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Abstract Almost sure convergence for ratios of delta functions establishes global and local
strong consistency for a variety of estimates and data generations. For instance, the empirical
probability function from independent identically distributed random vectors, the empirical
distribution for univariate independent identically distributed observations, and the kernel
hazard rate estimate for right-censored and left-truncated data are covered. The convergence
rates derive from the Bennett-Hoeffding inequality.

Keywords kernel smoothing hazard rate left-truncation- right-censoring empirical
process

PACS 02.50.Ey
Mathematics Subject Classification (2000)62G05- 62G20- 62N02- 60G57- 60G50

1 Introduction

The analysis of continuous univariate observations is frequent in statistical work. Without
parametric assumptions, the estimation of the cumulative distribution function with the em-
pirical distribution function is common practice. Consistency may be established by normal-
izing the empirical process (see e.g. [Shorack and Wellner(1986)]).

If smoothness of the distribution is assumed, further insight can be gained from esti-
mating the density. [Parzen(1962)] introduced the method of kernel estimation, i.e. the con-
volution of the empirical distribution function with a density centered at the origin, named
kernel. Consistency proofs were given for the kernel density estimation with fixed bandwidth
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e.g. by [Parzen(1962)], [Silverman(1978)] and [Stute(1982a)]. A large field of application
for distribution estimation was found in connection with survival analysis where the cu-
mulative hazard function distribution is estimated by the method of [Aalen(1978)]. In this
context right-censoring is a major concern. The design is typically reflected by analyzing
the bivariate, although partly unobservable vector of survival times and censoring times.
In connection with survival studies the hazard rate is superior to the density because of its
interpretation as ‘instantaneous risk of failure’. Consistency proofs for the hazard rate are
given in [Sclafer(1986)]. Combining the estimates, [Weil3bach(2006)] follows a generalized
formulation allowing for density, the hazard function and various data designs, including
right-censoring. Most of the above work considers the univariate sequence of observations,
censored or not, and accounts for the censoring indicator. The aim of this paper is to explore
the idea of vector-valued (partly unobserved) random sequences in order to incorporate (i)
further data defects such as left-truncation and (ii) further functions, such as the probabil-
ity function. Whereas the empirical distribution function, the kernel density estimate and
the kernel hazard rate estimate are delta sequences [Walter and Bulum(1979)], we general-
ize to aratio of delta sequences to accommodate for left-truncation. Using the exponential
Bennett-Hoeffding inequality [Hoeffding(1963)], we establish global consistency and, for
the smoothed functionals, local convergence rates.

2 Model and Notation

Let (X)te[o.0)5 (Y)te[o,): - - - DE finite state space stochastic processes with combined ran-
dom vector of observatior8: 2 — RY. For example, in the survival analysis with right-
censored observations one may observe ¥wy min(T,C) andd = 17 _c,, whereT is a
lifetime censored by an independent random vari@ble

Suppose that the procegs )ico.») has a positive and differentiable functional charac-
teristic P(-) and its first derivativay(-) has to be estimated. We assume that the estimate
¥ (-) for W (-) is present, wher,(-) bases on the seri€S;)i—1, . of i.i.d. vectors of obser-
vations. A general approach to the estimation of the derivagi¢ from ¥, (-) is the well-
known kernel estimator first proposed for the density function. In further investigations, the
kernel density estimator has been extended, and the consistency of a general kernel estimator
with variable bandwidth, for instance, was established in [Weil3bach(2006)].

We assume the functioff : R — Rg and the “smoother® : R — R{ with first deriv-
ativesy(-), ¥(-) and estimate¥y(-), ¥h(-) respectively to be L|psch|tz continuous, strictly
monotonic increasing and bounded [@nB].

Moreover, we assume the kernel functik-) to be bounded and(x) to be right
continuous and monotonic increasing[#nB] with 0 < D < o, so that

P IimsupsuggA’B] <p”‘q’() ) =D;,=1
o0 log(n)pn/n

wherep, > 0, pn — 0 and(np,)/log(n) — o, i.e. the local rate o®’(\/log(n)pn/n) for
the measurd,(J) is required. The theoretical and empirical measures of the intérval
[a,b] C [A,B] are defined a¥(J) := [; y(x)dx and¥n(J) := ¥n(b) — ¥n(a), respectively.
The same assumptions and definitions are valid - with-dor ¥(-).

The kernel estimator fop(x) with variable bandwidth

9= [ =i ( ))dqfno )



3

is uniformly consistent on suppal, B] with rate of & ([log(n)/(npn)]¥2 + pn). Here, the
general bandwidth bases on the “smoother”

B(=3) = (e 5) | = o).

and incorporates e.g. fixed bandwidth or nearest neighbor bandwidth [Wei3bach(2006)].
The kernel estimator (1) depends only on the estiffgte) and not directly upon the

observationsgS i1 n. Hence, of interest is to construct a general estimat#@j and

¥ () with local rate of&(1/log(n)pn/n) from the present observations. The next goal is to

obtain an estimator fog(-) by kernel smoothing.

Rn(X) := inf{r >0:

3 General locally consistent estimator

Some estimates with a local rate 61 /log(n)pn/n) have already been described in the
literature. The empirical distribution function, the Kaplan-Meier estimator and the Nelson-
Aalen estimator attain this rate of convergence (see [Stute(1982kfe8(1986)]. Gener-
alizing these cases allows new local consistent estimates for other stochastic processes or
other characteristic® () andy(-).

Let(S)i=1,..n be a series of independent identically distributed random vegtors —
RY. We assume the functidd: R — R} to be continuous and the functi@ : R x (R%)" —
RY, (X,S1,--,50) = Gn(X)(s1,- - .,S) to be symmetric for each fixede R ands;, ..., s, €
RY. Further, we use the simplified notati@(x, ®) for Gy (x)(S1(w), . .., S(w)).

Additionally, we define the mapping : R x R4 — R{, (x,5) — A%(s) with simplified
notationAX(w) for AX(S(w)). The estimate fo?(-) can be constructed as follows:

12 Lgog A
lIIn(X) = ﬁ G (Sl) )
1= n

whereS' is the first element of the vect&.
The local consistency of the estimate (2) needs some assumptions on the function to
estimate, on the observed random variables and on the r&g 9fto G(-).

)

(L1) We assume the intervéh, B] with Ac R, B € R andA < B.

(L2) We assume the functidi : R — R™ to be continuous, positive and strictly monotonic
increasing orfA, B.

(L3) We assume & A < Amax < o for eachx € [A, B.

(L4) Let a constant M := SUBc(ag [G(X)]"! < o exist, we assume then
[Lixca) AR — Lixepy AP [G(X)] ™ < 24maM fori=1,...,n,a,b € [A B], xeR.

(L5) We assume alsfd(x<a A% — 1{X§b}Aib] [G(X) — Gn(x)] =0 forallx ¢ [a,b] C [A B].

1 A
{i(g;) = ¥(x) for each fixedk € [A, B

(L7) We assume fo6G(x) andGp(x) a constant 6< D < Dg <  to exist, so that

p ”msupsug(e[A.B] [G(X) — Gn(X)| _pl_1
N—co log(n)/n

(L6) Furthermore, we assunEe(

(L8) Jis aninterval with] := [a,b] C [A,B] anda < h.
(L9) For the seriesy,) we assumey > 0, p, — 0 andnp,/log(n) — co.



Theorem 1 Under conditions (L1)-(L9), there exists a constant

0< D <2(y/2: (2AmaM + ¥(B)) + DcM)

so that

oo log(n)pn/n

In order to prove Theorem 1 we specify the help function

su YY) -
P{Iimsup Ricias,w@)<p, () —F(J)| —D} 1

10 Lgog A

00 = ”i; (s

¥ (9) ==y (b) — ¥y (a).

and the help measure

The aim is to split the differend&,(J) — ¥ (J)| in two parts using the help measure and
to show the bounds almost sure for each term separately. Section A.3 is the detailed proof
of Theorem 1.

4 General globally consistent estimator

To complete the construction of the general estimator (2) we ne&d dog(n)/n) consis-
tent estimator for the functioB(x). In fact, estimates with this rate of convergence are also
known. The rate o€’(+/log(n)/n) has be established for the empirical distribution function
by [Foldes and Refi(1981)].

Let (S)i=1,. n be the series of i.i.d. random vectors from Section 3. We define the map-
pingH : RY — 22(R) with simplified notatiorH; () for H(S (®)). A possible construction
of Gp(X) can be derived from the generalization of the empirical distribution function as
follows:

l n
Gn(x) = ﬁ_zll{eri} I, 3
i=

where the definition of;* is identical toA from Section 3.
Similar to the local consistent estimate (2), the global consistency of (3) needs some
assumptions on the function to estimate and on the observed random variables.

(G1) We assume the intervg, B] with A€ R, B R andA < B.

(G2) We assume € I[* < I'max < o for eachx € [A, B].

(G3) We assume the functigd: R — R to be nonnegative witts(x) < Gmax <  for each
x € [AB].

(G4) Furthermore, we assurig(1jcp; - I;*) = G(x) for each fixedk € [A, BJ.

Theorem 2 Under the conditions (G1)-(G4), there exists a constant

0 < D < v/2Gmax- (Imax+ Gmax)

so that

o imsup S BB IC00 G0 _
(- log(n)/n



The proof of Theorem 2 is similar to that of Theorem 1 and is presented in Section A.4
in more detail.

5 Applications

Despite the simplicity of the general estimators (2) and (3), these can be applied on some
known stochastic processes. The advantage here is the known rate of convergence. In this pa-
per we show the rate of convergence for the well-known empirical distribution function, the
kernel density estimator and the hazard rate estimator for left-truncated and right-censored
data.

5.1 Convergence of empirical time-dependent probability functions

In this section we present the general approach to estimate time-dependent probability func-
tions. The results of this section will be used in the further sections to simplify the proofs.
{s1,...,% € ]R}'"fbr i=1,...,nis assumed. We define also a randomt4dtke in Section
4.

We assumés(x) := P(x € Hi,sd = &) < 1=: Gmax o be a nonnegative function on
[A,B] andGn(x) := 15, Lixeh g=g) 10 be an estimate fdB(x), wheres € {s1,...,s €

n
R} is a constant. Then a constah 2 exists, so that

P limsu SUR(a ) |G(X) — Gn(X)] _pl_q @)
e log(n)/n T

To prove this convergence we define the random variaifes 1{31:56} <1=:Imax

i =1,...,nfor each fixedk € R. We get then the following expectation for each fixed
[A,B]:

E(Lpxery - I7) = E(Lixeri) - Ligiogey)
= E(Lyen g-g)) = PXEHL § = %) = G()

The assumptions (G1)-(G4) are fulfilled and the convergence follows from Theorem 2.

5.2 Convergence of empirical probability distribution and kernel density estimator

Let §,...,S, be univariate i.i.d. random variables with a strictly positive and Lipschitz
continuous distributiofr () and densityf (x) functions onA, BJ. First, we examine the rate
of convergence of the empirical distribution functigg(x) := 1 3" Lig<x}-

function Kx) := P(S < x) on[A,B].

Then a constant X 2 exists, so that

o imsupS P FO R
n—w log(n)/n




define also the mappinig (x1,x2) ;= {y: x1 <y} and random setsli = {y e R: § <y},
i=1,...,n. Similar to Section 5.1 we define a time-dependent probability fun@io :=
P(x€ Hi,S = <) and its estimat@n(x) == § 37_1 Lixen; -5}

The convergence d¥,(x) results from equalitief (x) = G(x) andFn(x) = Gp(x) and
the convergence formulation (4). O

From the general kernel estimator (1) we obtain now the following density kernel esti-

mator:
L e 1 X—5
) =2 RS (Rn@)) Ls<x) ©)

where the “smoother” is the same distribution functigx).

The convergence of the estimate (5) needs additionally to assume the Lipschitz continu-
ity of F(-) andf(-) on[A, B]. We define now the measuré$J) := [; f(s)ds=F(b) —F(a)
andFR,(J) := Fn(b) — Fa(a) for an intervald := [a, b] C [A, B]. As we know, the local conver-
gence of,(x), i.e. the convergence of the empirical meadgy(@), must be proven to show
the convergence df,(x).

Theorem 4 Let (S € R)i—1,.n be a series of i.i.d. random variables with Lipschitz contin-
uous and strictly monotonic increasing ph B] distribution function Fx) := P(S < x) and
the series (p) fulfills the assumption (L9).

Then a constant BX 2/6 exists, so that

P{Iim sup - P/ABLF D)< PO =ROI_ D} -1 )

n—oo log(n)pn/n

Proof We use the following assumptions to prove Theorem 4:

e We assume,i =1,...,nto be a constam* = Amax:= 1 for each fixe € [A, B.

e We define? (x) := P(S < x) = F(x).

e The functionsG(x) andGy(x) will be also assumed to be consta@t{x) = M := 1 and
Gn(x) :=1.

e Moreover, we define a constabg := 0.
Our goal now is to show the assumptions (L1)-(L9).

From Section A.1 followsG(x) — Gn(x)| = 0 < Cg+/log(n)/nforalln> 0, x € [A,B]
andCg > Dg, so that the assumptions (L5) and (L7) are fulfilled.

With constantA* we get the assumption (L4) fecb € [A,B], x € R as follows:
[Lixcay AR — Lixepy AP [G(X)] ™ = 1{acx<b) AmaM < 2AmaM,

whereM = [G(x)] 1 = 1.
The assumption (L6) can be obtained for each fixedA, B] trivially as follows:

l{SSX} 'Aix _ B
<W> =E(Lig<x) = ¥(¥).

The assumptions (L1)-(L9) are fulfilled and the convergence (6) follows from Theorem
1. ad

As we know from Section 2, the rate 6f([log(n)/(np)]Y/2+ pn) on [A, B] results for
the density kernel estimator (5) from Theorem 4.



5.3 Convergence of hazard rate estimate from left-truncated and right-censored data

As a more complicated case we examine now a survival process with left-truncated and
right-censored observations. We assu(fiec R )icn, (Ci € RY)ien and(Li € R)jcy to be
independent series of i.i.d. random variables with Lipschitz continuous distribLlFtiB@)e),

FC(x) andF'(x) respectively, wherd; are the lifetimes and paift;,Ci] represent bounds

of observations under conditidn < C; for i € N. Because of the variable left bound of
observatiorL;, only objects with; < T; can be observed.

o Begin of observation X1 = Cy, Ty is non-observable
X End of observation
— Observable period [,
Non-observable period
T Lifetime
L Difference bet.
0 and begin of observation |~~~ """ TTTTTTTTTTT S <
C Difference bet.
end of observation and 0
X Right-censoring time X
Ly >0 —_—
bmmm e e o—— >Q” T3 X
b e ] le)
" Lg<O
—_—
T5 o ————

Object is non-observable

0 real time

Fig. 1 Survival process and bounds of observation in the real time

As we can see in Fig. 1, the right bound of observa@poan cut the lifetime on the right
side, so thaf; is not always to observe. Hence, we define the observable censoring random
variableX; = min(T;,C;) and censoring index; = Lt<c)- Thus, one can observe only
vectors(L;, X, &) with Lj < X; in a survival process with left-truncated and right-censored
data.

A survival process can be described with a bent for a change of state (death or insol-
vency) or in the hazard rate [Andersen et al(1993)Andersen, Borgan, Gill, and Keiding] as
follows:

dFT(t)
ADdt=Pt<T <t4dt|t<T)=—a—.
Another way to describe a survival process is to use the cumulative hazard rate:

. R T
A= [ ads= [ T~ ~loga-FT()

The advantage of the cumulative hazard rate is expressed in the possibility of its estima-
tion by the left-truncated and right-censored observations
[Cao et al(2005)Cao, Janssen, and Veraverbeke] as follows:

n

Lixsta—tii=x) _ 5‘

Anlt) = i; nGn (X)) X<t L < Xp) <X} v
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whereGn(t) =n~t 31, 11, 1<x|L < IS the consistent estimate of the probability function
G(x) = P(Li <t < X|Li < X).

Theorem 5 Let (L, X)i=1....n With Lj <X be i.i.d. random vectors of observations.

Then a constant X 2 exists, so that

P{IimsupsunE[A’B] IS ~ GV = D} =1 (8)

N—00 v/log(n)/n

Proof The trick of the proof is to define the random sdfs={y e R: Li <y < X; | Lj < X},
constant¥; and a constanfc, so thatz; = Z¢ for i = 1,...,n. We can express then the
functionsG(t) andGy(t) as follows:

G(t) =P(Li <t <X|Li <X)
=P(Li<t<X.,Z=ZlLi <X)=P{teH,z=2)

and
1 n
Gn(t) =n~ .Zl{LiStSXHLiSXi}

=

1¢ 1

=% Hustxz -z =N 3 Liewzze)
1= 1=
The convergence (8) follows from Section 5.1. ad

Unfortunately, some calculations need also an estimate of the hazard rate. Hence, the
goal is here to estimate the hazard function from the equation (7). As a possible solution we
apply the kernel estimator (1) with “smoothet(t) for the hazard rate as follows :

, 1 t—X) 5
A«n = i 9
© i:%gt Rn(x(i))K (Rn(x(i))> #H0 Ly < Xiy) <X} ®)

We define now an intervah, B] so that~-(A) > 0 andF*(B) < 1 and assuma (t) and
A(t) to be strictly positive and Lipschitz continuous @ B]. The convergence df,(t) can
be easily shown, if the theoretical measuigJ) := An(b) — An(a) converges toA (J) :=
J3A(t)dt = A(b) — A(a) with local rate of¢’(y/log(n)pn/n), whered := [a,b] € [A,B].

Theorem 6 Let (Li,X;, §)i—1,. o With Lj < X; be i.i.d. random vectors of observations and
the series (p) fulfills the assumption (L9).

Then a constant X 2(y/2- (M + A(B)) + 2M) exists, so that

A(J)—An(J
P{"msupSUQc[A,B],A(J)<pn (J) —An(J)] _ D} 1 (10)

n—eo log(n)pn/n

where M:= supjag[G(t)]



Proof First, we check the assumptions (L1)-(L9) for the local convergence. The random
variableA can be defined as a constafjt = 151, <x} < 1 =: Amax. Additionally, we
define¥(x) := A(x) andDg := 2.

From Theorem 5 and Section A.1 we know th@fx) — Gn(x)| < C+/log(n)/n a.s. for
largen, x € R andC > Dg.

We examine now the functioB(x) and write it as
G(X) = a FH(X)(1-FT(x))(1-F°(x))
= [ et a-FT ) -Fo) fH(5)ds
wherea = P(L; < X;).

Since the distribution functiongT (x), F¢(x) andF-(x) are Lipschitz continuous the
functionsG(x) and A (x) are also Lipschitz continuous for alle [A, B]. The assumptions
(L4) and (L5) are fulfilled because of the constait

Now we prove the assumption (L6) as follows:
E <1{X6SX“—iSXi} 'Aix> _E <1{X6§X-,5i:1|LiSXi}>
G(X) G(X)

1 e
Z / {X1<X51 “Pasx&=1} yeX, 5()(1,51):/ (:“:Tix;’l)?
—00 1

(11)

where FX9 (x, ) is the distribution function of random vecto(¥, ) under condition
Li<X,i=1,.

For the intervals) C [A, B] we can get the derivativéF*-?(x;,1) from the probability
P(X €J,6 =1|L; <X) as follows:

PXed,&=1L<X)=aP(XcJ&=1L<X)
—a Pl e T<CL<TT<C) (12)
+PGEIT<C.L<C.G<T)=a 'PTeILi<T<C).

The probabilitie(X € J,6 = 1| Li < X) andP(Ti € J,Li <T; <C;) can be written as
P(X€J,8 =1|Li <X)=E(Lxeis-1L<x})

s [ (13)
=2 / Lpqeas=ndF 0, 81) = [ dF*0(xq,1)
5=0""%

x1€J
and
a PN eI Li<T <C)=a 'E(Lgei<t<c))
_{ ' ' -1 T C L
_/eR /CER /E]Ra Loy Lusg dF (VPP (14)

_/ a FL () (1—FC(t)dFT (t).
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The derivativedFX-%(x;,1) follows then for the one-element intervals= [j, j], j €
[A, B] from the equations (12), (13) and (14):

dF*300,3) = [ a tFLE) - FO@)dFT ()
ted

x1€J

=dF¥3(j,1) = a TFL(j)(1— FC(j)dFT (j).

(15)

We substitute (15) in (11) and get the assumption (L6):

E (1{Xa<xLi<Xa}'Aix) _/X dF*9(xq,1)

G(Xi) CJw G(x)
7/" a FY (x1)(1— FC(xq))dFT (x1)
B G(x1)
aFY (x1)(1— FC(xq))dFT (x1) X dFT(xq)
7/00 o TFL(x) (11 Fc(xl))l(l—FT(;l)) =) l—FT(i(l) =AR) =%

The assumptions (L1)-(L9) are fulfilled and the convergence (10) follows from Theorem
1. O

One can see that the observatians< 0,i = 1,...,n are present in the right-censored
case. The Nelson-Aalen estimator is then the special case of the presented here estimate (7).
As known from Section 2, the rate of convergence of the estimate (9) follows from
Theorem 6 and ig([log(n)/(npn)]*2+ pn) on[A, BJ.

Acknowledgements The work of the authors was supported by the Deutsche Forschungsgemeinschaft (SFB
475, ‘Reduction of complexity in multivariate data structures’).
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A Proofs

A.1 Limes superior formulation of the convergence

As a result of Hewitt and Savage [Hewitt and Savage(1955)], it is equivalent to state there exists a constant
D<1s.t.

P{limsups"(Yl(w);n' -+ Yn(@)) }

As for alla> 1, it holds that
P{w[INeNVn>N:$(Yi(®),...,Yn(w)) < oan} =1

With positive zero-sequena,, a sequence of i.i.d. randothvectorsY; : Q — (R)Y and a sequence of
measurable symmetric mappings: R" — R;.

A.2 Distribution of the mean value

We assumdy, ..., T, to be independent bounded random variables with expectation 0 and dispetsiEm
that

E(T)=0
[T <b

o2 :=Var(T)
fori=1,...,n.

From the two sided version of Theorem 3 from [Hoeffding(1963)] and the inequalityl legx) >
2x/(24x), x > 0 results the following inequality for eaeh> 0:

_ ne2
P(|T| >€) <2exp 2071 20e/3)

A.3 Local convergence

The proof of Theorem 1 follows in four steps.

First, we show the exponential bounds for the following distribution of the differgH¢el) — ¥ (J)|:

)
P () - ()| > &) < 2exp(2(2AmaXM +r:f,(8))(p+8)) (16)

forall p>0,& > 0,ne N5g and each fixed C [A,B] with ¥(J) < p.
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Because of the definition (2) and the assumption (L3) is

n(Ligp AP Liggy AR
HO-w0)= 1S ( o —W(J)) ar)

the arithmetical mean of theindependent, bounded and likg distributed random variables for each fixed
J C[A B], where

R Lgi<b) -AP - Lig<a) AR
G(sh G(sh)

The expectation, the dispersion and the boundRjofan be then calculated for fixedT [A, B] with
¥(J)<p.

—y().

The expectation oR; follows from the assumption (L6):

AP - AR

From assumption (L4), we get the following boundgRf| on [A, BJ:

1{§1§b} -Aib B 1{§1§a} -Aia B

= v
RETee ey Y (19
< 28maM +¥(B) — P(A) < 2AmaM + P(B) =: 9.
The dispersion oR; can be obtained from the expectation (18) and bounds (19) as follows:
1 AP Lgogy A7 ?
62 :=Var(Ry) =E {( {3;3(21) - {Scls_(s‘:l) - 'P(J)) }
1 AP 1 AR (20)
(gt<by T Hgl<ap S
2AmaM - E -
< 2Amat ( & &E) >

= 2AmaxM : lP(J) <g-p.

From the equations (17), (18), (19), (20) and the inequality from Section A.2 result the following right

bounds:

_ne2 )
P20 -0 > ) <20 o ey ) <2 )

for each fixed interval C [A, B] with ¥(J) < p.
On the second step we show the inequality

sup  [¥7(J) —¥(I)| <Cy/log(n)pn/n 21
JCIABLY(I)<pn

almost sure for a consta@t> /2(24maM + ¥(B)) and largen.

On the right side of the inequality (1§)ande could be substituted with, ande, := C+/log(n)pn/n,
C > 0,n> 1 respectively as follows:

C*
< 2-exp| —log(n)—
p( o )29(pn+€n)

,é Pn
=2n 2 (mten) =; A,.

The seriegAy) is then summable starting from some large « only for

c? Pn
= >1
Pn 29 (pn+é&n)
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Fromen/pn =Cy/log(n)/(np,) and the assumption (L9) follown/pn — 0 andpn/(pn + &) — 1 for large
n. The condition8, > 1 can be then achieved wi@? /2g > 1 orC > ,/2g.

Consequently, the serié#y,) is summable from some large< « and only forC > /2g. For each
J C [A B] with ¥(J) < pn we get then

3C>/2g3m<omeN: Y P(E () -¥PQ)[>en) < § An<eo
n=m n=m
and

m
Ym<eo,meN: Y P(¥(J) —P(J)|> &) <m<w
n=1

Because of the summability &f(|%¥; (J) —¥(J)| > &n), the following probability results from Borel-
Cantelli lemma foC > /2g:

P <Iimsup\'1/n*(J) -¥J)|> £n> =0,

i.e ¥ (J)—¥(J))| doesn't exceed, for the mostn. For largen and for allJ C [A, B] with ¥(J) < pn, we
get almost surely

[ (9) = ¥(3))| <Cy/log(n)pn/n
The same inequality is valid for the supremun|'#f (J) — ¥ (J)| on [A,B]:

sup ¥ (3)—¥()| <Cylog(n)pa/n
JCABLY(I)<pn

for C > /2g and largen almost surely.

On the third step we prove the following inequality on the basis of the previous results:

sup  [¥h(J) =¥ (J)[ <C- pny/log(n)/n
ICIABL¥()<pn

almost sure for somé > Dg - M and largen.

From the assumption (L7) and the limes superior formulation from Section A.1 we get the following
right bounds foiG(x) — Gn(x):

G(x) = Gn(X) < |G(x) = Gn(X)| < sup |G(x) — Gn(X)| < Ci-+/log(n)/n

xe[AB]

almost sure fo€; > Dg, largen and allx € [A, B]. These bounds can be rewritten f&x(x) as follows:
Gn(X) = G(x) ~C1v/log(m)/n > inf_ G(1) ~C1-/log(n)/n.
€A

From the assumption (L7) follows infa g G(t) > 0. Because of/log(n)/n— 0, the following inequa-
tions are fulfilled forx € [A, B] and largen:

inf G(t) —Cy-+/log(n)/n> 0,

te[AB]

1 1

G0 = inf_G(t)—CL- log(m/n

te[AB]
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and

|G(X) — Gn(X)] < Ci-+/log(n)/n
Gn(x) 7tei[r/1fB]G(t)fC’l< log(n)/n’

The following bounds fotF (J) — ¥(J) and ¥, (J) result from the equation (21) almost sure fo€
[A,B] with ¥(J) < pn, largenandC,, > /2 (2AmaM + ¥(B)):
Q) -¥Q) < ) - Q)

< sup |¥(3)-¥P(I) < Cyv/log(n)pn/n
JC[ABLY(I)<pn

and consequently

¥;(3) < () + Co/OGTBA < b+ Ch/0GTu/n.

We obtain then the following equation from the assumption (L5) almost sure forJeacti, B] with
¥(J) < pp and largen:

1 n

Hh(3) — W (3)] = 21 ! L

G(§) G(E) ’ (isi<b) i Ligcay A7)

13 (Sl) Ligan) AP~ Ligca A7
<530 &
Cix/log(n)/n-‘{’n*(J) <C’1\/|09(n)/n~(pn+C’2 I09(n)pn/n)
_tei[r/lfB]G(t)—C’l log(n)/n — tEi[slfB]G(t)—c'1 log(n)/n ‘

The transformationp, + C5+/log(n)pn/n = pn[1+ C5+/log(n)/(pnn)] is evident, where the term
C5+/log(n)/(pan) can be neglected for largebecause of the assumption (L9). For largeve can also

neglect the term/log(n)/n in numerator. For all C [A, B] with ¥ (J) < p, and for largen, we get then the
following inequality almost sure:

D) 45 (0) < L o097/ = M - pr/fog )/

te[AB]

The following right bound results for son@> D¢ - M and largen almost sure:

sup [ (J) —Fy (J)| <C- pay/log(n)/n.
JCIABLY(I)<pn

On the last step we examine the expression sy v (J)<p, [n(J) — ¥(J)|. This overall difference can

be represented by the sum of the deviations of the theoretlcal and empirical meHgliresid ¥, (J) from
the help measurg;(J) as follows:

sup  [¥h(J) - ¥ ()|
ICIABLY()<pn

< sup  [HQ) -+ sup  [E(I)-FO)
JC[ABL¥(I)<pn JCIAB],¥(J)<pn

Because of the assumption (L% /Pn approaches zero, i.pa\/log(n) /n < v/log(n) pn/n
is valid for largen.

From the previously mentioned right bounds|%(J) — ¥ (J)| and |¥; (J) — ¥ (J)| follows the exis-
tence of the constant

C> /2 (2AmaM + ¥(B)) + Dg -M
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so that

sup  [¥h(J) — ¥ (J)| < C(y/log(n)pn/n+ pny/log(n)/n)
JC[AB]¥(I)<pn

log(n)pn/n

is valid almost surely for larga. Because of the symmetry & (J) the limes superior formulation of the
convergence follows from Section A.1. O

A.4 Global convergence

The proof of Theorem 3 follows in two steps.

First, we take a look at the differen¢®n(x) — G(x)| and show exponential bounds of its distribution:

P(IGn(X) — G(X)| > &) < 2exp(2( (22)

—ne? >
GmaxtImax) (Gmaxté)

for € € R-o, n € N and each fixed € [A, BJ.
From the definition of the estimate (3) and the assumption (G2) follows the construction of the aforesaid
deviation:

n

Gnlx) ~609 = 3 (L) [~ 60 (23)

as the arithmetical mean afindependent, bounded and likg distributed random variables for each fixed
x € [A,B], whereRy := Lyep - IT* — G(X).

The expectation oRy follows for fixedx € [A, B] from the assumption (G4):

E(R0) = E (e} -7~ G(¥))

(24)

=E (1{eri} ITX) -G(x) =0

Further, the bounds dR;| on [A, B] can be calculated as follows:
IRl = [Lixery} - T — G(¥)| < Imax+ Gmax=: 0. (25)

We get then the following bounds for the dispersé&pbn [A, B]:
2. _ _ X _ 2
62:=Var(R) =E [(1{@,} - G(x) ]
=E (1{eri} : (le)z) - (G(X))Z < E (1{er,} : (Ex)z) (26)
< I'max: E (1{X€Hi} ITX)
= I'max: G(X) < 9 Gmax

From the equations (23), (24), (25), (26) and the inequality from Section A.2 result the following right
bounds:
_ne2 _ne2
P(|Gn(x) —G(x)| > €) < 2exp(*272(crx 238/3)> < 2exp<7zg<eg‘;&s))
for each fixedk € [A, B].

On the second step we transform the right side of the inequality (22) by substitutivith &, :=
C'v/Gmax- v/log(n)/n,C’' > 0,n > 1 respectively as follows:

/)2 ()?
(C) Gmax > — zn’Té@nﬂTanm = Ar|7
29 (Gmaxté&n)

< 2‘exp(— log(n)
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Whereg = Imax+ Gmax-
The summability of the serig#\,) is evident starting from some largeonly for

(C)?  Gmax

>1
29 (Gmax+ En)

Bn =

The conditionB, > 1 can be valid only fofC')?/2g > 1 because dBmax/(Gmax+€n) < 1 andGmax/ (Gmax+
&) — 1.

Consequently, the seri¢s,) is summable starting from some lange:  and only forC’ > /2g. Similar
to Section A.3 the following bounds f¢@n(x) — G(x)| and its supremum can be shown by the Borel-Cantelli
lemma:

sup [Gn(x) — G(x)| < Cy/log(m)/n

xe[AB]
for C > 1/29Gmax and largen almost surely.

Because of symmetry @, (x), we obtain from Section A.1 the limes superior formulation of the con-
vergence:

p Iimsupsug(e[A'B] 1Gn(X) — G(x)| _pb_q
n—w log(n)/n

where a constant € D < /2Gmax' (Imax-+ Gmax) exists. O



