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Abstract Almost sure convergence for ratios of delta functions establishes global and local
strong consistency for a variety of estimates and data generations. For instance, the empirical
probability function from independent identically distributed random vectors, the empirical
distribution for univariate independent identically distributed observations, and the kernel
hazard rate estimate for right-censored and left-truncated data are covered. The convergence
rates derive from the Bennett-Hoeffding inequality.
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1 Introduction

The analysis of continuous univariate observations is frequent in statistical work. Without
parametric assumptions, the estimation of the cumulative distribution function with the em-
pirical distribution function is common practice. Consistency may be established by normal-
izing the empirical process (see e.g. [Shorack and Wellner(1986)]).

If smoothness of the distribution is assumed, further insight can be gained from esti-
mating the density. [Parzen(1962)] introduced the method of kernel estimation, i.e. the con-
volution of the empirical distribution function with a density centered at the origin, named
kernel. Consistency proofs were given for the kernel density estimation with fixed bandwidth
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e.g. by [Parzen(1962)], [Silverman(1978)] and [Stute(1982a)]. A large field of application
for distribution estimation was found in connection with survival analysis where the cu-
mulative hazard function distribution is estimated by the method of [Aalen(1978)]. In this
context right-censoring is a major concern. The design is typically reflected by analyzing
the bivariate, although partly unobservable vector of survival times and censoring times.
In connection with survival studies the hazard rate is superior to the density because of its
interpretation as ‘instantaneous risk of failure’. Consistency proofs for the hazard rate are
given in [Scḧafer(1986)]. Combining the estimates, [Weißbach(2006)] follows a generalized
formulation allowing for density, the hazard function and various data designs, including
right-censoring. Most of the above work considers the univariate sequence of observations,
censored or not, and accounts for the censoring indicator. The aim of this paper is to explore
the idea of vector-valued (partly unobserved) random sequences in order to incorporate (i)
further data defects such as left-truncation and (ii) further functions, such as the probabil-
ity function. Whereas the empirical distribution function, the kernel density estimate and
the kernel hazard rate estimate are delta sequences [Walter and Bulum(1979)], we general-
ize to aratio of delta sequences to accommodate for left-truncation. Using the exponential
Bennett-Hoeffding inequality [Hoeffding(1963)], we establish global consistency and, for
the smoothed functionals, local convergence rates.

2 Model and Notation

Let (Xt)t∈[0,∞),(Yt)t∈[0,∞), . . . be finite state space stochastic processes with combined ran-
dom vector of observationsS : Ω → Rd. For example, in the survival analysis with right-
censored observations one may observe onlyX = min(T,C) andδ = 1{T<C}, whereT is a
lifetime censored by an independent random variableC.

Suppose that the process(Xt)t∈[0,∞) has a positive and differentiable functional charac-
teristicΨ(·) and its first derivativeψ(·) has to be estimated. We assume that the estimate
Ψn(·) for Ψ(·) is present, whereΨn(·) bases on the series(Si)i=1,...,n of i.i.d. vectors of obser-
vations. A general approach to the estimation of the derivativeψ(·) from Ψn(·) is the well-
known kernel estimator first proposed for the density function. In further investigations, the
kernel density estimator has been extended, and the consistency of a general kernel estimator
with variable bandwidth, for instance, was established in [Weißbach(2006)].

We assume the functionΨ : R → R+
0 and the “smoother”Ψ̃ : R → R+

0 with first deriv-
ativesψ(·), ψ̃(·) and estimatesΨn(·), Ψ̃n(·) respectively to be Lipschitz continuous, strictly
monotonic increasing and bounded on[A,B].

Moreover, we assume the kernel functionK(·) to be bounded andΨn(x) to be right
continuous and monotonic increasing on[A,B] with 0 < D < ∞, so that

P

{
limsup

n→∞

supJ⊆[A,B],Ψ(J)≤pn
|Ψ(J)−Ψn(J)|√

log(n)pn/n
= D

}
= 1

wherepn > 0, pn → 0 and(npn)/ log(n) → ∞, i.e. the local rate ofO(
√

log(n)pn/n) for
the measureΨn(J) is required. The theoretical and empirical measures of the intervalJ :=
[a,b] ⊆ [A,B] are defined asΨ(J) :=

∫
J ψ(x)dx andΨn(J) := Ψn(b)−Ψn(a), respectively.

The same assumptions and definitions are valid - with aD̃ - for Ψ̃(·).
The kernel estimator forψ(x) with variable bandwidth

ψn(x) :=
∫

R

1
Rn(t)

K

(
x− t
Rn(t)

)
dΨn(t) (1)
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is uniformly consistent on support[A,B] with rate ofO([log(n)/(npn)]1/2 + pn). Here, the
general bandwidth bases on the “smoother”

Rn(x) := inf
{

r > 0 :
∣∣∣Ψ̃n

(
x− r

2

)
−Ψ̃n

(
x+

r
2

)∣∣∣≥ pn

}
.

and incorporates e.g. fixed bandwidth or nearest neighbor bandwidth [Weißbach(2006)].
The kernel estimator (1) depends only on the estimateΨn(·) and not directly upon the

observations(Si)i=1,...,n. Hence, of interest is to construct a general estimate ofΨ(·) and
Ψ̃(·) with local rate ofO(

√
log(n)pn/n) from the present observations. The next goal is to

obtain an estimator forψ(·) by kernel smoothing.

3 General locally consistent estimator

Some estimates with a local rate ofO(
√

log(n)pn/n) have already been described in the
literature. The empirical distribution function, the Kaplan-Meier estimator and the Nelson-
Aalen estimator attain this rate of convergence (see [Stute(1982b),Schäfer(1986)]. Gener-
alizing these cases allows new local consistent estimates for other stochastic processes or
other characteristicsΨ(·) andψ(·).

Let (Si)i=1,...,n be a series of independent identically distributed random vectorsSi : Ω →
Rd. We assume the functionG : R→R+

0 to be continuous and the functionGn : R×(Rd)n→
R+

0 , (x,s1, . . . ,sn) 7→ Gn(x)(s1, . . . ,sn) to be symmetric for each fixedx∈ R ands1, . . . ,sn ∈
Rd. Further, we use the simplified notationGn(x,ω) for Gn(x)(S1(ω), . . . ,Sn(ω)).

Additionally, we define the mapping∆ : R×Rd → R+
0 ,(x,s) 7→ ∆ x(s) with simplified

notation∆ x
i (ω) for ∆ x(Si(ω)). The estimate forΨ(·) can be constructed as follows:

Ψn(x) :=
1
n

n

∑
i=1

1{S1
i ≤x} ·∆ x

i

Gn(S1
i )

, (2)

whereS1
i is the first element of the vectorSi .

The local consistency of the estimate (2) needs some assumptions on the function to
estimate, on the observed random variables and on the rate ofGn(·) to G(·).

(L1) We assume the interval[A,B] with A∈ R, B∈ R andA < B.
(L2) We assume the functionΨ : R → R+ to be continuous, positive and strictly monotonic

increasing on[A,B].
(L3) We assume 0≤ ∆ x

i ≤ ∆max< ∞ for eachx∈ [A,B].
(L4) Let a constant M := supx∈[A,B][G(x)]−1 < ∞ exist, we assume then

[1{x≤a}∆
a
i −1{x≤b}∆

b
i ][G(x)]−1 < 2∆maxM for i = 1, . . . ,n, a,b∈ [A,B], x∈ R.

(L5) We assume also[1{x≤a}∆
a
i −1{x≤b}∆

b
i ][G(x)−Gn(x)] = 0 for all x 6∈ [a,b]⊆ [A,B].

(L6) Furthermore, we assumeE

(
1{S1

i ≤x}·∆
x
i

G(S1
i )

)
= Ψ(x) for each fixedx∈ [A,B]

(L7) We assume forG(x) andGn(x) a constant 0≤ D ≤ DG < ∞ to exist, so that

P

{
limsup

n→∞

supx∈[A,B] |G(x)−Gn(x)|√
log(n)/n

= D

}
= 1

(L8) J is an interval withJ := [a,b]⊆ [A,B] anda≤ b.
(L9) For the series (pn) we assumepn > 0, pn → 0 andnpn/ log(n)→ ∞.
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Theorem 1 Under conditions (L1)-(L9), there exists a constant

0≤ D ≤ 2(
√

2· (2∆maxM +Ψ(B))+DGM)

so that

P

{
limsup

n→∞

supJ⊆[A,B],Ψ(J)≤pn
|Ψ(J)−Ψn(J)|√

log(n)pn/n
= D

}
= 1.

In order to prove Theorem 1 we specify the help function

Ψ
∗

n (x) :=
1
n

n

∑
i=1

1{S1
i ≤x} ·∆ x

i

G(S1
i )

and the help measure

Ψ
∗

n (J) := Ψ
∗

n (b)−Ψ
∗

n (a).

The aim is to split the difference|Ψn(J)−Ψ(J)| in two parts using the help measure and
to show the bounds almost sure for each term separately. Section A.3 is the detailed proof
of Theorem 1.

4 General globally consistent estimator

To complete the construction of the general estimator (2) we need aO(
√

log(n)/n) consis-
tent estimator for the functionG(x). In fact, estimates with this rate of convergence are also
known. The rate ofO(

√
log(n)/n) has be established for the empirical distribution function

by [Földes and Rejẗo(1981)].
Let (Si)i=1,...,n be the series of i.i.d. random vectors from Section 3. We define the map-

pingH : Rd →P(R) with simplified notationHi(ω) for H(Si(ω)). A possible construction
of Gn(x) can be derived from the generalization of the empirical distribution function as
follows:

Gn(x) :=
1
n

n

∑
i=1

1{x∈Hi} ·Γ
x

i , (3)

where the definition ofΓ x
i is identical to∆ x

i from Section 3.
Similar to the local consistent estimate (2), the global consistency of (3) needs some

assumptions on the function to estimate and on the observed random variables.

(G1) We assume the interval[A,B] with A∈ R, B∈ R andA < B.
(G2) We assume 0≤ Γ x

i ≤ Γmax< ∞ for eachx∈ [A,B].
(G3) We assume the functionG : R→ R+

0 to be nonnegative withG(x)≤Gmax< ∞ for each
x∈ [A,B].

(G4) Furthermore, we assumeE
(
1{x∈Hi} ·Γ

x
i

)
= G(x) for each fixedx∈ [A,B].

Theorem 2 Under the conditions (G1)-(G4), there exists a constant

0≤ D ≤
√

2Gmax· (Γmax+Gmax)

so that

P

{
limsup

n→∞

supx∈[A,B] |G(x)−Gn(x)|√
log(n)/n

= D

}
= 1
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The proof of Theorem 2 is similar to that of Theorem 1 and is presented in Section A.4
in more detail.

5 Applications

Despite the simplicity of the general estimators (2) and (3), these can be applied on some
known stochastic processes. The advantage here is the known rate of convergence. In this pa-
per we show the rate of convergence for the well-known empirical distribution function, the
kernel density estimator and the hazard rate estimator for left-truncated and right-censored
data.

5.1 Convergence of empirical time-dependent probability functions

In this section we present the general approach to estimate time-dependent probability func-
tions. The results of this section will be used in the further sections to simplify the proofs.

Let (Si)i=1,...,n be the series of i.i.d. vectorsS : Ω → Rd from Section 3, whereSd
i ∈

{s1, . . . ,sk ∈ R} for i = 1, . . . ,n is assumed. We define also a random setHi like in Section
4.

We assumeG(x) := P(x ∈ Hi ,Sd
i = SC) ≤ 1 =: Gmax to be a nonnegative function on

[A,B] andGn(x) := 1
n ∑n

i=1 1{x∈Hi ,Sd
i =SC} to be an estimate forG(x), whereSC ∈ {s1, . . . ,sk ∈

R} is a constant. Then a constantD ≤ 2 exists, so that

P

{
limsup

n→∞

supx∈[A,B] |G(x)−Gn(x)|√
log(n)/n

= D

}
= 1. (4)

To prove this convergence we define the random variablesΓ x
i = 1{Sd

i =SC} ≤ 1 =: Γmax,
i = 1, . . . ,n for each fixedx∈ R. We get then the following expectation for each fixedx∈
[A,B]:

E(1{x∈Hi} ·Γ
x

i ) = E(1{x∈Hi} ·1{Sd
i =SC})

= E(1{x∈Hi ,Sd
i =SC}) = P(x∈ Hi ,S

d
i = SC) = G(x)

The assumptions (G1)-(G4) are fulfilled and the convergence follows from Theorem 2.

5.2 Convergence of empirical probability distribution and kernel density estimator

Let S1, . . . ,Sn be univariate i.i.d. random variables with a strictly positive and Lipschitz
continuous distributionF(x) and densityf (x) functions on[A,B]. First, we examine the rate
of convergence of the empirical distribution functionFn(x) := 1

n ∑n
i=1 1{Si≤x}.

Theorem 3 Let (Si ∈ R)i=1,...,n be a series of i.i.d. random variables with a distribution
function F(x) := P(Si ≤ x) on [A,B].

Then a constant D≤ 2 exists, so that

P

{
limsup

n→∞

supx∈[A,B] |F(x)−Fn(x)|√
log(n)/n

= D

}
= 1
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Proof We define i.i.d. random vectors(Si ∈ R,SC)i=1,...,n, whereSC < ∞ is a constant. We
define also the mappingH(x1,x2) := {y : x1 ≤ y} and random setsHi = {y ∈ R : Si ≤ y},
i = 1, . . . ,n. Similar to Section 5.1 we define a time-dependent probability functionG(x) :=
P(x∈ Hi ,SC = SC) and its estimateGn(x) := 1

n ∑n
j=1 1{x∈H j ,SC=SC}.

The convergence ofFn(x) results from equalitiesF(x) = G(x) andFn(x) = Gn(x) and
the convergence formulation (4). ut

From the general kernel estimator (1) we obtain now the following density kernel esti-
mator:

fn(x) :=
n

∑
i=1

1
n·Rn(Si)

K

(
x−Si

Rn(Si)

)
1{Si≤x}, (5)

where the “smoother” is the same distribution functionF(x).
The convergence of the estimate (5) needs additionally to assume the Lipschitz continu-

ity of F(·) and f (·) on [A,B]. We define now the measuresF(J) :=
∫

J f (s)ds= F(b)−F(a)
andFn(J) := Fn(b)−Fn(a) for an intervalJ := [a,b]⊆ [A,B]. As we know, the local conver-
gence ofFn(x), i.e. the convergence of the empirical measureFn(J), must be proven to show
the convergence offn(x).

Theorem 4 Let (Si ∈ R)i=1,...,n be a series of i.i.d. random variables with Lipschitz contin-
uous and strictly monotonic increasing on[A,B] distribution function F(x) := P(Si ≤ x) and
the series (pn) fulfills the assumption (L9).

Then a constant D≤ 2
√

6 exists, so that

P

{
limsup

n→∞

supJ⊆[A,B],F(J)≤pn
|F(J)−Fn(J)|√

log(n)pn/n
= D

}
= 1 (6)

Proof We use the following assumptions to prove Theorem 4:

• We assume∆ x
i , i = 1, . . . ,n to be a constant∆ x

i = ∆max := 1 for each fixedx∈ [A,B].
• We defineΨ(x) := P(Si ≤ x) = F(x).
• The functionsG(x) andGn(x) will be also assumed to be constant:G(x) = M := 1 and

Gn(x) := 1.
• Moreover, we define a constantDG := 0.

Our goal now is to show the assumptions (L1)-(L9).

From Section A.1 follows|G(x)−Gn(x)|= 0≤CG
√

log(n)/n for all n > 0, x∈ [A,B]
andCG > DG, so that the assumptions (L5) and (L7) are fulfilled.

With constant∆ x
i we get the assumption (L4) fora,b∈ [A,B], x∈ R as follows:

[1{x≤a}∆
a
i −1{x≤b}∆

b
i ][G(x)]−1 = 1{a≤x≤b}∆maxM < 2∆maxM,

whereM = [G(x)]−1 = 1.
The assumption (L6) can be obtained for each fixedx∈ [A,B] trivially as follows:

E

(
1{Si≤x} ·∆ x

i

G(Si)

)
= E

(
1{Si≤x}

)
= Ψ(x).

The assumptions (L1)-(L9) are fulfilled and the convergence (6) follows from Theorem
1. ut

As we know from Section 2, the rate ofO([log(n)/(npn)]1/2 + pn) on [A,B] results for
the density kernel estimator (5) from Theorem 4.
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5.3 Convergence of hazard rate estimate from left-truncated and right-censored data

As a more complicated case we examine now a survival process with left-truncated and
right-censored observations. We assume(Ti ∈ R+

0 )i∈N, (Ci ∈ R+
0 )i∈N and(Li ∈ R)i∈N to be

independent series of i.i.d. random variables with Lipschitz continuous distributionsFT(x),
FC(x) andFL(x) respectively, whereTi are the lifetimes and pairs[Li ,Ci ] represent bounds
of observations under conditionLi < Ci for i ∈ N. Because of the variable left bound of
observationLi , only objects withLi < Ti can be observed.

-
0 real time

︷ ︸︸ ︷︸ ︷︷ ︸

︷ ︸︸ ︷

︷ ︸︸ ︷

︸ ︷︷ ︸

L6 < 0

T5

Object is non-observable

X3 = T3

L4 > 0

X1 = C1, T1 is non-observable

×

×

×

×

×

c
cc
cc
c◦ Begin of observation

× End of observation
— Observable period
- - Non-observable period
T Lifetime
L Difference bet.

0 and begin of observation
C Difference bet.

end of observation and 0
X Right-censoring time

Fig. 1 Survival process and bounds of observation in the real time

As we can see in Fig. 1, the right bound of observationCi can cut the lifetime on the right
side, so thatTi is not always to observe. Hence, we define the observable censoring random
variableXi = min(Ti ,Ci) and censoring indexδi = 1{Ti<Ci}. Thus, one can observe only
vectors(Li ,Xi ,δi) with Li < Xi in a survival process with left-truncated and right-censored
data.

A survival process can be described with a bent for a change of state (death or insol-
vency) or in the hazard rate [Andersen et al(1993)Andersen, Borgan, Gill, and Keiding] as
follows:

λ (t)dt = P(t ≤ T < t +dt | t ≤ T) =
dFT(t)

1−FT(t)
.

Another way to describe a survival process is to use the cumulative hazard rate:

Λ(t) :=
∫ t

0
λ (s)ds=

∫ t

0

dFT(s)
1−FT(s)

=− log[1−FT(t)]

The advantage of the cumulative hazard rate is expressed in the possibility of its estima-
tion by the left-truncated and right-censored observations
[Cao et al(2005)Cao, Janssen, and Veraverbeke] as follows:

Λn(t) :=
n

∑
i=1

1{Xi≤t,δi=1|Li≤Xi}
nGn(Xi)

= ∑
i:X(i)≤t

δi

]{ j : L j ≤ X(i) ≤ Xj}
, (7)
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whereGn(t) = n−1 ∑n
i=1 1{Li≤t≤Xi |Li≤Xi} is the consistent estimate of the probability function

G(x) = P(Li ≤ t ≤ Xi |Li ≤ Xi).

Theorem 5 Let (Li ,Xi)i=1,...,n with Li ≤ Xi be i.i.d. random vectors of observations.

Then a constant D≤ 2 exists, so that

P

{
limsup

n→∞

supt∈[A,B] |G(t)− Ĝn(t)|√
log(n)/n

= D

}
= 1. (8)

Proof The trick of the proof is to define the random setsHi := {y∈R : Li ≤ y≤Xi | Li ≤Xi},
constantsZi and a constantZC, so thatZi = ZC for i = 1, . . . ,n. We can express then the
functionsG(t) andGn(t) as follows:

G(t) = P(Li ≤ t ≤ Xi |Li ≤ Xi)

= P(Li ≤ t ≤ Xi ,Zi = ZC|Li ≤ Xi) = P(t ∈ Hi ,Zi = ZC)

and

Gn(t) = n−1
n

∑
i=1

1{Li≤t≤Xi |Li≤Xi}

= n−1
n

∑
i=1

1{Li≤t≤Xi ,Zi=ZC|Li≤Xi} = n−1
n

∑
i=1

1{t∈Hi ,Zi=ZC}.

The convergence (8) follows from Section 5.1. ut

Unfortunately, some calculations need also an estimate of the hazard rate. Hence, the
goal is here to estimate the hazard function from the equation (7). As a possible solution we
apply the kernel estimator (1) with “smoother”Λ(t) for the hazard rate as follows :

λn(t) := ∑
i:X(i)≤t

1
Rn(X(i))

K

(
t−X(i)

Rn(X(i))

)
δi

]{ j : L j ≤ X(i) ≤ Xj}
(9)

We define now an interval[A,B] so thatFL(A) > 0 andFX(B) < 1 and assumeΛ(t) and
λ (t) to be strictly positive and Lipschitz continuous on[A,B]. The convergence ofλn(t) can
be easily shown, if the theoretical measureΛn(J) := Λn(b)−Λn(a) converges toΛ(J) :=∫

J λ (t)dt = Λ(b)−Λ(a) with local rate ofO(
√

log(n)pn/n), whereJ := [a,b] ∈ [A,B].

Theorem 6 Let (Li ,Xi ,δi)i=1,...,n with Li ≤ Xi be i.i.d. random vectors of observations and
the series (pn) fulfills the assumption (L9).

Then a constant D≤ 2(
√

2· (M +Λ(B))+2M) exists, so that

P

{
limsup

n→∞

supJ⊆[A,B],Λ(J)≤pn
|Λ(J)−Λn(J)|√

log(n)pn/n
= D

}
= 1 (10)

where M:= supt∈[A,B][G(t)]−1.
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Proof First, we check the assumptions (L1)-(L9) for the local convergence. The random
variable∆ x

i can be defined as a constant∆ x
i = 1{δi=1|Li≤Xi} ≤ 1 =: ∆max. Additionally, we

defineΨ(x) := Λ(x) andDG := 2.
From Theorem 5 and Section A.1 we know that|G(x)− Ĝn(x)| ≤C

√
log(n)/n a.s. for

largen, x∈ R andC > DG.

We examine now the functionG(x) and write it as

G(x) = α
−1FL(x)(1−FT(x))(1−FC(x))

=
∫ x

−∞
α
−1(1−FT(x))(1−FC(x)) f L(s)ds,

whereα = P(Li ≤ Xi).

Since the distribution functionsFT(x), FC(x) andFL(x) are Lipschitz continuous the
functionsG(x) andΛ(x) are also Lipschitz continuous for allx ∈ [A,B]. The assumptions
(L4) and (L5) are fulfilled because of the constant∆ x

i .

Now we prove the assumption (L6) as follows:

E

(
1{Xi≤x|Li≤Xi} ·∆

x
i

G(Xi)

)
= E

(
1{Xi≤x,δi=1|Li≤Xi}

G(Xi)

)
=

1

∑
δ1=0

∫ ∞

−∞

1{x1≤x,δ1=1}
G(x1)

dFX,δ (x1,δ1) =
∫ x

−∞

dFX,δ (x1,1)
G(x1)

,

(11)

where FX,δ (x,y) is the distribution function of random vectors(Xi ,δi) under condition
Li ≤ Xi , i = 1, . . . ,n.

For the intervalsJ ⊆ [A,B] we can get the derivativedFX,δ (x1,1) from the probability
P(Xi ∈ J,δi = 1 | Li ≤ Xi) as follows:

P(Xi ∈ J,δi = 1 | Li ≤ Xi) = α
−1P(Xi ∈ J,δi = 1,Li ≤ Xi)

=α
−1[P(Ti ∈ J,Ti ≤Ci ,Li ≤ Ti ,Ti ≤Ci)

+P(Ci ∈ J,Ti ≤Ci ,Li ≤Ci ,Ci < Ti)] = α
−1P(Ti ∈ J,Li ≤ Ti ≤Ci).

(12)

The probabilitiesP(Xi ∈ J,δi = 1 | Li ≤ Xi) andP(Ti ∈ J,Li ≤ Ti ≤Ci) can be written as

P(Xi ∈ J,δi = 1 | Li ≤ Xi) = E(1{Xi∈J,δi=1|Li≤Xi})

=
1

∑
δ1=0

∫ ∞

−∞
1{x1∈J,δ1=1}dFX,δ (x1,δ1) =

∫
x1∈J

dFX,δ (x1,1)
(13)

and

α
−1P(Ti ∈ J,Li ≤ Ti ≤Ci) = α

−1E(1{Ti∈J,Li≤Ti≤Ci})

=
∫

t∈R

∫
c∈R

∫
l∈R

α
−11{t∈J}1{l≤t}1{t≤c}dFT(t)dFC(c)dFL(l)

=
∫

t∈J
α
−1FL(t)(1−FC(t))dFT(t).

(14)
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The derivativedFX,δ (x1,1) follows then for the one-element intervalsJ = [ j, j], j ∈
[A,B] from the equations (12), (13) and (14):∫

x1∈J
dFX,δ (x1,1) =

∫
t∈J

α
−1FL(t)(1−FC(t))dFT(t)

=dFX,δ ( j,1) = α
−1FL( j)(1−FC( j))dFT( j).

(15)

We substitute (15) in (11) and get the assumption (L6):

E

(
1{Xi≤x|Li≤Xi} ·∆

x
i

G(Xi)

)
=
∫ x

−∞

dFX,δ (x1,1)
G(x1)

=
∫ x

−∞

α−1FL(x1)(1−FC(x1))dFT(x1)
G(x1)

=
∫ x

−∞

α−1FL(x1)(1−FC(x1))dFT(x1)
α−1FL(x1)(1−FC(x1))(1−FT(x1))

=
∫ x

−∞

dFT(x1)
1−FT(x1)

= Λ(x) = Ψ(x)

The assumptions (L1)-(L9) are fulfilled and the convergence (10) follows from Theorem
1. ut

One can see that the observationsLi ≤ 0, i = 1, . . . ,n are present in the right-censored
case. The Nelson-Aalen estimator is then the special case of the presented here estimate (7).

As known from Section 2, the rate of convergence of the estimate (9) follows from
Theorem 6 and isO([log(n)/(npn)]1/2 + pn) on [A,B].

Acknowledgements The work of the authors was supported by the Deutsche Forschungsgemeinschaft (SFB
475, ‘Reduction of complexity in multivariate data structures’).
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A Proofs

A.1 Limes superior formulation of the convergence

As a result of Hewitt and Savage [Hewitt and Savage(1955)], it is equivalent to state there exists a constant
D ≤ 1 s.t.

P

{
limsup

n→∞

Sn(Y1(ω), . . . ,Yn(ω))
an

}
= 1.

As for all a > 1, it holds that

P{ω | ∃N ∈ N∀n > N : Sn(Y1(ω), . . . ,Yn(ω))≤ αan}= 1.

With positive zero-sequencean, a sequence of i.i.d. randomd-vectorsY i : Ω → (R)d and a sequence of
measurable symmetric mappingsSn : Rn → R+

0 .

A.2 Distribution of the mean value

We assumeT1, . . . ,Tn to be independent bounded random variables with expectation 0 and dispersionσ2, so
that

E(Ti) = 0

|Ti | ≤ b

σ
2 := Var(Ti)

for i = 1, ...,n.

From the two sided version of Theorem 3 from [Hoeffding(1963)] and the inequality log(1+ x) ≥
2x/(2+x), x≥ 0 results the following inequality for eachε > 0:

P(
∣∣T∣∣≥ ε)≤ 2exp

(
− nε2

2σ2 +2bε/3

)
.

A.3 Local convergence

The proof of Theorem 1 follows in four steps.

First, we show the exponential bounds for the following distribution of the difference|Ψ ∗
n (J)−Ψ(J)|:

P(|Ψ ∗
n (J)−Ψ(J)|> ε) < 2exp

(
−nε2

2(2∆maxM +Ψ(B))(p+ ε)

)
(16)

for all p > 0, ε > 0, n∈ N>0 and each fixedJ⊆ [A,B] with Ψ(J)≤ p.
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Because of the definition (2) and the assumption (L3) is

Ψ
∗

n (J)−Ψ(J) =
1
n

n

∑
i=1

(
1{S1

i ≤b} ·∆
b
i

G(S1
i )

−
1{S1

i ≤a} ·∆
a
i

G(S1
i )

−Ψ(J)

)
(17)

the arithmetical mean of then independent, bounded and likeRJ distributed random variables for each fixed
J⊆ [A,B], where

RJ :=
1{S1

i ≤b} ·∆
b
i

G(S1
i )

−
1{S1

i ≤a} ·∆
a
i

G(S1
i )

−Ψ(J).

The expectation, the dispersion and the bounds ofRJ can be then calculated for fixedJ ⊆ [A,B] with
Ψ(J)≤ p.

The expectation ofRJ follows from the assumption (L6):

E(RJ) = E

(
1{S1

i ≤b} ·∆
b
i

G(S1
i )

)
−E

(
1{S1

i ≤a} ·∆
a
i

G(S1
i )

)
−Ψ(b)+Ψ(a) = 0. (18)

From assumption (L4), we get the following bounds of|RJ| on [A,B]:

|RJ|=

∣∣∣∣∣1{S1
i ≤b} ·∆

b
i

G(S1
i )

−
1{S1

i ≤a} ·∆
a
i

G(S1
i )

−Ψ(J)

∣∣∣∣∣
< 2∆maxM +Ψ(B)−Ψ(A) < 2∆maxM +Ψ(B) =: g.

(19)

The dispersion ofRJ can be obtained from the expectation (18) and bounds (19) as follows:

σ
2
J :=Var(RJ) = E

(1{S1
i ≤b} ·∆

b
i

G(S1
i )

−
1{S1

i ≤a} ·∆
a
i

G(S1
i )

−Ψ(J)

)2


< 2∆maxM ·E

(
1{S1

i ≤b} ·∆
b
i

G(S1
i )

−
1{S1

i ≤a} ·∆
a
i

G(S1
i )

)
= 2∆maxM ·Ψ(J) < g· p.

(20)

From the equations (17), (18), (19), (20) and the inequality from Section A.2 result the following right
bounds:

P(|Ψ ∗
n (J)−Ψ(J)|> ε) < 2exp

(
−nε2

2(σ2
J +gε/3)

)
< 2exp

(
−nε2

2g(p+ ε)

)
for each fixed intervalJ⊆ [A,B] with Ψ(J)≤ p.

On the second step we show the inequality

sup
J⊆[A,B],Ψ(J)≤pn

|Ψ ∗
n (J)−Ψ(J)| ≤C

√
log(n)pn/n (21)

almost sure for a constantC >
√

2(2∆maxM +Ψ(B)) and largen.

On the right side of the inequality (16)p andε could be substituted withpn andεn := C
√

log(n)pn/n,
C > 0, n > 1 respectively as follows:

< 2·exp

(
− log(n)

C2

2g
pn

(pn + εn)

)
= 2n

−C2
2g

pn
(pn+εn) =: An.

The series(An) is then summable starting from some largen < ∞ only for

βn :=
C2

2g
pn

(pn + εn)
> 1.
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Fromεn/pn = C
√

log(n)/(npn) and the assumption (L9) followεn/pn → 0 andpn/(pn + εn)→ 1 for large
n. The conditionβn > 1 can be then achieved withC2/2g > 1 orC >

√
2g.

Consequently, the series(An) is summable from some largen < ∞ and only forC >
√

2g. For each
J⊆ [A,B] with Ψ(J)≤ pn we get then

∃C >
√

2g ∃m< ∞,m∈ N :
∞

∑
n=m

P(|Ψ ∗
n (J)−Ψ(J)|> εn) <

∞

∑
n=m

An < ∞

and

∀m< ∞,m∈ N :
m

∑
n=1

P(|Ψ ∗
n (J)−Ψ(J)|> εn)≤m< ∞

Because of the summability ofP(|Ψ ∗
n (J)−Ψ(J)| > εn), the following probability results from Borel-

Cantelli lemma forC >
√

2g:

P

(
limsup

n→∞
|Ψ ∗

n (J)−Ψ(J)|> εn

)
= 0,

i.e |Ψ ∗
n (J)−Ψ(J))| doesn’t exceedεn for the mostn. For largen and for allJ ⊆ [A,B] with Ψ(J) ≤ pn, we

get almost surely

|Ψ ∗
n (J)−Ψ(J))| ≤C

√
log(n)pn/n

The same inequality is valid for the supremum of|Ψ ∗
n (J)−Ψ(J)| on [A,B]:

sup
J⊆[A,B],Ψ(J)≤pn

|Ψ ∗
n (J)−Ψ(J)| ≤C

√
log(n)pn/n

for C >
√

2g and largen almost surely.

On the third step we prove the following inequality on the basis of the previous results:

sup
J⊆[A,B],Ψ(J)≤pn

|Ψn(J)−Ψ
∗

n (J)| ≤C · pn

√
log(n)/n

almost sure for someC > DG ·M and largen.

From the assumption (L7) and the limes superior formulation from Section A.1 we get the following
right bounds forG(x)−Gn(x):

G(x)−Gn(x)≤ |G(x)−Gn(x)| ≤ sup
x∈[A,B]

|G(x)−Gn(x)| ≤C′
1 ·
√

log(n)/n

almost sure forC′
1 > DG, largen and allx∈ [A,B]. These bounds can be rewritten forGn(x) as follows:

Gn(x)≥G(x)−C′
1

√
log(n)/n≥ inf

t∈[A,B]
G(t)−C′

1 ·
√

log(n)/n.

From the assumption (L7) follows inft∈[A,B] G(t) > 0. Because of
√

log(n)/n→ 0, the following inequa-
tions are fulfilled forx∈ [A,B] and largen:

inf
t∈[A,B]

G(t)−C′
1 ·
√

log(n)/n > 0,

1
Gn(x)

≤ 1

inf
t∈[A,B]

G(t)−C′
1 ·
√

log(n)/n
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and

|G(x)−Gn(x)|
Gn(x)

≤
C′

1 ·
√

log(n)/n

inf
t∈[A,B]

G(t)−C′
1 ·
√

log(n)/n
.

The following bounds forΨ ∗
n (J)−Ψ(J) andΨ ∗

n (J) result from the equation (21) almost sure forJ ⊆
[A,B] with Ψ(J)≤ pn, largen andC′

2 >
√

2· (2∆maxM +Ψ(B)):

Ψ
∗

n (J)−Ψ(J)≤ |Ψ ∗
n (J)−Ψ(J)|

≤ sup
J⊆[A,B],Ψ(J)≤pn

|Ψ ∗
n (J)−Ψ(J)| ≤C′

2

√
log(n)pn/n

and consequently

Ψ
∗

n (J)≤Ψ(J)+C′
2

√
log(n)pn/n≤ pn +C′

2

√
log(n)pn/n.

We obtain then the following equation from the assumption (L5) almost sure for eachJ ⊆ [A,B] with
Ψ(J)≤ pn and largen:

|Ψn(J)−Ψ
∗

n (J)|= 1
n

n

∑
i=1

∣∣∣∣ 1

Gn(S1
i )
− 1

G(S1
i )

∣∣∣∣(1{S1
i ≤b} ·∆

b
i −1{S1

i ≤a} ·∆
a
i )

≤ 1
n

n

∑
i=1

∣∣∣∣G(S1
i )−Gn(S1

i )
Gn(S1

i )

∣∣∣∣1{S1
i ≤b} ·∆

b
i −1{S1

i ≤a} ·∆
a
i

G(S1
i )

≤
C′

1

√
log(n)/n·Ψ ∗

n (J)
inf

t∈[A,B]
G(t)−C′

1

√
log(n)/n

≤
C′

1

√
log(n)/n·

(
pn +C′

2

√
log(n)pn/n

)
inf

t∈[A,B]
G(t)−C′

1

√
log(n)/n

.

The transformationpn + C′
2

√
log(n)pn/n = pn[1 + C′

2

√
log(n)/(pnn)] is evident, where the term

C′
2

√
log(n)/(pnn) can be neglected for largen because of the assumption (L9). For largen, we can also

neglect the term
√

log(n)/n in numerator. For allJ⊆ [A,B] with Ψ(J)≤ pn and for largen, we get then the
following inequality almost sure:

|Ψn(J)−Ψ
∗

n (J)| ≤
C′

1

inf
t∈[A,B]

G(t)
pn

√
log(n)/n = C′

1 ·M · pn

√
log(n)/n

The following right bound results for someC > DG ·M and largen almost sure:

sup
J⊆[A,B],Ψ(J)≤pn

|Ψn(J)−Ψ
∗

n (J)| ≤C · pn

√
log(n)/n.

On the last step we examine the expression supJ⊆[A,B],Ψ(J)≤pn
|Ψn(J)−Ψ(J)|. This overall difference can

be represented by the sum of the deviations of the theoretical and empirical measuresΨ(J) andΨn(J) from
the help measureΨ ∗

n (J) as follows:

sup
J⊆[A,B],Ψ(J)≤pn

|Ψn(J)−Ψ(J)|

≤ sup
J⊆[A,B],Ψ(J)≤pn

|Ψn(J)−Ψ
∗

n (J)|+ sup
J⊆[A,B],Ψ(J)≤pn

|Ψ ∗
n (J)−Ψ(J)|

Because of the assumption (L9),
pn
√

log(n)/n√
log(n)pn/n

=
√

pn approaches zero, i.e.pn
√

log(n)/n≤
√

log(n)pn/n

is valid for largen.

From the previously mentioned right bounds of|Ψn(J)−Ψ ∗
n (J)| and |Ψ ∗

n (J)−Ψ(J)| follows the exis-
tence of the constant

C >
√

2· (2∆maxM +Ψ(B))+DG ·M,
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so that

sup
J⊆[A,B],Ψ(J)≤pn

|Ψn(J)−Ψ(J)| ≤C(
√

log(n)pn/n+ pn

√
log(n)/n)

≤ 2C
√

log(n)pn/n

is valid almost surely for largen. Because of the symmetry ofΨn(J) the limes superior formulation of the
convergence follows from Section A.1. ut

A.4 Global convergence

The proof of Theorem 3 follows in two steps.

First, we take a look at the difference|Gn(x)−G(x)| and show exponential bounds of its distribution:

P(|Gn(x)−G(x)|> ε) < 2exp
(

−nε2

2(Gmax+Γmax)(Gmax+ε)

)
(22)

for ε ∈ R>0, n∈ N>0 and each fixedx∈ [A,B].
From the definition of the estimate (3) and the assumption (G2) follows the construction of the aforesaid

deviation:

Gn(x)−G(x) =
1
n

n

∑
i=1

(
1{x∈Hi} ·Γ

x
i −G(x)

)
(23)

as the arithmetical mean ofn independent, bounded and likeRx distributed random variables for each fixed
x∈ [A,B], whereRx := 1{x∈Hi} ·Γ

x
i −G(x).

The expectation ofRx follows for fixedx∈ [A,B] from the assumption (G4):

E(Rx) = E
(
1{x∈Hi} ·Γ

x
i −G(x)

)
= E

(
1{x∈Hi} ·Γ

x
i

)
−G(x) = 0

(24)

Further, the bounds of|Rx| on [A,B] can be calculated as follows:

|Rx|=
∣∣1{x∈Hi} ·Γ

x
i −G(x)

∣∣< Γmax+Gmax=: g. (25)

We get then the following bounds for the disperse ofRx on [A,B]:

σ
2
x : = Var(Rx) = E

[(
1{x∈Hi} ·Γ

x
i −G(x)

)2]
= E

(
1{x∈Hi} · (Γ

x
i )2)− (G(x))2 ≤ E

(
1{x∈Hi} · (Γ

x
i )2)

≤ Γmax·E
(
1{x∈Hi} ·Γ

x
i

)
= Γmax·G(x) < g·Gmax

(26)

From the equations (23), (24), (25), (26) and the inequality from Section A.2 result the following right
bounds:

P(|Gn(x)−G(x)|> ε) < 2exp
(

−nε2

2(σ2
x +gε/3)

)
< 2exp

(
−nε2

2g(Gmax+ε)

)
for each fixedx∈ [A,B].

On the second step we transform the right side of the inequality (22) by substitutingε with εn :=
C′√Gmax·

√
log(n)/n, C′ > 0, n > 1 respectively as follows:

< 2·exp

(
− log(n)

(C′)2

2g
Gmax

(Gmax+ εn)

)
= 2n

− (C′)2
2g

Gmax
(Gmax+εn) =: An,
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whereg = Γmax+Gmax.

The summability of the series(An) is evident starting from some largen only for

βn :=
(C′)2

2g
Gmax

(Gmax+ εn)
> 1

The conditionβn > 1 can be valid only for(C′)2/2g> 1 because ofGmax/(Gmax+εn)< 1 andGmax/(Gmax+
εn)→ 1.

Consequently, the series(An) is summable starting from some largen< ∞ and only forC′ >
√

2g. Similar
to Section A.3 the following bounds for|Gn(x)−G(x)| and its supremum can be shown by the Borel-Cantelli
lemma:

sup
x∈[A,B]

|Gn(x)−G(x)| ≤C
√

log(n)/n

for C >
√

2gGmax and largen almost surely.

Because of symmetry ofGn(x), we obtain from Section A.1 the limes superior formulation of the con-
vergence:

P

{
limsup

n→∞

supx∈[A,B] |Gn(x)−G(x)|√
log(n)/n

= D

}
= 1

where a constant 0≤ D ≤
√

2Gmax· (Γmax+Gmax) exists. ut


