Â, see e.g. Cox et al. (1992) § 2.2.

A function T := (T1, . . . , Td)′, T : H → Nd \ {0} can be described by the homo-

morphism

ϕT : k[H ] → k[t1, . . . , td]

x → t
T1(x)
1 t

T2(x)
2 · · · tTd(x)

d ,

see e.g. Rapallo (2003) for details. We concentrate our further study on the kernel

of this homomorphism which is called an ideal, IT = {p ∈ k[H ] : ϕT (p) = 0}.
Diaconis and Sturmfels (1998) provided a link between a Markov Basis and

computational commutative algebra. Using that each function m : H → Z can be

represented by the difference m(x) = m+(x)−m−(x) with m+(x) := max(m(x), 0)

and m−(x) := max(−m(x), 0), they have shown that a Markov Basis corresponds

to a basis of the ideal IT .

Theorem

A set of functions m1, . . . , mL is a Markov Basis iff the set

H m+ −H m−
, 1 ≤ i ≤ L
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generates the ideal IT , where m+ m− : H → N with m+(x)) and m−(x) as given

above.

Proof: Diaconis and Sturmfels (1998), Theorem 3.1.

According to the Hilbert Basis Theorem (see e.g. Cox et al. (1992), pg. 75),

every ideal I in a polynomial ring has a finite generating set called basis. Hence

we can restate our principle task: in order to define an appropriate proposal

distribution we look for a Markov Basis or equivalently for a basis of the ideal

IT ⊂ k[x1, . . . , xn], x1, . . . , xn ∈ H . But unlike the concept of a basis in linear

algebra, an ideal in a polynomial ring can have more than one basis. Therefore we

seek for a unique basis that exists for every ideal: the reduced Gröbner Basis, see

Cox et al. (1992), pp. 76 for details. Using the implicitation algorithm, Diaco-

nis and Sturmfels (1998) have specified a procedure to determine this Gröbner Basis.

Diaconis-Sturmfels algorithm

Assume that H is a finite set and T = {t1, . . . , td}. Let T : H → Nd with

T = (T1, . . . , Td)′ be given as well as a monomial ordering Â for H . This

ordering will be extended for H ∪ T such that t Â x for all x ∈ H and

t ∈ T in k[H , T ]. Basically Diaconis and Sturmfels create an ancillary ideal

I ∗ = {x−T T (x), x ∈ H } with T T (x) := t
T1(x)
1 · tT2(x)

2 · . . . · tTd(x)
d and compute the

reduced Gröbner Basis G∗ for I ∗
T . Since IT = I ∗

T ∩ k[H ], the reduced Gröbner

Basis G for IT contains those polynomials of G∗ which only involve H , see Diaco-

nis and Sturmfels (1998), Theorem 3.1 and Cox et al. (1992), § 3.1, § 3.3 for details.

4 Simulation study and data example

We carry out a simulation study to examine the use of the Diaconis-Sturmfels

algorithm for analyzing matched-pairs data. In particular we compare the per-

formance of the symmetry tests introduced in section 2 for 5 × 5-tables, i.e. we

test H0 : E(Nij) = E(Nji) against H1 : E(Nij) 6= E(Nji) for at least one pair

(i, j), i, j ∈ {1, . . . , 5} with the Bowker test, the modified Wald test and the

continuity corrected test. Related to that question we assess the adequacy of the

χ2-approximation and propose an alternative test based on Bowker’s test and

computational commutative algebra. We construct a Markov Chain based on the

reduced Gröbner Basis conform to the constraints of the symmetry tests. We focus
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on sparse tables to learn about the applicability of the approximation with the

χ2−distribution with 1
2 · 5 · (5− 1) = 10 degrees of freedom.

Consider again the finite sample space H = {(i, j), 1 ≤ i, j ≤ 5}. Assuming

the table is symmetric, it can be shown that the sufficient statistic is given by

(Nii, i = 1, . . . , 5− 1; ((Nij + Nji), j = (i + 1), . . . , 5), i = 1, . . . , 5− 1)′. Rewriting

the the sufficient statistic in terms of Zt, the set of all data sets whose sufficient sta-

tistic takes value t =
∑

x∈H

z(x)T (x), the corresponding T ((i, j)), i, j ∈ {1, . . . , I} is

a vector of length 24. We refer to the appendix for a detailed description of T ((i, j)).

The design of our simulation study is as follows: for each data set we generate a

Markov Chain with 500000 states, i.e. 5×5−contingency tables that are element of

the corresponding Zt. To ensure that the chain is independent of the original table,

we disregard the first 100000 tables in the so called burn-in-phase. We calculate

the values of the three test statistics for the underlying contingency table and

compare them to the corresponding values of each 100th table for a test decision.

Diaconis and Sturmfels (1998) considered briefly the rate of convergence for a

two-dimensional table. A more detailed investigation can be found in Diaconis and

Saloff-Coste (1995).

We present the analysis of 5×5−tables with specifically interesting results and refer

to the appendix for the examination of additional tables. Firstly we consider a case

where more than 20% of the expected values E(Nij), i 6= j, i, j ∈ {1, . . . , 5}, are

smaller than 5. This is in accordance with a common rule of thumb for the adequacy

of the χ2−test of independence (see e.g. Agresti (2002)). It turns out that even

if 50% of the expected values E(Nij), i 6= j, are less than 5, the approximation is

reasonable. For illustration we consider a data set given in table 1.




35 4 6 4 7

2 47 3 8 2

4 5 25 3 7

5 2 3 23 3

3 6 5 8 11




Table 1: Data set 1; 10 expected values E(Nij), i 6= j, are smaller than 5

We carry out the approximate and the corresponding simulated tests of symmetry.
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To get an idea of the adequacy of the χ2−approximation we display our results in

figure 1. The simulated values are characterized by the histogram, the χ2
10−density

is specified by the red line.
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simulated values of the corrected χ2−test statistic
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Figure 1: Histograms of the simulated values of the three symmetry test statistics

for data set 1

The approximation for the Bowker test and the modified Wald test almost coincides

with our simulated results. But the approximation for the continuity corrected test

is not suitable (too conservative). Inspecting the values of the test statistic as well

as the approximate and simulated p-values for this data set in table 2 leads to an

analogous conclusion. We get almost the same approximate and simulated p-values

for the Bowker test (papprox = 0.321, psimu = 0.305) and the modified Wald

test (papprox = 0.313, psimu = 0.307). Hence we cannot reject the hypothesis of

symmetry at level α = 0.05 for these tests. For the continuity corrected test we get

a different test decision for the simulated and approximate test, i.e. the p-value for

the simulated test is psimu = 0.04 but the approximate p-value is papprox = 0.304.

Thus we reject H0 at level α = 0.05 for the simulated test in contrast to the

approximate test.

test statistic approximate p-value simulated p-value

Bowker test 11.484 0.321 0.305

modified Wald test 11.596 0.313 0.307

continuity correction 11.717 0.304 0.040

Table 2: simulated and approximate results for data set 1

In the next step we analyzed a data set whose expected values E(Nij), i 6= j, are

all less than 5. The data are given in table 3.

As for data set 1, the results are diagramed in figure 2 to get an impression for

the adequacy of the χ2
10−approximation. Even in this case, the approximation

is appropriate for the Bowker test and the modified Wald test. And again, the
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


35 4 2 4 5

2 47 3 5 2

4 5 25 3 3

5 2 3 23 1

3 6 5 8 11




Table 3: data set 2; all expected values E(Nij), i 6= j, are smaller than 5

χ2
10−approximation for the continuity corrected test does not seem to be sensible

at all. Looking at the values of the test statistics as well as the approximate and

simulated p-values in table 4 we get results that are consistent with the results for

data set 1.
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Figure 2: Histograms of the simulated values of the three symmetry test statistics

for data set 2

test statistic approximate p-value simulated p-value

Bowker test 11.675 0.307 0.303

modified Wald test 11.849 0.295 0.302

continuity correction 15.294 0.122 0.004

Table 4: simulated and approximate results for data set 2

Subsequently we consider a smaller data set given in table 5 with all E(Nij) < 5

for all i 6= j and structural zeroes: n34 = n43 = 0.

The results of our analysis are displayed in figure 3, the values of the test statistics

with the corresponding p-values are specified in table 6. The approximation for

Bowker’s test and the modified Wald test is reasonable in the lower tail of the

distribution but gets worse quickly (at test statistic value 7 for both tests).

Inspecting the p-values of these tests given in table 6 we come to different con-
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


10 2 1 1 3

6 17 4 0 4

1 0 23 0 2

1 2 0 14 0

0 5 0 3 31




Table 5: data set 3; 16 expected values E(Nij), i 6= j, are less than 3, 4 expected

values E(Nij), i 6= j, are less than 5
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Figure 3: Histograms of the simulated values of the three symmetry test statistics

for data set 3

clusions for the simulated and the approximate method, i.e. we reject H0 at level

α = 0.05 for Bowker’s test and the modified Wald test. Thus the approximate

tests are more conservative than the simulated equivalent. The adequacy of the

χ2
10−approximation for the continuity corrected test for data set 3 is even worse

than before and will not be discussed further.

test statistic approximate p-value simulated p-value

Bowker test 16.111 0.096 0.027

modified Wald test 16.434 0.087 0.049

continuity correction 17.486 0.064 0.0001

Table 6: simulated and approximate results for data set 3

So far we examined contingency tables with cell entries nij , i 6= j, i, j ∈ {1, . . . , 5}
all less than 10. A data set with a bigger range for the values of nij is more realistic

and will be analyzed in the following. The data are given in table 7, the results are

displayed in figure 4 and table 8.

The expected values E(Nij), i 6= j, for data set 4 range from 45.5 (for cell entries

(2,3) and (3,2)) to 0 (for cell entries (1,5),(5,1),(2,5) and (5,2)). The approximation

of the distribution of the test statistic is inappropriate for all considered tests,
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


83 18 5 7 0

20 67 37 5 0

9 54 76 15 10

4 9 23 70 8

0 0 3 27 65




Table 7: data set 4, expected values E(Nij), i 6= j, differ from 0 to 45.5

particularly for the continuity corrected test. Compared to the simulated results, the

approximation is conservative although all tests reject the hypothesis of symmetry

at level α = 0.05.
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Figure 4: Histograms of the simulated values of the three symmetry test statistics

for data set 4

test statistic approximate p-value simulated p-value

Bowker test 22.153 0.014 0.005

modified Wald test 22.378 0.013 0.005

continuity correction 24.062 0.007 0.000

Table 8: simulated and approximate results for data set 4

Data example

Mobility is an important precondition for many aspects of modern life like economic

growth. But associated with increasing mobility is increasing traffic noise. The

research network ”Quiet traffic” sponsored by the ”Bundesministerium für Bildung

und Forschung” (BMBF) examines among others things the effect of transportation

noise on humans, specifically the mental and physical health (Griefahn et al. 2005).

We analyze a data set from the 1st preliminary study. 72 subjects are exposed
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twice to two different noise sources (i.e. road and rail noise) with four different

noise levels (40, 52, 70 and 82 [dB]) (Kuhnt et al. 2004). The subjects judge the

level of annoyance for the traffic noise on a scale which can be subsumized into five

different levels (i.e. very high, high, moderate, low, very low). The resulting data

set is given in table 9.

annoyance level 2

very low . . . very high

very low 51 28 3 0 0

15 68 40 5 1

annoyance level 1
... 0 29 77 21 1

0 4 19 80 14

very high 0 1 5 26 88

Table 9: Data set provided by the research network ”Quiet traffic” for the annoyance

level of traffic noise

We are interested in whether the subjects classify noise differently when they are

exposed to it twice, thus we test for symmetry. Several expected values of this data

are very small or even equal zero. Hence the χ2−approximation of the distribution

of the test statistic should be questioned. For the analysis of this data we follow the

same procedure as in the simulation study, i.e. we generate a Markov Chain with

500000 states, disregard the first 100000 tables in the burn-in-phase and calculate

the values of the test statistics (introduced in section 2) of each 100th table. The test

decision is based on the comparison of this values with the value of the corresponding

test statistic of the original data set. The simulation results as well as the χ2
10-

approximation are displayed in figure 5.
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Figure 5: Histograms of the simulated values of the three symmetry test statistics

for the data set provided by ”Quiet traffic”
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It turns out that the Bowker test and the modified Wald test yield almost the same

results, but the χ2
10−approximation of the distribution of the test statistics doesn’t

seem to fit very well. The adequacy of the χ2
10−approximation is even worse for

the corrected test of symmetry. The simulated and approximate results of the tests

are given in table 10.

test statistic approximate p-value simulated p-value

Bowker test 15.162 0.127 0.040

modified Wald test 15.245 0.123 0.041

continuity correction 14.548 0.149 0.005

Table 10: values of the test statistic of symmetry tests with approximate and sim-

ulated p-values for the ”Quiet traffic” data set

According to table 10 we can reject the hypothesis of symmetry at level α = 0.05.

Looking at the data we find that the judgement of the subjects is almost constant

and that there is hardly any change over more than two categories. In the cases

where the individuals classify the level of annoyance differently, the changes are

mostly towards a more moderate judgement.

5 Conclusion

We presented the Bowker test and two modifications, i.e. the modified Wald test

and the continuity corrected test to test for symmetry for matched-pairs data. The

test decisions are based on an approximation of the distribution of the test statistic

which might be inappropriate. To overcome this problem, we introduced tests for

symmetry using MCMC methods, computational commutative algebra and the test

statistics of the Bowker test and the two modifications. Based on our simulation

study we examined the adequacy of the approximation and a potential cut-off point

to justify the approximation. It turns out that the approximation works reason-

ably for the Bowker test and the modified Wald test even if the expected values

E(Nij), i 6= j, are all small. But analyzing a data set whose expected values differ

by more than 40, the approximation fails. For the continuity corrected test the

approximation works inappropriately (is conservative) for all considered data sets

in our simulation study. In order to avoid test decisions based on an inadequate

approximation of the distribution of the test statistic, we suggest Bowker’s test for

symmetry using MCMC methods and the Diaconis-Sturmfels algorithm. Further
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modifications of the Bowker test may also be included in the future.
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Appendix

A description of T ((i, j))

An important condition for the use of the Diaconis-Sturmfels algorithm is the

possibility to rewrite the set of all data sets with given sufficient statistic in terms of

Zt = {z : H → N| ∑
x∈H

z(x)T (x) = t} with H the finite sample space. We shortly

review the theoretical background. Assuming symmetry for the underlying I × I-

table and the multinomial distribution for the cell counts {Nij}, the joint density is

given by f(n11, n12, . . . , nII) = n!
n11!n12!...nII !

∏I
i=1

∏I
j=1 p

nij

ij . Assuming symmetry,

this density can be described in terms of an I ·(I−1) parametric exponential family

with sufficient statistic t = (Nii, i = 1, . . . , (I−1); (Nij +Nji), j = (i+1), . . . , I, i =

1, . . . , (I − 1))′. Zt is the set of all I × I-tables with cell entries nij ∈ N and

realization t of the sufficient statistic given above. The finite sample space of such

a table is H = {(i, j), i, j ∈ {1, . . . , I}}. For rewriting t in terms of Zt, we have

to extend t to t∗ with t∗ = (Nii, i = 1, . . . , (I − 1); (Nij + Nji), (Nji + Nij), j =

(i + 1), . . . I, i = 1, . . . , (I − 1))′.

T ((i, j)), i, j ∈ {1, . . . , I} has the same length than t∗ which is (I−1)+2 ·
I−1∑
v=1

(I−v),

it has cell entries 0 and 1 and can be divided into I parts. The first part has length

(I − 1) and represents the sufficient statistic that corresponds to the diagonal cells

Nii, i = 1, . . . (I−1). In particular the ith entry of T ((i, i)) is 1, all other entries are

0. T ((i, j)), i, j = 1, . . . , I, i 6= j is defined as follows: the first I − 1 entries are 0,

the remaining parts of T ((i, j)) have each length 2 · (I−v), v = 1, . . . , I−1. Partic-

ularly they represent the (Nij +Nji), (Nji +Nij), j = (i+1), . . . I, i = 1, . . . , (I−1)

by two cell entries equal to 1 and the other entries equal to 0.

Example

We want to test for symmetry in a 5× 5-table. The sufficient statistic t is given by

t = (N11, N22, N33, N44, N12 + N21, N13 + N31, N14 + N41, N15 + N51, N23 + N32,

N24 + N42, N25 + N52, N34 + N43, N35 + N53, N45 + N54)′.

We extend t to t∗ with

t∗ = (N11, N22, . . . , N44, N12 + N21, N21 + N12, . . . , N45 + N54, N54 + N45)′.
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Thus T ((i, j)) is a vector of length 24 given by

T ((1, 1)) = (1, 0, 0, . . . , 0)′

...

T ((4, 4)) = (0, 0, 0, 1, 0, . . . , 0)′

T ((1, 2)) = (0, 0, 0, 0, 1, 1, 0, . . . , 0)′

T ((2, 1)) = (0, 0, 0, 0, 1, 1, 0, . . . , 0)′

...

T ((5, 4)) = (0, . . . , 0︸ ︷︷ ︸
length:
5-1=4

, 0, . . . , 0︸ ︷︷ ︸
length:

2·(5-1)=8

, 0, . . . , 0︸ ︷︷ ︸
length:

2·(5-2)=6

, 0, . . . , 0︸ ︷︷ ︸
...

, 1, 1︸︷︷︸
length:

2

)′.

B Additional results of the simulation study




35 4 2 4 3

2 47 3 5 2

3 3 25 3 3

1 2 3 23 1

3 0 5 4 11




Table 11: data set 5, all expected values E(Nij), i 6= j, are less than 4
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Figure 6: Histograms of the simulated values of the three symmetry test statistics

for the data set 5
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test statistic approximate p-value simulated p-value

Bowker test 8.252 0.604 0.632

modified Wald test 8.318 0.598 0.632

continuity correction 7.163 0.710 0.159

Table 12: values of the test statistic of symmetry tests with approximate and sim-

ulated p-values for data set 5




38 0 5 4 1

28 16 13 4 20

0 28 5 1 1

13 27 16 48 24

0 10 0 18 29




Table 13: data set 6, expected values E(Nij), i 6= j, vary from 0.5 to 21
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Figure 7: Histograms of the simulated values of the three symmetry test statistics

for the data set 6

test statistic approximate p-value simulated p-value

Bowker test 79.743 0 0

modified Wald test 83.850 0 0

continuity correction 82.297 0 0

Table 14: values of the test statistic of symmetry tests with approximate and sim-

ulated p-values for data set 6
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


35 0 2 4 0

2 47 1 0 2

2 3 25 2 3

1 2 3 23 1

2 1 0 3 11




Table 15: data set 7, expected values E(Nij), i 6= j, are all less than 2.5
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Figure 8: Histograms of the simulated values of the three symmetry test statistics

for the data set 7

test statistic approximate p-value simulated p-value

Bowker test 13.333 0.206 0.166

modified Wald test 13.486 0.198 0.107

continuity correction 20.933 0.022 0.000

Table 16: values of the test statistic of symmetry tests with approximate and sim-

ulated p-values for data set 7
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Kuhnt, S., Schürmann, C. Griefahn, B. (2004): Annoyance from Multiple

Transportation Noise: Statistical Models and Outlier Detection. Methods of Infor-

mation in Medicine, 5, 510-515.

May, W.L., Johnson, W.D. (2001): Symmetry in Square Contingency Tables:

Tests of Hypotheses and Confidence Interval Construction. Journal of Biopharma-

ceutical Statistics, 11, 23-33.

22



McNemar, Q. (1947): Note on the Sampling Error of the Difference Betweeen

Correlated Proportions or Percentages. Psychometrika, 12, 153-157.

Pistone, G., Riccomagno, E., Wynn, H.P. (2001): Algebraic Statistics. Chap-

man & Hall CRC Press, Boca Raton, Fl.

Rapallo, F. (2002): Algebraic Exact Inference for Rater Agreement Models.

Preprint #467 Dipartimento di Matematica, Università di Genova.
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