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Robust Learning from Bites

By Andreas Christmann1

University of Dortmund, Department of Statistics
christmann@statistik.uni-dortmund.de

Many robust statistical procedures have two drawbacks. Firstly, they are
computer-intensive such that they can hardly be used for massive data sets. Sec-
ondly, robust confidence intervals for the estimated parameters or robust pre-
dictions according to the fitted models are often unknown. Here, we propose
a general method to overcome these problems of robust estimation in the con-
text of huge data sets. The method is scalable to the memory of the computer,
can be distributed on several processors if available, and can help to reduce the
computation time substantially. The method additionally offers distribution-free
confidence intervals for the median of the predictions. The method is illustrated
for two situations: robust estimation in linear regression and kernel logistic re-
gression from statistical machine learning.

1. Introduction

Data sets with millions of observations occur nowadays in many areas. An insurance com-
pany or a bank collects many variables to develop tariffs and scoring methods for credit
risk management, respectively. Other examples are data mining projects and micro-arrays.
For such data sets parametric assumptions are often violated, outliers are present, or some
variables can only be measured in an imprecise manner. The application of robust sta-
tistical methods is important in such situations. However, many robust methods have the
following drawbacks which are serious limitations for the application of robust methods. (a)
They are computer-intensive such that they can hardly be used for massive data sets, say
for several millions of observations with many explanatory variables. (b) Robust standard
errors and robust confidence intervals for the estimated parameters or for robust predic-
tions are often unknown. (c) Some statistical software packages like S-PLUS or R contain
state-of-the-art algorithms for robust statistical methods, but the implemented numerical
algorithms usually require that the whole data set fits into the memory of the computer.

In this paper a simple but quite general method for robust estimation in the context of
huge data sets is proposed. The goal of the proposal is to broaden in application of robust
methods for massive data. The idea is to split the huge data set S by random into disjoint
subsets Sb, b = 1, . . . , B. Then the robust method is applied to each subset, and the results
are summarized in a robust manner. The proposal yields robust predictions for the median
together with distribution-free confidence intervals. The method is scalable to the memory
of the computer by choosing B appropriately and the computation can easily distributed
on several processors which helps to reduce the computation time substantially.
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A. CHRISTMANN

The rest of the paper is organized as follows. Section 2 gives the proposed method and
Section 3 describes its properties. Section 4 given some numerical examples for the case of
robust linear regression and kernel logistic regression. Section 5 contains a summary and a
discussion. All proofs are given in the Appendix.

2. Method

In this section we describe a simple but rather general method for robust estimation for
huge data sets. The goal of the proposal is to make robust estimation methods usable for
data sets which are too large for currently available algorithms due to memory or time
limitations.

The goal of regression and classification is to estimate an approximated functional rela-
tionship between an observation random variable X and a response random variable Y using
n observations (xi, yi) ∈ X ×Y drawn independently from the same probability distribution
P of the pair (X,Y ). In a non-parametric setting the distribution P is totally unknown.
For technical reasons we assume throughout this work that X and Y are closed or open
subsets of Rd and R, respectively. Hence we can split up P into the marginal distribution
PX and the regular conditional probability P( · |x), x ∈ X , on Y. For the case of binary
classification we have Y = {−1, +1}.

Under the classical signal plus noise assumption Yi|(X = xi) is distributed as f(xi) + εi,
where f is an unknown function and εi are independent and identically distributed error
terms, 1 ≤ i ≤ n. In the parametric setup we have f = fθ, θ ∈ Θ ⊂ Rd. In the non-
parametric setup f belongs to some functional subspace H of all measurable functions
f : X → R. The main goals are to obtain a robust estimator f̂ and good predictions f̂(x).

In this paper we always assume that the sample size n is large. Instead of modelling the
full training data set, we split the training data set by random into B ≥ 1 parts (called
’bites’) of approximately the same sub-sample sizes nb ≈ n/B. Then we fit each bite with
the robust method. Finally, we compute the (componentwise) median or the mean of the
estimators Tnb

(Sb) = f̂b and summarize the predictions by the median of f̂b(x) from the
B fitted models. Table 1 gives the three main steps of the procedure which we call robust
learning from bites (RLB). For classification problems the median can also be computed for
the predicted event probabilities P(Yi = 1|X = xi). Of course other robust estimators can
be used instead of the median, e.g. M-estimators, S-estimators or Hodges-Lehmann-type
estimators. In Section 3 it will be shown that the mean instead of the median can yield
estimators with bad robustness properties even if the estimators computed in each bite are
highly robust.

If B is large enough, say around 20, precision estimates can additionally be obtained
by computing standard deviations of the predictions f̂RLB,n,B(x) using the central limit
theorem. However, in general we favor an alternative distribution-free method based on
the median. If B is small or if it is unknown whether TRLB,n,B(x) has a finite variance,
one can construct distribution-free confidence intervals for the median of TRLB,n,B(x) and
distribution-free tolerance regions based on order statistics, see David and Nagaraja (2003,
Chap. 7). For e.g. if B = 17, the 5th and the 12th order statistics yield a distribution-free
confidence interval at the 95% level for the median without any distributional assump-
tion. Table 2 lists some values of B, the corresponding pair of order statistics determining
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ROBUST LEARNING FROM BITES

Step 1: construct bites.
Split data set S by random into B disjoint subsets Sb of sample sizes
nb ≈ n/B, b = 1, . . . , B.

Step 2: fit bites.
for (b = 1, . . . , B)
{ Compute the robust estimator Tnb

based on bite Sb. }
Step 3: aggregate estimators and predictions by the median.

Compute TRLB,n,B = median1≤b≤BTnb
(componentwise) and

TRLB,n,B(xi) = median1≤b≤B Tnb
(xi) for all xi ∈ S.

Compute distribution-free (1− α) confidence intervals for the median based
on the pair (r, s) of order statistics, i.e. [TRLB,n,(r:B)(x), TRLB,n,(s:B)(x)].

Step 3’: aggregate estimators and predictions by the mean.
Compute TRLB,n,B = 1

B

∑B
1 Tnb

and
TRLB,n,B(xi) = 1

B

∑B
1 Tnb

(xi) for all xi ∈ S.

Table 1: Principle of RLB.

the confidence interval [TRLB,n,(r:B)(x), TRLB,n,(s:B)(x)], the finite sample breakdown point
of the confidence interval, and the lower bound of the actual confidence level which is
0.5B

∑s
j=r(

B
j ). In Section 3 it will be shown that RLB using the median in the aggre-

gation step offers also nice robustness properties. The actual confidence intervals can be
conservative of small choices of B, see Table 2. The last column in Table 2 gives the finite
sample breakdown point for the distribution-free confidence interval for the median. If B
is not too small, say B > 15, this breakdown point is high enough for many practical ap-
plications. E.g. fix B = 17. Then the 5th and the 13th order statistics give a confidence
interval at the level 95% for the median. Because the results of the four lowest and the four
highest predictions are not considered, the breakdown point of this confidence interval is
4/17 = 0.235.

If the robust estimator is based on hyper-parameters and if their values must be deter-
mined from the data set itself, a common approach is to split huge data sets into three
parts. A description of RLB in this case is given in Table 3. As usual the validation data
set is used to determine good values for the hyper-parameters by optimizing an appropriate
goodness-of-fit criterion or by minimizing the generalization error. Finally, the test data
set is used to estimate the goodness-of-fit criterion or the generalization error for new data
points.

3. Properties of RLB

In this section properties of robust learning from bites are investigated. Computational
time and memory space are considered in Section 3.1. RLB for kernel based estimators is
investigated in Section 3.2, and robustness properties are proved in Section 3.3. In Section
3.4 some arguments are given how to choose the number of bites.

3



A. CHRISTMANN

confidence B r s lower bound finite sample
level of actual breakdown point

1− α confidence level min{r − 1, B − s}/B

0.90 8 2 7 0.930 0.125
10 2 9 0.979 0.100
13 4 10 0.908 0.231
18 6 13 0.904 0.278
30 11 20 0.901 0.333
37 14 24 0.901 0.351
44 17 28 0.904 0.364
53 21 33 0.902 0.377
62 25 38 0.902 0.387
71 29 43 0.904 0.394
82 34 49 0.903 0.402
93 39 55 0.903 0.409

104 44 61 0.905 0.413
0.95 9 2 8 0.961 0.111

10 2 9 0.979 0.100
17 5 13 0.951 0.235
37 13 25 0.953 0.324
51 19 33 0.951 0.353
58 22 37 0.952 0.362
67 26 42 0.950 0.373
74 29 46 0.953 0.378
83 33 51 0.952 0.386
92 37 56 0.953 0.391

101 41 61 0.954 0.396
0.99 10 1 10 0.998 0.000

12 2 11 0.994 0.083
26 7 20 0.991 0.231
39 12 28 0.991 0.282
49 16 34 0.991 0.306
61 21 41 0.990 0.328
73 26 48 0.990 0.342
80 29 52 0.990 0.350
94 35 60 0.990 0.362

101 38 64 0.991 0.366

Table 2: Selected pairs (r, s) of order statistics for non-parametric confidence intervals of
the median.

3.1 General properties

By construction of RLB the estimators Tnb
from the B bites are independent and computed

from disjoint parts of the data set. The computation time and the memory space for RLB
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ROBUST LEARNING FROM BITES

Step 1: split data set.
Split data set by random into training data set, validation data set, and test data set.

Step 2: construct bites.
Split training data set by random into B disjoint subsets Sb of sample sizes
nb ≈ n/B, b = 1, . . . , B.

Step 3: fit bites.
for (b = 1, . . . , B)
{ Compute the robust estimator Tnb

based on bite Sb . }
Step 4: aggregate estimators and predictions.

Compute TRLB,n,B = median1≤b≤B Tnb
(componentwise) and

TRLB,n,B(xi) = median1≤b≤B Tnb
(xi) for all xi ∈ S.

[ analogous for the mean ]
Step 5: Validation and testing.

Use the validation data set to optimize the hyper-parameters.
Use the test data set to measure the overall behavior of the method.

Table 3: Principle of RLB in the case of hyper-parameters.

can be obviously approximated in the following way. Denote the number of available CPUs
by k and let kB be the smallest integer which is not smaller than B/k.

Proposition 1 (Computation time, k CPUs) Assume that the computation time of
the estimator Tn for a data set with n = Bnb observations and d explanatory variables
is of order O(g(n, d)), where g is some positive function. Then the computation time of
RLB with B bites for the same data set is approximately of order O(kB · g(n/B, d)).

Proposition 2 (Memory space, k CPUs) Assume that the estimator Tn for a data set
with n = Bnb observations and d explanatory variables needs memory space and hard disk
space of order O(g1(n, d)) and O(g2(n, d)), respectively, where g1 and g2 are positive func-
tions. Then the computation of RLB with B bites for the same data set needs approximately
memory space and hard disk space of order O(k · g1(n/B, d)) and O(k · g2(n/B, d)), respec-
tively.

Proposition 3 (Consistency) Consider RLB where the mean is used in the aggregation
step. Denote the estimator based on the whole data set by Tn and denote the corresponding
RLB estimator based on B bites, B fixed, with sub-sample sizes nb, where n =

∑B
b=1 nb, by

TRLB,n,B.
(i) If E(Tb) = E(Tn) for all b ∈ {1, . . . , B}, then E(Tn) = E(TRLB,n,B).
(ii) If Tn converges in probability (or almost sure) to T (P) for n →∞ and if (n/nb) → B,
B fixed, then TRLB,n,B converges in probability (or almost sure) to T (P).
(iii) Assume that n

1/2
b (Tnb

− T (P)) converges in distribution to a multivariate normal dis-
tribution N(0, Σ), where Σ ∈ Rd×d is positive definite, and that (n/nb) → B, 1 ≤ b ≤ B,
B fixed. Then n1/2(TRLB,n,B − T (P)) converges in distribution to a multivariate normal
distribution N(0, Σ), n →∞.
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A. CHRISTMANN

Proposition 4 (Consistency) Consider RLB where the median is used in the aggregation
step. Denote the estimator based on the whole data set by Tn and denote the corresponding
RLB estimator based on B bites by TRLB,n,B. If Tn converges in probability (or almost
sure) to T (P) and if limn→∞ (n/nb) ≡ B, B fixed, then TRLB,n,B converges in probability
(or almost sure) to T (P).

3.2 Properties of RLB using the mean for kernel based methods

Now we consider kernel based estimators for f given by

argmin
f∈H

1
n

n∑

i=1

L(yi, f(xi)) + λ||f ||2H , (1)

where L : Y × [0,∞) is a convex loss function and H is the reproducing kernel Hilbert space
defined via the kernel k, cf. Vapnik (1998) and Schölkopf and Smola (2002). The kernel
based estimator f̂b(x), x ∈ X , defined as the solution of (1) for bite Sb can be written as

f̂nb
(x) =

nb∑

i=1

αi,b k(x, xi), i ∈ Sb, b = 1, . . . , B, x ∈ X , (2)

where αi,b ∈ R. If αi,b 6= 0, then (xi, yi) is called a support vector (SV). Special cases of
such kernel based methods are the support vector machine, support vector regression, and
kernel logistic regression. Obviously, the minimization problem (1) can be interpreted as a
stochastic approximation of the minimization of the theoretical regularized risk

fP,λ := arg min
f∈H

EP L(Y, f(X)) + λ‖f‖2
H . (3)

Theorem 5 (RLB for kernel based methods) Assume that the estimator f̂n for the
whole data set with n = B ·nb observations, B fixed, and d explanatory variables is a kernel
based estimator based on (1). Assume that the mean is used in the aggregation step of RLB.
Then the RLB estimator is a kernel based estimator and can be written as

f̂RLB,n,B(x) =
n∑

i=1

αi,RLB k(x, xi) (4)

=
∑

i∈SV (S1)∪ ...∪SV (SB)

αi,RLB k(x, xi), x ∈ X , (5)

where αi,RLB = 1
B αi,b , i ∈ S.

Now we investigate the number of support vectors of RLB. For part (ii) of our next result
we need the quantity

SL,P =

{
P(S) if 0 /∈ ∂2L(1, F ∗

L(0.5)) ∩ ∂2L(−1, F ∗
L(0.5))

P(S) + 1
2PX(X0 ∩Xcont) else ,

see Steinwart (2003, p.1082). Here PX denotes the marginal distribution of X, X0 := {x ∈
X ; P(1|X = x) = 1/2}, Xcont := {x ∈ X ; PX({x} = 0}, and ∂2L denotes the subdifferential
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ROBUST LEARNING FROM BITES

operator of the loss function L with respect to the second variable. Further, F ∗
L denotes the

set-valued function given by

F ∗
L(α) := {t ∈ R; [αL(1, t) + (1− α)L(−1, t)] = min

s∈R
[αL(1, t) + (1− α)L(−1, t)]}, α ∈ [0, 1].

Theorem 6 (Number of support vectors) Under the assumptions of Theorem 5 the
RLB estimator using the mean in the aggregation step has the following properties.
(i) The number of support vectors, i.e. αi,RLB 6= 0, of the RLB estimator is given by

# {SV (S1) ∪ . . . ∪ SV (SB)} . (6)

(ii) Consider a binary classification problem, i.e. Y = {−1, +1}. Let B be fixed, and
consider n := B · nb → ∞. Let L be an admissible and convex loss function, k be a
universal kernel and λnb

> 0 be a sequence of regularization parameters with λnb
→ 0 and

nbλ
2
nb

/|Lλnb
| → ∞. Then for all Borel probability measures P on X ×Y the RLB-classifier

based on (1) with respect to k, L and (λnb
) satisfies

Pr∗n
(
S1 ∪ . . . ∪ SB ∈ (X × Y)n;#SV(f̂RLB,n,B) ≥

B∑

b=1

(SL,P − ε)nb

)
→ 1 . (7)

Here Pr∗n denotes the outer probability measure of Pn in order to avoid measurability con-
siderations.

Part (ii) of the above result was proved for B = 1 by Steinwart (2003). It has the following
interpretation: with probability tending to 1 when the total sample size n = Bnb →∞, but
B is fixed, the fraction of support vectors of the kernel based RLB estimator f̂RLB,n,B(x)
is essentially greater than the average of the Bayes risks for the bites.

Now we investigate conditions to guarantee that RLB estimators using kernel based esti-
mators are L−risk consistent. If P is a probability distribution on X × Y, the L-risk of a
measurable map f : X → R with respect to P is defined by

RL,P(f) :=
∫

X×Y
L(y, f(x)) dP(x, y) =

∫

X

∫

Y
L(y, f(x)) P(dy|x) PX(dx).

The above integral is always defined since L is non-negative and continuous, although it
may be infinite. Consider a kernel based estimator f̂n,λn for the whole data set S = Sn.
The estimator f̂n,λn is called L-risk consistent, if

RL,P(f̂n,λn) →RL,P := inf
{RL,P(f) ; f : X → R measurable

}
(8)

holds in probability for n →∞ for suitable chosen regularization sequences (λn). Of course,
such convergence can only hold if the used RKHS is rich. One way of describing the richness
of H is the following definition taken from Steinwart (2001).

Definition 7 Let X ⊂ Rd be compact and k : X × X → R be a continuous kernel with
reproducing kernel Hilbert space (RKHS) H. Then k is universal if H is dense in the space
of continuous functions C(X ) equipped with ‖ . ‖∞.

7



A. CHRISTMANN

Several authors have given conditions to guarantee that kernel based estimators are
L−risk consistent, cf. Steinwart (2002, 2005) and Zhang (2004) for classification.

If f̂n,λn is L-risk consistent, B ≥ 1 fixed, and n/nb → B for n → ∞, we obtain by
Slutzky’s theorem

1
B

B∑

b=1

RL,P(f̂nb,λnb
) → RL,P (9)

in probability for n →∞.
The next result gives L-risk consistency of RLB estimators, i.e.

RL,P

(
1
B

B∑

b=1

f̂nb,λnb

)
→RL,P (10)

in probability for n →∞. A loss function L is called Lipschitz continuous, if there exists a
constant c ∈ (0,∞) such that

|L(y, t)− L(y, t′)| ≤ c · |t− t′| (11)

for all y ∈ Y, t, t′ ∈ R. In this case we denote the smallest possible constant c in (11)
by |L|1. Kernel based regression estimators based on convex and Lipschitz continuous loss
functions are under weak conditions L-risk consistent and have nice robustness properties,
see Christmann and Steinwart (2005).

Theorem 8 (L−risk consistency) Consider a kernel based estimator f̂n,λn based on (1)
with a convex loss function which is Lipschitz continuous with Lipschitz constant |L|1. As-
sume that f̂n,λn is L-risk consistent and that there exists a measurable function f∗ such that
RL,P(f∗) = RL,P in (8) and

∫ ∣∣∣f̂n,λn(x)− f∗(x)
∣∣∣ dP(x, y) → 0 , n →∞. (12)

Further, assume that the mean is used for the RLB estimator in the aggregation step and
that B ≥ 1 is fixed with n/nb → B, if n → ∞. Then the RLB estimator f̂RLB,n,λn,B :=
1
B

∑B
b=1 f̂nb,λnb

is L-risk consistent.

3.3 Robustness properties of RLB

Now we derive results which show that certain robustness properties are inherited from
the original estimator Tn to the RLB estimator. Here, two different robustness approaches
are considered. Donoho and Huber (1983) proposed the finite sample breakdown point
to measure the worst case behavior of a statistical estimator. The influence function was
proposed by F.R. Hampel, see Hampel et al. (1986), and measures the impact on the
estimation due to an infinitesimal small contamination of the distribution P in direction of
a Dirac-distribution.

Definition 9 (Finite-sample breakdown point) Let Sn = {(xi, yi), i = 1, . . . , n} be a
data set with values in X × Y. The finite-sample breakdown point of an estimator Tn(Sn)
is defined by

ε∗n(Tn,Sn) = min
{m

n
; Bias(m;Tn,Sn) is finite

}
, (13)

8



ROBUST LEARNING FROM BITES

where
Bias(m;Tn,Sn) = sup

S′n
‖ Tn(S ′n)− Tn(Sn) ‖ (14)

and the supremum is over all possible samples S ′n that can be obtained by replacing any m
of the original data points by arbitrary values in X × Y.

Theorem 10 (Finite-sample breakdown point of RLB) Consider RLB with B bites
where nb ≡ n/B. Denote the finite sample breakdown point of the estimator Tb(Sb) for
bite b by ε∗nb

(Tb;Sb) and denote the finite sample breakdown point of the estimator µ̂ =
µ̂(T1(S1), . . . , TB(SB)) in the aggregation step by ε∗B(µ̂). Then the finite sample breakdown
point of the RLB estimator is given by

ε∗RLB,n,B = ε∗nb
(Tb;Sb) ·

(
ε∗B(µ̂) +

1
B

)
+

B

n
· ε∗B(µ̂) . (15)

Remark 11 (a) If B and nb = B/n are both large, we obtain from (15) the lower bound

ε∗RLB,n,B ≥ ε∗nb
(Tb;Sb) · ε∗B(µ̂) . (16)

(b) If the mean or any other estimator with ε∗B(µ̂) = 0 is used in the aggregation step, RLB
has a finite sample breakdown point of ε∗nb

(Tb;Sb)/B → 0, if B →∞.

Example 12 (Univariate location model) Consider the univariate location problem,
where xi ≡ 1 and yi ∈ R, i = 1, . . . , n, n = 55. The finite sample breakdown point
of the median is [[n/2]]/n = 0.49. The mean has a finite sample breakdown point of 0.
Now let us investigate the robustness of the RLB approach with B = 5 and nb = 11,
b = 1, . . . , B. (a) If the median is used as the location estimator in each bite and if the
median is used in the aggregation step, the finite sample breakdown point of the RLB
estimator is ε∗RLB,n,B = 0.309. This value is reasonably high, but lower than the finite
sample breakdown point of the median for the whole data set, which is 0.49. Note that
in a fortunate situation the impact of up to (2 · 11 + 5 · 3)/55 = 0.672 extreme large data
points (say equal to +∞) is still bounded for the RLB estimator in this setup: modify all
data points in Bε∗B(µ̂) = 2 bites and up to nb ε∗nb

(f̂) = 5 data points in the remaining
B(1 − ε∗B(µ̂)) = 3 bites. This is no contradiction to (15) because the breakdown point
measures the worst case behavior. (b) If the median is used as the location estimator in
each bite and if the mean is used in the aggregation step, the finite sample breakdown
point of the RLB estimator is ε∗RLB,n,B = (1/B)ε∗nb

(f̂) = 0.09. (c) If the mean is used as
the location estimator in each bite and also in the aggregation step we obtain of course
ε∗RLB,n,B = 0. ¤

Now we investigate the influence function of the RLB estimator TRLB,n,B for the case
that the mean is used in the aggregation step, i.e. TRLB,n,B = 1

B

∑B
b=1 Tnb

(Sb). To this end
we assume the existence of a map T which assigns to every distribution P on a given set
Z an element T (P) of a given Banach space E such that our RLB estimator for a data set
S = S1 + . . . + SB has the representation

TRLB,n,B = TRLB,B(Pn) =
1
B

B∑

b=1

Tnb
(Pnb

). (17)

9



A. CHRISTMANN

Here Pn and Pnb
denote the empirical distributions of the whole sample S and of the bite

Sb, b = 1, . . . , B, respectively. For parametric models we have T (P) = θ ∈ E = Rd. For
kernel based methods defined by (1) E = H and T (P) = fP,λ.

Definition 13 (Influence function) The influence function of T at a point z for a dis-
tribution P is the special Gâteaux derivative (if it exists)

IF (z; T, P) = lim
ε↓0

T
(
(1− ε)P + ε∆z

)− T (P)
ε

, (18)

where ∆z is the Dirac distribution at the point z such that ∆z({z}) = 1.

The influence function has the interpretation, that it measures the impact of an (in-
finitesimal) small amount of contamination of the probability distribution P in direction
of a Dirac distribution located in the point z on the theoretical quantity of interest T (P).
Therefore, in the robustness approach based on influence functions it is desirable that a
statistical method which can be written as T (P) has a bounded influence function.

Theorem 14 (Influence function of RLB) Assume that the original estimator Tn(S)
has the representation T (Pn), where Pn is the empirical distribution of the sample S, and
that the influence function of the map T (P) exists for the probability distribution P. Then
the RLB estimator based on the mean in the aggregation step with a fixed number B of bites
exists and equals the influence function of T (P).

Hence, if T (P) has a bounded influence function, the same is true for RLB. The influ-
ence function is one of the cornerstones of robust statistics. Many robust estimators have
a bounded influence function, see e.g. Hampel et al. (1986) for M-estimators and GM-
estimators in parametric models, and Davies (1990) for S-estimators in the linear regression
model. Recently, Christmann and Steinwart (2004, 2005) showed that the influence function
of various kernel based methods using Vapnik’s convex risk minimization principle exists
for the case of binary classification and regression. This is true e.g. for kernel logistic
regression. Further the influence function of such methods can be bounded by choosing a
loss function L with bounded first derivative and a bounded and universal kernel k, e.g. a
Gaussian radial basis function kernel with γ ∈ (0,∞) is given by

k(x, x′) = exp(−γ||x− x′||2) , x, x′ ∈ X .

3.4 Determination of the number B of bites

From the results given in Sections 3.1 to 3.3 it is obvious, that the number of bites has some
impact on the statistical behavior of the RLB estimator and also on the computation time
and the necessary computer memory. An optimal choice of the number B of bites will in
general depend on the unknown distribution P. But some general arguments are given how
to determine B in an appropriate manner.

One should take the sample size n, the computer resources (number of CPUs, RAM, hard
disk) and the acceptable computation time into account. The quantity B should be much
lower than n, because otherwise there is not much hope to obtain useful estimators from
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the bites. Further, B should depend on the dimensionality d of the explanatory vectors
xi ∈ X . E.g. a rule of thump for linear regression is that n/d should be at least 5.
Because the function f is completely unknown in nonparametric regression assumptions on
the complexity of f are crucial. The sample size nb for each bite should converge to infinity,
if n →∞, to obtain consistency of RLB. The results from some numerical experiments not
given here can be summarized as follows.

• If B is too large, the computational overhead increases and the danger of bad fits
increases, because nb is too small to provide reasonable estimators.

• A major decrease in computation time and memory saving is often already present,
if B is chosen in a way such that the numerical algorithms to fit each bite fits nicely
into the computer (CPU, RAM, hard disk). Nowadays robust estimators can often be
computed for sample sizes up to nb = 104 or nb = 105. In this case B = [[n/nb]] can
be a reasonable choice.

• If distribution-free confidence intervals at the (1 − α) level for the median of the
predictions, i.e. TRLB,n,B(x) = median1≤b≤B Tnb

(x), x ∈ X , are needed, one should
take into account that the actual confidence level of such confidence intervals based
on order statistics can be conservative, i.e. higher than the specified level, for some
pairs (r, s) of order statistics due to the discreteness of order statistics.

4. Examples

In this section we give a few numerical results for RLB. We apply our proposal for a
parametric and for a non-parametric method, namely robust linear regression by MM-
estimation (Yohai, 1987) and kernel logistic regression (Wahba, 1999). All computations
are done on a PC with a 2.8 GHz processor.

Let us begin with robust estimation in linear regression. We simulated data sets
with n = Bnb independent observations (xi, yi). The explanatory variables where xi =
(xi,1, xi,2, xi,3) were independent and identically simulated from a Student distribution with
3 degrees of freedom. The responses were taken independently from the mixture model
P = 0.8P1 + 0.2∆(x,y), where P1 denotes a Student distribution with 3 degrees of freedom
and location parameter f(xi) =

∑3
j=1 xi,j and ∆(x,y) is a Dirac distribution in the point

x = (50, 50, 50) and y = 1000. Obviously the distribution P produces approximately 20%
bad leverage points in (x, y) with respect to a linear regression model with parameter vector
θ = (0, 1, 1, 1). Here the first component of θ is zero because the intercept term was set
to zero. Further, this model contains outliers in y−direction due to the use of a Student
distribution.

Table 4 shows the computation times in seconds, the bias of an MM-estimator and of
the RLB estimator for B = 17 and the width of the componentwise confidence intervals
at the 95%-level for different sub-sample sizes nb. The MM-estimates were computed with
the function rlm from the R-library MASS (Venables and Ripley, 2002). The confidence
intervals for the original MM-estimator were computed due to the asymptotical normality
assumption.The distribution-free confidence intervals for the RLB estimator were based on
the 5th and the 12th order statistics. Because the bias terms and the width of the confidence
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nb = 10000 nb = 100000 nb = 200000
RLB MM RLB MM RLB MM

seconds 33.89 44.64 348.78 460.95 684.61 −
Bias(θ̂0) (×1000) 2.32 0.35 0.17 0.17 0.31 −

width of c.i. (×1000) 17.42 15.36 5.15 4.87 5.27 −
Bias(θ̂1) (×1000) 1.21 1.18 -2.02 -1.44 0.46 −

width of c.i. (×1000) 8.78 7.39 3.29 2.31 1.39 −
Bias(θ̂2) (×1000) 0.62 0.23 0.09 -0.32 0.90 −

width of c.i. (×1000) 8.06 7.38 2.32 2.30 2.82 −
Bias(θ̂3) (×1000) -1.60 -2.22 0.31 -0.16 -0.54 −

width of c.i. (×1000) 8.72 7.36 5.19 2.28 1.86 −

Table 4: Results for robust linear regression with MM-estimator and RLB with B = 17. The
computation of the MM-estimates for the whole data set with n = 17 · 200000 =
3.4 · 106 data points was not possible due to memory problems.

intervals are very small due to the large sample size, the values in Table 4 are multiplied
by 103.

In the considered situations RLB gave good results: the bias values are small, which
shows that the RLB method indeed gave robust estimates, and the width of the confidence
intervals is of similar size than for the original MM-estimator. It is not surprising that the
distribution-free confidence intervals for the RLB estimator are somewhat larger than the
confidence intervals of the MM-estimator based on the assumption of asymptotic normality.
If the total sample size n is not too big, such that the MM-estimates can be computed with
the algorithm used by rlm using the RAM space of the computer, RLB only saves a little bit
of computation time. However, RLB can be processed for much larger data sets for which
the algorithm used by rlm would need much more RAM than the available PC has (2 GB),
such that the computation of the MM-estimates for the whole data set was impossible. In
contrast to that, the computation time of RLB increased only approximately linearly in nb,
and the used RAM was low in contrast to the used RAM to compute the MM-estimates for
the whole data set. No memory problems occurred for RLB with n = 3.4 · 106 and B = 17.

Now we apply the RLB approach to kernel logistic regression (KLR), see (Wahba, 1999).
KLR is a flexible method for classification problems and provides also estimates for the
conditional probabilities P(Y = 1|X = x), x ∈ X , which is not true for the support vector
machine (SVM), see Bartlett and Tewari (2004). Christmann and Steinwart (2004) showed
KLR has good robustness properties, e.g. a bounded influence function. All computations
are done with the program myKLR (Rüping, 2003) which is an implementation of the algo-
rithm proposed by Keerthi et al. (2002) to solve the dual problem. We choose KLR for two
reasons. Firstly, the computation of KLR needs much more time than the SVM, because
the latter solves a quadratic instead of a convex program in dual space. Secondly, the
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sample size CPU time used cache available cache
n in MB in MB

2000 4 sec 33 200
5000 25 sec 198 200

10000 5 min, 21 sec 200 200
10000 1 min, 33 sec 787 1000
20000 24 min, 11 sec 1000 1000
20000 14 min, 35 sec 1000 1000

100000 9 h, 56 min, 46 sec 1000 1000

Table 5: Computation times for kernel logistic regression using myKLR.

number of support vectors of KLR is often approximately equal to n, which slows down the
computation of predictions.

The simulated data sets contain n data points (xi, yi) ∈ R8 × {−1,+1} simulated in
the following way. All 8 components of xi = (xi,1, . . . , xi,8) are simulated independently
from a uniform distribution on (0, 1). The responses yi are simulated independently from
a logistic regression model according to P(Yi = +1|Xi = xi) = 1/(1 + exp[−f(xi)]) and
P(Yi = −1|Xi = xi) = 1− P(Yi = +1|Xi = xi). We set

f(xi) =
8∑

j=1

xi,j − xi,1xi,2 − xi,2xi,3 − xi,4xi,5 − xi,1xi,6xi,7 .

The data points are saved as ASCII files where xi,j is stored with four decimal places. The
numerical results of fitting kernel logistic regression to such data sets is given in Table 5. It
is obvious that in this situation RLB can save a lot of computation time. If the whole data
set has n = 105 observations, approximately 10 hours were needed to compute KLR. If RLB
with B = 10 bits are used each with a sub-sample size of nb = 104, one needs approximately
16 minutes, if there is 1 GB of kernel cache available. This is a reduction by a factor of 38.
If there are 5 CPUs available and each processor can use up to 200 MB kernel cache, RLB
with B = 10 needs approximately 11 minutes which is a reduction by a factor of 55.

Concluding, RLB can be quite useful for kernel logistic regression for large data sets.
Christmann (2004) describes a strategy to construct insurance tariffs for a data set from
15 German motor vehicle insurance companies. The whole data contains data from around
4.6 million customers. Although a strategy was used to reduce the computational effort
by exploiting certain characteristic features of such data sets, RLB can help to reduce to
computation time in a substantial manner.

5. Discussion

In this paper robust learning from bites (RLB) was proposed to broaden the usability
of computer-intensive robust estimators in the case of large data sets which occur e.g.
in data mining problems or in the construction of insurance tariffs. RLB is especially
designed for situations under which the original robust method cannot be used due to
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excessive computation time or memory space problems. In these situations RLB offers
robust estimates and additionally robust confidence intervals. Although RLB estimators will
in general not fulfill certain optimality criteria, the method has the following advantages.

• Scalability. The number B of bites can be chosen such that the algorithm used to fit
the bites needs less memory than the computer offers.

• Performance. The computational steps for different bites can easily be distributed on
several processors because they are independent and use disjoint parts of the data set.

• Robustness. We considered the finite sample breakdown point and the influence func-
tion. These properties are inherited from the original robust estimator computed for
each bite and from the location estimator used to aggregate the results from the bites.

• Confidence intervals. No complex formulae are needed to obtain distribution-free
(componentwise) confidence intervals for the estimates or for the predictions because
the estimators computed from the B bites are independent and identically distributed.
Such confidence intervals for the predictions are especially interesting for kernel based
methods (e.g. support vector machine and kernel logistic regression), because such
methods have nice properties but finite sample confidence intervals for the predictions
based on applying such methods once for the whole data set are typically unknown.

The RLB approach has connections to Rvote proposed by Breiman (1999) and DRvote
with classification trees using majority voting proposed by Chawla et al. (2004). Boot-
strapping computer-intensive robust methods for huge data sets is often impossible due to
computation time and memory limitations of the computer. The focus of the present paper
is on robustness aspects and the computation of robust distribution-free confidence intervals
for the median of the predictions even for very large data sets. Such confidence intervals are
often a problem for robust estimators and kernel based methods based on Vapnik’s convex
risk minimization principle. These topics were not covered in the papers mentioned above.
RLB has also some similarity to the algorithms FAST-LTS and FAST-MCD developed by
Rousseeuw and Driessen (1999, 2002) for robust estimation in linear regression or multi-
variate location and scatter models for large data sets. FAST-LTS and FAST-MCD split
the data set into sub-samples, optimize the objective function in each sub-samples, and
use these solutions as starting values to optimize the objective function for the whole data
set. This is in contrast to RLB which aggregates estimation results from the bites to obtain
robust confidence intervals. Some good robust estimators are not n−1/2-consistent and have
a complicated non-normal limiting distribution, see e.g. Rousseeuw (1984), Davies (1990),
and Kim and Pollard (1990). If distribution-free confidence intervals for the median of the
predictions are needed for such estimators RLB can be useful for data sets of only moderate
sample size, too.
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Appendix

The appendix contains the proofs for the results given in Section 3.

Proof of Proposition 1. Obvious. ¤

Proof of Proposition 2. Obvious. ¤

Proof of Proposition 3. (i) follows from the linearity of the expectation operator.
(ii) and (iii) follow from Slutzky’s theorem. ¤

Proof of Proposition 4. By construction of RLB the bites are disjoint and the estima-
tors from the bites are independent. Assume that the original estimator Tn(S) is consistent
in probability. Then we have for all ε > 0 that

P (||medianb=1,...,B Tnb
(Sb)− T (P)|| < ε)

≥ P (||Tnb
(Sb)− T (P)|| < ε for all b = 1, . . . , B)

=
B∏

b=1

P (||Tnb
(Sb)− T (P)|| < ε) → 1, n →∞ ,

because B is fixed and limn→∞ (n/nb) = B. Now, assume that the original estimator Tn(S)
is strongly consistent to T (P). Then we obtain analogously

P
(

lim
n→∞medianb=1,...,B Tnb

(Sb) = T (P)
)
≥

B∏

b=1

P
(

lim
nb→∞

Tnb
(Sb) = T (P)

)
= 1,

because B is fixed and limn→∞ (n/nb) = B. ¤

Proof of Proposition 5. By assumption each bite Sb is fitted with a kernel based esti-
mator having the representation

f̂b(x) =
nb∑

i=1

αi,b k(x, xi), i ∈ Sb , b = 1, . . . , B, xi ∈ X . (19)

Because the bites Sb, b = 1, . . . , B, are disjoint, the RLB estimator using the mean in the
aggregation step is given by

f̂RLB,B(x) =
1
B

B∑

b=1

nb∑

i=1

αi,b k(x, xi) (20)

=
n∑

i=1

αi,b

B
k(x, xi) , x ∈ X . (21)

The formula (5) follows immediately. ¤
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Proof of Proposition 6. (i) This follows immediately from (5).
(ii) Steinwart (2003, Th.9) proved that the kernel based estimator evaluated for the whole
data set S has the property

Pr∗n
(
S ∈ (X × Y)n;#SV(f̂n) ≥ (SL,P − ε)

)
→ 1 , (22)

if the conditions of the proposition are satisfied. Denote the outer probability measure of the
product measure Pnb by Pr∗nb . The bites Sb, b = 1, . . . , B, are independent and identically
distributed by construction of RLB. Using (22) we obtain

Pr∗n
(
S = (S1, . . . ,SB) ∈ (X × Y)n;#SV(f̂RLB,n,B) ≥

B∑

b=1

(SL,P − ε)nb

)
(23)

≥ Pr∗n
(

for all Sb ∈ (X × Y)nb , b = 1, . . . , B ; #SV(f̂nb
) ≥ (SL,P − ε)nb

)
(24)

=
B∏

b=1

Pr∗nb

(
Sb ∈ (X × Y)nb ;#SV(f̂nb

) ≥ (SL,P − ε)nb

)
→ 1 , n →∞, (25)

because B is fixed and nb →∞. ¤

Proof of Theorem 8. Under the assumptions of the theorem we have

0 ≤
∫

L(y, f̂RLB,n,λn,B(x)) dP(x, y)−RL,P

=
∫ [

L

(
y,

1
B

B∑

b=1

f̂nb,λnb
(x)

)
− L (y, f∗(x))

]
dP(x, y)

≤
∫ ∣∣∣∣∣L

(
y,

1
B

B∑

b=1

f̂nb,λnb
(x)

)
− L (y, f∗(x))

∣∣∣∣∣ dP(x, y)

≤ |L|1
∫ ∣∣∣∣∣

1
B

B∑

b=1

f̂nb,λnb
(x)− f∗(x)

∣∣∣∣∣ dP(x, y) (26)

≤ |L|1
B

B∑

b=1

∫ ∣∣∣f̂nb,λnb
(x)− f∗(x)

∣∣∣ dP(x, y) → 0, (27)

because B is fixed and nb → ∞, if n → ∞. Here we used the Lipschitz continuity of the
loss function in (26) and the consistency assumption (12) in (27). ¤

Proof of Theorem 10. The minimum number of points needed to modify Tb(Sb) in bite
Sb such that there is breakdown is given by nb · ε∗nb

(Tb;Sb) + 1, b = 1, . . . , B. The RLB
estimator breaks down if at least Bε∗B(µ̂) + 1 of the estimators f̂(S1), . . ., f̂(SB) break
down. Therefore

ε∗RLB,n,B =
(nb ε∗nb

(Tb;Sb) + 1) · (B ε∗B(µ̂) + 1)− 1
n

, (28)

which gives the assertion. ¤
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Proof of Theorem 14. Let z = (x, y) ∈ X × Y and P be a probability distribution
on X × Y. By assumption the RLB estimator has the property (17), i.e. TRLB,n,B =
1
B

∑B
b=1 Tnb

(Pnb
), where Pnb

denotes the empirical distribution of bite Sb, b = 1, . . . , B.
Further, the influence function IF (z; T, P) exists by assumption of the theorem. It follows

IF (z; TRLB,B, P) = lim
ε↓0

TRLB,B

(
(1− ε)P + ε∆z

)− TRLB,B(P)
ε

= lim
ε↓0

1
B

∑B
b=1 T

(
(1− ε)P + ε∆z

)− 1
B

∑B
b=1 T (P)

ε

=
1
B

B∑

b=1

lim
ε↓0

T
(
(1− ε)P + ε∆z

)− T (P)
ε

,

which gives the assertion. ¤
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