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Abstract

We study locally D-optimal designs for some exponential models that are frequently
used in the biological sciences. The model can be written as an algebraic sum of two
or three exponential terms. We show that approximate locally D-optimal designs are
supported at a minimal number of points and construct these designs numerically.

1 Introduction

Nonlinear regression models are widely used to describe the dependencies between a response
and an explanatory variable, see for example, Seber and Wild (1989), Ratkowsky (1983)
or Ratkowsky (1990). An appropriate choice of the experimental conditions can improve
the quality of statistical inference substantially and therefore many authors have discussed
the problem of designing experiments for nonlinear regression models. The main purpose
of the present paper is to construct locally D-optimal designs for a class of exponential
regression models that is widely used in the biological sciences, see for example, Green and
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Reilly (1975), Endrenyi and Dingle (1982), Bardsley, el at. (1986), Droz el at. (1999) and
Mason and Wilson, (1999). These models are particularly common in pharmacokinetics and
they are called compartmental models (Rowland and Tozer,1989, Shargel and Yu, 1985).
Typically, the expected mean response in concentration units, is expressed simply as a linear
combination of exponential terms. Such a model is suitable for modeling an identifiable,
open, noncyclic n-compartmental system with bolus input into the sampled pool (Landaw,
1985). Compartmental models are also used in data analysis in toxicokinetic experiments
(Urfer, 1996 and, Becka, Bolt and Urfer, 1993) and in chemical kinetics (Gibaldi and Perrier,
1982). The simplest forms of such models are

a1e
b1t + a2e

b2t(1)

a1e
b1t + a2e

b2t + a3e
b2t(2)

where a1, a2, a3, b1, b2 and b3 are parameters and t is usually time after administration of the
drug. The parameters ai, bi, i = 1, . . . , 3 are the macroparameters of the model.

Sometimes, where appropriate, a constraint is imposed on the parameters ai to reduce the
dimension of the problem. For instance, if the concentration is measured for samples from a
pool peripheral, the sum of the a′

is is constraint to zero. At other times, constraints on the
macroparameters arise naturally. A compartmental model was used in Alvarez et al. (2003)
to describe Escherichia coli inactivataoin by pulsed electric fields. The biological meaning of
this model is that in one population of microorganisms, two subpopulations exist. The first
population is sensitive to the inactivating factor and the second population is resistant. If we
let S(t) be the fraction of total survivors at treatment time t, p be the fraction of survivors
in the sensitive population, 1 − p be the fraction in the resistant population, and k1 and k2

are the specific death rates in the two populations, we have S(t) = pe−k1t + (1 − p)e−k2t. In
this case, the parameters a1 and a2 must sum to unity.

The question of interest here is how to construct efficient designs for estimating parameters
in the compartmental models. Because these are nonlinear models, the optimal design will
depend on the nominal values of the parameters. As such they are called locally optimal
designs. A popular design criterion for estimating model parameters is D-optimality. The
criterion is expressed as a logarithmic function of the determinant of the expected Fishers’
information matrix and hence it is a concave function (Silvey, 1980). For fixed nominal
values, the locally D-optimal design is obtained by maximizing this function over the set
of all designs on the interval of interest. Such an optimal design minimizes the generalized
variance and consequently, locally D-optimal design provides the smallest confidence ellipsoid
for the parameters. Frequently, an equivalence theorem is used to check the optimality of the
design. Equivalence theorems are derived from convex analysis and are basically conditions
required of the directional derivative of a concave functional at its optimum point. Details
can be found in standard design monographs, see Fedorov (1972) or Silvey (1980) for example.

Recently Ermakov and Melas (1995) studied properties of locally D-optimal designs for an
extension of model (1) and (2) within the class of all minimally supported designs. This
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means that instead of optimizing the criterion over all designs on the design space, the
optimization is now restricted to only the class of designs where the number of design points
is equal to the number of parameters in the model. They called these designs saturated
optimal designs and they showed that a saturated locally D-optimal design is always unique
and has equal weights at its support points. Moreover, the support points are decreasing
functions of any of the parameters in the exponentials terms. However, the question if these
saturated optimal designs are optimal within the class of all designs was left open.

In the present paper we give a partial answer to this problem. In the general model considered
by Ermakov and Melas (1995) we show that in certain regions for the unknown parameters
the locally D-optimal designs are in fact supported at a minimal number of points. Moreover,
we derive an upper bound for the number of support points of the locally D-optimal design.
For the special cases of model (1) and (2) this bound reduces to 4 and 7 , respectively, and we
demonstrate by an extensive numerical study that locally D-optimal designs for the model
(2) are in fact always supported at 6 points. Thus our theoretical and numerical results give
a complete solution of the locally D-optimal design problem in the models (1) and (2).

The paper is organized as follows. Section 2 introduces the statistical setup, model speci-
fication and notation. The main theoretical and numerical results are contained in Section
3. Section 4 contains a summary and a description of some outstanding design problems for
these types of models. All technical details are deferred to the Appendix.

2 Preliminaries

We assume that at the onset a predetermined number of observations N are to be taken
from the study. The choice of N is usually determined by the resources available. Following
Kiefer (1974), we view all designs in this paper as probability measures on a user-selected
design interval χ. We denote a generic design with n distinct points by

ξ =

(

x1 . . . xn

µ1 . . . µn

)

.

Here, x1, . . . , xn ∈ χ are the design points, where observations are to be taken and µ1, . . . , µn

denote the proportions of total observations taken at these points. In practice, a rounding
procedure is applied to obtain the samples sizes Ni ≈ µiN at the experimental conditions
xi, i = 1, 2, . . . , n, subject to N1 + N2, . . . , +Nn = N . An optimal procedure for rounding is
given in Pukelsheim and Rieder (1993).

Consider the standard nonlinear regression model given by

yj = η(xj , θ) + εj, j = 1, 2, . . . , N,

where ε1, . . . , εN are independent identically distributed observations such that E[εj ] = 0,
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E[ε2
j ] = σ2 > 0, (j = 1, . . . , N)and

η(x, a, λ) =

k
∑

i=1

aie
−λix.(3)

Here a = (a1, . . . , ak)
T , λ = (λ1, . . . , λk)

T and θT = (aT , λT ) is the vector of unknown
parameters to be estimated. Without loss of generality we assume ai 6= 0, i = 1, . . . , k and
0 < λ1 < λ2 < . . . < λk. The designpoints x1, . . . , xN are experimental conditions, which
can be choosen by the experimenter from a given set. In our case, this set is χ = [0,∞). If
n ≥ 2k and µi > 0, i = 1, . . . , n, it is well known that the least squares estimator θ̂ for the
parameter θ in the model (3) is asymptotically unbiased with covariance matrix satisfying

lim
N→∞

Cov(
√

Nθ̂) = σ2M−1(ξ, a, λ),

where

M(ξ, a, λ) =

(

n
∑

s=1

∂η(xs, θ)

∂θi

∂η(xs, θ)

∂θj

µs

)2k

i,j=1

denotes the information matrix of the design ξ.

An optimal design maximizes a concave real valued function of the information matrix and
there are numerous optimality criteria proposed in the literature to discriminate between
competing designs, see for example, Silvey (1980) or Pukelsheim (1993). In this paper we
restrict ourselves to the well known D-optimality criteion. Following Chernoff (1953), we

call a design ξ locally D-optimal in the exponential regression model (3) if for given nominal
values of a and λ, it maximizes det M(ξ, a, λ) over all designs on the interval χ. Locally
D-optimal designs in various non-linear regression models have been discussed by numerous
authors. They include Melas (1978), He, Studden and Sun (1996) or Dette, Haines and
Imhof (1999) among many others. In the present context we have

∂η(xs, θ)

∂θ
= (e−λ1x, . . . , e−λix,−a1xe−λ1x, . . . ,−akxe−λkx)T

and as a consequence, it is easy to see that for any design ξ on χ, the determinant of the
information matrix M(ξ, a, λ) for the regression model (3) satisfies

det M(ξ, a, λ) = a2
1, . . . , a

2
k det M(ξ, e, λ),

where e = (1, . . . , 1)T ∈ R
k. In other words a locally D-optimal design for the model (3)

does not depend on the ”linear” parameters a1, . . . , ak, and we can restrict ourselves to the
maximization of the determinant of the matrix

M(ξ, λ) = M(ξ, e, λ)(4)
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throughout this paper. Because for any design space under consideration the induced design
space

{

∂η(x, θ)

∂θ

∣

∣

∣
x ∈ χ

}

is compact, locally D-optimal designs exist (Pukelsheim, 1993). Moreover a locally D-
optimal design has necessarily at least n ≥ 2k support points because otherwise the cor-
responding information matrix would be singular. Throughout this paper designs with
a minimal number of support points n = 2k are called saturated or minimally supported
designs. It is well known that a D-optimal saturated design has equal masses, that is
µ1 = µ2 = . . . = µ2k = 1

2k
(Fedorov, 1972).

Melas and Ermakov (1995) studied locally D-optimal designs for the model (3) in the class of
all saturated designs. However, the question if these saturated optimal designs are optimal
within the class of all designs was left open. In the following section we will derive an
upper bound for the number of support points of the locally D-optimal design in the general
exponential regression model (3). For the particular cases k = 1, 2 and k = 3 [the last two
cases correspond to the model (1) and (2), respectively] we show that the locally D-optimal
designs are in fact saturated. These results can be used to find the locally D-optimal designs
using numerical methods introduced by Melas (1978) and recently in Melas (2000) and Dette
Melas and Pepelyshev (2004) for polynomial models.

3 Main results

In this section we study the number of support points of a locally D-optimal design for the
model (3). Throughout this paper this number will be denoted by n∗(λ). Additionally we
will use for k ≥ 3 the notation

λ̂ = (λ̂1, . . . , λ̂k)
T(5)

for any vector λ with components satisfying

0 < λ̂1 < . . . < λ̂k

(6)

λ̂i+1 = (λ̂i + λ̂i+2)/2, i = 1, 2, . . . , k − 2.

Theorem 1 If n∗(λ) denotes the number of support points of a locally D-optimal design
(with respect to the parameter λ) for the nonlinear regression model (3), then

(i) n∗(λ) = 2k, if k = 1 or 2
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(ii)
n∗(λ) ≤ k(k + 1)/2 + 1,

for any k ≥ 3. Moreover for any vector λ̂ of parameters with components satisying (6)
there exists a neighbourhood, say U ⊂ R

k, of λ̂, such that for all vectors λ ∈ U the
number of support points of the locally D-optimal design (with respect to

λ) is given by n∗(λ) = 2k.

Note that in the case k = 1, 2 the locally D-optimal 2k-point design is in fact also optimal
in the class of all designs. If k ≥ 3 the last part of Theorem 1 indicates that in many cases
locally D-optimal designs for the regression model (3) are in fact saturated designs. Formally
this is only true for vectors λ in a neigbourhood of a parameter vector λ̂ with components
satisfying the restriction (6). However, numerical results indicate that the set of parameter
vectors λ ∈ R

k for which the locally D-optimal design is minimally supported is usually very
large. For example in the case k = 3 we could not find any case, where the locally D-optimal
design was suppported at 7 points. Note that this is the upper bound for the number of
support points according to the second part of Theorem 1.

Corrollary 2. In the exponential regression model (3) with k = 3 we have for the number
n∗(λ) of support points of the locally D-optimal design (with respect to λ)

(i) n∗(λ) ∈ {6, 7} for any vector λ with increasing positive coefficients

(ii) For any point λ̂ = (λ̂1, λ̂2, λ̂3) satisfying 0 < λ̂1 < λ̂2 < λ̂3, λ̂2 = (λ̂1 + λ̂3)/2 there
exists a neighbourhood of λ̂, say U ⊂ R

k, such that n∗(λ) = 6 for any locally D-optimal
design with respect to λ ∈ U .

The results of Theorem 1 and Corollary 2 can be used to construct numerical locally D-
optimal designs for the exponential regression model (3). We illustrate this procedure by
determining locally D-optimal designs for k = 1, 2, 3, corresponding to the case where there
is one, two or three exponential terms in the model. Before we begin we recall some results
on the restricted optimization in the class of all saturated designs with support points x∗

1 <
x∗

2 < . . . < x∗
2k, for which the optimal weights are equal to 1

2k
. Melas (1978) proved the

following properties for the locally D-optimal saturated designs for a homoscedastic model
with an arbitrary sum of exponential terms. (i.e. k ∈ N is abitrary).

(i) The support points x∗
1 < x∗

2 < . . . < x∗
2k of a saturated locally D-optimal design for

the model (3) are uniquely determined.

(ii) 0 = x∗
1 < x∗

2 < . . . < x∗
2k are analytic functions of the nonlinear parameters λ1, . . . , λk.

Therefore we use the notation x∗
i (λ) (i = 1, . . . , 2k). As a consequence each support

point can be expanded in Taylor series in a neighborhood of any point λ.
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(iii) If the nonlinear parameters λ1, . . . , λk satisfy λi → λ∗ > 0, i = 1, 2, . . . , k, then
the support points of the locally D-optimal design with respect to the parameter
λ = (λ1, . . . , λk)

T converge, that is

lim
λ→λ∗

x∗
i (λ) = γi−1/2λ∗,

where γ1, . . . , γ2k−1 are the roots of Laguerre polynomial L
(1)
2k−1(x) of degree 2k − 1

orthogonal with respect to the measure x exp(−x)dx [see Szegö (1975)].

In the case k = 1 it follows from Theorem 1(i) that the locally D-optimal design is a uniform
distribution on two points and we obtain from (iii)

x∗
1 ≡ 0, x∗

2 = 1/λ1.

In the case k = 2 Melas (1978) determined locally D-optimal saturated designs restricting
the optimization to the class of all four point designs. Theorem 1(i) now shows that these
saturated designs are in fact locally D-optimal within the class of all designs. A table of
these designs can be found in Melas (1978). In the case k = 3 we obtain n∗(λ) = 7 as upper
bound for the number of support points of any locally D-optimal designs.

We now consider locally D-optimal designs for the model

a1e
−λ1x + a2e

−λ2x + a3e
−λ3x,(7)

where a1, a2, a3 6= 0, 0 < λ1 < λ2 < λ3 and the design space is given by the interval [0,∞).
If the interval [c,∞) with c > 0 is the design space, we need only add the constant c to
all design points. Since x∗

1 ≡ 0 only the points x∗
2, . . . , x

∗
6 have to be calculated. Note that

under a multiplication of all parameters λ1, λ2, λ3 by the same positive constant the support
points of the locally D-optimal design have to be divided by the same constant. Therefore
without loss of generality we assume the normalization (λ1 + λ2 + λ3)/3 = 1 and introduce
the notation δ1 = 1− λ1, δ2 = 1− λ2 (note that the condition λ1 < λ2 implies δ1 > δ2). The
point λ̂(ε) = (1, 1 + ε, 1 + 2ε) with ε > 0 is obviously of the form (5) and arbitrarily close to
the point λ∗ = (1, 1, 1). Consequently, by Theorem 1 the support points x2(λ), . . . , x∗

2k(λ)
of the locally D-optimal design can be expanded in a convergent Taylor series at the point
λ∗ (which corresponds to the case δ∗1 = 0, δ∗2 = 0). The coefficients in this expansion can
be determined recursively [see Melas (2000) or Dette, Melas and Pepelyshev (2004)] With
the help of the equivalence theorems, they also verified that for the D-opimality criterion,
these designs are locally D-optimal in the class of all approximate designs. In all examples
considered in our study we obtain n∗(λ) = 6. Table 1 and Table 2 show the suport points of
the locally D-optimald design for various values of δ1 and δ2.
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δ1 = 0.95

δ2 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

x2 0,312 0,312 0,313 0,314 0,315 0,316 0,317 0,318 0,320 0,322 0,324

x3 1,101 1,106 1,113 1,123 1,135 1,151 1,172 1,198 1,231 1,275 1,336

x4 2,572 2,597 2,636 2,691 2,764 2,862 2,993 3,170 3,419 3,788 4,381

x5 6,148 6,251 6,405 6,619 6,906 7,284 7,781 8,444 9,353 10,657 12.674

x6 26,44 926,573 26,761 27,024 27,378 27,852 28,488 29,359 30,598 32,474 35,587

δ1 = 0.9

δ2 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

x2 0,312 0,312 0,312 0,313 0,314 0,315 0,316 0,318 0,319 0,321 0,323

x3 1,096 1,100 1,106 1,115 1,126 1,145 1,159 1,182 1,212 1,250 1,302

x4 2,535 2,557 2,590 2,637 2,700 2,784 2,895 3,044 3,248 3,542 3,992

x5 5,550 5,623 5,737 5,898 6,116 6,405 6,786 7,293 7,985 8,966 10,447

x6 6,069 16,175 16,341 16,58 16,906 17,348 17,947 18,77 19,931 21,644 24,347

δ1 = 0.8

δ2 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6

x2 0,311 0,311 0,312 0,312 0,313 0,314 0,315 0,316 0,317 0,319

x3 1,087 1,089 1,094 1,101 1,111 1,123 1,138 1,157 1,180 1,211

x4 2,475 2,489 2,513 2,548 2,596 2,661 2,744 2,855 3,003 3,205

x5 5,000 5,047 5,122 5,234 5,386 5,591 5,860 6,218 6,699 7,367

x6 10,898 10,979 11,12 11,328 11,615 12,001 12,516 13,206 14,151 15,495

δ1 = 0.7

δ2 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6

x2 0,310 0,311 0,311 0,311 0,312 0,313 0,314 0,315 0,316 0,317

x3 1,079 1,081 1,085 1,090 1,098 1,108 1,120 1,136 1,155 1,180

x4 2,428 2,437 2,454 2,481 2,518 2,568 2,634 2,720 2,832 2,983

x5 4,720 4,746 4,798 4,880 4,995 5,151 5,358 5,631 5,997 6,499

x6 9,208 9,261 9,368 9,536 9,773 10,095 10,526 11,101 11,884 12,991

Table 1: Support points of the locally D-optimal designs for the exponential regression model
(7) for various values of δ1 = 1 − λ1, δ2 = 1 − λ2.
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δ1 = 0.6

δ2 -0,2 -0,1 0 0,1 0,2 0,3 0,4

x2 0,310 0,310 0,311 0,311 0,312 0,313 0,314

x3 1,074 1,076 1,081 1,087 1,095 1,106 1,119

x4 2,396 2,408 2,428 2,458 2,498 2,551 2,619

x5 4,554 4,589 4,650 4,740 4,863 5,028 5,246

x6 8,396 8,473 8,605 8,800 9,070 9,435 9,927

δ1 = 0.5

δ2 -0,2 -0,1 0 0,1 0,2 0,3 0,4

x2 0,310 0,310 0,310 0,310 0,311 0,312 0,312

x3 1,068 1,070 1,073 1,078 1,085 1,094 1,105

x4 2,365 2,373 2,388 2,411 2,443 2,486 2,542

x5 4,423 4,445 4,490 4,560 4,659 4,794 4,973

x6 7,884 7,934 8,035 8,195 8,424 8,739 9,167

δ1 = 0.4

δ2 -0,1 0 0,1 0,2 0,3

x2 0,309 0,309 0,310 0,310 0,311

x3 1,065 1,067 1,071 1,076 1,084

x4 2,346 2,356 2,374 2,400 2,436

x5 4,344 4,375 4,430 4,511 4,622

x6 7,586 7,661 7,792 7,986 8,261

δ1 = 0.3

δ2 -0,1 0 0,1 0,2

x2 0,309 0,309 0,309 0,310

x3 1,061 1,062 1,065 1,070

x4 2,327 2,334 2,347 2,368

x5 4,274 4,295 4,336 4,402

x6 7,361 7,411 7,515 7,681

Table 2: Support points of the locally D-optimal designs for the exponential regression model
(7) for various values of δ1 = 1 − λ1, δ2 = 1 − λ2.

4 Discussion

Our work in the previous sections extended the results in Melas (1978). He considered com-
partmental models with one and two exponential terms and found locally D-optimal designs
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within the class of designs with minimal support points. This means that optimality of the
design was restricted to the class of designs with two points when there is one exponential
term and to four points when the model has two exponential terms. We showed here that
these saturated locally D-optimal designs are actually locally D-optimal, meaning that they
are also optimal within the class of all designs. Additionally, we extended this result to
models with three exponential terms, and found that this result also applies to models with
an arbitrary number of exponential terms provided the parameters in the exponential terms
belong to a certain region.

We stress that the locally D-optimal designs for the exponential model (1) and (2) are in-
fluenced by a preliminary “guess” for the parameter values. This may seem undesirable but
such designs usually represent a first step in the construction of an optimal design for a
model under a more robust optimality criterion, including the Bayesian- and minimax crite-
rion, see Pronzato and Walter (1985), Chaloner and Larntz (1989) or Haines (1995) among
many others. Our results here suggest that findng optimal designs for the general exponen-
tial regression model under a more sophisticated optimality criterion will be a challenging
problem.

There is room for further work for addressing design issues for the types of models considered
in this paper. We mention three interesting areas for further research here.
First, we have considered models only up to three exponential models. Models with more
than three exponential terms are also used in practice, although less often because of the
added complexity. For instance, a seven-compartment physiologically based pharmacokinetic
model was developed to predict biological levels of tetrahydrofuran under different exposure
scenarios (Droz, Berode and Jang, 1999). Constructing and understanding properties of
optimal designs for more complicated model will be helpful for the practitioners. However,
we anticipate extending similar results for models with four or more exponential terms will
require more theory, and more likely require a different approach.

Second, there are other biological models closely related to those studied here. For instance,
if we add an intercept to the models studied here, the resulting models are useful for studying
viral dynamics and related problems. Han and Chaloner (2003) constructed D and c-optimal
designs for some simple models for estimating parameters in viral dynamics in an AIDS trial.
They considered models with one or two exponential terms, but more complex systems
will have to involve additional exponential terms. Providing optimal designs will provide
guidance to the researcher where the best sampling time points to realize cost reduction
without sacrificing statistical efficiency.

Third, our models assume that errors are homoscedastic. Landaw and DiStefano (1984)
postulated that the error variance in some compartmental models is more appropriated
modeled as equal to α + β(y(ti))

γ, where α represents constant background variance. The
three parameters α, β and γ may be known constants from previous studies, and if they are
not known, they will have to be estimated, before a locally optimal design can be constructed.
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5 Appendix: Proof of Theorem 1

We begin the proof with a study of the correponding D-optimal design problem in the linear
regression model

2k
∑

i=1

βie
−λ̃ix,(8)

where 0 < λ̃1 < . . . < λ̃2k are fixed known values and β1, . . . , β2k are the unknown parameters
to be estimated. It is easy to see that for a design with masses µ1, . . . , µn at the points
x1, . . . , xn (n ≥ 2k) the information matrix in this model is of the form

A(ξ, λ̃) =

(

n
∑

s=1

e−λ̃ixse−λ̃jxsµs

)2k

i,j=1

.(9)

In the following we investigate the maximum of det A(ξ, λ̃), where the components of the
vector λ̃ = (λ̃1, . . . , λ̃2k)

T are defined by

λ̃2i−1 = λi, λ̃2i = λi + ∆, 0 < ∆ < mini=1,...,k−1(λi+1 − λi), i = 1, . . . , k,(10)

where 0 < λ1 < . . . < λk (in the case k = 1 the value ∆ > 0 can be chosen arbitrarily). In
the following let

ξ∗ = argmax det A(ξ, λ̃)

denote a design maximizing the determinant, where maximum is taken over the set of all
approximate designs on χ. Note that designs maximizing this determinant exist, because
the induced design space

{

(e−λ̃1x, . . . , e−λ̃2kx)T | x ∈ χ
}

is compact (Pukelsheim, 1993). By the well known Kiefer-Wolfowitz equivalence theorem
we have

max
x∈χ

fT (x)A−1(ξ∗, λ̃)f(x) = 2k,

where fT (x) = (e−λ̃1x, . . . , e−λ̃2kx) denotes the vector of regression functions in the model

(8). It follows from Gantmacher (1959), Ch.XIII that any minor of the matrix (e−λ̃ixj)2k
i,j=1

with x1 > x2 > . . . > x2k, λ̃1 < λ̃2 < . . . < λ̃2k is positive. Therefore the Cauchy-Binet
formula implies that

sign(A−1)ij = (−1)i+j .(11)

where we use the notation A = A(ξ∗, λ̃) for the sake of brevity. In the following discussion
we need an auxilary result.
Its proof is deferred to end of this section.
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Lemma A.1. Consider the functions

ϕi(x) =

ti
∑

j=1

αi,je
−µi,jx,

where ti are arbitrary integers, i = 0, . . . , s, {αij, µi,j} are real numbers.
Let the following conditions hold

(i) min1≤j≤ti+1
µi+i,j > max1≤i≤ti µi,j, i = 0, 1, . . . , s − 1;

(ii) αi,j < 0, j = 1, . . . , ti, i = 0, . . . , s.

Then the function
∑s

i=0 biϕi(x), where b0, . . . , bs are arbitrary real number, has at most s
roots counted with their multiplicity.

Let us define

ϕ0(x) ≡ m,

ϕl−1(x) = (−1)l

l−1
∑

i=1

Al−i,ie
−(λ̃i+λ̃l−i)x, l = 2, . . . , 2k,

ϕl−1(x) = (−1)l

4k−l+1
∑

j=1

A2k+1−j,l−2k+j−1e
−(λ̃2k+1−j+λ̃l−2k+j−1)x, l = 2k + 1, . . . , 4k,

where Ai,j = (A−1)ij.
We consider at first the cases k = 1, 2. Note that the coefficients in the functions are positive
since sign Ai,j = (−1)i+j, that is condition (ii) holds. Moreover, observing the definition of
λ̃ in (10) condition (i) can also easily be verified for k = 1, 2.
Now we have

g(x) := m − fT (x)A−1(ξ∗, λ̃)f(x) = ϕ0(x) +

4k−1
∑

i=1

(−1)iϕi(x)

and from the equivalence theorem for the D-optimality criterion it follows that g(x) ≤ 0 for
all x. This implies for the support points, say x∗

1, . . . , x
∗
n of a design ξ∗ maximizing det A(ξ, λ̃)

g(x∗
i ) = 0, i = 1, 2, . . . , n

g
′

(x∗
i ) = 0, i = 2, 3, . . . , n − 1.

A careful counting of the multiplicities and an application of Lemma 1 now show 2n − 2 ≤
4k − 1, which implies n = 2k in the case k = 1 or 2.
In the case k ≥ 3 the same arguments are applicable for any vector λ̂ satisfying (6), because
in this case it can be easily verified that the functions ϕi, i = 0, . . . , 4k defined above satisfy
both conditions of Lemma A.1. An argument of continuity therefore shows n∗(λ) = 2k for

12



the number of supports of a D-optimal design for the model (8) with respect to any λ in a
neighbourhood of the point λ̂.

For a proof of the second bound in the case k ≥ 3 we consider an arbitrary point of the form
(10), say λ̃ = (λ̃1, . . . , λ̃2k), and define s ≤ k(k +1)/2 as the number of distinct values in the
set

{2λ1, . . . , 2λk, λ1 + λ2, . . . , λ1 + λk, λ2 + λ3, . . . , λk−1 + λk} .

We denote with u1 < . . . < us the distinct values from this set and introduce the functions

ϕ̃0(x) ≡ m,

ϕ̃1(x) = A11e
−u1x = A11e

−2λ1x,

ϕ̃2(x) = −2A12e
−(u1+∆)x,

ϕ̃2l−1(x) = ale
−(ul+2∆)x + cle

−ul+1x, l = 2, . . . , s

ϕ̃2l(x) = −ble
−(ul+∆)x, l = 2, . . . , s

ϕ̃2s+1(x) = as+1e
−(us+2∆)x.

Observing that signAij = (−1)i+j it can be easily checked that the coefficients al, bl, cl can
be chosen such that the representation

fT (x)A−1(ξ∗, λ̃)f(x) =
2s+1
∑

i=1

ϕ̃i(x).(12)

is satisfied and such that
al, bl, cl > 0, l = 1, . . . , s.

By the same arguments as in the previous paragraph we obtain for the determinant

J̃(τ) = det (ϕ̃i(xj))
2s+1
i,j=0 > 0

whenever x0 > x1 > . . . > x2s+1. Moreover for any vector τ̄ = (x̄0, . . . , x̄2s+1)
T with

components satisfying x̄0 ≥ x̄1 ≥ . . . ≥ x̃2s+1 it follows

lim
τ→τ̄

J̃(τ)/
∏

j>i

(xi − xj) > 0.

From the repesentation (12) and the equivalence theorem for the D-optimality criterion we
obtain the inequality g(x) ≤ 0 for any x ≥ 0, where g is the generalized polynomial

g(x) = ϕ̃0(x) −
2s+1
∑

i=1

ϕ̃i(x) .

This implies that the support points of the locally D-optimal design satisfy

g(x∗
i ) = 0, i = 1, 2, . . . , n,

g
′

(x∗
i ) = 0, i = 2, 3, . . . , n − 1.

13



Moreover, by the arguments from the previous paragraph the function g has at most 2s + 1
roots counted with corresponding multiplicity. Consequently,

2n − 2 ≤ 2s + 1 ≤ k(k + 1) + 1.

which yields

n ≤ k(k + 1)

2
+ 1 + 1/2,

and proves the assertion of the theorem for the regression model of the form (8).

To prove the assertion of the theorem for the exponential regression model (3) we consider
for an arbitrary approximate design ξ the polynomial

q(x) = m − fT (x)A−1(ξ, λ̃)f(x) =

= m − fT (x)LT (LA(ξ, λ̃)LT )−1Lf(x),
(13)

where λ̃ = (λ̃1, . . . , λ̃2k) is defined by (10), the 2k × 2k matrix L is given by













Q 0 0 . . . 0

0 Q 0 . . . 0
...

...
...

0 0 0 . . . Q













,

with

Q =

(

1 0

1/∆ −1/∆

)

.

Note that det L = (−1/∆)k 6= 0 and that

lim
∆→0

fT (x)LT = lim
∆→0

(

e−λ1x,
e−(λ1+∆)x − e−λ1x

∆
, . . . , e−λkx,

e−(λk+∆)x − e−λkx

∆

)

=
(

e−λ1x,−xe−λ1x, . . . , e−λkx,−xe−λkx
)

.

Consequently we have for any design ξ

lim
∆→0

LA(ξ, λ̃)LT = M(ξ, λ),(14)

where M(ξ, λ) is the information matrix in the exponential regression model (3) defined in
Section 1.
If ξ∗ denotes a locally D-optimal design for the regression model (3) with support points by
x∗

1 < . . . < x∗
n∗ , then it follows from (13) and (14) that

m − f̃T (x)M̃−1(ξ∗, λ)f̃(x) = lim
∆→0

m − fT (x)A−1(ξ∗, λ̃)f(x),(15)
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where the vector f̃T (x) corresponds to the gradient in model (3) and is defined by

f̃T (x) =
(

e−λ1x,−xe−λ1x, . . . , e−λkx,−xe−λkx
)

.

By the equivalence theorem for the D-optimality criterion the polynomial on the left hand
side has roots x∗

1, . . . , x
∗
n∗ , where x∗

2, . . . , x
∗
n∗−1 are roots of multiplicity two. Consequently,

we obtain 2n∗ − 1 ≤ h, where h is the number of roots of the polynomial on the right hand
side of (15). By the arguments of the first part of the proof we have h ≤ 4k − 1 for k = 1, 2
and for k ≥ 3 in a neighborhood of points λ satsifying (6). Moreover, we have h ≤ k(k+1)/2
in general, which completes the proof of the theorem.

Proof of Lemma A.1. Denote τT = (x0, . . . , xs)
T ,

J(τ) = det (ϕi(xj))
s

i,j=0 .

Using the expansion of the determinant by a line several times we receive

J(τ) =

t0
∑

l0=1

. . .

ts
∑

ls=1

[(

s
∏

i=0

αi,li

)

det
(

e−µjljxν
)s

j,ν=0

]

.

Due to the Chebyshev property of exponential functions (see Karlin, Studden, 1966, Ch. 1)
each term on the right hand side is positive whenever x0 > x1 > . . . > xs [note that
∏s

i=0 αi,li > 0 by assumption (ii) and that det
(

e−µjlj xν
)s

j,ν=0
> 0 by assumption (i) of Lemma

A.1]. Thus J(τ) > 0 for arbitrary x0 > x1 > . . . > xs. Moreover, we have for any
τ̄ = (x̄0, . . . , x̄t) with x̄0 ≥ x̄1 ≥ . . . ≥ x̄t

lim
τ→τ̄

J(τ)/
∏

i<j

(xi − xj) > 0,(16)

since
lim
τ→τ̄

det
(

e−θisxj
)t

s,j=0
/
∏

i<j

(xi − xj) > 0

whenever 0 < θi0 < . . . < θis. This property can easily be verified considering the number of
the same coordinates in the vector x̄. It is known (see Karlin, Studden, 1966, Ch. 1) that
under conditions J > 0 and (16) any generalized polynomial of the form

∑t

i=0 biϕi(t) has at
most t roots counted with their multiplicity.
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