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Abstract One serious problem in deep-hole drilling is the formation of a
dynamic disturbance called spiralling which causes holes with several lobes.
Since such lobes are a severe impairment of the bore hole quality the forma-
tion of spiralling has to be prevented. Gessesse et al. [2] explain spiralling
by the coincidence of bending modes and multiples of the rotation frequency.
They derive this from an elaborate finite elements model of the process.
In online measurements we detected slowly changing frequency patterns sim-
ilar to those calculated by Gessesse et al. We therefore propose a method
to estimate the parameters determining the change of frequencies over time
from spectrogram data. This significantly simplifies the explanation of spi-
ralling for practical applications compared to finite elements models which
have to be correctly modified for each machine and tool assembly. It turns
out that this simpler model achieves to explain the observed frequency pat-
terns quite well.
We use this for estimating the variation of the frequencies as good as pos-
sible. This opens up the opportunity to prevent spiralling by e.g. changing
the rotary frequency.
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Figure 1: BTA deep hole drilling, working principle [10].

1 Introduction

The aim of the project is to analyze and model the BTA-deep-hole-drilling
process. A longterm goal is to develop a tool for online-prediction of dynamic
disturbances which in future may be used as a basis for intelligent control of
the process.
Deep hole drilling methods are used for producing holes with a high length-
to-diameter ratio, good surface finish and straightness. For drilling holes
with a diameter of 20 mm and above, the BTA (Boring and Trepanning
Association) deep hole machining principle is usually employed [10]. The
working principle is illustrated in Fig. 1. Machining of bore holes with a
high length to diameter ratio necessitates slender tool-boring bar assemblies.
These components therefore have low dynamic stiffness properties which in
turn can be the cause of dynamic disturbances such as chatter vibration and
spiralling. Whereas chatter mainly leads to increased tool wear along with
marks on the generally discarded bottom of the bore hole, spiralling causes
a multi-lobe shaped deviation of the cross section of the hole from absolute
roundness often constituting a significant impairment of the workpiece. The
effects of these disturbances on the workpiece can be seen in Fig. 2.
As the deep hole drilling process is often used during the last production

phases of expensive workpieces, process reliability is of prime importance.
To achieve an optimal process design with the aim of reducing the risk of
workpiece damage, a detailed analysis of the process dynamics is necessary.
In this paper we focus on spiralling which can be observed to occur either
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Figure 2: Radial chatter marks on the bottom of the bore hole (left) and
effects of spiralling on the bore hole wall (right).

reproducibly at a certain drilling depth and fixed machining parameters or at
random drilling depths [8]. Gessesse et al. [2] have modelled the process with
finite elements and derived from this model and experimental observations
that one reason for the reproducible occurrence of spiralling is the intersection
of changing bending modes and uneven multiples of the rotational frequency
of the tool or workpiece spindle. They have shown in some experiments that
this actually was a good prediction of spiralling.
We observed the movement of the bending modes in online measurements of
the bending moment of the boring bar and in measurements of the lateral
acceleration of the boring bar.
A first approach to estimate the time course of the bending eigenfrequencies
as it is proposed by Raabe et al. (2004) [6] is described in section 2. In this
paper, we turn to the construction of a mechanical model of the boring bar.
Such a model is hoped to more accurately calculate the course of the boring
bar’s eigenfrequencies over time. Unfortunately not all of the parameters
for the model are known in advance. Therefore in this paper a method
is presented to fit the model to the measured periodogram data. A first
attempt to tackle this problem is developed by Raabe et al. (2005) [7]. The
mechanical model is described in section 3. Then, section 4 introduces our
criterion for parameter selection before some results are presented in section
5. The paper concludes with a summary given in section 7.
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2 Estimation of the bending eigenfrequencies

by polynomial regression on significant fre-

quencies

In Raabe et al. (2004) [6] a two-step estimation process is proposed. First, a
statistical test, developed by Theis (2004) [9] is used to identify the frequen-
cies that are significantly dominating the process at any given point in time.
These relevant frequencies are then grouped by cluster analytical methods
into three clusters. The clusters are given by frequency bands, each of which
is interpreted corresponding to some certain time course driven by one of the
actual system’s eigenfrequencies. This is illustrated in Figure 3, where dif-
ferent grey levels indicate different clusters. Finally, for each of the clusters,
a polynomial regression is fitted to the data by minimizing the quadratic
deviations of the estimated frequency (as a function of actual boring depth)
to all ’relevant frequencies’ of the cluster at this depth (see [6]).
Figure 3 illustrates the fit of the observed data by the procedure. A poly-
nomial degree of 2 already allows a good fit for all clusters. As can be seen
in the following sections, the amplitudes of the observed periodogram reflect
the time course of the eigenfrequencies obtained by the mechanical model. In
this paper we turn to estimation of the eigenfrequencies based on a mechan-
ical model since their time course is more accurately represented by such a
model.

3 Mechanical Model

To express the connection between the machine parameters and the time-
variation of the bending eigenfrequencies (abbreviated BEF) from a mechan-
ical point of view we propose a linear multi degree of freedom model (see
Ewins et al. [1]) in the shape of a chain of coupled oscillators. For this pur-
pose we let the structure of masses and stiffnesses in the model be determined
by the BTA system’s most important components (see Fig. 4), namely the
tool-boring bar assembly, rigidly clamped at one end, in combination with
the damper, the coolant supply device and the workpiece. The model is
described below.

The illustration in Fig. 5 indicates that for our model we subdivide the
bar into n segments – called elements – of equal length l = L/n and mass
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Figure 3: Cluster of relevant frequencies and polynomial fit of the peri-
odogram data.

Figure 4: Components of the BTA boring bar.

Figure 5: Components of the discretized analogous model.
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Figure 6: Example of the mechanical model with 4 degrees of freedom.

m = M/n, where L and M denote the corresponding values of the complete
boring bar. The mass of each segment is modelled as a mass point located
at the end of each segment. Each mass point is assumed to be connected to
its neighbor via a massless rod in combination with a linear spiral spring of
stiffness k. The leftmost mass point is connected in the same way to a rigid
base. The number n is called the number of degrees of freedom. The details
of the mechanical model are illustrated in Fig. 6. Furthermore, we model
the influence of the damper, coolant supply unit device and workpiece as
additional vertical linear elastic supports of the corresponding mass points
of the boring bar model. This is exemplarily illustrated in Fig. 6 by the
vertical spring with stiffness kdamper.
Adopting the x-coordinates of the mass points as generalized coordinates and
assuming only small deflections we can write the homogeneous equations of
motion of the system as a sum of inertial and spring forces:

[M ]{ẍ} + [K]{x} = {0} (1)

with the mass-matrix [M ]n×n = m · In×n and the stiffness-matrix

[K]n×n =
k

l2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1 0 · · · · · · 0

−4 6 −4 1
. . .

...

1 −4 6
. . .

. . .
. . .

...

0 1
. . .

. . . −4 1 0
...

. . .
. . . −4 6 −4 1

...
. . . 1 −4 5 −2

...0 · · · · · · 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+kdamper{ed}{ed}′ + kseal{es}{es}′ + ktool{en}{en}′. (2)
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The equations of motion can be determined by calculating the terms of the
kinetic and potential energy of the model of equation 1 in applying Lagrange
equations. By doing so the form of matrix 2 is directly obtained. The stiffness
k therein can be calculated as a function of the number of degrees of freedom
n of the model as it is shown below. The indices d and s represent the
position of the mass-points counted from the left, lying within the ranges of
contact between the boring bar and the damper or the seal within the coolant
supply unit device, respectively. The variables kdamper and kseal represent
the stiffness of the corresponding support springs. The support of the boring
bar through contact with the workpiece is modelled via stiffness ktool acting
upon the rightmost mass point of the bar. We assume these parameters to
be constant over the complete drilling process.
The stiffness k of the spiral springs can be calculated via comparison with the
deflection of an Euler-Bernoulli-Beam [3]. An Euler-Bernoulli-Beam under
single-sided rigid restraint conditions and loaded with a transverse force F
acting upon its free end shows a maximum deflection of

xEB,max =
F l3

3EEBIEB

(3)

in the same location and in direction of the force. l,EEB and IEB denote the
length of the beam, it’s Young’s modulus and area moment of inertia. From
this, by the definition of stiffness as F = kEBxEB a static stiffness value of

kEB =
3EEBIEB

l3
. (4)

can be calculated. For our discrete model with n degrees of freedom, the
same load case results in the deflection xn calculated as

xn =
F

k
l2

n∑
i=1

i2. (5)

By demanding equivalent static properties from the discrete model, by re-
placing xEB,max of equation 3 by xn in equation 5 one can calculate the
stiffness k of the spiral springs as a function of the chosen number of degrees
of freedom n to be
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F l3

3EEBIEB
= F

k(n)
l2

∑n
i=1 i2 (6)

⇔ l3

3EEBIEB
= 1

k(n)
l2

∑n
i=1 i2 (7)

⇔ k(n) = 3EEBIEB

l3
l2

∑n
i=1 i2 (8)

⇔ k(n) = kEBl2
∑n

i=1 i2 (9)

In contrast to l, m and k the values of the parameters kdamper, kseal and ktool

are not known.
Now determining the n BEFs ωr and corresponding bending eigenmodes
(BEMs) {Ψ}r, r = 1, . . . , n, of the system means solving the following
eigenvalue-problem:

(
[K] − ω2

r [M ]
)
{Ψ}re

iωrt = {0}. (10)

for which the only non-trivial solutions satisfy

det
∣∣∣[K] − ω2

r [M ]
∣∣∣ = 0. (11)

The solution can be expressed in two n × n - matrices [ω2
r ] and [Ψ]. [ω2

r ]
is a diagonal matrix with ω2

r being the rth eigenvalue, or squared natural
frequency of the system and the eigenvector {Ψ}r, the rth column of [Ψ],
being the description of the corresponding mode shape. One can determine

[mr] = [Ψ]T [M ] [Ψ] (12)

and
[kr] = [Ψ]T [K] [Ψ] . (13)

[mr] and [kr] are also diagonal matrices and mr, kr are referred to as modal
mass and modal stiffness of mode r.
A BEM is the shape with which the bar oscillates with the corresponding
BEF. Each BEM is represented by the vector {Ψ}r containing the deviations
from the baseline in x-direction for each segment end (compare Fig. 6).
Now the time-variation of the BEMs and BEFs becomes clear when looking
at what happens during the drilling process. The boring bar is fixed to
a drive unit on the left side and when the process starts the workpiece is
rotated and drive unit together with tool/boring bar assembly and damper
are moved towards the workpiece. While the damper always stays in the
same position d relative to the boring bar, the seal on the coolant supply
device stays at a fixed distance from the workpiece and therefore moves with
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a constant speed relative to the bar. So s decreases and the stiffness matrix
[K] changes. Note that even though workpiece and boring bar move relative
to each other, ktool is always added to the nth element of the “base” matrix in
the first row of the definition of Eq. 2. This is because the workpiece always
affects the end of the bar.
In order to be more realistic, additional viscous damping [C] is included in
the model [1]. The equation of motion then changes to

[M ]{ẍ} + [C]{ẋ} + [K]{x} = {0}.
To reduce the number of parameters, often a special case called general pro-
portional damping is used (see Ewins, pp. 64-66). The matrix [C] then is
assumed to be a linear combination of

[C] = β[K] + γ[M ].

In this case the mode shape vectors {Ψ}r stay the same as in the undamped
model. The system’s eigenfrequencies change to

ω′
r = ωr

√
1 − ζ2

r (14)

with ζr = βωr/2 + γ/(2ωr) being the viscous damping ratio of the rth mode.
As mentioned above the stiffness parameters kdamper, kseal and ktool and the
parameters β and γ to construct the damping matrix are not known. In
early experiments it turned out that the higher the value chosen for ktool –
i.e. if the end of the bar is almost prevented from moving – the better is the
model fit. So ktool from now on is fixed to a high value (1017 N/m) and the
remaining free parameters are kdamper and kseal, β and γ. An additional pa-
rameter kdamper−end is included in the model to allow for non constant spring
stiffness over the range of contact between the damper and the boring bar.
Its stiffness-values are given by kdamper and kdamper−end at both ends and the
values between are linearly interpolated.
We use the model at given parameters to calculate the frequency response
function [FRF] αjk(ω). This function allows to calculate the response of sys-
tem at point k to excitation at point j at a given frequency ω. Of course,
at rest the boring bar does not show any movement. If the bar is excited
by some(sinusoidal) force of frequency ω at any position k the resulting de-
flection of the bar at each point k can be calculated by multiplying the
excitation-amplitude with the frequency response function αjk,t(ω), where
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the additional index t here only denotes that the model changes during the
process time t due to different positions of the damper and the oil supply
along the boring bar. In our case of general proportional damping, this
function is given by (Ewins, 2000, pp.62-65):

αjk(ω, t) = ω2
n∑

r=1

Ψjr,tΨkr,t

kr,t − ω2mr + iωcr,t
(15)

with the diagonal modal damping matrix [cr,t] = β[kr]+γ[mr] and Ψjr,t being
the element of [Ψt] of row j and coloumn r.
Figure 7 illustrates the system’s calculated FRF (for fitted parameter values)
at some fixed moment during the process as well as a slice of the periodogram
at the same time.
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Figure 7: Slice of the observed periodogram and the calculated FRF for fitted
model parameters at the same time.

The function αjk(ω) is used to estimate the five missing parameters to
build the model. How this can be done is explained in the following section.
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4 Criterion

For a given set of parameters one can calculate the response to excitation in
any specific frequency. The idea consists in fitting the calculated FRF to the
observed periodogram and thus to find the model parameters that best fit the
data. We assume that the boring bar is mainly excited through the cutting
process at the tools point of contact with the workpiece and that all other
sources of excitation can be neglected. The acceleration sensor is positioned
at position k = 150 cm between the damper and the coolant supply device.
The FRF is modelled for excitation at the position j = 334 cm at the boring
bar’s end.
Apart from the unknown model parameters unfortunately also nothing is
known about the spectrogram of the excitation of the system at a given
time. The most practical case for analysis would be a white noise-excitation
because of its flat spectrum. The observed data then would directly rep-
resent the shape of the FRF. Ibrahim et al. [4] therefore propose to use a
pseudo-FRF α∗(ω) that transforms white noise into the true but unknown
excitation. The response of the system at frequency ω is then the product
α∗(ω)αjk(ω) of both filters. The poles of both frequency response functions
are retained in the product.
Therefore, a peak in the observed periodogram may either be a result of the
pseudo-response of the excitation to white noise or a result of the frequency
response of the system. We are therefore searching for a model that opti-
mally reflects the system’s response in the observed data. We require all
strongly represented frequencies in the (fitted) FRF of the model also to be
recognizable in the observed data. Hence, the criterion to find optimal model
parameters is defined in the following way:

criterion(kseal, kdamper, kdamper−end, β, γ) =
∫

t

∫
ω

A(ω, t)|α334,150(ω, t)|∫
ω∗ |α334,150(ω∗, t)| dω∗ dω dt,

(16)
where A(ω, t) is the observed amplitude of frequency ω at time t in the peri-
odogram and α334,150(ω, t) is the frequency response function at time t. Here
only its absolute value of the FRF is of interest since we are only investigat-
ing the amplitudes of the observed periodogram and are not interested in the
phase of the signal (relative to the unknown excitation).
This criterion can be interpreted as weighting the observed periodogram,
according to the estimated system’s frequency response, temporarily nor-
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malized over all frequencies ω at a given time t and averaged over the whole
time course of the process. This criterion is supposed to be large for a good
model where all strongly represented frequencies in the (fitted) FRF are also
weighted strongly by their observed value in the periodogram data. This
criterion should therefore be maximized.

5 Results

The criterion as described above is used to indicate a good fit of the model.
Parameter fitting is done by the search-based method of Nelder and Mead [5].
To avoid local minima at parameters still badly fitting the data as they are
often found by such optimization algorithms, a grid search ’by hand’ was
performed to find the magnitude of parameter combinations yielding good
results. A combination of these parameters is then used as initialization for
implementation of the optimization algorithm. The parameter seed was set
as follows: kseal = 1·107 N/m, kdamper = 1·107 N/m, kdamper−end = 1·kdamper,
β = 5 · 10−7 s−1 and γ = 5 s−1.
The measured acceleration of the boring bar (log scaled amplitudes) is given
in figure 8.

Figure 8: Observed periodogram data.
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Optimization with the Nelder/Mead-algorithm in the example returns
parameters kseal = 1.1 · 107 N/m, kdamper = 1 · 107 N/m, kdamper−end =
3.64 · kdamper, β = 2.16 · 10−11 s−1 and γ = 4.97 s−1.
The left figure in figure 9 shows the (log scaled) weighted periodogram by
the estimated system’s frequency response as they are used for fitting the
parameters. One can see a few strongly weighted frequencies at any depth.
This indicates that the estimated frequency responses fits the observed pe-
riodogram quite well which is not the case on the right hand side. There,
the weighted periodogram of the criterion for a still reasonable but worsely
fitting model is shown.

Figure 9: Weighted periodograms (as they are used for fitting the parameters)
of the optimal solution (left) and a ’bad fit’ (right) at stiffnesses of 20% of
the model on the left hand side.

6 Outlook

To investigate the validity of the model introduced here statistically, com-
puter simulations will be performed. There, for given sets of parameters the
resulting spectrograms will be calculated. Thereupon, these spectrograms
are used to generate stochastic processes. After adding noise and estimating
the parameters based on the obtained noisy processes the validation will be
done by comparing the resulting fitted eigenfrequencies to the real ones with
respect to bias.
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The model can be a basis for both offline and online process control. Offline
methods concern choices of parameter settings for which intersections of the
corresponding eigenfrequencies and multiples of the rotational frequency will
not occur. This can also be achieved by a priorily planned variation of the
rotational speed.
Online methods concern the supervision of the predicted eigenfrequency
courses. Therefore each reasonable variable parameter e.g. the unknown
stiffnesses should be controlled with respect to given specification limit bands.
These limits should be chosen so that exceeding them indicates an oncoming
intersection of a bending eigenfrequency with a multiple of the rotational fre-
quency. Control charts will be developed to supervise the parameters during
the process. These control charts will produce alarms whenever their values
exceed the specification limit with a high probability according to some pre-
specified probability level.
Intervention strategies like variations of the rotational frequency can directly
be derived from the model and will be tested.
The development of control charts will also be supported by computer simula-
tions. There, different parameter distributions and trends will be investigated
as well as different error types.

7 Summary

Through the presented model we established a connection between measured
data and the mechanics of the BTA system. As can be seen in the previ-
ous section, the dynamics of the system’s calculated eigenfrequencies can be
found quite well in observed periodogram data. This indicates that our me-
chanical model realistically represents the behavior of the boring bar during
the process.
Goals of future work now have to include the reduction of calculation-time.
Furthermore the error distribution of the estimation has to be investigated.
Having such knowledge, a strong tool is developed to prevent crossing of one
of the system’s eigenfrequencies with a multiple of the rotation frequency
and thereby to prevent spiralling.
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