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Abstract. In order to group the observations of a data set into a given number
of clusters, an ‘optimal’ subset out of a greater number of explanatory variables is
to be selected. The problem is approached by maximizing a quality measure under
certain restrictions that are supposed to keep the subset most representative of the
whole data. The restrictions may either be set manually, or generated from the
data. A genetic optimization algorithm is developed to solve this problem.
The procedure is then applied to a data set describing features of sub-districts of
the city of Dortmund, Germany, to detect different social milieus and investigate
the variables making up the differences between these.

1 The problem

Before the observations are clustered, the data need to be reduced. A reduc-
tion is necessary to

1. avoid overfitting,

2. exclude noise and redundant variables and

3. keep the data perceptible and interpretable.

To achieve these goals, we would like to use a subset of the original variables
rather than, for example, linear combinations (like principal components)
that are harder to interpret.
To determine an ‘optimal’ subset of variables, some measure of cluster quality
needs to be optimized; this measure should return comparable values regard-
less of the number or scale of variables in the subset. Also, some restrictions
should be met to make sure that, for example, the subset has more than one
element and, in some sense, most data features are reflected in the subset.

⋆ This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 475.
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2 Tackling the problem

We focused on fuzzy clustering methods, that is, methods that do not assign
fixed clusters to each observation, but that return posterior probabilities of
cluster membership instead. These methods are often a more appropriate ap-
proach to clustering problems.
Validity measures are then computed from the membership matrix that is
yielded by clustering with a specific variable set, and thus independently
from the underlying variables themselves. In particular, they do not depend
directly on the number or scales of variables. Assessment of clusterings with
different variable sets can then be based on such measures.

Basing variable selection on the membership matrix alone still may lead to
in some sense ‘optimal’, but still useless solutions. The final variable set may
consist of a single, or some highly correlated variables, for example.
Instead, we try to keep the selected subset of variables as representative as
possible of the complete data set. In order to achieve this, we are introducing
subgroups of variables that have to be represented in the selected subset.
These subgroups are either arranged ‘by hand’ (groups of variables with sim-
ilar meaning or representing a certain aspect of the data set) or automatically
(groups of correlated variables).

The selection itself is then performed by a genetic algorithm that can pretty
easily be adapted to handle a parameter space of this kind (that is, a re-
stricted space with varying dimension).

All computations will be performed using R, a free software for data analysis
(Ihaka and Gentleman, 1996).

3 Methods

3.1 Fuzzy clustering

Usually, a clustering procedure returns specific assignments of clusters to all
observations. Fuzzy clustering methods instead are those methods, that for
each observation provide indices measuring the potential affiliation to all of
the clusters.
The result of a fuzzy clustering then is a (N × k) membership matrix U ,
whith uij denoting the probability that observation i belongs to cluster j; or
in other words: each row of U corresponds to one observation (i) and is the
distribution of membership over clusters 1, . . . , k. An example with 3 clusters:

U =







0.95 0.02 0.03
0.50 0.30 0.20

...
...

...
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Both observations would be assigned to cluster 1, while the second assign-
ment is not as clear as the first one.
We considered two different clustering methods, the cmeans-procedure from
the e1071 package, which is a fuzzy version of the known k-means cluster-
ing, and the EMclust-procedure from the package mclust. ‘EMclust’ fits a
Gaussian mixture model with k components to the data; in this case the com-
ponents have the same covariance structure and differ by their means and a-
priori-probabilities. The data is then clustered by assigning each observation
to one of the k mixture components. We eventually decided in favour of the
second method, mostly for interpretability reasons: while k-means-clustering
by its nature carves the data into sphere-shaped clusters, model-based clus-
tering is able to handle clusters with covariance structures even different to
spheric shapes and does not require (and depend on) normalization (Fraley
and Raftery, 2002).

3.2 Measuring the clustering quality

Let U be a (N ×k) membership matrix, as above. All the uij should be close
to one or zero, so the clustering yields distinct assignments. A measure of
this feature is the classification entropy:

CE(U) = −
1

N

N
∑

i=1

k
∑

j=1

(uij · log
2
uij)

CE(U) is zero, if all elements of U are either 1 or 0 (a most crisp partition-
ing), and takes its maximum if all of them are = 1

k
(the fuzziest partitioning)

(Hall,1999).
The classification entropy allows comparison of clusterings based on different
variable sets with different numbers of variables, but is sensitive to the num-
ber of clusters (k), so this quantity needs to be fixed beforehand.

While a most fuzzy clustering pretty obviously is a bad clustering, a crisp
clustering does not necessarily have to be a good clustering. A variable subset
leading to low entropy may in some sense not represent the data appropri-
ately. In order to force some structure into the subset selection process, the
concept of subgroups is introduced in the following section. This allows for
the injection of expert knowledge or of further information on the data (cor-
relations) into the procecedure.

3.3 Defining subgroups of variables

Subgroups can be defined manually, or they are constructed systematically
as groups of correlated variables. These subgroups are generated by agglom-
erative hierarchical clustering (Kaufman and Rousseeuw, 1990); the variables
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are clustered, and to do so, the ‘distance’ between two variables X1 and X2

is defined as:
d(X1, X2) = 1 − |Cor(X1, X2)|

Thus, variables with a high (absolute) correlation are ‘close’ to each other,
while uncorrelated variables are ‘farther’ from each other. With this defini-
tion, the correlation matrix can directly be transformed into a distance ma-
trix, which is the only basis needed for the clustering. Using either complete
or single linkage yields groups of variables with different interpretations:

complete linkage: the (absolute) correlation of variables from the same group
is bounded below.

single linkage: the (absolute) correlation of variables from different groups
is bounded above.

In both cases, the groups may be interpreted as variable sets with some
common source of variability; and by picking variables from different groups,
the intention is to cover these different sources.

3.4 Genetic optimization algorithms

Optimization problems, in general, are problems of finding the minimum of
some function f : M → IR that projects from some space M to the real line.
Genetic algorithms are stochastic optimization algorithms to solve these kinds
of problems by making use of evolutionary principles as known from biology,
namely mutation, recombination and selection (‘survival of the fittest’).
In nature, the fitness of individuals depends on their genes. Individuals with
a greater fitness have a greater chance of survival and also the wider range
of mating partners to choose between. ‘New’ individuals are generated by

mutation: single genes of an individual are changed, or
recombination: two genomes are combined to a new one.

Again, new individuals have to compete with the current population for part-
ners and survival. The competitiveness of each individual is determined by
its fitness.
Analogously, in genetic algorithms the goal function to be optimized corre-
sponds to the fitness, and the individuals are parameter sets for the function.
To start the algorithm, a starting population is generated. Then, generation
by generation, the population is multiplied by mutating and breeding indi-
viduals and only the ‘fittest’ ones (as judged by the goal function) survive
until the next generation. At some point, the procedure stops and the (so far)
best parameter set is returned.
An advantage of genetic algorithms is, that the parameter space (M) can lit-
erally be any space, as long as the mutation- and recombination procedures
can be defined reasonably. Restrictions are implemented pretty easily as well
(Goldberg, 1989).
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3.5 Implementation

Parameters to be defined beforehand are: the subgroups of variables, the min-
imum numbers of representatives for each group that have to be in a variable
subset (≥ 0), the (total) maximum number of variables in a subset, the ‘pop-
ulation size’ and the number of generations.
A ‘genome’ (an ‘individual’) is a vector of variable indices; its minimum length
depends on the sum of minimum numbers for each variable group, and the
maximum length is defined explicitly. The population is made up by a set of
these individuals. The fitness of each individual is determined by clustering
the data using the corresponding subset of variables and then computing the
classification entropy as the measure of clustering quality that is achieved
with this subset (the smaller the entropy, the greater the fitness).
In the beginning, a random starting population (of the given size) is created,
and the fitness of each individual is determined. In each generation, indi-
viduals are mutated (a new individual is generated by changing, adding or
deleting single indices from a given individual), and pairs of individuals are
crossed (a new set of indices is selected from the union of parental indices).
The chance of being mutated or crossed is proportional to the individuals’ fit-
ness. In each step (creation of starting population, mutation, recombination)
it is made sure that the resulting individuals comply with the restrictions
(given by the pre-defined subsets and referring minimum numbers). After
each generation, the population is cut down again to the former population
size (fittest individuals are kept).
After a given number of generations the fittest individual (the best subset of
variables) is returned.

4 Applying the procedure

4.1 The Dortmund data

The data consisted of 170 observations of 200 variables, referring to 170 sub-
districts of the city. All variables were total numbers (of inhabitants, females,
births,. . . ), so in order to make them comparable across districts, we first
constructed normalized variables like ‘fraction of female inhabitants’, ‘birth
rate’ and so on. The result was a set of 57 variables describing features like

i. age distribution
ii. births, deaths, migration
iii. motoring
iv. buildings, housing
v. employment, welfare
vi. some of the above broken down by sex or citizen/alien status

12 out of the 170 observations were considered as outliers; they showed ex-
treme values in some variables, and by checking the corresponding district
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on a city map, one could see that these were either extremely sparsely popu-
lated or contained some special feature like a boarding school, an old people’s
home, etc. These were then ignored in the further analysis.
The four groups that we considered should be represented are described by
points i, ii, iv and v of the above enumeration. The remaining variables form
a group that does not necessarily have to appear.
Grouping the variables by correlations in this case resulted in either huge
numbers of subgroups, most of which containing only one variable, or the re-
spective lower/upper correlation bound would be of insignificant order, lead-
ing to rather meaningless groupings. So we eventually dropped the automatic
grouping approach and only used the subgroups arranged by variable mean-
ings.
Each of the 4 groups should be represented by 1 variable in the final vari-
able subset. In order to keep the data comprehensible, we set the maximum
number of variables to 6. That forces the algorithm to choose 1 variable from
each of the 4 groups, the remaining variables can then be picked arbitrarily.
Another quantity to be defined beforehand is the number of clusters. After
some data exploration, repeated application of the procedure for different
values and inspection of the resulting clusterings we found that the different
city districts indicated the presence of 4 clusters that repeatedly showed up
with a variety of variable sets.

4.2 Results

The ‘optimal’ set of variables, with respect to the clustering quality measure
and restrictions, that we found, is shown in Table 1.

Table 1. Clustering variables and their means.

Cluster

Variable Group 1 2 3 4

fraction of population of age 60–65 i. 0.057 0.065 0.064 0.083
moves to district per inhabitant ii. 0.075 0.054 0.035 0.025
apartments per house iv. 7.831 5.331 3.367 2.524
people per apartment iv. 1.877 1.676 2.216 2.029
fraction of welfare recipients v. 0.129 0.031 0.066 0.023
fraction of aliens of employed people vi. 0.274 0.073 0.086 0.032

Figure 1 displays the distribution of the clusters across the city map. Clusters 1
and 2 roughly cover the city center, subdividing it into north (1) and south (2),
while clusters 3 and 4 cover the remaining suburbs (roughly northwest and
southeast).
The greatest differences are between clusters 1 (center north) and 4 (south-
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Fig. 1. Map of Dortmund showing the 4 clusters (from Cluster 1=darkgrey to
Cluster 4=lightgrey; white districts are the outliers that were omitted).

east suburbs). Cluster 1 has a low fraction of older inhabitants, great frac-
tions of aliens and welfare recipients, more migration and many apartments
per house while cluster 4 takes the opposite extreme values. Clusters 2 and 3
are both more or less between these two extremes and differ by their build-
ings/housing structure: cluster 2 (center south) has more apartments per
house and the fewest people per apartment while cluster 3 (northwest sub-
urbs) has the most people per apartment.

4.3 Comparing the results

Clustering the data by all variables instead of a subset leads to pretty similar
maps, for both the traditional k-means-algorithm and EM clustering based
on gaussian mixture models.
Differences become evident when it comes to interpretation. When clustering
with all variables, the different variable types (as indicated in the table in
section 4.1) are weighted by the number of variables in each of the groups,
which are rather random. In contrast, in the approach presented here these
proportions are set manually. Also, a selection of necessary variables and
elimination of noise variables does not take place. Using only a subset of
variables, clusters can thus be easily characterized by the distribution of the
(far fewer) variables that were actually used.
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Fig. 2. Two of the variables discriminating the clusters.

5 Summary

The variable selection problem was approached by introducing a quality mea-
sure for clusterings and certain restrictions to retain as many information as
possible from the complete data set in the variable subset. The optimal vari-
able selection was then performed by a genetic optimization algorithm.
For the Dortmund data, the attempt to define variable subgroups based on
correlations proved to be impractical, so the variables were only grouped
manually by their respective meanings. Data exploration suggested the pres-
ence of 4 clusters. The application of the developed procedure resulted in
a plausible set of discriminating variables and a reasonable distribution of
the clustered districts across the map. While actual clustering results are
similar to those of traditional methods, the necessary data was reduced to a
minimum on which to focus any possible further investigation.
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