## WWW.ECONSTOR.EU

# ECONSTOR

Der Open-Access-Publikationsserver der ZBW – Leibniz-Informationszentrum Wirtschaft The Open Access Publication Server of the ZBW – Leibniz Information Centre for Economics

Rozenholc, Yves; Mildenberger, Thoralf; Gather, Ursula

# Working Paper Constructing irregular histograms by penalized likelihood

Technical Report // Sonderforschungsbereich 475, Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund, No. 2009,04

Provided in cooperation with:

Technische Universität Dortmund

Suggested citation: Rozenholc, Yves; Mildenberger, Thoralf; Gather, Ursula (2009) : Constructing irregular histograms by penalized likelihood, Technical Report // Sonderforschungsbereich 475, Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund, No. 2009,04, http://hdl.handle.net/10419/41047

Nutzungsbedingungen:

Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche, räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen der unter

→ http://www.econstor.eu/dspace/Nutzungsbedingungen nachzulesenden vollständigen Nutzungsbedingungen zu vervielfältigen, mit denen die Nutzerin/der Nutzer sich durch die erste Nutzung einverstanden erklärt.

#### Terms of use:

The ZBW grants you, the user, the non-exclusive right to use the selected work free of charge, territorially unrestricted and within the time limit of the term of the property rights according to the terms specified at

 $\rightarrow$  http://www.econstor.eu/dspace/Nutzungsbedingungen By the first use of the selected work the user agrees and declares to comply with these terms of use.



### Constructing Irregular Histograms by Penalized Likelihood

Yves Rozenholc<sup>a</sup>, Thoralf Mildenberger<sup>\*,b</sup>, Ursula Gather<sup>b</sup>

<sup>a</sup> UFR de Mathmatiques et d'Informatique, Université Paris Descartes, MAP5 - UMR CNRS 8145, 45, rue des Saints-Pères, 75270 Paris CEDEX, France <sup>b</sup> Fakultät Statistik, Technische Universität Dortmund, 44221 Dortmund, Germany

#### Abstract

We propose a fully automatic procedure for the construction of irregular histograms. For a given number of bins, the maximum likelihood histogram is known to be the result of a dynamic programming algorithm. To choose the number of bins, we propose two different penalties motivated by recent work in model selection by Castellan [6] and Massart [26]. We give a complete description of the algorithm and a proper tuning of the penalties. Finally, we compare our procedure to other existing proposals for a wide range of different densities and sample sizes.

*Key words:* irregular histogram, density estimation, penalized likelihood, dynamic programming

#### 1. Introduction

A histogram is a piecewise constant probability density. We first introduce some notation. For a sample  $(X_1, X_2, \ldots, X_n)$  of a real random variable X with an unknown density f w.r.t. Lebesgue measure, we denote the realizations by  $(x_1, x_2, \ldots, x_n)$  and their order statistics by  $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ . Given a partition  $\mathcal{I}$  of a compact interval  $K \subset \mathbb{R}$ into D subintervals, consider all histograms piecewise constant on  $\mathcal{I}$  and zero outside  $\mathcal{I}$ , i.e. functions of the form

$$\hat{f}(x) = \sum_{j=1}^{D} h_j \mathbb{1}_{I_j}(x)$$

where  $\mathbb{I}_A$  denotes the indicator function of A and where  $h_1, \ldots, h_D \geq 0$  are such that the integral of  $\hat{f}$  is 1;  $\hat{f}$  can be regarded as an estimate of f. If K contains  $[x_{(1)}, x_{(n)}]$ , among all histograms associated to the partition  $\mathcal{I}$ , the Maximum Likelihood Histogram

<sup>\*</sup>Corresponding author

*Email addresses:* yves.rozenholc@parisdescartes.fr (Yves Rozenholc),

mildenbe@statistik.tu-dortmund.de (Thoralf Mildenberger), gather@statistik.tu-dortmund.de
(Ursula Gather)

(ML histogram) is given by the histogram  $\hat{f}_{\mathcal{I}}$  defined by

$$\hat{f}_{\mathcal{I}} := \frac{1}{n} \sum_{j=1}^{D} \frac{N_j}{|I_j|} \mathbb{I}_{I_j},$$
(1)

with  $N_j = \sum_{i=1}^n \mathbb{1}_{I_j}(x_i)$  and  $|I_j|$  the length of the interval  $I_j$ . Its loglikelihood is

$$L(\hat{f}_{\mathcal{I}}, x_1, \dots, x_n) = \sum_{j=1}^{D} N_j \log \frac{N_j}{n|I_j|}$$

In the following, we consider partitions  $\mathcal{I} := \mathcal{I}_D := (I_1, \ldots, I_D)$  of the interval  $I := [x_{(1)}, x_{(n)}]$ , consisting of D intervals of the form

$$I_j := \begin{cases} [t_0, t_1] & j = 1\\ (t_{j-1}, t_j] & j = 2, \dots, D \end{cases},$$

with breakpoints  $x_{(1)} =: t_0 < t_1 < \cdots < t_D := x_{(n)}$ . A histogram is called *regular* if all intervals have the same length and *irregular* otherwise. The intervals are also referred to as *bins*.

We will only consider ML histograms in this work, and use the term "histogram" synonymously with "ML histogram" unless explicitly stated otherwise. We focus on finding a data-driven construction of an irregular histogram with good risk behavior. Given a distance measure d between densities, the risk is defined as the expected distance between the true and the estimated density:

$$R_n(f, \hat{f}_{\mathcal{I}}, d) := E_f[d(f, \hat{f}_{\mathcal{I}}(X_1, \dots, X_n))]$$

We consider the risks with respect to the following loss functions:

• Squared Hellinger distance

$$d_H(f,g) = \frac{1}{2} \int (\sqrt{f(t)} - \sqrt{g(t)})^2 dt,$$
(2)

which has been normalized such that its maximum value is 1.

• Powers of the  $L_p$ -norms (for p = 1 and 2) defined by

$$d_p := \|f - g\|_p^p = \int |f(t) - g(t)|^p dt.$$
(3)

The  $L_2$  distance is widely used mainly for its mathematical tractability. It is often possible to derive explicit expressions for the  $L_2$  risk at least asymptotically, cf. Kogure [23]. However, as argued by Devroye and Györfi [15], ch. 1, the  $L_1$  distance can be considered more natural in the context of density estimation because – unlike the  $L_2$  distance – it is defined for all densities and it has desirable invariance properties. We mainly focus on the Hellinger distance for several reasons: it is also defined for any two densities, it has important invariance properties and the results of Castellan [6, 7] are derived for the corresponding risk. Another widely used loss function is the Kullback-Leibler distance

$$d_{KL}(f,g) := \int \log\left(\frac{f(t)}{g(t)}\right) f(t)dt$$

which is not suitable in histogram density estimation since it is infinite whenever the estimated density is zero on an interval where the true distribution has positive mass. Hence it is excluded from consideration. For a detailed discussion on the choice of loss functions in histogram density estimation, see section 2.2. in Birgé and Rozenholc [4] and the references given there.

Given the sample, the histogram  $\hat{f}_{\mathcal{I}}$  depends only on the chosen partition  $\mathcal{I} = (I_1, \ldots, I_D)$ . The values on the intervals of the partition are fixed, namely equal to the relative frequencies divided by the bin widths. The crucial point is thus choosing the partition. A naïve comparison of the likelihood of histograms for partitions with different numbers of bins is misleading since partitions with too many bins will result in a large likelihood without yielding a sensible estimate of f. But also without any further restrictions on the allowed partitions the likelihood can be made arbitrarily large for a fixed number of bins.

Many approaches exist for the special case of regular histograms where I is divided into D equal sized bins; the problem is then reduced to the choice of D, cf. Birgé and Rozenholc [4] and Davies, Gather, Nordman and Weinert [12] and the references given there.

Several methods have been developed to choose a good irregular histogram. Kogure [23] gives asymptotic results for the optimal choice of bins. His approach is based on using blocks of equisized bins, and the dependence on tuning parameters is explored via simulations in his PhD thesis [22]. It does not result in a fully automatic procedure. Kanazawa [19] proposes to control the Hellinger distance between the unknown true density and the estimated histogram and introduces a dynamic programming algorithm to find the best partition with a given number of bins. Kanazawa [20] derives the asymptotically optimal choice of the number of bins. Unfortunately this result involves the first and second derivatives of the unknown density, which leads to a construction that cannot be applied from a practical point of view. Celisse and Robin [9] give explicit formulas for  $L_2$  leavep-out cross-validation for regular and irregular histograms. They only briefly comment on the case of irregular histograms and only show simulations with ad-hoc choices of the set of partitions. In our simulations, we use their explicit formula to compare risk behavior of cross-validation and our penalized likelihood approach when both are used to choose an irregular histogram from the same set of partitions. The multiresolution histogram by Engel [17] is based on a tree of dyadic partitions to control the  $L_2$ -error. The performance crucially depends on the finest resolution level, for which no universally usable recommendation is given. Some other tree-based procedures have been suggested for the multivariate case. They can be used for the univariate case, but they either perform a complete search over a restricted set of partitions (Blanchard, Schäfer, Rozenholc and Müller [5]) or a greedy search on a full set of partitions (Klemelä [21]) to deal with computational problems that do not occur in the univariate case. Theoretical results on conditions for consistency of histogram estimates with data-driven and possibly irregular partitions are derived in Chen and Zhao [10], Zhao, Krishnaiah and Chen [30], Lugosi and Nobel [25]. Devroye and Lugosi [16] give a construction of histograms where bin widths are allowed to vary according to a pre-specified function.

Hartigan [18] considers regular and irregular histogram construction from a Bayesian point of view. However, we are not aware of any fully tuned automatic Bayesian procedure for irregular histogram construction. Rissanen, Speed and Yu [28] give a construction based on the Minimum Description Length (MDL) paradigm, which leads to a penalized likelihood estimator. Choice of several discretization parameters is needed, and the recommendation given by the authors is to perform an exhaustive search over all possible combinations of values, which makes computing a histogram computationally expensive. A more recent proposal by Kontkanen and Myllymäki [24] is also based on the MDL principle; it also involves a discretization which results in the estimate not being a proper density. Catoni [8] suggests a multi-stage procedure that computes a density estimate by aggregating histograms which is also based on coding ideas.

The taut string procedure introduced by Davies and Kovac [13] can also be used to generate an irregular histogram as described in Davies, Gather, Nordman and Weinert [12]. Regularization is performed not by controlling the number of bins but by controlling the modality of the estimate. The stated aim of the authors is not to minimize some risk but to find an estimate of the density that has minimum number of modes that could have generated the data, where the latter is formalized by a criterion based on differences of Kuiper metrics between the empirical and the estimated distribution. The main idea is to construct a piecewise linear spline of minimal length (the taut string) in a tube around the empirical cdf and then take its derivative, which is piecewise constant. The histogram is then constructed using the knots of the string as the boundaries of the bins. This coincides with the derivative of the string except on intervals where the string switches from the upper to the lower boundary of the tube or vice versa. Let us emphasize that although the partition is chosen without reference to maximum likelihood, the histogram constructed in this way fulfils definition (1). The main tuning parameter is the tube width, and an automatic choice is suggested by the authors. The procedure has shown a particularly good behavior also w.r.t. classical loss functions (Davies, Gather, Nordman and Weinert [12]), and therefore is compared with our method in our simulations.

Here we will focus on automatic construction of irregular histograms using penalized likelihood maximization techniques. For a good data-driven choice of the estimated histogram one needs an appropriate penalization to provide an automatic choice of D as well as of the partition  $\mathcal{I} = (I_1, \ldots, I_D)$ . Since Akaike's Information Criterion (AIC) introduced by Akaike [1], penalized likelihood has been used with many different penalty terms. AIC aims at ensuring a good risk behavior of the resulting estimate. Another widely used criterion is the Bayesian Information Criterion introduced by Schwarz [29]. It is constructed to consistently estimate the smallest true model order, which in histogram density estimation is infinite unless the true density is piecewise constant. In practice, criteria like AIC and BIC [1, 29] are routinely applied in many different statistical models, often without reference to their different conceptual backgrounds and without appropriate modifications for the model under consideration. In their original forms, both AIC and BIC do not account for multiple partitions with the same number of bins. See chapter 7.3 of Massart [26] for a critique of the use of AIC in histogram density estimation. Since both are widely used, we include them in our comparisons. Our penalties are motivated by recent model selection works due to Barron, Birgé and Massart [2], Castellan [6, 7] and Massart [26].

Our paper is structured as follows: In Section 2, we review the problem of constructing an irregular histogram using penalized likelihood. Section 3 gives a description of the choice of the penalty. Section 4 gives a detailed description of the proposed procedure for irregular histograms. In section 5, we comment on the empirical evaluation of the risks under consideration. Section 6 gives the results of a simulation study and conclusions.

#### 2. Penalized likelihood construction of histograms

Constructing an irregular histogram by penalized likelihood means maximizing w.r.t. partitions  $\mathcal{I} = (I_1, \ldots, I_{|\mathcal{I}|})$  of  $[x_{(1)}, x_{(n)}]$ :

$$L(\hat{f}_{\mathcal{I}}, x_1, \dots, x_n) - \operatorname{pen}_n(\mathcal{I}) \tag{4}$$

where  $\operatorname{pen}_n(\mathcal{I})$  is a penalty term depending only on the partition  $\mathcal{I}$  and possibly on the sample (data-driven). We will introduce a new choice here motivated by work of Barron, Birgé and Massart [2], Castellan [6, 7] and Massart [26].

Optimizing w.r.t. the partition  $\mathcal{I}$  with  $|\mathcal{I}|$  fixed in (4) leaves us with a continuous optimization problem. Without further restrictions, for  $|\mathcal{I}| \geq 2$  the likelihood is unbounded. The partition

$$\{[x_{(1)}, x_{(1)} + \eta), [x_{(1)} + \eta, x_{(n)}]\}$$

leads to a log-likelihood equal to

$$-n\log(n) - \log(\eta) - (n-1)(\log(n-1) + \log(x_{(n)} - x_{(1)} - \eta))$$

which can be arbitrarily large when  $\eta$  goes to 0.

One possibility is to restrict to all partitions which are built with endpoints on the observations; the optimization problem (4) can then be solved using a dynamic programming algorithm first used for histogram construction by Kanazawa [19]. More details are given in Section 4.

With  $D = |\mathcal{I}|$ , we propose the following families of penalties parametrized by two constants c and  $\alpha$ :

$$\operatorname{pen}_{n}^{(1)}(\mathcal{I}) = c \log \binom{n-1}{D-1} + \alpha(D-1) + \varepsilon_{c,\alpha}^{(1)}(D)$$
(5)

$$\operatorname{pen}_{n}^{(2)}(\mathcal{I}) = c \log \binom{n-1}{D-1} + \frac{\alpha}{n} \sum_{j=1}^{D} \frac{N_{j}}{|I_{j}|} + \varepsilon^{(2)}(D).$$

$$(6)$$

where

$$\varepsilon_{c,\alpha}^{(1)}(D) = c k \log D + 2 \sqrt{c\alpha(D-1)(\log\binom{n-1}{D-1} + k \log D)}, \qquad (7)$$

$$\varepsilon^{(2)}(D) = \log^{2.5} D. \tag{8}$$

The precise choices for c and  $\alpha$  obtained by simulations are described in Section 3.

We now give arguments to explain the origins of these penalties. The penalty defined by (5) is derived from Theorem 3.2 in Castellan [6], which is also stated as Theorem 7.9 in Massart [26], p. 232 and from eq. (7.32) in Theorem 7.7 in Massart [26], p.219. The penalty defined by (6) comes from eq. (7.33) in Theorem 7.7 in Massart [26]. From the penalty form in Theorem 7.9 in Massart [26] we derive  $\varepsilon^{(1)}$ :

$$\operatorname{pen}_{n}(\mathcal{I}) = c_{1}(\sqrt{D-1} + \sqrt{c_{2}x_{\mathcal{I}}})^{2}$$
(9)

the weights  $x_{\mathcal{I}}$  are chosen such that

$$\sum_{D} \sum_{|\mathcal{I}|=D} e^{-x_{\mathcal{I}}} \le \Sigma \tag{10}$$

for an absolute constant  $\Sigma$ . Because the endpoints of our partitions are fixed, there are  $\binom{n-1}{D-1}$  different partitions with cardinality D, and we assign equal weights  $x_D$  to every partition  $\mathcal{I}$  with  $|\mathcal{I}| = D$  such that

$$\sum_{D} \binom{n-1}{D-1} e^{-x_D} \le \Sigma.$$

To achieve this, we set

$$x_D = \log \binom{n-1}{D-1} + \varepsilon(D)$$

Then (10) becomes

$$\sum_{D} e^{-\varepsilon(D)} \le \Sigma.$$

Choosing  $\varepsilon(D)$  of the form  $k \log D$  with k > 1 ensures that the sum is converging and that  $\Sigma$  is finite. Finally for k > 1 we have

$$x_D = \log \binom{n-1}{D-1} + k \log D.$$

Substitution into (9) gives

$$\operatorname{pen}_{n}(\mathcal{I}) = c_{1} \left( D - 1 + c_{2} \left( \log \binom{n-1}{D-1} + k \log D \right) + 2 \sqrt{c_{2}(D-1) \left( \log \binom{n-1}{D-1} + k \log D \right)} \right).$$
(11)

Let us emphasize that Theorem 7.9 in Massart [26], p. 232 states  $c_1 > 1/2$  and  $c_2 = 2(1+1/c_1)$ . Coming back to our notations, with  $\alpha = c_1$ ,  $c = c_1c_2$  we obtain Equation (7).

We want now to use Theorem 7.7 in Massart [26], p. 219 to justify the penalty in (6). The orthonormal basis considered in this theorem for a given partition  $\mathcal{I}$  consists of all  $\mathbb{I}_{I}/\sqrt{|I|}$  for all I in  $\mathcal{I}$ . The least squares contrast used in this theorem in our framework is  $-n^{-2}\sum_{I\in\mathcal{I}}N_{I}^{2}/|I|$ . To link the minimization of the least squares contrast and the maximization of the loglikelihood, we consider the following approximation:

$$L(\hat{f}_{\mathcal{I}}, x_1, \dots, x_n) = \sum_{j=1}^{D} N_j \log\left(\frac{N_j}{n|I_j|}\right) \approx \sum_{j=1}^{D} N_j \left(\frac{N_j}{n|I_j|} - 1\right) = \frac{1}{n} \sum_{j=1}^{D} \frac{N_j^2}{|I_j|} - n.$$

From the penalty form (7.32) and the use of M = 1 and  $\varepsilon = 0$  in Theorem 7.7 in Massart [26], p. 219, following the same derivation for  $\varepsilon^{(1)}$ , we find the penalty in (11) with  $c_1 = 1$  and  $c_2 = 2$ .

Using the least squares approximation, we can use the random penalty (7.33) in Theorem 7.7 in Massart [26]. Let us emphasize that  $\hat{V}_m$  defined by Massart is in our framework  $\sum_{I \in \mathcal{I}} N_I / n |I|$  with  $m = \mathcal{I}$ . To derive  $\varepsilon^{(2)}$  in (6) we start from the penalty defined in (7.33) in Massart [26]:

$$\operatorname{pen}_n(\mathcal{I}) = (1+\varepsilon)^5 \left(\sqrt{\widehat{V}_{\mathcal{I}}} + \sqrt{2ML_{\mathcal{I}}D}\right)^2$$

Following the same derivations as for the penalty (9), setting M = 1,  $\varepsilon = 0$  and  $L_{\mathcal{I}} = D^{-1}(\log {\binom{n-1}{D-1}} + k \log D)$  we obtain:

$$pen_n(\mathcal{I}) = \widehat{V}_{\mathcal{I}} + 2\log\binom{n-1}{D-1} + 2k\log D + 2\sqrt{2\widehat{V}_{\mathcal{I}}\left(\log\binom{n-1}{D-1} + k\log D\right)}$$

Let us emphasize that, because of terms of the form  $\varphi(D)\hat{V}_{\mathcal{I}}$ , the term in the square root above breaks the possibility to use dynamical programming to compute the maximum of the penalized loglikelihood defined in (4). To avoid this problem we propose, following penalty forms proposed in Birgé and Rozenholc [4] and Comte and Rozenholc [11], to replace the remainder term

$$2k\log D + 2\sqrt{2\widehat{V}_{\mathcal{I}}\left(\log\binom{n-1}{D-1} + k\log D\right)}$$

by a power of  $\log D$ . We have tried several values of the power to finally conclude that Formula (8) leads to a good choice.

#### 3. Choice of the Penalty

Using histograms with endpoints of the partitions placed on the observations as described later in Section 4, we ran empirical risk estimation in order to fix our penalty using the losses defined by (2) and (3) for p = 1 and 2. We focused on the Hellinger risk to obtain good choices of the penalties, but the behavior w.r.t.  $L_1$  and  $L_2$  losses was not very different. Since no single penalty is best in all cases, the calibration of a penalty always leads to some compromise. We describe in the following what we consider to be a good proposal. We start with the random penalty as it is simpler.

#### 3.1. Random Penalty

In formula (6) we ran risk evaluation experiments using all combinations with  $c \in \{0.5, 1, 2\}$  and  $\alpha \in \{0.5, 1\}$ . Let us emphasize that c = 2 and  $\alpha = 1$  corresponds to Formula (7.33) in Massart [26] up to our choice of  $\varepsilon^{(2)}$  defined in (8). From our point of view, the most satisfactory choice is c = 1 and  $\alpha = 0.5$ .

#### 3.2. Deterministic Penalty

In formula (5) we have chosen:

- $c = 2(\alpha + 1)$  and  $\alpha \in \{0.5, 1\}$  following Theorem 7.9 in Massart [26].
- c = 2 and  $\alpha = 1$  following Theorem 7.7 eq. (7.32) in Massart [26] with M = 1 and  $\varepsilon = 0$ .
- c = 1 and  $\alpha \in \{0.5, 1\}$ .

From these experiments, the most satisfactory choice we have found is c = 2 and  $\alpha = 1$ . In this deterministic penalty framework, we also ran experiments replacing  $\varepsilon_{c,\alpha}^{(1)}$  by  $\varepsilon^{(2)}$ . In this case, we have found that the most satisfactory choice is c = 1 and  $\alpha = 1$ , and this choice is even better than  $\varepsilon_{2,1}^{(1)}$ .

To conclude this section, we remark that the results are very close. Only for the trimodal uniform density, we have found differences in favor of the deterministic penalty. For all other densities, the absolute values of the relative differences  $\left|\frac{\hat{R}_{n}^{\text{R}}-\hat{R}_{n}^{\text{D}}}{\hat{R}_{n}^{\text{D}}}\right|$  of the risks are less than 0.162.

#### 4. Construction of the Penalized Maximum Likelihood Histogram

We maximize (4) w.r.t. partitions  $\mathcal{I}$  built with endpoints on the observations:

$$\mathcal{I} = ([x_{(1)}, x_{(k_1)}], (x_{(k_1)}, x_{(k_2)}], (x_{(k_2)}, x_{(k_3)}], \dots, (x_{(k_{D-2})}, x_{(k_{D-1})}], (x_{(k_{D-1})}, x_{(n)}].$$

where  $1 < k_1 < \ldots < k_{D-1} < n$ . We start from a "finest" partition  $\mathcal{I}_{\text{max}}$  defined by  $D_{\text{max}} < n$  and the choice  $1 < k_1 < \ldots < k_{D_{\text{max}}-1} < n$ . Let us write this partition as

$$\mathcal{I}_{\max} = (I_1^0, \dots, I_{D_{\max}}^0),$$

where  $I_d^0 = (t_{d-1}, t_d]$  for d = 1 to  $D_{\max}$  and where  $t_0 = x_{(1)} - \text{eps}$ ,  $t_{D_{\max}} = x_{(n)}$  and  $t_d = x_{(k_d)}$  for  $0 < d < D_{\max}$ . Here eps represents the machine precision and is used only to help the use of left-open, right-closed intervals. Our aim is to build a sub-partition  $\mathcal{I}$  of  $\mathcal{I}_{\max}$  which maximizes (4). This problem is solved in polynomial time by a dynamic programming (DP) algorithm as used in Kanazawa [19] and Comte and Rozenholc [11]. We briefly describe the algorithm in our context of penalized histograms. Let us assume that (4) can be rewritten (up to the knowledge of the sample) as  $\Phi^0(\mathcal{I}) + \Psi(D, n)$ , where  $\Phi^0$  is an additive function with respect to the partition in the sense that

$$\Phi^0(\mathcal{I}) = \Phi(I_1) + \ldots + \Phi(I_D) \text{ if } \mathcal{I} = (I_1, \ldots, I_D).$$

In our case,  $\Phi(I)$  depends only on the number  $N_I$  of data fallen in interval I and on its length |I|. More precisely for a penalty of the form (5)

$$\Phi(I) = N_I \log \frac{N_I}{n|I|} \tag{12}$$

and for a penalty of the form (6) we have

$$\Phi(I) = N_I \log \frac{N_I}{n|I|} - \frac{\alpha}{n} \frac{N_I}{|I|},$$

while  $\Psi(D, n) = \operatorname{pen}_n^{(1)}(\mathcal{I})$  in the deterministic case and

$$\Psi(D,n) = c \log \binom{n-1}{D-1} + \varepsilon^{(2)}(D),$$

in the random case.

We denote by  $p_1(i, j) = \Phi((t_i, t_j))$  and  $p_1(j) := p_1(0, j)$ . Finally, let us define  $i_1(j) = 0$ . Assume that we have already computed all  $p_1(i, j)$  for  $0 \le i < j \le D_{max}$  (which needs  $O(D_{max}^2)$  operations). The dynamic programming algorithm works as follows:

- For  $D = 2 \dots D_{\max}$ 
  - For  $j=D\ldots D_{\max}$  ,
    - $i_D(j) = \arg_i \max_{D-1 \le i \le j} [p_{D-1}(i) + p_1(i, j)];$
    - $p_D(j) = p_{D-1}(i_D(j)) + p_1(i_D(j), j)$

 $p_D(D_{\max})$  is the maximum of  $\Phi^0(\mathcal{I})$  for all sub-partitions  $\mathcal{I}$  - of our finest partition  $\mathcal{I}_{\max}$  with D bins. The partition which achieves the maximum of  $\Phi^0(\mathcal{I}) + \Psi(D, n)$  may be built in the following way:

- Compute  $\widehat{D} = \arg_D \max_{1 \le D \le D_{\max}} p_D(D_{\max}) + \Psi(D, n)$ .
- Fix  $L = D_{max}$

- For  $j = D, \dots, 1$ , grow a vector  $L := [L, i_j(L(\text{last}))]$
- $\bullet$  Reverse the order of the vector L

The vector L defines the index of the  $t_j$ 's which are the endpoints of the best partition in the sense of (4). The notation L(last) denotes the last coordinate of the vector L and [L, u] denotes concatenation of the vector L with u.

The computation of  $i_D(j) = \arg_i \max_{D-1 \le i < j} [p_{D-1}(i) + p_1(i, j)]$  requires O(j - D + 1)operations and the total complexity of this algorithm is of order  $D^3_{\max}$ . Hence the total number of operations may be of order n if we start from a finest partition with  $D_{\max}$  of order  $n^{1/3}$  or  $n^{1/3} \log n$ . We propose to use a greedy algorithm in order to build this finest partition. Let us call  $\mathcal{E}(\mathcal{I})$  the set of endpoints of partition  $\mathcal{I}$ . Starting with the partition  $\mathcal{I}_0 = ([x_{(1)}, x_{(n)}])$ , we grow a sequence of partitions  $\mathcal{I}_D$  satisfying :

$$\mathcal{I}_{D+1} = \arg\max\Phi^0(\mathcal{I}),$$

where the maximum is taken over all partitions  $\mathcal{I}$  with  $\mathcal{E}(\mathcal{I}) = \mathcal{E}(\mathcal{I}_D) \cup \{t\}$  with t in  $\{x_1, \ldots, x_n\} \setminus \mathcal{E}(\mathcal{I}_D)$ . For both penalty forms, we use a greedy maximization of the likelihood to obtain this partition, i.e. we always use  $\Phi$  as in (12).

Let us remark that the theoretical results by Castellan [6, 7] and Massart [26], ch. 7, are derived for the case of a finest regular grid with bin sizes not smaller than a constant times  $\log^2(n)/n$ . In particular, the set of partitions is fixed beforehand and may depend on n but not on the sample. This also means that that no bins are possible that are shorter than a constant times  $\log^2(n)/n$ . However, we found that, in practice, we can improve performance drastically for densities by using a data-dependent finest grid imposing no restrictions on the smallest bins without loosing much at other densities. More comments on this are given in section 6.

#### 5. Risk evaluation

The risks of the procedures are evaluated empirically by means of simulations. For each density f and each sample size n, N samples  $x^{(j)} := (x_1^{(j)}, \ldots, x_n^{(j)}), j = 1, \ldots, N$  are generated and the loss functions  $d = d_H, d_1, d_2$  are evaluated for every histogram procedure  $\hat{f}$ . We estimate the risks  $R_n(f, \hat{f}, d)$  by

$$\widehat{R}_n(f, \widehat{f}, d) := \sum_{j=1}^N d(f, \widehat{f}(x_1^{(j)}, \dots, x_n^{(j)})).$$

We now describe how we computed our loss functions (2) and (3) to obtain empirical risk evaluation. To estimate the risks, we evaluate the losses  $d(f, \hat{f}(x_1^{(j)}, \ldots, x_n^{(j)}))$  for every simulation run j by numerical integration. First note that the integrals appearing in (2) and (3) are all of the form

$$\int \delta(t)dt := \int \tilde{\delta}(f(t), g(t))dt$$

for continuous functions  $\delta$ . Care has to be taken of discontinuities in both the true densities f and the histogram estimates  $\hat{f}$  and furthermore the bilogarithmic peak density has infinite peaks. For given f and  $\hat{f}$ , let  $\tau_1 < \cdots < \tau_{L-1}$  denote the points where for  $\hat{f}$  is discontinuous or infinite. Defining the intervals  $J_0 := (-\infty, \tau_1), J_l := (\tau_l, \tau_{l+1}),$  $l = 1, \ldots, L - 1, J_L := (\tau_L, \infty)$ , we split up the integrals into sums of integrals over open intervals where  $\delta$  is continuous:

$$\int_{\mathbb{R}} \delta(t) dt := \sum_{l=0}^{L} \int_{J_l} \delta(t) dt.$$

Note that we use open intervals to allow both f and  $\hat{f}$  to take any (possibly infinite) value in the point  $\tau_1, \ldots, \tau_l$ . To evaluate the integrals on  $J = J_1, \ldots, J_{L-1}$  we use the trapez rule

$$\int_{J_l} \delta(t) dt \approx (\kappa_K^l - \kappa_1^l) \left( \frac{1}{2} \delta(\kappa_1^l) + \delta(\kappa_2^l) + \dots + \delta(\kappa_{K-1}^l) + \frac{1}{2} \delta(\kappa_K^l) \right)$$

for equispaced grid points  $\kappa_1^l = \tau_l + \varepsilon$ ,  $\kappa_K^l = \tau_{l+1} - \varepsilon$  and  $\kappa_{\nu}^l = \kappa_1^l + (\nu - 1)h$  for  $\nu = 2, \ldots, K - 1$  with  $h = \frac{\tau_{l+1} - \tau_l - 2\varepsilon}{K - 1}$ . We set  $\varepsilon = 10^{-11}$  to integrate over open intervals. Note that on the unbounded intervals  $J_0$  and  $J_L$  for  $d = d_H$  and  $d = d_1$  we have

Note that on the unbounded intervals  $J_0$  and  $J_L$  for  $d = d_H$  and  $d = d_1$  we have  $\int_{J_l} \delta(t) dt = \int_{J_l} f(t) dt$  since  $\hat{f}$  is zero. For  $d_2$  we replace  $\pm \infty$  in the definition of  $J_0$  and  $J_L$  by the upper and lower  $10^{-10}$ -quantiles of f and integrate numerically as on the other intervals, in case the support of f is unbounded. Otherwise, the integrals over  $J_0$  and  $J_L$  are zero.

#### 6. Simulation Study and Conclusions

In order to tune the constants in the penalties given in Section 3 and to assess the performance of the penalized likelihood histogram defined as the maximizer of (4) with penalty defined by (5) or (6), we conducted a simulation study involving empirical risk estimation with respect to the losses (2) and (3) (for p=1,2). The choices we arrive at are given in section 3. Then we compare our choices for the penalized maximum likelihood to other available methods in a separate simulation study using the same densities.

Performance of the methods is compared on 12 of the 28 test-bed densities introduced by Berlinet and Devroye (1994) and implemented in the R-package benchden [27]. We used densities 1 (uniform), 4 (double exponential), 11 (normal), 12 (lognormal), 21-24 (mixtures of normals) and 25-28 (various other multimodal densities). We denote these by  $f_1, \ldots, f_{12}$ . We also added 4 histogram densities:

• 5 bin regular histogram:

$$f_{13}(x) := 0.15u_{[0,0.2]}(x) + 0.35u_{(0.2,0.4]}(x) + 0.2u_{(0.4,0.6]}(x) + 0.1u_{(0.6,0.8]}(x) + 0.2u_{(0.8,1.0]}(x)$$

• 5 bin irregular histogram:

$$f_{14}(x) := 0.15u_{[0,0.13]}(x) + 0.35u_{(0.13,0.34]}(x) + 0.2u_{(0.34,0.61]}(x) + 0.1u_{(0.61,0.65]}(x) + 0.2u_{(0.65,1.0]}(x)$$

• 10 bin regular histogram:

$$f_{15}(x) := 0.01u_{[0,0,1]}(x) + 0.18u_{(0,1,0,2]}(x) + 0.16u_{(0,2,0,3]}(x) + 0.07u_{(0,3,0,4]}(x) + 0.06u_{(0,4,0,5]}(x) + 0.01u_{(0,5,0,6]}(x) + 0.06u_{(0,6,0,7]}(x) + 0.37u_{(0,7,0,8]}(x) + 0.06u_{(0,8,0,9]}(x) + 0.02u_{(0,9,1,0]}(x)$$

• 10 bin irregular histogram:

$$f_{16}(x) := 0.01u_{[0,0.02]}(x) + 0.18u_{(0.02,0.07]}(x) + 0.16u_{(0.07,0.14]}(x) + 0.07u_{(0.14,0.44]}(x) + 0.06u_{(0.44,0.53]}(x) + 0.01u_{(0.53,0.56]}(x) + 0.06u_{(0.56,0.67]}(x) + 0.37u_{(0.67,0.77]}(x) + 0.06u_{(0.77,0.91]}(x) + 0.02u_{(0.91,1.0]}(x)$$

where  $u_I := |I|^{-1} \mathbb{1}_I$  denotes the uniform density on an interval *I*. All densities are depicted in Figure 1. Note that Castellan's main theorem 3.2 in [6] does not apply to all densities considered here, since she assumes e.g. that the density is bounded away from zero. We include a wide range of densities in order to explore the behavior of the procedure also in cases not covered by theory. The sample sizes are 50,100,500,1000,5000 and 10000. We used 500 replications for each scenario and estimated the resulting risks as described in section 5 using  $\kappa = 5000$ .

The methods compared in the simulations are (abbreviations in parentheses correspond to column titles in tables 2 and 3 in the appendix A):

- Penalized maximum likelihood using deterministic penalty (5) with c = 1 and  $\alpha = 1$ . Maximiziation is performed over a data-driven finest grid as described in section 4 without restrictions on the minimum bin width. (D)
- Penalized maximum likelihood using random penalty (6) with c = 1 and  $\alpha = 0.5$ . Maximiziation is performed over a data-driven finest grid as described in section 4 without restrictions on the minimum bin width. (**R**)
- Leave-one-out cross-validation using formula (11) given in [9] with the same set of partitions as for our two proposals (**D**) and (**R**). We also tried formula (12) of [9] for different values of p without finding a big difference. (**CV**)
- Methods 1-3 using the same data-driven grid but with the additional constraint that the minimum allowed bin length is  $(x_{(n)} x_{(1)}) \log^{1.5}(n)/n$ . (Dc), (Rc),(CVc)

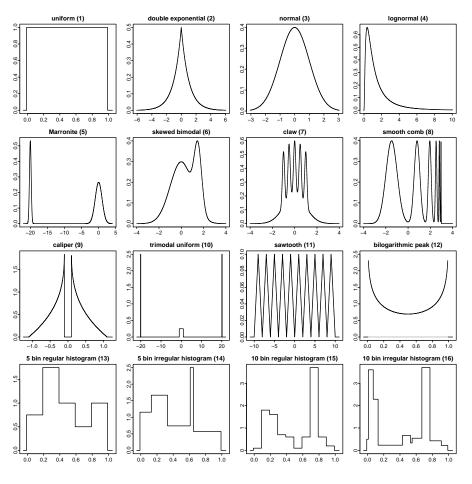



Figure 1: The densities used in the simulation study

- Methods 1-3 using a full optimization over a finest regular partition with bin width  $(x_{(n)} x_{(1)}) \log^{1.5}(n)/n$ . This is the grid considered in [6], except that we slightly relax her  $\log^2(n)$  to  $\log^{1.5}(n)$ . (Dr), (Rr),(CVr)
- Penalized maximum likelihood using Akaike's Information Criterion introduced by Akaike [1]. The penalty is  $pen_n^{AIC}(D) = (D-1)$ . (AIC)
- Penalized maximum likelihood using the Bayesian Information Criterion introduced by Schwarz [29]. The penalty is  $pen_n^{BIC}(D) = 0.5 \log(n)(D-1)$ . (BIC)
- The taut-string method introduced by Davies and Kovac [13]. We use the function pmden() implemented in the R-package ftnonpar [14] with the default values except that we set localsq=FALSE as local squeezing of the tube does not give a ML histogram. The histogram is then constructed using the knots of the string as the boundaries of the bins. This coincides with the derivative of the string except on

intervals where the string switches from the upper to the lower boundary of the tube or vice versa. **(TS)** 

• Regular histogram construction due to Birgé and Rozenholc [4]. The penalty is  $pen_n^{BR}(D) = D + log(D)^{2.5}$ , where the loglikelihood is maximized over all regular partitions with  $1, \ldots, [n/\log n]$  bins. We use this as a reference method to highlight advantages and disadvantages of using different irregular histogram methods over using a well-tuned regular histogram. (**BR**)

For the discussion of the results, we focus on squared Hellinger risk, but the results for  $L_1$  and  $L_2$  are not very different. Table 1 gives the empirical risk results (multiplied by 100) for the two methods that showed the overall best performance: maximum penalized likelihood using a data driven grid with the random penalty (6) and no constraints on minimum bin width and the taut string method. The table shows no obvious winner between those two.

Table 2 in the appendix shows the dyadic logarithms of relative risks w.r.t. the best method for any given n and density:  $\log_2(\widehat{R}_n^{\text{method}}/\widehat{R}_n^{\text{best}})$  for all 13 methods in the simulation study. Thus, a value of 0 means that the method was best in this particular setting and a value of 1 means that the risk of the method is twice as large as the risk of the best method. Table 3 in the appendix shows the modes of the number of bins chosen for all methods as well as the corresponding frequencies with which this number was chosen.

| n                        | method                                                                                                                                                                               | $f_1$                                                                                                        | $f_2$                                                                                                          | $f_3$                                                                                                         | $f_4$                                                                                                         | $f_5$                                                                                                         | $f_6$                                                                                                         | $f_7$                                                                                                         | $f_8$                                                                                                         |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 50                       | (R)                                                                                                                                                                                  | 2.09                                                                                                         | 6.30                                                                                                           | 5.42                                                                                                          | 5.93                                                                                                          | 8.40                                                                                                          | 4.73                                                                                                          | 6.14                                                                                                          | 10.63                                                                                                         |
|                          | (TS)                                                                                                                                                                                 | 2.13                                                                                                         | 5.44                                                                                                           | 5.75                                                                                                          | 4.18                                                                                                          | 7.35                                                                                                          | 5.44                                                                                                          | 7.21                                                                                                          | 10.52                                                                                                         |
| 100                      | (R)                                                                                                                                                                                  | 1.02                                                                                                         | 4.55                                                                                                           | 3.42                                                                                                          | 3.97                                                                                                          | 5.97                                                                                                          | 2.97                                                                                                          | 3.81                                                                                                          | 7.40                                                                                                          |
|                          | (TS)                                                                                                                                                                                 | 1.07                                                                                                         | 3.23                                                                                                           | 3.09                                                                                                          | 2.62                                                                                                          | 4.40                                                                                                          | 3.31                                                                                                          | 3.97                                                                                                          | 6.83                                                                                                          |
| 500                      | (R)                                                                                                                                                                                  | 0.20                                                                                                         | 1.80                                                                                                           | 1.38                                                                                                          | 1.71                                                                                                          | 2.21                                                                                                          | 1.33                                                                                                          | 2.31                                                                                                          | 2.98                                                                                                          |
|                          | (TS)                                                                                                                                                                                 | 0.22                                                                                                         | 1.14                                                                                                           | 1.00                                                                                                          | 1.12                                                                                                          | 1.29                                                                                                          | 1.05                                                                                                          | 1.48                                                                                                          | 2.38                                                                                                          |
| 1000                     | (R)                                                                                                                                                                                  | 0.10                                                                                                         | 1.20                                                                                                           | 0.92                                                                                                          | 1.12                                                                                                          | 1.51                                                                                                          | 0.89                                                                                                          | 1.56                                                                                                          | 1.95                                                                                                          |
|                          | (TS)                                                                                                                                                                                 | 0.11                                                                                                         | 0.74                                                                                                           | 0.65                                                                                                          | 0.84                                                                                                          | 0.80                                                                                                          | 0.66                                                                                                          | 0.85                                                                                                          | 1.49                                                                                                          |
| 5000                     | (R)                                                                                                                                                                                  | 0.02                                                                                                         | 0.46                                                                                                           | 0.35                                                                                                          | 0.46                                                                                                          | 0.57                                                                                                          | 0.34                                                                                                          | 0.58                                                                                                          | 0.75                                                                                                          |
|                          | (TS)                                                                                                                                                                                 | 0.02                                                                                                         | 0.28                                                                                                           | 0.25                                                                                                          | 0.26                                                                                                          | 0.28                                                                                                          | 0.19                                                                                                          | 0.26                                                                                                          | 0.45                                                                                                          |
| 10000                    | (R)                                                                                                                                                                                  | 0.01                                                                                                         | 0.30                                                                                                           | 0.23                                                                                                          | 0.30                                                                                                          | 0.37                                                                                                          | 0.22                                                                                                          | 0.39                                                                                                          | 0.50                                                                                                          |
|                          | (TS)                                                                                                                                                                                 | 0.01                                                                                                         | 0.18                                                                                                           | 0.17                                                                                                          | 0.18                                                                                                          | 0.18                                                                                                          | 0.12                                                                                                          | 0.16                                                                                                          | 0.26                                                                                                          |
|                          | ()                                                                                                                                                                                   | 0.0-                                                                                                         | 0.20                                                                                                           | 0.11                                                                                                          | 0.10                                                                                                          | 0.10                                                                                                          | 0.12                                                                                                          | 0.20                                                                                                          | 0.00                                                                                                          |
| n                        | method                                                                                                                                                                               | f9                                                                                                           | f <sub>10</sub>                                                                                                | $f_{11}$                                                                                                      |                                                                                                               |                                                                                                               |                                                                                                               |                                                                                                               |                                                                                                               |
| n<br>50                  |                                                                                                                                                                                      |                                                                                                              |                                                                                                                |                                                                                                               | $f_{12}$<br>3.79                                                                                              | $f_{13}$ 4.27                                                                                                 | $f_{14}$ 4.76                                                                                                 | $f_{15}$<br>7.91                                                                                              | $f_{16}$<br>6.65                                                                                              |
|                          | method                                                                                                                                                                               | $f_9$                                                                                                        | f <sub>10</sub>                                                                                                | $f_{11}$                                                                                                      | $f_{12}$                                                                                                      | f <sub>13</sub>                                                                                               | $f_{14}$                                                                                                      | $f_{15}$                                                                                                      | f <sub>16</sub>                                                                                               |
|                          | method (R)                                                                                                                                                                           | $f_9$<br>11.66                                                                                               | $f_{10}$<br>21.55                                                                                              | $f_{11}$<br>7.49                                                                                              | $f_{12}$<br>3.79                                                                                              | $f_{13}$<br>4.27                                                                                              | $f_{14}$ 4.76                                                                                                 | $f_{15}$<br>7.91                                                                                              | $f_{16}$<br>6.65                                                                                              |
| 50                       | method<br>(R)<br>(TS)                                                                                                                                                                | $f_9$<br>11.66<br>10.49                                                                                      | $f_{10}$<br>21.55<br>9.65                                                                                      | $f_{11}$<br>7.49<br>8.46                                                                                      | $f_{12}$<br>3.79<br>3.58                                                                                      | $f_{13}$<br>4.27<br>4.25                                                                                      | $f_{14}$ 4.76 4.96                                                                                            | $f_{15}$<br>7.91<br>8.56                                                                                      | $f_{16}$<br>6.65<br>6.65                                                                                      |
| 50                       | method           (R)           (TS)           (R)                                                                                                                                    | $ \begin{array}{r} f_9 \\ 11.66 \\ 10.49 \\ 4.86 \end{array} $                                               | $ \begin{array}{r} f_{10} \\ 21.55 \\ 9.65 \\ 4.16 \end{array} $                                               | $ \begin{array}{r} f_{11} \\ 7.49 \\ 8.46 \\ 6.46 \\ \end{array} $                                            | $\begin{array}{c} f_{12} \\ 3.79 \\ 3.58 \\ 2.62 \end{array}$                                                 | $ \begin{array}{r} f_{13} \\ 4.27 \\ 4.25 \\ 3.06 \\ \end{array} $                                            | $ \begin{array}{r} f_{14} \\ 4.76 \\ 4.96 \\ 3.22 \\ \end{array} $                                            | $f_{15}$<br>7.91<br>8.56<br>4.62                                                                              | $f_{16}$<br>6.65<br>6.65<br>3.86                                                                              |
| 50<br>100                | method           (R)           (TS)           (R)           (TS)                                                                                                                     | $\begin{array}{r} f_9 \\ 11.66 \\ 10.49 \\ 4.86 \\ 4.50 \end{array}$                                         | $\begin{array}{c c} f_{10} \\ 21.55 \\ 9.65 \\ 4.16 \\ 5.21 \end{array}$                                       | $\begin{array}{r} f_{11} \\ 7.49 \\ 8.46 \\ 6.46 \\ 7.64 \end{array}$                                         | $\begin{array}{r} f_{12} \\ 3.79 \\ 3.58 \\ 2.62 \\ 2.59 \end{array}$                                         | $\begin{array}{r} f_{13} \\ 4.27 \\ 4.25 \\ 3.06 \\ 3.06 \end{array}$                                         | $\begin{array}{r} f_{14} \\ 4.76 \\ 4.96 \\ 3.22 \\ 3.37 \end{array}$                                         | $\begin{array}{r} f_{15} \\ 7.91 \\ 8.56 \\ 4.62 \\ 4.36 \end{array}$                                         | $\begin{array}{c} f_{16} \\ 6.65 \\ 6.65 \\ 3.86 \\ 3.81 \end{array}$                                         |
| 50<br>100                | method           (R)           (TS)           (R)           (TS)           (R)           (TS)                                                                                        | $\begin{array}{c} f_9 \\ 11.66 \\ 10.49 \\ 4.86 \\ 4.50 \\ 1.67 \end{array}$                                 | $\begin{array}{c} f_{10} \\ 21.55 \\ 9.65 \\ 4.16 \\ 5.21 \\ 0.83 \end{array}$                                 | $\begin{array}{r} f_{11} \\ 7.49 \\ 8.46 \\ 6.46 \\ 7.64 \\ 4.15 \end{array}$                                 | $\begin{array}{r} f_{12} \\ 3.79 \\ 3.58 \\ 2.62 \\ 2.59 \\ 0.89 \end{array}$                                 | $\begin{array}{r} f_{13} \\ 4.27 \\ 4.25 \\ 3.06 \\ 3.06 \\ 0.90 \end{array}$                                 | $\begin{array}{r} f_{14} \\ 4.76 \\ 4.96 \\ 3.22 \\ 3.37 \\ 0.74 \end{array}$                                 | $\begin{array}{r} f_{15} \\ 7.91 \\ 8.56 \\ 4.62 \\ 4.36 \\ 1.17 \end{array}$                                 | $\begin{array}{c} f_{16} \\ 6.65 \\ 6.65 \\ 3.86 \\ 3.81 \\ 1.18 \end{array}$                                 |
| 50<br>100<br>500         | method           (R)           (TS)           (R)           (TS)           (R)           (TS)                                                                                        | $\begin{array}{c} f_9 \\ 11.66 \\ 10.49 \\ 4.86 \\ 4.50 \\ 1.67 \\ 1.19 \end{array}$                         | $\begin{array}{c} f_{10} \\ 21.55 \\ 9.65 \\ 4.16 \\ 5.21 \\ 0.83 \\ 1.18 \end{array}$                         | $\begin{array}{r} f_{11} \\ 7.49 \\ 8.46 \\ 6.46 \\ 7.64 \\ 4.15 \\ 2.93 \end{array}$                         | $\begin{array}{r} f_{12} \\ 3.79 \\ 3.58 \\ 2.62 \\ 2.59 \\ 0.89 \\ 0.71 \end{array}$                         | $\begin{array}{r} f_{13} \\ 4.27 \\ 4.25 \\ 3.06 \\ 3.06 \\ 0.90 \\ 0.77 \end{array}$                         | $\begin{array}{c} f_{14} \\ 4.76 \\ 4.96 \\ 3.22 \\ 3.37 \\ 0.74 \\ 0.77 \end{array}$                         | $\begin{array}{r} f_{15} \\ 7.91 \\ 8.56 \\ 4.62 \\ 4.36 \\ 1.17 \\ 1.35 \end{array}$                         | $\begin{array}{c} f_{16} \\ 6.65 \\ 6.65 \\ 3.86 \\ 3.81 \\ 1.18 \\ 1.16 \end{array}$                         |
| 50<br>100<br>500         | method           (R)           (TS)           (R)           (TS)           (R)           (TS)           (R)           (R)           (R)           (R)           (R)           (R)    | $\begin{array}{c} f_9 \\ 11.66 \\ 10.49 \\ 4.86 \\ 4.50 \\ 1.67 \\ 1.19 \\ 1.07 \end{array}$                 | $\begin{array}{c} f_{10} \\ 21.55 \\ 9.65 \\ 4.16 \\ 5.21 \\ 0.83 \\ 1.18 \\ 0.42 \end{array}$                 | $\begin{array}{r} f_{11} \\ 7.49 \\ 8.46 \\ 6.46 \\ 7.64 \\ 4.15 \\ 2.93 \\ 2.55 \end{array}$                 | $\begin{array}{c} f_{12} \\ 3.79 \\ 3.58 \\ 2.62 \\ 2.59 \\ 0.89 \\ 0.71 \\ 0.62 \end{array}$                 | $\begin{array}{c} f_{13} \\ 4.27 \\ 4.25 \\ 3.06 \\ 3.06 \\ 0.90 \\ 0.77 \\ 0.34 \end{array}$                 | $\begin{array}{c} f_{14} \\ 4.76 \\ 4.96 \\ 3.22 \\ 3.37 \\ 0.74 \\ 0.77 \\ 0.37 \end{array}$                 | $\begin{array}{r} f_{15} \\ 7.91 \\ 8.56 \\ 4.62 \\ 4.36 \\ 1.17 \\ 1.35 \\ 0.54 \end{array}$                 | $\begin{array}{c} f_{16} \\ 6.65 \\ 6.65 \\ 3.86 \\ 3.81 \\ 1.18 \\ 1.16 \\ 0.63 \end{array}$                 |
| 50<br>100<br>500<br>1000 | method           (R)           (TS)           (R)           (TS)           (R)           (TS)           (R)           (TS)           (R)           (TS)                              | $\begin{array}{c} f_9 \\ 11.66 \\ 10.49 \\ 4.86 \\ 4.50 \\ 1.67 \\ 1.19 \\ 1.07 \\ 0.72 \end{array}$         | $\begin{array}{c} f_{10} \\ 21.55 \\ 9.65 \\ 4.16 \\ 5.21 \\ 0.83 \\ 1.18 \\ 0.42 \\ 0.61 \end{array}$         | $\begin{array}{r} f_{11} \\ 7.49 \\ 8.46 \\ 6.46 \\ 7.64 \\ 4.15 \\ 2.93 \\ 2.55 \\ 1.81 \end{array}$         | $\begin{array}{r} f_{12} \\ 3.79 \\ 3.58 \\ 2.62 \\ 2.59 \\ 0.89 \\ 0.71 \\ 0.62 \\ 0.44 \end{array}$         | $\begin{array}{c} f_{13} \\ 4.27 \\ 4.25 \\ 3.06 \\ 3.06 \\ 0.90 \\ 0.77 \\ 0.34 \\ 0.38 \end{array}$         | $\begin{array}{c} f_{14} \\ 4.76 \\ 4.96 \\ 3.22 \\ 3.37 \\ 0.74 \\ 0.77 \\ 0.37 \\ 0.35 \end{array}$         | $\begin{array}{r} f_{15} \\ 7.91 \\ 8.56 \\ 4.62 \\ 4.36 \\ 1.17 \\ 1.35 \\ 0.54 \\ 0.68 \end{array}$         | $\begin{array}{c} f_{16} \\ 6.65 \\ 6.65 \\ 3.86 \\ 3.81 \\ 1.18 \\ 1.16 \\ 0.63 \\ 0.64 \end{array}$         |
| 50<br>100<br>500<br>1000 | method           (R)           (TS)           (R)           (TS)           (R)           (TS)           (R)           (TS)           (R)           (TS)           (R)           (TS) | $\begin{array}{c} f_9 \\ 11.66 \\ 10.49 \\ 4.86 \\ 4.50 \\ 1.67 \\ 1.19 \\ 1.07 \\ 0.72 \\ 0.39 \end{array}$ | $\begin{array}{c} f_{10} \\ 21.55 \\ 9.65 \\ 4.16 \\ 5.21 \\ 0.83 \\ 1.18 \\ 0.42 \\ 0.61 \\ 0.09 \end{array}$ | $\begin{array}{r} f_{11} \\ 7.49 \\ 8.46 \\ 6.46 \\ 7.64 \\ 4.15 \\ 2.93 \\ 2.55 \\ 1.81 \\ 1.08 \end{array}$ | $\begin{array}{c} f_{12} \\ 3.79 \\ 3.58 \\ 2.62 \\ 2.59 \\ 0.89 \\ 0.71 \\ 0.62 \\ 0.44 \\ 0.23 \end{array}$ | $\begin{array}{c} f_{13} \\ 4.27 \\ 4.25 \\ 3.06 \\ 3.06 \\ 0.90 \\ 0.77 \\ 0.34 \\ 0.38 \\ 0.06 \end{array}$ | $\begin{array}{c} f_{14} \\ 4.76 \\ 4.96 \\ 3.22 \\ 3.37 \\ 0.74 \\ 0.77 \\ 0.37 \\ 0.35 \\ 0.06 \end{array}$ | $\begin{array}{c} f_{15} \\ 7.91 \\ 8.56 \\ 4.62 \\ 4.36 \\ 1.17 \\ 1.35 \\ 0.54 \\ 0.68 \\ 0.12 \end{array}$ | $\begin{array}{c} f_{16} \\ 6.65 \\ 6.65 \\ 3.86 \\ 3.81 \\ 1.18 \\ 1.16 \\ 0.63 \\ 0.64 \\ 0.14 \end{array}$ |

Table 1:  $100 \times$  Squared Hellinger risk for proposed random penalty method and taut string

In many cases, the taut string or one of our proposals (**D**) and (**R**) is either best or the dyadic logarithm of relative risk w.r.t. the best method is close to zero. These three methods are also the only ones in the simulation study for which this quantity is always strictly smaller than  $\log_2 3 \approx 1.58$ , meaning that the empirical risk is never greater than three times the risk achieved by the best method for the particular setting. The random

penalty (**R**) seems to be slightly better than the deterministic penalty (**D**) in many cases, the most notable exception being the trimodal unform density for n = 50. Cross-validation using the same set of partitions (i.e. a data-driven finest grid without further restrictions on minimum bin width) performs rather poorly, especially when the underlying density is a histogram (densities no. 1, 10, 13-16), has gaps in the support or regions where it is almost zero (5,10) or when it has infinite peaks (12). Note that it is particularly bad for the uniform, which can be a major problem in many applications like grey level estimation of image differences. Relative performance of (CV) w.r.t. the best method becomes generally worse when sample size increases. If we compare the random and deterministic penalties and cross-validation for the case of full dynamic programming optimization over a finest regular partition with bin length  $(x_{(n)} - x_{(1)}) \log^{1.5}(n)/n$  ((Dr), (Rr),(CVr)), the picture changes. Overall, the performance of all three methods is not bad, in particular (CVr) often outperforms (Dr) and (Rr), which behave very similarly. An exception are again histogram densities, where cross-validation performs badly, especially for the uniform. Putting a constraint on the minimum bin size causes a problem for all three methods when the density has very sharp peaks (especially the trimodal uniform density no. 10). The intermediate case, i.e using both penalties and cross-validation ((Dc), (Rc), (CVc)) for a data-driven finest grid but a adding the constraint that bin widths have to be at least  $(x_{(n)}-x_{(1)})\log^{1.5}(n)/n$  could be suspected to give a compromise between the finest regular grid suggested by theory and the greedy algorithm for a data-driven grid. However, (Dc) and  $(\mathbf{Rc})$  share the catastrophic behavior of  $(\mathbf{Dr})$  and  $(\mathbf{Rr})$  at the trimodal uniform density (no. 10) without offering a real improvement over (D) and (R) at the more wellbehaved densities. On the other hand, (CVc) is a good compromise between (CV) and (CVr), as it is in many cases either better than both or not far from the better of the two. It still shows bad behavior for the uniform and trimodal uniform densities. Table 3 shows that cross-validation has a pronounced tendency to choose histograms with a much larger number of bins than the penalized likelihood methods for all three sets of partitions. This is also illustrated by Fig. 2: For the uniform distribution with n = 500, our proposal (**R**) often chooses only one bin, which is the best possible for the uniform. (CV) chooses by far too many bins, resulting in a bad risk behavior. This is less extreme for (CVr), but the number of bins chosen is still too large and the risk is more than 3 times larger than the best achieved for this setting.

Using AIC as a penalty leads to very bad results. It has already been shown theoretically in [6] and [26] and from a more practical point of view in [4] that AIC underpenalizes even for regular histograms. Since it does not account for the number of models of the same dimension, it is not surprising that this becomes even worse for the case of irregular histograms. Table 3 shows that the number of bins chosen on average is very often the largest among all methods considered. In many cases, the ratio of the Hellinger risk and the best risk achieved by any method in the simulation study is at least 4, often even much larger. BIC is a criterion which does not aim at a good control of risk but at asymptotically identifying the "smallest true model", if it exists. Although it also does not account for multiple models of the same dimension, it shows some good behavior in particular for small sample sizes that deteriorates when samples become larger. Particularly noteworthy is the

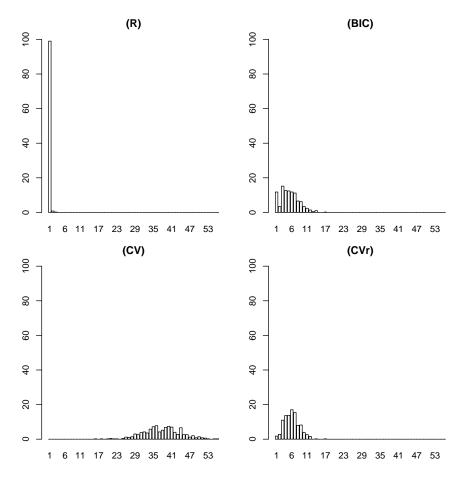



Figure 2: Barplots of number of bins chosen for the uniform density with n = 500 (percent of simulation runs).

bad performance for "simple" models like the uniform (which is also shown in Fig. 2) and the 5 bin regular histogram density no. 13.

The Birgé-Rozenholc construction of regular histograms (**BR**), which improves on Akaike's penalization, compares quite favorably in many cases, being the best method for the normal, sawtooth and 5 bin regular histogram densities (nos. 4,11 and 13), at least when the sample size is not very small. This suggests that one does not always improve when choosing an irregular histogram instead of a regular one, since the greater flexibility may be outweighed by the greater difficulty in choosing a good partition, as was already remarked by Birgé and Rozenholc [4]. A regular histogram is of course inferior for spatially inhomogeneous densities like the lognormal (4) and the trimodal uniform (10).

The taut string method  $(\mathbf{TS})$  shows a particularly good behavior in terms of Hellinger risk. One should note here that it does not control the number of bins but the modality of the estimate, thereby avoiding overfitting while still being able to chose a large number of bins to give sufficient detail. An example is given in Fig. 3, where the number of bins



Figure 3: Barplots of number of bins chosen for the lognormal density n = 500 (percent of simulation runs).

chosen for the lognormal distribution (with n = 500) is shown. Of the four methods shown, (CV) performs worst, choosing again a large number of bins. (TS) is best in this scenario and uses a larger number of bins than both (R) and (CVr).

Overall, between  $(\mathbf{TS})$  and  $(\mathbf{R})$  there is no clear winner, both often being the best method (in 36 and 16 of 96 cases, respectively, sometimes tied for the best). For some densities,  $(\mathbf{R})$  is better for small sample sizes while it is outperformed by  $(\mathbf{TS})$  for larger samples (e.g. densities 6, 7 and 11) while there are also cases like densities 1 and 16 where the opposite happens. One should note that the taut string method has originally been derived for different aims than achieving a good behavior w.r.t. a given loss function (see [13]), and many questions regarding behavior in a more classical framework remain open. It is also clear that the penalized likelihood approach can be more easily generalized to higher dimensions or not necessarily piecewise constant estimates, as has been done in a similar approach to nonparametric regression [11].

To summarize, we propose a practical method of irregular histogram construction in-

spired by theoretical works by Barron, Birgé and Massart [2], Castellan [6, 7] and Massart [26]. It can be easily implemented using a dynamic programming algorithm and it performs well for a wide range of different densities and sample sizes, even for some cases not covered by the underlying theory.

#### Acknowledgements

This work has been supported in part by the Collaborative Research Center Reduction of Complexity in Multivariate Data Structures (SFB 475) of the German Research Foundation (DFG). The authors also wish to thank Henrike Weinert for discussions and programming in earlier stages of the work.

A. Tables

| den.            | n                                                                 | (D)                                                                                           | $(\mathbf{R})$                                                                                  | (CV)                                                                                             | (Dc)                                                                                             | (Rc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (CVc)                                                                                          | (Dr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Rr)                                                                  | (CVr)                                                                                                           | (AIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (BIC)                                                                                           | (TS)                                                                                                       | (BR)                                                                                          |
|-----------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $f_1$           | $     50 \\     100 $                                             | $0.13 \\ 0.08$                                                                                | $0.05 \\ 0.02$                                                                                  | $1.53 \\ 2.31 \\ 4.20$                                                                           | 0.03<br>0.02<br>0.01                                                                             | $ \begin{array}{c} 0.03 \\ 0.02 \\ 0.02 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.76 \\ 1.25 \\ 2.56$                                                                         | 0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 0.01                                                             | $0.44 \\ 0.72 \\ 1.69$                                                                                          | 2.07<br>2.91<br>4.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.27 \\ 1.56$                                                                                  | $     \begin{array}{c}       0.07 \\       0.10 \\       0.19     \end{array} $                            | $\begin{array}{c} (B10) \\ 0.12 \\ 0.11 \\ 0.13 \\ 0.11 \\ 0.12 \\ 0.18 \end{array}$          |
|                 | $   500 \\   1000 $                                               | $0.06 \\ 0.04$                                                                                | $ \begin{array}{c} 0.02 \\ 0.03 \\ 0.02 \end{array} $                                           | $4.20 \\ 4.64$                                                                                   | $0.01 \\ 0.01$                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.56 \\ 3.05$                                                                                 | $0.00 \\ 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01                                                                  | $\frac{1.69}{2.30}$                                                                                             | $\frac{4.64}{4.98}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.04 \\ 2.10$                                                                                  | $0.19 \\ 0.12$                                                                                             | $0.13 \\ 0.11$                                                                                |
|                 | $5000 \\ 10000$                                                   | $0.01 \\ 0.00$                                                                                | 0.00                                                                                            | 5.14                                                                                             | 0.00                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $     \begin{array}{r}       2.305 \\       3.05 \\       3.68 \\       3.97     \end{array} $ | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01<br>0.00<br>0.00                                                  | 2.30<br>3.83<br>4.71                                                                                            | $4.98 \\ 5.37 \\ 5.59$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.89                                                                                            | 0.12                                                                                                       | 0.12                                                                                          |
| $f_2$           | 50                                                                | 0.00<br>0.42<br>0.57                                                                          | $0.00 \\ 0.34 \\ 0.51$                                                                          | 5.38<br>0.50                                                                                     | 0.38                                                                                             | $\begin{array}{r} 0.00\\ 0.00\\ 0.34\\ 0.51\\ 0.66\\ 0.70\\ 0.71\\ 0.71\\ 0.71\\ 0.42\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09                                                                                           | $0.00 \\ 0.52 \\ 0.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00<br>0.47<br>0.54                                                  | 0.00                                                                                                            | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1.85}{0.53}$                                                                             | 0.20 0.13                                                                                                  | 0.18                                                                                          |
|                 | $100 \\ 500$                                                      | 071                                                                                           | $0.51 \\ 0.67$                                                                                  | 0.81<br>1.79                                                                                     | $\begin{array}{r} 0.38\\ 0.56\\ 0.70\\ 0.72\\ 0.73\\ 0.69\end{array}$                            | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.05 \\ 0.04$                                                                                 | $0.56 \\ 0.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c} 0.54 \\ 0.67 \end{array}$                         | $0.00 \\ 0.07 \\ 0.15 \\ 0.47$                                                                                  | $0.91 \\ 1.34 \\ 2.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.61 \\ 0.75$                                                                                  | $0.02 \\ 0.00$                                                                                             | $\begin{array}{c} 0.14\\ 0.20\\ 0.20\\ 0.18\\ 0.11\\ 0.07\\ \end{array}$                      |
|                 | $1000 \\ 5000$                                                    | $0.74 \\ 0.73 \\ 0.69$                                                                        | $     \begin{array}{c}       0.67 \\       0.70 \\       0.72 \\       0.71     \end{array}   $ | $1.94 \\ 1.78 \\ 1.59$                                                                           | 0.72<br>0.73                                                                                     | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.04 \\ 0.08 \\ 0.23 \\ 0.21$                                                                 | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.70                                                                  | 0.15<br>0.47                                                                                                    | $2.25 \\ 1.94 \\ 1.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.75 \\ 0.73 \\ 0.62$                                                                          | 0.00                                                                                                       | 0.18                                                                                          |
|                 | 10000                                                             | 0.69                                                                                          | $0.72 \\ 0.71$                                                                                  | 1.59                                                                                             | 0.69                                                                                             | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.23                                                                                           | $0.69 \\ 0.72 \\ 0.71 \\ 0.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.67 \\ 0.70 \\ 0.70 \\ 0.68 \end{array}$           | 0.68                                                                                                            | $1.94 \\ 1.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.62 \\ 0.56$                                                                                  | 0.00<br>0.00                                                                                               | 0.07                                                                                          |
| $f_3$           | $   50 \\   100 $                                                 | $0.51 \\ 0.47$                                                                                | $0.42 \\ 0.40$                                                                                  | $0.68 \\ 1.07$                                                                                   | $0.49 \\ 0.45 \\ 0.64 \\ 0.73 \\ 1.00 \\ 1.00$                                                   | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.14\\ 0.17\end{array}$                                                      | $0.51 \\ 0.48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.48 \\ 0.43$                                                        | $0.00 \\ 0.00$                                                                                                  | $1.15 \\ 1.62$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.64\\ 0.72\\ 0.81\\ 0.84\\ 0.93\\ 0.93\\ 0.93\end{array}$                    | $\begin{array}{c} 0.50\\ 0.51\\ 0.25\\ 0.13\\ 0.19\\ 0.47\\ 0.57\end{array}$                               | $0.23 \\ 0.15 \\ 0.00$                                                                        |
|                 | $   500 \\   1000 $                                               | $ \begin{array}{c} 0.47\\ 0.65\\ 0.73\\ 1.01 \end{array} $                                    | $0.60 \\ 0.69$                                                                                  | 2.08<br>2.28<br>2.31                                                                             | $0.64 \\ 0.73$                                                                                   | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.36                                                                                           | $     \begin{array}{c}       0.48 \\       0.65 \\       0.73 \\       0.97 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.59<br>0.66                                                          | $0.10 \\ 0.25$                                                                                                  | 2.49<br>2.59<br>2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.81<br>0.84                                                                                    | $0.13 \\ 0.19$                                                                                             | 0.00                                                                                          |
|                 | 5000                                                              | 1.01                                                                                          | 0.95                                                                                            | 2.31<br>2.19                                                                                     | 1.00                                                                                             | $0.69 \\ 0.95 \\ 0.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.54 \\ 0.93 \\ 0.94$                                                                         | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                  | $0.10 \\ 0.25 \\ 0.98 \\ 1.34$                                                                                  | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.93                                                                                            | 0.47                                                                                                       | $0.00 \\ 0.00$                                                                                |
| $f_4$           | 10000<br>50                                                       | 1.03<br>0.56                                                                                  | 0.99<br>0.50                                                                                    | 0.68                                                                                             | 1.02 0.74                                                                                        | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.94 0.45                                                                                      | $\frac{1.00}{0.68}$<br>0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96                                                                  | 0.41                                                                                                            | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.67                                                                                            | 0.07                                                                                                       | $0.00 \\ 0.55$                                                                                |
|                 | $     \begin{array}{c}       100 \\       500     \end{array} $   | $0.63 \\ 0.56$                                                                                | $0.60 \\ 0.61$                                                                                  | $     \begin{array}{r}       1.08 \\       1.79 \\       1.74 \\       1.83     \end{array}   $  | $\begin{array}{r} 0.74 \\ 0.72 \\ 0.71 \\ 0.72 \\ 1.56 \\ 1.6 \end{array}$                       | $\begin{array}{r} 0.33\\ 0.72\\ 0.72\\ 0.72\\ 0.74\\ 1.62\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} 0.45\\ 0.38\\ 0.36\\ 0.40\\ 1.35\end{array}$                                 | $0.70 \\ 0.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69                                                                  | $0.41 \\ 0.38 \\ 0.41 \\ 0.41$                                                                                  | $1.62 \\ 2.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.79 \\ 0.62$                                                                                  | $\begin{array}{r} 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$                        | $\begin{array}{r} 0.55\\ 0.61\\ 0.67\\ 0.75\\ 1.99\\ \end{array}$                             |
|                 | $1000 \\ 5000$                                                    | $0.56 \\ 0.31 \\ 0.63$                                                                        | $\begin{array}{c} 0.61 \\ 0.42 \\ 0.82 \\ 0.77 \end{array}$                                     | 1.74                                                                                             | 0.72                                                                                             | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                           | $0.66 \\ 0.70 \\ 1.34 \\ 1.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.69 \\ 0.73 \\ 1.43$                                                | $0.46 \\ 1.26$                                                                                                  | $2.05 \\ 1.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.62 \\ 0.39 \\ 0.55$                                                                          | 0.00                                                                                                       | 0.75                                                                                          |
|                 | 10000                                                             | 0.55                                                                                          | $0.82 \\ 0.77$                                                                                  | 1.60                                                                                             | 1.49                                                                                             | 1 1 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.28                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37                                                                  | 1.25                                                                                                            | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.44                                                                                            | 0.00                                                                                                       | 2.05                                                                                          |
| $f_5$           | 50     100                                                        | $0.25 \\ 0.47$                                                                                | $0.19 \\ 0.44 \\ 0.77$                                                                          | $0.50 \\ 0.76 \\ 1.73 \\ 1.92$                                                                   | $2.18 \\ 2.71$                                                                                   | $2.18 \\ 2.71 \\ 1.69 \\ 1.56 \\ 1.06 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ $                                                             | $2.18 \\ 2.73 \\ 1.92 \\ 1.78 $                                                                | $\begin{array}{r} 1.27 \\ \hline 1.60 \\ 1.81 \\ 1.89 \\ 1.29 \\ 0.94 \\ 0.96 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.59 \\ 1.82$                                                        | $\begin{array}{r} 1.23 \\ 1.57 \\ 1.77 \\ 1.68 \\ 0.98 \\ 0.22 \\ 0.22 \\ 0.22 \end{array}$                     | $0.64 \\ 1.07 \\ 2.05 \\ 2.16 \\ 2.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.33 \\ 0.48$                                                                                  | $0.00 \\ 0.00$                                                                                             | $1.12 \\ 0.41$                                                                                |
|                 | $     500 \\     1000 $                                           | $0.79 \\ 0.89$                                                                                | $0.77 \\ 0.91$                                                                                  | 1.73                                                                                             | $1.69 \\ 1.56$                                                                                   | 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.92                                                                                           | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.90<br>1.30                                                          | 1.68                                                                                                            | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.81 \\ 0.85$                                                                                  | $0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$                                                                     | $     \begin{array}{c}       1.18 \\       0.95 \\       0.76 \\       0.68     \end{array} $ |
|                 | 5000                                                              | 0.97                                                                                          | 1.01                                                                                            | 1.80                                                                                             | $1.04 \\ 0.98$                                                                                   | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.66 \\ 0.47$                                                                                 | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                  | 0.22                                                                                                            | $1.92 \\ 1.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.85 \\ 0.82$                                                                                  | 0.00                                                                                                       | 0.76                                                                                          |
| $f_6$           | 10000<br>50                                                       | 0.98 0.40                                                                                     | 1.00<br>0.31                                                                                    | 1.63 0.75                                                                                        | 0.98                                                                                             | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.47                                                                                           | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.30                                                                  | 0.00                                                                                                            | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.66                                                                                            | 0.51                                                                                                       | 0.68                                                                                          |
|                 | $     \begin{array}{c}       100 \\       500     \end{array} $   | $0.36 \\ 0.50$                                                                                | $\begin{array}{c} 0.31 \\ 0.29 \\ 0.45 \end{array}$                                             | 1.14                                                                                             | $0.38 \\ 0.35 \\ 0.50$                                                                           | $     \begin{array}{r}             0.32 \\             0.30 \\             0.45 \\         \end{array}     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.24 \\ 0.31 \\ 0.31$                                                                         | $\begin{array}{r} 0.33\\ 0.45\\ 0.48\\ 0.52\\ 0.83\\ 0.91 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.30<br>0.39<br>0.42<br>0.47<br>0.78<br>0.86                          | $0.00 \\ 0.00$                                                                                                  | $     \begin{array}{r}       1.22 \\       1.70 \\       2.38 \\       2.42 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       2.23 \\       $ | $0.80 \\ 0.71$                                                                                  | $0.44 \\ 0.10$                                                                                             | $0.28 \\ 0.31 \\ 0.09$                                                                        |
|                 | 1000                                                              | $     \begin{array}{c}       0.55 \\       0.88 \\       0.92     \end{array}   $             | $     \begin{array}{r}       0.49 \\       0.82 \\       0.87     \end{array}   $               | 2.11<br>2.24<br>2.09                                                                             | $     \begin{array}{c}       0.54 \\       0.88 \\       0.91     \end{array}   $                | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.42 \\ 0.84$                                                                                 | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.47                                                                  | 0.11                                                                                                            | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.67 \\ 0.84$                                                                                  | 0.06                                                                                                       | $0.00 \\ 0.15 \\ 0.11$                                                                        |
|                 | $5000 \\ 10000$                                                   | 0.88                                                                                          | 0.82                                                                                            | 2.24<br>2.09                                                                                     | 0.88                                                                                             | 0.49<br>0.82<br>0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.84                                                                                           | $0.83 \\ 0.91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.78                                                                  | $\begin{array}{r} 0.11 \\ 0.92 \\ 1.26 \\ \hline 0.00 \end{array}$                                              | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.83                                                                                            | 0.00                                                                                                       | 0.15                                                                                          |
| $f_7$           | $     50 \\     100   $                                           | $0.28 \\ 0.05$                                                                                | $0.16 \\ 0.01$                                                                                  | $0.48 \\ 0.66$                                                                                   | $\begin{array}{r} 0.25\\ 0.02\\ 0.66\\ 0.88\\ 1.15\\ 1.25\end{array}$                            | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.04 \\ 0.08$                                                                                 | $0.39 \\ 0.20 \\ 0.69 \\ 1.15 \\ 1.13 \\ 1.20 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \\ $ | 0.35                                                                  | $0.00 \\ 0.05$                                                                                                  | $\begin{array}{r} 0.86 \\ 1.15 \\ 1.84 \\ 2.10 \\ 2.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.45 \\ 0.53$                                                                                  | $\begin{array}{r} 0.06 \\ 0.00 \\ 0.00 \\ \hline 0.39 \\ 0.06 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$ | $\begin{array}{c} 0.11\\ 0.19\\ 0.14\\ 0.27\\ 0.45\\ 0.74\\ 0.77\\ 0.11\end{array}$           |
|                 | $     500 \\     1000 $                                           | $0.68 \\ 0.89 \\ 1.16$                                                                        | $     \begin{array}{c}       0.64 \\       0.87 \\       1.13     \end{array}   $               | 1 4 4                                                                                            | 0.66                                                                                             | $0.00 \\ 0.63 \\ 0.86 \\ 1.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08<br>0.14                                                                                   | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.66 \\ 1.14$                                                        | $0.05 \\ 0.15 \\ 0.29 \\ 0.82 \\ 1.11$                                                                          | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $     \begin{array}{c}       0.68 \\       0.80 \\       1.07     \end{array}   $               | 0.00                                                                                                       | 0.27                                                                                          |
|                 | 5000                                                              | 1.16                                                                                          | 1.13                                                                                            | 1.80<br>1.93                                                                                     | 1.15                                                                                             | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.44 \\ 0.68 \\ 0.76$                                                                         | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10                                                                  | 0.82                                                                                                            | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.07                                                                                            | 0.00                                                                                                       | 0.74                                                                                          |
| <i>f</i> 8      | 10000<br>50                                                       | 1.25                                                                                          | 1.24<br>0.24                                                                                    | 1.84<br>0.08                                                                                     | 0.29                                                                                             | 1.24 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05                                                                                           | $\frac{1.26}{0.34}$<br>0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.26 0.32                                                             | 0.00                                                                                                            | 1.93<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.11<br>0.21                                                                                    | 0.00<br>0.22<br>0.17                                                                                       | 0.14                                                                                          |
|                 | $100 \\ 500$                                                      | $0.37 \\ 0.44$                                                                                | 0.24<br>0.28<br>0.36                                                                            | 0.27<br>0.90                                                                                     | 0.29<br>0.37<br>0.51                                                                             | $\begin{array}{c} 0.26 \\ 0.30 \\ 0.46 \\ 0.49 \\ 0.82 \\ 0.82 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.00 \\ 0.24 \\ 0.27$                                                                         | $0.63 \\ 0.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.32<br>0.55<br>0.59                                                  | $0.09 \\ 0.00 \\ 0.09 \\ 0.41 \\ 0.41$                                                                          | $0.67 \\ 1.25 \\ 1.33 \\ 1.31 \\ 1.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.21 \\ 0.27 \\ 0.35 \\ 0.37 \end{array}$                                     | $0.17 \\ 0.03$                                                                                             | $0.14 \\ 0.09 \\ 0.10 \\ 0.19$                                                                |
|                 | 1000                                                              | 0.47                                                                                          | $0.39 \\ 0.75$                                                                                  | 1.05                                                                                             | $0.54 \\ 0.87$                                                                                   | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.27                                                                                           | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.58 1                                                                | 0.09                                                                                                            | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.37                                                                                            | $0.00 \\ 0.00 \\ 0.00$                                                                                     | 0.19                                                                                          |
|                 | $     5000 \\     10000 $                                         | $\begin{array}{c} 0.81 \\ 0.99 \end{array}$                                                   | 0.93                                                                                            | $1.18 \\ 1.16$                                                                                   | 1.01                                                                                             | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.52 \\ 0.61$                                                                                 | $0.86 \\ 0.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80<br>0.93                                                          | 0.66                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.69 \\ 0.82$                                                                                  | 0.00                                                                                                       | $0.46 \\ 0.70$                                                                                |
| $f_9$           | $     50 \\     100   $                                           | $0.44 \\ 0.46$                                                                                | $0.42 \\ 0.28$                                                                                  | $0.00 \\ 0.72$                                                                                   | $0.45 \\ 0.49$                                                                                   | $\begin{array}{r} 0.45\\ 0.28\\ 0.48\\ 0.55\\ 0.70\\ 0.69\\ 0.15\\ 0.70\\ 0.69\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\$ | $0.16 \\ 0.00$                                                                                 | $0.44 \\ 1.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.44 \\ 1.34$                                                        | $0.36 \\ 1.09$                                                                                                  | $\begin{array}{r} 1.20\\ 0.34\\ 1.13\\ 2.17\\ 2.30\\ 2.16\\ 2.16\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 0.03\\ 0.03\\ 0.47\\ 0.68\\ 0.72\\ 0.72\\ 0.65\\ 0.65\\ \end{array}$          | $\begin{array}{c} 0.26 \\ 0.17 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$                                | $\begin{array}{r} 0.36\\ 0.60\\ 0.85\\ 1.08\\ 1.23\\ 1.31\\ \end{array}$                      |
|                 | $500 \\ 1000$                                                     | 0.55                                                                                          | 0.50                                                                                            | 1.81<br>2.01<br>2.01                                                                             | 0.52                                                                                             | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.36                                                                                           | $1.64 \\ 1.65 \\ 1.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.62 \\ 1.62 \\ 1.64 $                                               | 1.36                                                                                                            | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.68                                                                                            | 0.00                                                                                                       | 0.85                                                                                          |
|                 | 5000                                                              | $     \begin{array}{c}       0.55 \\       0.61 \\       0.74 \\       0.73     \end{array} $ | $0.42 \\ 0.28 \\ 0.50 \\ 0.56 \\ 0.70 \\ 0.69 \\ 0.69$                                          | 2.01                                                                                             | $0.43 \\ 0.49 \\ 0.52 \\ 0.59 \\ 0.73 \\ 0.72$                                                   | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.10\\ 0.00\\ 0.36\\ 0.50\\ 0.76\\ 0.74 \end{array}$                         | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.64                                                                  | 1.58                                                                                                            | 2.30<br>2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72                                                                                            | 0.00                                                                                                       | 1.23                                                                                          |
| f <sub>10</sub> | 10000<br>50                                                       | 0.00                                                                                          | $     \begin{array}{r}       0.69 \\       1.31 \\       0.00 \\     \end{array} $              | 1.86<br>0.55                                                                                     | 3.15                                                                                             | $\begin{array}{r} 0.69 \\ 3.15 \\ 4.20 \\ 5.82 \\ 6.80 \\ 9.09 \\ 10.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.74<br>3.14                                                                                   | 1.61<br>3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.59<br>3.12                                                          | $\begin{array}{r} 0.36\\ 1.09\\ 1.36\\ 1.37\\ 1.58\\ 1.69\\ 3.12\\ 4.02\\ 5.64\\ 6.34\\ 7.57\\ 6.46\end{array}$ | 1.98<br>0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.65                                                                                            | $\begin{array}{r} 0.00\\ 0.00\\ 0.15\\ 0.32\\ 0.51\\ 0.56\\ 0.73\\ 0.81\\ \end{array}$                     | 2.68                                                                                          |
| 1 10            | 100                                                               | $0.06 \\ 0.02$                                                                                | $0.00 \\ 0.00$                                                                                  | $\begin{array}{r} 1.00\\ 0.55\\ 1.02\\ 2.40\\ 2.79\\ 3.29\\ 3.43\\ \end{array}$                  | $3.15 \\ 4.20 \\ 5.82$                                                                           | $4.20 \\ 5.82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 0.74\\ \hline 3.14\\ 4.20\\ 5.82\\ 6.80\\ 9.09\\ 10.10\\ \end{array}$        | 3.12<br>4.02<br>5.64<br>6.34<br>7.57<br>6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 02 1                                                                | $\frac{4.02}{5.64}$                                                                                             | $\begin{array}{r} 1.33\\ 0.68\\ 1.32\\ 2.73\\ 3.06\\ 3.45\\ 3.54\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.31 \\ 0.53 \\ 0.79 \\ 0.81 \\ 0.73 \\ 0.63 \end{array}$                     | $0.32 \\ 0.51$                                                                                             | $\begin{array}{r} 2.68\\ 3.29\\ 5.08\\ 5.63\\ 0.17\\ 0.17\end{array}$                         |
|                 | $500 \\ 1000 \\ 5000$                                             | $\begin{array}{c} 0.02\\ 0.01\\ 0.00\end{array}$                                              | $0.00 \\ 0.00$                                                                                  | 2.79                                                                                             | 5.82<br>6.80<br>9.09                                                                             | 6.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.80                                                                                           | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $5.64 \\ 6.34 \\ 7.57 \\ 6.46$                                        | 6.34                                                                                                            | 3.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.81                                                                                            | 0.56                                                                                                       | 5.63                                                                                          |
|                 | 10000                                                             | 0.00                                                                                          | 0.00                                                                                            | 3.43                                                                                             | 10.10                                                                                            | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.10                                                                                          | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.46                                                                  | 6.46                                                                                                            | $3.40 \\ 3.54$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.63                                                                                            | 0.81                                                                                                       | 0.17                                                                                          |
| f <sub>11</sub> | $   50 \\   100 $                                                 | $0.06 \\ 0.02$                                                                                | $0.02 \\ 0.01$                                                                                  | $0.54 \\ 0.39$                                                                                   | $0.01 \\ 0.00$                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.10\\ 0.22\\ 0.24\\ 0.27\\ 0.40\\ 0.45\end{array}$                          | $0.00 \\ 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.00 \\ 0.00$                                                        | $\begin{array}{r} 0.13\\ 0.13\\ 0.13\\ 0.15\\ 0.08\\ 0.24\\ 0.37\\ \end{array}$                                 | $\begin{array}{r} 0.81 \\ 0.74 \\ 1.14 \\ 1.24 \\ 1.08 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.51                                                                                            | $0.19 \\ 0.25 \\ 0.11$                                                                                     | $0.03 \\ 0.03 \\ 0.00$                                                                        |
|                 | $   500 \\   1000 $                                               | $     \begin{array}{c}       0.02 \\       0.86 \\       0.63     \end{array}   $             | $\begin{array}{c} 0.61 \\ 0.58 \\ 0.90 \end{array}$                                             | 0.80<br>0.98                                                                                     | 0.89                                                                                             | $0.00 \\ 0.70 \\ 0.59 \\ 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.27 \\ 0.40$                                                                                 | $ \begin{array}{c} 0.00 \\ 1.06 \\ 0.86 \\ 0.98 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.06                                                                  | $0.15 \\ 0.08$                                                                                                  | $1.14 \\ 1.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $     \begin{array}{c}       0.43 \\       0.48 \\       0.63 \\       0.84     \end{array}   $ | 0.11                                                                                                       | 0.00                                                                                          |
|                 | $     5000 \\     10000 $                                         | $0.97 \\ 1.06$                                                                                | $0.90 \\ 0.99$                                                                                  | 0.99                                                                                             | $0.62 \\ 0.96 \\ 1.05$                                                                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.45                                                                                           | $0.98 \\ 1.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69<br>0.90<br>1.01                                                  | 0.24                                                                                                            | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.84                                                                                            | 0.09<br>0.13<br>0.17                                                                                       | $0.00 \\ 0.00 \\ 0.00$                                                                        |
| $f_{12}$        | 50                                                                | 0.21                                                                                          | 0.99<br>0.11<br>0.17                                                                            | 0.92<br>0.88<br>1.17                                                                             | 0.01                                                                                             | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 0.45\\ 0.57\\ 0.25\\ 0.27\\ 0.88\\ 0.88\end{array}$                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                  | 0.37                                                                                                            | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.91<br>0.79<br>0.73                                                                            | 0.17                                                                                                       | 0.00                                                                                          |
|                 | $100 \\ 500$                                                      | $\begin{array}{c} 0.21 \\ 0.23 \\ 0.37 \\ 0.52 \\ 0.65 \end{array}$                           | 0.33                                                                                            | 241                                                                                              | $0.13 \\ 0.30$                                                                                   | $0.14 \\ 0.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                           | $0.12 \\ 0.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 0.13 \\ 0.28 \\ 0.51 \end{array} $                 | $0.00 \\ 0.28$                                                                                                  | $     \begin{array}{r}       1.36 \\       1.75 \\       2.83 \\       2.95 \\       2.80 \\       2.80 \\       \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90                                                                                            | $0.15 \\ 0.00$                                                                                             | $0.16 \\ 0.29$                                                                                |
|                 | $     \begin{array}{c}       1000 \\       5000     \end{array} $ | $0.52 \\ 0.65$                                                                                | 0.49                                                                                            | 2.63<br>2.61                                                                                     | $     \begin{array}{r}       0.30 \\       0.48 \\       0.64 \\       0.67 \\     \end{array} $ | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1.09 1                                                                                       | $0.52 \\ 0.63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.51                                                                  | $0.50 \\ 1.22$                                                                                                  | 2.95<br>2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.89                                                                                            | 0.00                                                                                                       | $0.36 \\ 0.52$                                                                                |
|                 | 10000                                                             | 0.68                                                                                          | 0.62                                                                                            | 2.48                                                                                             | 0.67                                                                                             | $\begin{array}{c} 0.02\\ 0.14\\ 0.30\\ 0.47\\ 0.62\\ 0.66\\ \hline 0.05\\ 0.38\\ 1.33\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24<br>1.18                                                                                   | $0.12 \\ 0.29 \\ 0.52 \\ 0.63 \\ 0.67 \\ 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.62<br>0.65                                                          | $\begin{array}{r} 0.31 \\ 0.14 \\ 0.00 \\ 0.28 \\ 0.50 \\ 1.22 \\ 1.61 \end{array}$                             | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.80<br>0.74                                                                                    | $\begin{array}{c} 0.03\\ 0.15\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$                     | $\begin{array}{c} 0.15\\ 0.16\\ 0.29\\ 0.36\\ 0.52\\ 0.57\end{array}$                         |
| f <sub>13</sub> | 50     100                                                        | $0.10 \\ 0.43$                                                                                | $\begin{array}{c} 0.07 \\ 0.40 \\ 1.34 \end{array}$                                             | 0.69<br>1.21                                                                                     | $0.04 \\ 0.39 \\ 1.39 \\ 1.02$                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.02 \\ 0.25$                                                                                 | $\begin{array}{c} 0.01 \\ 0.38 \\ 1.53 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} 0.02\\ 0.38\\ 1.50\\ 0.78\\ 1.20\\ 1.39\end{array}$ | $\begin{array}{r} 0.00\\ 0.04\\ 1.41\\ 1.70\\ 3.35\\ 4.10\end{array}$                                           | $1.16 \\ 1.77$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.65 \\ 0.87 \\ 1.88 \\ 1.97$                                                                  | $0.06 \\ 0.40 \\ 1.10$                                                                                     | 0.06                                                                                          |
|                 | $     500 \\     1000 $                                           | $1.41 \\ 1.06$                                                                                | 0.98                                                                                            | $3.43 \\ 3.98$                                                                                   | $1.39 \\ 1.02$                                                                                   | 1.33<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.86 \\ 2.44$                                                                                 | $1.53 \\ 0.83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.50                                                                  | $1.41 \\ 1.70$                                                                                                  | $\frac{3.85}{4.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.88 \\ 1.97$                                                                                  | $1.10 \\ 1.11$                                                                                             | 0.00                                                                                          |
|                 | $5000 \\ 10000$                                                   | $0.91 \\ 0.92$                                                                                | $0.90 \\ 0.91$                                                                                  | 4.66<br>4.82                                                                                     | $0.90 \\ 0.90$                                                                                   | $     \begin{array}{c}       0.98 \\       0.90 \\       0.91     \end{array}   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.86 \\ 2.44 \\ 3.32 \\ 3.56$                                                                 | $     \begin{array}{c}       0.83 \\       1.20 \\       1.39     \end{array}   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.20                                                                  | $3.35 \\ 4.10$                                                                                                  | $3.85 \\ 4.29 \\ 4.87 \\ 4.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.96 \\ 1.92$                                                                                  | $1.11 \\ 1.13 \\ 1.25$                                                                                     | $0.00 \\ 0.00 \\ 0.00$                                                                        |
| $f_{14}$        | 50                                                                | 0.18                                                                                          | 0.13                                                                                            | 0.65                                                                                             | 0.12                                                                                             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14                                                                                           | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.13 1                                                                | 0.00                                                                                                            | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.59                                                                                            | 0.19                                                                                                       | 0.02                                                                                          |
|                 | $100 \\ 500$                                                      | $0.26 \\ 0.08$                                                                                | $\begin{array}{c} 0.13 \\ 0.23 \\ 0.03 \end{array}$                                             | $1.00 \\ 2.41$                                                                                   | $0.24 \\ 0.02$                                                                                   | $0.23 \\ 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.30 \\ 0.85$                                                                                 | $0.12 \\ 0.36 \\ 0.58$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33<br>0.56                                                          | $0.00 \\ 0.19 \\ 0.67 \\ 1.25$                                                                                  | $     \begin{array}{r}       1.10 \\       1.54 \\       2.83 \\       3.30 \\       3.30 \\       \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.65 \\ 0.83$                                                                                  | $0.19 \\ 0.29 \\ 0.09$                                                                                     | $0.00 \\ 0.88 \\ 0.94$                                                                        |
|                 | $     \begin{array}{r}       1000 \\       5000     \end{array} $ | $0.14 \\ 0.01$                                                                                | $0.11 \\ 0.00$                                                                                  | $2.98 \\ 3.76$                                                                                   | $0.12 \\ 0.00$                                                                                   | $0.11 \\ 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.45 \\ 2.36$                                                                                 | $     \begin{array}{c}       0.83 \\       1.41     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.82                                                                  | $^{1.25}_{2.68}$                                                                                                | $3.30 \\ 3.96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.98 \\ 1.07$                                                                                  | $0.00 \\ 0.38$                                                                                             | $0.94 \\ 1.90$                                                                                |
| - F             | 10000                                                             | 0.01                                                                                          | 0.01                                                                                            | 3.95                                                                                             | 0.00                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.66                                                                                           | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                  | 3.30                                                                                                            | 4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.03                                                                                            | 0.56                                                                                                       | 2.63                                                                                          |
| f15             | 50     100                                                        | $0.10 \\ 0.27$                                                                                | $0.00 \\ 0.18$                                                                                  | $0.06 \\ 0.65$                                                                                   | $0.35 \\ 0.24$                                                                                   | $0.29 \\ 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.06 \\ 0.00$                                                                                 | $0.46 \\ 0.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.42 \\ 0.65$                                                        | $0.06 \\ 0.35$                                                                                                  | $0.43 \\ 1.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.09 \\ 0.46$                                                                                  | $0.11 \\ 0.10$                                                                                             | $0.03 \\ 0.27$                                                                                |
|                 | $   500 \\   1000 $                                               | $0.15 \\ 0.06$                                                                                | $0.00 \\ 0.01$                                                                                  | $1.79 \\ 2.39$                                                                                   | $0.15 \\ 0.03$                                                                                   | $0.01 \\ 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.31 \\ 0.87$                                                                                 | $1.15 \\ 1.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1.09}{1.25}$                                                   | $0.87 \\ 1.32$                                                                                                  | $2.17 \\ 2.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.48 \\ 0.67$                                                                                  | $0.21 \\ 0.34$                                                                                             | $0.48 \\ 0.87$                                                                                |
|                 | $5000 \\ 10000$                                                   | $0.01 \\ 0.01$                                                                                | $0.00\\0.00$                                                                                    | 2.82<br>2.79                                                                                     | $0.00 \\ 0.01$                                                                                   | 0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.87 \\ 1.57 \\ 1.69$                                                                         | $1.34 \\ 1.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.34 \\ 1.48$                                                        | $0.87 \\ 1.32 \\ 2.17 \\ 2.58$                                                                                  | $\frac{3.01}{2.94}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.64 \\ 0.51$                                                                                  | $0.16 \\ 0.09$                                                                                             | $0.99 \\ 0.85$                                                                                |
| $f_{16}$        | 50                                                                | 0.11                                                                                          | 0.00                                                                                            | 0.29<br>0.72                                                                                     | 0.96                                                                                             | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.74                                                                                           | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.71                                                                  | 0.48                                                                                                            | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.29                                                                                            | 0.00                                                                                                       | 0.34                                                                                          |
|                 | $     \begin{array}{c}       100 \\       500     \end{array} $   | $0.10 \\ 0.07$                                                                                | $0.03 \\ 0.02$                                                                                  | 0.72                                                                                             | $0.00 \\ 0.58$                                                                                   | $0.01 \\ 0.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.00 \\ 0.79$                                                                                 | $0.90 \\ 1.53$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.91 \\ 1.52 \end{array}$                           | $     \begin{array}{c}       0.78 \\       1.32     \end{array} $                                               | $\frac{1.20}{2.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.46 \\ 0.50$                                                                                  | $0.02 \\ 0.00$                                                                                             | $0.55 \\ 1.21$                                                                                |
|                 | $1000 \\ 5000$                                                    | $0.00 \\ 0.06$                                                                                | $0.00 \\ 0.00$                                                                                  | $     \begin{array}{r}       1.80 \\       2.18 \\       2.64 \\       2.96 \\     \end{array} $ | $0.58 \\ 0.27 \\ 0.04$                                                                           | $0.29 \\ 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.84 \\ 1.36$                                                                                 | $1.21 \\ 1.12 \\ 1.17 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.22 \\ 1.10$                                                        | $1.26 \\ 1.92$                                                                                                  | $2.19 \\ 2.49 \\ 2.83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.55                                                                                            | $0.03 \\ 0.45$                                                                                             | $1.24 \\ 1.57$                                                                                |
|                 | 10000                                                             | 0.04                                                                                          | 0.00                                                                                            | 2.96                                                                                             | 0.04                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.83                                                                                           | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.15                                                                  | 2.58                                                                                                            | 3.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.48 \\ 0.58$                                                                                  | 0.80                                                                                                       | 1.65                                                                                          |

Table 2: Dyadic logarithms of relative squared Hellinger Risks w.r.t best method

| den.            | n                       | D                                                    | R                                                                      | CV                                                | Dc                                                  | Rc                                           | CVc                                                                | Dr                                                                      | Rr                                                         | CVr                                               | AIC                           | BIC                                                          | TS                                                        | BR                                                                     |
|-----------------|-------------------------|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|
| $f_1$           | 100                     | 1 95                                                 | 1.99                                                                   | 10 15                                             | 1 99                                                | 1 99                                         | 3 26                                                               | 1 100                                                                   | 1,99                                                       | 1 28                                              | $21 \ 10$                     | 3 18                                                         | 1 99                                                      | 1.89                                                                   |
|                 | $1000 \\ 10000$         | $198 \\ 1100$                                        | $199 \\ 1100$                                                          | $51 07 \\71 07$                                   | $1 100 \\ 1 100$                                    | $1 100 \\ 1 100$                             | $15 13 \\ 26 09$                                                   | $     \begin{array}{c}       1 \ 100 \\       1 \ 100     \end{array} $ | $1 \ 100 \\ 1 \ 100$                                       | $913 \\ 5906$                                     | $77 \ 07 \\ 97 \ 16$          | $\frac{3}{1}\frac{16}{35}$                                   | $1 99 \\ 1 98$                                            | $^{1}_{1} \frac{89}{84}$                                               |
| f.              | 10000                   | 2.57                                                 | $\frac{1}{3}\frac{100}{51}$                                            | 11 16                                             | $\frac{1}{3}\frac{100}{59}$                         | 3 52                                         | 20 09                                                              | $\frac{1}{3}\frac{100}{59}$                                             | 3 53                                                       | 6 41                                              | $\frac{97}{24}\frac{10}{10}$  | 6 20                                                         | 8 22                                                      | $\frac{1}{5} \frac{64}{21}$                                            |
| $f_2$           | 1000                    | $\begin{array}{r} 3 54 \\ 9 47 \\ 20 34 \end{array}$ | 9 / 9                                                                  | 57 07                                             | 9 19                                                | 919                                          | 15 25                                                              | 9 16                                                                    | 9 47                                                       | 17 23                                             | 86 08                         | $14 \tilde{15}$                                              | $33\tilde{1}\tilde{0}$                                    | $20 \tilde{1}1$                                                        |
|                 | 10000                   | 20 34                                                | $9 \ \overline{49} \\ 20 \ 32$                                         | 85 14                                             | $9 \ 49 \ 20 \ 35$                                  | $9 \tilde{49} \\ 20 32$                      | 41 15                                                              | $9 \frac{46}{20}$                                                       | $9 47 \\ 20 34$                                            | 59 08                                             | 98 29                         | 26 16                                                        | 95 08                                                     | $20 \tilde{11} \\ 61 07$                                               |
| $f_3$           | 100                     | 3 74                                                 | 3 81                                                                   | 9 15                                              | 3 78                                                | 3 81                                         | 5 48                                                               | 3 71                                                                    | 373                                                        | 5 39                                              | 21  10                        | 5 19                                                         | 4 24                                                      | 4.33                                                                   |
| 55              | 1000                    | 7 56                                                 | 7 60                                                                   | 55 08                                             | 7 59                                                | 7 60                                         | 16 17                                                              | 7 55                                                                    | 7 56                                                       | 14 18                                             | 84 08                         | 11 17                                                        | ${}^{4}_{25}{}^{24}_{12}$                                 | $14 \ 14 \ 37 \ 06$                                                    |
|                 | 10000                   | 15 39                                                | 16 35                                                                  | 84 14                                             | 15 40                                               | 16 35                                        | 38 14                                                              | 15 39                                                                   | $16 \ 33$                                                  | 60 07                                             | 98 27                         | 21 17                                                        | $75 \ 08$                                                 | 37 06                                                                  |
| $f_4$           | 100                     | 3 66                                                 | $\frac{3}{2}$ 78                                                       | 10 16                                             | 3 89                                                | $\frac{3}{2} \frac{89}{59}$                  | 4 66                                                               | $\frac{3}{7} \frac{82}{45}$                                             | $\frac{3}{2} \frac{82}{5}$                                 | 4 45                                              | 23 10                         | 6 21                                                         | 10 20                                                     | 6 18                                                                   |
|                 | $1000 \\ 10000$         |                                                      | $\begin{array}{r} 7 & 41 \\ 16 & 36 \end{array}$                       | $57 \ 08 \\ 84 \ 12$                              | ${}^{6}_{15} {}^{47}_{39}$                          | $\begin{array}{c} 6 53 \\ 14 43 \end{array}$ | $10\ 25\ 26\ 13$                                                   | $\begin{array}{r} 7 & 45 \\ 15 & 43 \end{array}$                        | $\begin{array}{c} 6 52 \\ 14 43 \end{array}$               | $\begin{array}{c} 14 \ 18 \\ 41 \ 08 \end{array}$ | 84 08<br>96 20                | $\begin{array}{ccc} 14 & 16 \\ 22 & 16 \end{array}$          | $28 \ 11 \\ 81 \ 08$                                      | $\begin{array}{c} 24 & 07 \\ 189 & 02 \end{array}$                     |
| $f_5$           | 10000                   | 5 36                                                 | 5 38                                                                   | 11 15                                             | 2 92                                                | 293                                          | $\frac{20}{280}$                                                   | $\frac{13}{3}\frac{43}{73}$                                             | $\frac{14}{3} \frac{43}{76}$                               | 41 08                                             | $\frac{30}{22} \frac{20}{11}$ | 8 19                                                         | 12 16                                                     | $\frac{189}{21} \frac{02}{19}$                                         |
| J5              | 1000                    | 11 38                                                | 11 34                                                                  | 55 09                                             | 2 92                                                | 293                                          | 2 80                                                               | 10 40                                                                   | 10 42                                                      | $15 \frac{4}{30}$                                 | $\frac{22}{85}$ 09            | 16 19                                                        | $42 12 10 \\ 42 12$                                       | 59 05                                                                  |
|                 | 10000                   | 24 27                                                | 24 31                                                                  | 86 12                                             | 24 29                                               | 24 32                                        |                                                                    | $10 \ 40 \ 25 \ 28$                                                     | $10 \ 42 \ 24 \ 34$                                        | 49 14                                             | 98 24                         | 31 16                                                        | $122 \ 07$                                                | 138 04                                                                 |
| $f_6$           | 100                     | 3 46                                                 | 3 52                                                                   | 9 17                                              | 345                                                 | $3 48 \\ 6 51$                               | $533 \\ 1718$                                                      | 2.56                                                                    | 2.53                                                       | 4 38                                              | 18 <i>10</i>                  | 6 16                                                         | 4 24                                                      | $\frac{3}{15}\frac{23}{13}$                                            |
|                 | 1000                    | 6 52                                                 | 6 51                                                                   | 55 09                                             | 6 55                                                | 6 51                                         | 17 18                                                              |                                                                         |                                                            | 14 17                                             | 82 07                         | 11 16                                                        | 21  10                                                    | $15 \ 13$                                                              |
| -               | 10000                   | 14 32                                                | 14 36                                                                  | 80 12                                             | 14 33                                               | 14 36                                        | 38 12                                                              | 14 34                                                                   | 14 38                                                      | 61 07                                             | 98 <i>29</i>                  | 20 16                                                        | 70 09                                                     | 44 07                                                                  |
| $f_7$           | $     100 \\     1000 $ | 379                                                  | $387 \\ 1418$                                                          | 12 18                                             | $\frac{3}{12} \frac{86}{90}$                        | $387 \\ 1417$                                | $534 \\ 1919$                                                      | $\begin{array}{r} 3 & 77 \\ 5 & 36 \\ 25 & 20 \end{array}$              | $\begin{array}{r} 3 & 79 \\ 5 & 32 \\ 25 & 19 \end{array}$ | $534 \\ 2216 \\ 7408$                             | $22 \ 11 \\ 84 \ 09$          |                                                              | $\begin{array}{r} 4 & 25 \\ 47 & 08 \end{array}$          | ${}^{4}_{24} {}^{28}_{09}$                                             |
|                 | 10000                   | $13 19 \\ 27 19$                                     | $14 10 \\ 26 19$                                                       | $59 \ 10 \\ 87 \ 11$                              | $\begin{array}{ccc} 13 & 20 \\ 27 & 19 \end{array}$ | $14 17 \\ 26 20$                             | 19 19 19 50 13                                                     | 25 20                                                                   | 25 19                                                      | $\frac{22}{74} \frac{10}{08}$                     | 99 <i>32</i>                  | $\frac{19}{35} \frac{15}{16}$                                | 13407                                                     | 108 04                                                                 |
| $f_8$           | 10000                   | 3 25                                                 | 4 25                                                                   | 14 18                                             | 3 34                                                | 3 29                                         |                                                                    | 1 45                                                                    | 3 40                                                       | 7.34                                              | 25 02                         | 9 17                                                         | 9 10                                                      | 9 27                                                                   |
| 10              | 1000                    | 16 21                                                | 15 22                                                                  | 63 09                                             | 14 34                                               | 14 29                                        | 23 20                                                              | $^{1}_{14} \frac{45}{23}$                                               | 14 27                                                      | $\begin{array}{c} 7 & 34 \\ 26 & 16 \end{array}$  | 88 09                         | 23 16                                                        | $51 \ 08$                                                 | 32 11                                                                  |
|                 | 10000                   | 37 20                                                | 38 20                                                                  | 91 15                                             | 36 21                                               | 38 18                                        | 59 14                                                              | 35 22                                                                   | 36 21                                                      | 89 06                                             | 99 36                         | 47 14                                                        | $165 \ 05$                                                | 180 03                                                                 |
| $f_9$           | 100                     | 5.64                                                 | 5 75                                                                   | 11 18                                             | 569                                                 | 5 77                                         | 6 52                                                               | 1 37                                                                    | 3 34                                                       | 6 32                                              | 22 11                         | 8 18                                                         | 8 17                                                      | 11 18                                                                  |
|                 | $1000 \\ 10000$         | $952 \\ 1741$                                        | $956 \\ 1738$                                                          | $58 \ 09 \\ 85 \ 12$                              | $957 \\ 1743$                                       | $957 \\ 1738$                                | $16 18 \\ 40 12$                                                   | $9 \frac{35}{18}$                                                       | $937 \\ 1833$                                              | $16 \ 18 \\ 64 \ 07$                              | 85 <i>09</i><br>99 <i>29</i>  | $\begin{array}{ccc} 14 & 16 \\ 24 & 16 \end{array}$          | $\begin{array}{ccc} 28 & 14 \\ 76 & 08 \end{array}$       | $\begin{array}{c} 11 \ 28 \\ 33 \ 12 \end{array}$                      |
| r               | 10000                   |                                                      | $\frac{1738}{5100}$                                                    | $\frac{85}{13} \frac{12}{16}$                     | $\frac{1743}{299}$                                  | $\frac{1738}{2100}$                          | $\frac{40}{2}\frac{12}{100}$                                       | $\frac{18}{5}\frac{35}{100}$                                            | $\frac{18}{5}\frac{33}{100}$                               | 64 07                                             | $\frac{99\ 29}{24\ 11}$       | 24 10<br>8 18                                                | 9 20                                                      | <u> </u>                                                               |
| $f_{10}$        | 1000                    | $586 \\ 598$                                         | $5 100 \\ 5 100$                                                       | 53 07                                             | $3^{2}100$                                          | $\frac{2}{3}$ 100                            | $\frac{2}{3} \frac{100}{61}$                                       | $5 100 \\ 5 99$                                                         | $5\ 100\ 5\ 100$                                           | 5 14                                              | $\frac{24}{77} \frac{11}{07}$ | $     \begin{array}{c}                                     $ | $14 \ 14$                                                 | $19 59 \\ 141 86$                                                      |
|                 | 10000                   | 5 100                                                | 5 100                                                                  | 78 07                                             | 3 100                                               | 3 100                                        | 6 20                                                               | 7 100                                                                   | 7100                                                       | $584 \\ 547 \\ 923$                               | 87 10                         | 5 37                                                         | 17 12                                                     | 402 100                                                                |
| $f_{11}$        | 100                     | 1 87                                                 | $     \begin{array}{r}       1 & 94 \\       21 & 32     \end{array} $ | 16 16                                             | 1.99                                                | 1 99                                         | 5 32                                                               | 1 100                                                                   | 1  100                                                     | 2.27                                              | 26 10                         | 8 12                                                         | 1 47                                                      | 1.86                                                                   |
| 011             | 1000                    | 21 29                                                | 21 32                                                                  | 66 11                                             | 20 36                                               | $20 \ 33$                                    | 31 20                                                              | 18 17                                                                   | 20 25                                                      | 35 17                                             | 94 12                         | 27  15                                                       | 82 07                                                     | 49 08                                                                  |
|                 | 10000                   | 52 13                                                | 53 16                                                                  | 94 19                                             | 53 14                                               | 53 15                                        | 78 16                                                              | 49 13                                                                   | 52 15                                                      | 111 07                                            | 99 <i>39</i>                  | 63 13                                                        | 241 06                                                    | 139 07                                                                 |
| f <sub>12</sub> | $100 \\ 1000$           | $238 \\ 437$                                         | $^{1}_{4}$ $^{44}_{36}$                                                | $10 \ 17 \\ 55 \ 07$                              | $1 63 \\ 3 39$                                      | $159 \\ 337$                                 | $528 \\ 1714$                                                      | $178 \\ 350$                                                            | $1 77 \\ 3 46$                                             | $^{3}_{13}$ $^{44}_{15}$                          | $21 \ 11 \\ 80 \ 07$          | $\begin{array}{c} 6 & 18 \\ 10 & 16 \end{array}$             | $\begin{smallmatrix} 1 & 70 \\ 12 & 19 \end{smallmatrix}$ | 139                                                                    |
|                 | 10000                   | 946                                                  | 9 47                                                                   | 82 11                                             | 9 48                                                | 947                                          | $31^{17}_{11}$                                                     | 9 46                                                                    | $3 46 \\ 9 46$                                             | 69 07                                             | 98 <i>23</i>                  | 10 10 10 16 14 16                                            | $\frac{12}{37} \frac{19}{11}$                             | $     \begin{array}{r}       9 & 14 \\       27 & 05     \end{array} $ |
| $f_{13}$        | 10000                   | 160                                                  | 152                                                                    | 10 16                                             | 163                                                 | 153                                          | 5 50                                                               | 1 77                                                                    | 171                                                        | 5 33                                              | 19 10                         | 7 18                                                         | 1 63                                                      | 5 50                                                                   |
| J13             | 1000                    | 5 85                                                 | 5 93                                                                   | 53 08                                             | 591                                                 | 5 94                                         | 18 17                                                              | $\frac{1}{5}$ 89                                                        | $\frac{1}{5}$ 92                                           | 14 15                                             | 83 09                         | 9 16                                                         | $\frac{1}{9}$ $\frac{1}{15}$                              | 5 100                                                                  |
|                 | 10000                   | 5 97                                                 | 5 99                                                                   | $78 \ 10$                                         | 5 100                                               | $594 \\ 599$                                 | 30 11                                                              | $5\ 100$                                                                | 5 100                                                      | 64 06                                             | 97 21                         | $9 \ 16 \\ 5 \ 21$                                           | 19 12                                                     | $5\ 100$                                                               |
| $f_{14}$        | 100                     | 2 55                                                 | 262                                                                    | 11 17                                             | 269                                                 | 2 71                                         | $543 \\ 1714$                                                      | $1 56 \\ 5 53$                                                          | ${}^{2}_{52}$<br>${}^{5}_{57}$                             | 4 29                                              | 21 10                         | 7 19                                                         | 1 43                                                      | 3 70                                                                   |
|                 | 1000                    | $557 \\ 598$                                         | 5 63                                                                   | 54 07                                             | 5 60                                                | 5 63                                         | 17 14                                                              | 5 53                                                                    | 5 57                                                       | 12 13                                             | 80 06                         | 8 15                                                         | 12 16                                                     | $\begin{array}{c} 23 & 56 \\ 23 & 85 \end{array}$                      |
| r               | 10000<br>100            |                                                      | $\frac{5}{4}\frac{99}{66}$                                             | $\begin{array}{r} 79 \ 10 \\ 12 \ 16 \end{array}$ | 5 100                                               | 5 100<br>4 75                                | 31 10                                                              | 5 100                                                                   | 5 99                                                       | 60 <i>06</i>                                      | $97\ 21$<br>24\ 10            | $522 \\ 817$                                                 | 20 11                                                     | 23 85                                                                  |
| $f_{15}$        | 1000                    | $461 \\ 585$                                         | $\frac{4}{5}\frac{60}{93}$                                             | 53 08                                             | ${}^{4}_{8} {}^{73}_{8}$                            | 8 83                                         | $     \begin{array}{r}       6 40 \\       16 15     \end{array} $ | ${}^{4}_{589}$                                                          | $454 \\ 592$                                               | $\begin{array}{r} 6 & 37 \\ 14 & 15 \end{array}$  |                               | 916                                                          |                                                           | $9 \ 18 \\ 5 \ 100$                                                    |
|                 | 10000                   | 8 54                                                 | 8 49                                                                   | 77 09                                             | 8 54                                                | 8 49                                         | 35 11                                                              | 9 35                                                                    | 9 34                                                       | 6907                                              | 98 21                         | 12 17                                                        | 40 09                                                     | 1096                                                                   |
| $f_{16}$        | 10000                   | 4 77                                                 | 4 82                                                                   | 11 17                                             | 4 90                                                | 4 84                                         | 5 48                                                               | 4 87                                                                    | 4 85                                                       | 6 36                                              | $\frac{30}{21} \frac{21}{10}$ | 8 18                                                         | 8 18                                                      | 9 35                                                                   |
| 510             | 1000                    | 7 58                                                 |                                                                        | $54 \ 09$                                         | 8 80                                                | 8 83                                         | 16 15                                                              |                                                                         |                                                            | 17 15                                             | 84 08                         | 12 16                                                        | $21 \ 11$                                                 | 49  19                                                                 |
|                 | 10000                   | 10 78                                                | $10 \ 86$                                                              | 79 11                                             | 10 80                                               | 10 86                                        | 35 09                                                              | $10\dot{6}5$                                                            | 10 70                                                      | $71 \ 06$                                         | 98 24                         | 12 20                                                        | 41 08                                                     | 100 98                                                                 |

Table 3: Modes of number of bins chosen. The numbers in italics give the frequency of the mode in percent.

#### References

- Akaike, H., 1973. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-723.
- [2] Barron, A., Birgé, L. and Massart, P., 1999. Risk bounds for model selection via penalization. Probability Theory and Related Fields 113, 301-413.
- [3] Berlinet, A. and Devroye, L., 1994. A comparison of kernel density estimates. Publications de l'Institut de Statistique de l'Universite de Paris 38, 3-59.
- [4] Birgé, L. and Rozenholc, Y., 2006. How many bins should be put in a regular histogram? ESAIM: Probability and Statistics 10, 24-45.
- [5] Blanchard, G., Schäfer, C., Rozenholc, Y. and Müller, K.-R., 2007. Optimal dyadic decision trees. Machine Learning 66, 209-241.
- [6] Castellan, G., 1999. Modified Akaike's criterion for histogram density estimation. Technical Report 99.61, Université de Paris-Sud.
- [7] Castellan, G., 2000. Sélection d'histogrammes à l'aide d'un critère de type Akaike. Comptes rendus de l'Acadmie des sciences Paris 330, Série I, 729-732.
- [8] Catoni, O., 2002. Data compression and adaptive histograms. In: Cucker F. and Rojas J.M. (Ed.), Foundations of Computational Mathematics, Proceedings of the Smalefest 2000, pages 35-60. World Scientific, 2002.
- [9] Celisse, A. and Robin, S., 2008. Nonparametric density estimation by exact leave-p-out cross-validation. Computational Statistics and Data Analysis 52, 2350-2368.
- [10] Chen, X.R., Zhao, L.C., 1987. Almost sure  $L_1$ -norm convergence for data-based histogram density estimators. Journal of Multivariate Analysis 21, 179-188.
- [11] Comte, F., Rozenholc, Y., 2004. A new algorithm for fixed design regression and denoising. Annals of the Institute of Statistical Mathematics 56, 449-473.
- [12] Davies, P. L., Gather, U., Nordman, D. J., and Weinert, H., 2008. A comparison of automatic histogram constructions. To appear in ESAIM: Probability and Statistics.
- [13] Davies, P. L. and Kovac, A., 2004. Densities, spectral densities and modality. The Annals of Statistics 32, 1093-1136.
- [14] Davies, P.L. 2008.ftnonpar: and Kovac, Α., Features and strings for nonparametric regression. R package version 0.1-83. http://www.maths.bris.ac.uk/ maxak/ftnonpar.html
- [15] Devroye, L. and Györfi, L., 1985. Nonparametric density estimation: the  $L_1$  view. John Wiley, New York.

- [16] Devroye, L. and Lugosi, G., 2004, Bin width selection in multivariate histograms by the combinatorial method, Test 13, 129-145.
- [17] Engel, J., 1997. The multiresolution histogram. Metrika 46, 41-57.
- [18] Hartigan, J.A., 1996. Bayesian histograms. In: Bernardo, J.M., Berger, J.O., Dawid, A.P. and Smith, A.F.M. (Ed.), Bayesian Statistics 5, 211-222.
- [19] Kanazawa, Y., 1988. An optimal variable cell histogram. Communications in Statistics
   Theory and Methods 17, 1401-1422.
- [20] Kanazawa, Y., 1992. An optimal variable cell histogram based on the sample spacings. The Annals of Statistics 20,219-304.
- [21] Klemelä, J., 2007. Density estimation with stagewise optimization of the empirical risk. Machine Learning 67, 169-195.
- [22] Kogure, A., 1986. Optimal cells for a histogram. PhD thesis, Yale University.
- [23] Kogure, A., 1987. Asymptotically optimal cells for a histogram. The Annals of Statistics 15, 1023-1030.
- [24] Kontkanen, P. and Myllymäki, P., 2007. MDL histogram density estimation. In: Meila M. and Shen S. (Ed.), Proc. 11th International Conference on Artificial Intelligence and Statistics (AISTATS 2007), Puerto Rico, March 2007. http://www.stat.umn.edu/aistat/proceedings/start.htm
- [25] Lugosi, G. and Nobel, A., 1996, Consistency of data-driven histogram methods for density estimation and classification, The Annals of Statistics 24, 687-706.
- [26] Massart, P., 2007. Concentration inequalities and model selection. Lecture Notes in Mathematics Vol. 1896, Springer, New York.
- [27] Mildenberger, T., Weinert, H. and Tiemeyer, S., 2008. benchden: 28 benchmark densities from Berlinet/Devroye (1994). R package version 1.0.1.
- [28] Rissanen, J., Speed, T. P. and Yu, B., 1992. Density estimation by stochastic complexity. IEEE Transactions on Information Theory 38, 315-323.
- [29] Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics 6, 461-464.
- [30] Zhao, L.C, Krishnaiah, P.R., and Chen, X.R., 1988, Almost sure  $L_r$ -norm convergence for data-based histogram estimates, Theory of Probability and its Applications 35, 396-403.