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Abstract

We construct efficient designs for the Michaelis-Menten enzyme kinetic model capable of
checking model assumption. An extended model, called EMAX model is also considered for
this purpose. This model is widely used in pharmacokinetics and reduces to the Michaelis-
Menten model for a specific choice of the parameter setting. Our strategy is to find efficient
designs for estimating the parameters in the EMAX model and at the same time test the
validity of the Michaelis-Menten model against the EMAX model by maximizing a minimum
of the D- or D1-efficiencies taken over a range of values for the nonlinear parameters. In
addition, we show that the designs obtained from maximizing the D-efficiencies are (i) ef-
ficient for estimating parameters in the EMAX model or the Michaelis-Menten model, (ii)
efficient for testing the Michaelis-Menten model against the EMAX model and (iii) robust
with respect to misspecification of the unknown parameters.

AMS Subject Classification: 62K05
Keywords and Phrases: Chebyshev polynomials, EMAX model, goodness of fit test, locally D-
optimal design, robust optimal design

1 Introduction

The motivation of our work here comes from the observation that the theoretical optimal designs
for many models used in practice typically do not have enough design points to enable the re-
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searcher to verify the model assumptions. This is an important problem because optimal designs
are model-dependent and can lose substantial efficiency under a mis-specified model. For exam-
ple, the D-optimal design for a homoscedastic simple linear model is equally supported at the end
points of the design interval but this design is completely useless for checking if a quadratic model
provides a better fit. This is because the model has two parameters and the optimal design has
only two distinct points. Consequently, there is no degree of freedom for lack of fit sum of squares
and the test cannot be carried out. In other problems, the optimal design can have less support
points than the number of parameters in the model and so does not even allow all parameters to
be estimated.

There is very limited work to address this design issue to date especially for nonlinear models. In
linear models, there has been some work in this direction. One way to overcome this problem is to
embed the model in a class of plausible nested models constructed such that if the hypothesized
model is not valid, anonther model in the class will provide an adequate fit. For instance, in
simple linear regression problems with a continuous outcome, it is customary to model the data
using a polynomial model of low degree first before attempting higher polynomial fits. Here, the
class of models under consideration is the class of polynomials and each member is nested within
polynomials of higher degrees. Using different design criteria, Stigler (1971), Studden (1982) and,
Wong and Song (2002) constructed optimal designs for polynomial models when there is limited
knowledge on the true degree of the model. Their design strategy was to embed the hypothesized
model in a larger class of polynomial models. For instance, if the hypothesized model is quadratic,
and polynomial models of degrees up to four are considered plausible, Studden (1982) provided an
optimal design that would guarantee the smallest generalized variance for the estimated coefficients
in the quadratic model subject to an additional requirement that the design also provides a user-
selected level of D-efficiency for estimating the coefficients associated with the cubic and quartic
terms. The resulting design also has more than three support points and therefore a lack of fit
test can be performed to assess if the quadratic model holds.

Work on related design issues for nonlinear models are virtually non-existent in the literature. One
likely reason is that the design problem becomes very hard very quickly. This is not surprising
because finding optimal design for a single nonlinear model can be a challenging task in itself.
Lupinacci and Raghavarao (2000, 2002) appears among the first few to address similar design
issues for nonlinear models. The first paper proposed adding an extra point for the D-optimal
design for the simple logistic model to ensure symmetry in the variance function. The rationale
was that with three design points and only two parameters in the model, the researcher can
use the design to perform a lack of fit test. Using a similar reasoning, they proposed in the
second paper that a third point be added mid-way between the two points obtained from the
D-optimal design for the Michaelis-Menten model. In either case, we found their rationale was
largely movtivated by convenience and light on statistical considerations. In the next few sections,
we propose a technique for generating optimal designs capable of performing a lack of fit test for
misspecification in nonlinear models. While the idea is a general one, specific details and technical
difficulties will have to be dealt with for the specific models involved. To fix ideas, we will focus
on a simple yet highly popular model in the applied sciences to demonstrate our technique.

The Michaelis Menten model is one of the most widely used models in the biological sciences. The
model is perhaps most commonly used to study enzymatic reaction which is of great importance

2



in pharmacology, biology and medical resarch. More specifically, the model is used to describe
saturation functions for numerous physical and biological phenomena. Specific applications can
be found in Cressie and Keightley (1979), Johansen (1984), Beverton and Holt (1957), Cornish-
Browden (1979), Hay, Meznarich, DiGiacomo, Hirst, Zerbe (1988), just to name a few. The
simplest form encountered most often in biology is the familiar enzyme kinetic function

y =
ax

b+ x
; x ∈ [0, x0] ,(1.1)

where y is the reaction velocity, a the maximum velocity of this reaction, x the concentration of
a substrate and b the half-saturation constant, the value of x, where y is half-maximal. Optimal
designs for the Michaelis-Menten model have been studied by numerous authors [see e.g. Duggleby
(1979), Dunn (1988), Rasch (1990), Boer, Rasch and Hendrix (2000), Dette and Wong (1999),
Lopez-Fidalgo and Wong (2000) or Dette and Biedermann (2003) among many others].

In non-linear models, the Fisher information matrix depends on the unknown parameters and for
this reason optimal designs, which maximize some function of the Fisher information matrix are
difficult to implement in practice. Most authors concentrate on locally optimal designs, where it
is assumed that a preliminary guess for the unknown parameters is available [see Chernoff (1953)
or Silvey (1980)]. More recently, Song and Wong (1998) proposed Bayesian optimal designs and
Dette and Biedermann (2003) suggested maximin D-optimal designs as robust alternatives for the
Michaelis-Menten model. Both papers presented efficiencies of the optimal design when the nom-
inal values are misspecified. See also Matthews and Allcock (2004) where they provided a variety
of Bayesian optimal designs for the Michaelis-Menten model with applications in enzymology.

Most optimal designs for the Michaelis-Menten model have been criticized because they advise
the experimenter to take observations only at two points. Consequently, these designs cannot
be used to perform a goodness-of-fit test for the assumed model. We propose to embed the
Michalis-Menten model in a larger class of models defined by

E[Y |x] =
axh

b+ xh
; x ∈ [0, x0].(1.2)

This model clearly contains the Michaelis-Menten model when h = 1 and we will call it the EMAX
model. This is the more common name in the literature, other names include the Sigmoid-EMAX
model or the Hill model. The EMAX model is itself appealing in its own right and is a popular
model in the biological sciences. For instance, in studies involving anticancer agents, the EMAX
model is the conentration-effect curve with x representing the concentration of the drug, b the
median effective concentration of the drug, h is the curvature parameter (or the Hill’s coefficient)
and y is the measured effect, such as percentage of cell surviving and x is the concentraction of
the drug. The EMAX model has many applications and is a serious competitor to the Michaelis-
Menten model [see Meftin, Winkle, Blaschke, Fitzgerald and Harrison (1977), Holford and Sheiner
(1981) or Bezeau and Endrenyi (1986), for example]. Thus, estimating the Hill’s coefficient has
intrinsic value as well.

To test if the Michaelis-Menten model holds, we first assume the EMAX model holds and test the
hypothesis

H0 : h = 1 vs H1 : h 6= 1.(1.3)

3



It will be seen that optimal designs for testing the above hypothsis has more than two points and
consequently, the researcher can carry out a formal lack of fit test.

Our first approach is based on the classical D-optimality criterion and maximizes the determinant
of the (asymptotic) covariance matrix of the least squares estimator for the parameters (a, b, h)
in the model (1.2). The second method is based on the D1-optimality criterion which determines
the design such that the asymptotic variance of the least squares estimator for the parameter h
in the model (1.2) is minimal. Because the EMAX model is non-linear, the asymptotic covariance
matrix depends on the parameters and this implies the optimal designs depend on the unknown
parameters as well. However, it is easy to see that the optimal designs depend on h and b only
and not on a. Following Chernoff (1953), we determine in Section 3 locally optimal designs, which
require an initial guess of the unknown parameters. We show that these optimal designs are rather
sensitive to the choice of the initial parameters. For this reason, we seek alternative strategies
and construct in Section 4 standardized maximin optimal designs [Müller (1995) or Dette (1997),
Imhof (2001) of Imhof and Wong (2000)] which maximize the minimum efficiency over a certain
range of parameters. We show that these optimal designs are more robust to misspecification of
the initial values than locally optimal designs. This is an important advantage because in many
real experiments, initial values are usually vaguely known and a poor design can produce very
inefficient estimates. In addition, the standardized maximin optimal designs are, on the one hand,
quite efficient for discriminating between the Michaelis-Menten and the EMAX model and, on the
other hand, also efficient for estimating the parameters in either the Michaelis-Menten model or
the EMAX model. All justifications of our technical results are deferred to the appendix.

2 Preliminaries

Let [0, T ] denote the experimental region and assume that for each x ∈ [0, T ] an observation
Y could be made, where different observations are assumed to be independent with the same
variance, say σ2 > 0. Following Kiefer (1974) we call any probability measure

ξ =

(

x1 . . . xn

w1 . . . wn

)

(2.1)

with finite support x1, . . . , xn ∈ [0, T ], xi 6= xj(i 6= j), wi > 0,
∑n

i=1wi = 1 an experimental design.
If N is the total sample size, the experimenter takes approximately ni ≈ Nwi observations at
xi (i = 1, . . . , n) such that

∑n
i=1 ni = N. It is well known [see Jennrich (1969)] that under regularity

assumptions, the asymptotic covariance matrix of the least squares estimator θ̂ = (â, b̂, ĥ)T for
the parameter θ = (a, b, h)T in the model (1.2) is given by the matrix σ2

N
M−1(ξ, a, b, h). Here we

assume the design ξ has at least three points,

M(ξ, a, b, h) =

∫ T

0

f(x, a, b, h)fT (x, a, b, h)dξ(x)(2.2)

is the information matrix of the design ξ for the EMAX model (1.2) and

f(x, a, b, h) =
xh

b+ xh
(1,−

a

b+ xh
,
ab log x

b+ xh
)T(2.3)
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is the vector of partial derivatives of the conditional expectation E[Y |x] = axh/(b + xh) with
respect to the parameters a, b and h. For a fixed θ = (a, b, h)T a locally D-optimal design ξD

a,b,h

maximizes the determinant |M(ξ, a, b, h)|, while the locally D1-optimal design ξD1

a,b,h maximizes

(

eT
3M

−1(ξ, a, b, h)e3

)

−1

=
|M(ξ, a, b, h)|

|M̃(ξ, a, b, h)|
,(2.4)

where eT
3 = (0, 0, 1) and the matrix M̃ is obtained from M by deleting the last row and column.

The locally D-optimal design minimizes the first order approximation of volume of the ellipsoid
of concentration for the parameter θ [see e.g. Silvey (1980)], while the local D1-optimal design
minimizes the asymptotic variance of the least squares estimate for the unknown parameter h
and therefore maximizes the power of the test for the hypothesis (1.3). As a consequence, designs
maximizing (2.4) are very efficient for discriminating between the Michaelis-Menten and EMAX
model.

It is easy to see that the locally D1-and D-optimal design do not depend on the parameter a and
for this reason we will set a = 1 throughout this paper. Because we are interested in designs which
are efficient for discriminating between the Michaelis-Menten and the EMAX model in (1.2) we
put h = 1 throughout this paper. This choice is also partially motivated by the following result
which describes the relationship among the locally optimal designs for different values of h.

Theorem 2.1. Let ξ denote a locally D-optimal (D1-optimal) design for the EMAX model (1.2)
on the interval [0, T ] with parameters (b, h) and define ξ̃ as the design on the interval [0, TH ], which
is obtained from the design ξa,b,h by the transformation x→ xh, then ξ̃ is D-optimal (D1-optimal)
on the interval [0, T h] for the model (1.2) with parameters (b, 1).

Note that Theorem 2.1 allows to relate locally D-optimal designs for the EMAX model on different
design spaces. Consider for example a locally D-optimal design on the interval [0, T ] when θ =
(a, b, 1)T with support points xi and weights wi. Then the design which puts masses wi at the
points xh

i is locally D-optimal when θ = (a, b, h)T for the EMAX model on the interval [0, T h]. In
other words, if the locally D-optimal designs for h = 1 and any b and T are known, the locally
optimal designs for any parameter θ = (a, b, h)T and any design space can easily be derived. A
further reduction of the locally optimal design problem will be obtained in the following section.
In what is to follow, we denote for simplicity M(ξ, b) = M(ξ, 1, b, 1), f(x, b) = f(x, 1, b, 1) and
define ξD

b and ξD1

b as the locally D and D1-optimal design at the point θ = (1, b, 1)T , respectively.

3 Locally optimal designs

Due to the complexity of function f(x, a, b, h) it is not possible to construct the locally optimal
designs for the EMAX model explicitly. Bezeau and Endrenyi (1986) found locally D-optimal
designs numerically for the EMAX model. In this section we demonstrate that it is possible to
establish general properties of locally D- and D1-optimal designs and use them to simplify our
calculation of the locally optimal designs in a substantial way. We begin with some important
properties of the D-optimal design.
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Theorem 3.1. The locally D-optimal design ξD
b in the EMAX model (1.2) on the interval [0, 1]

is unique and has equal masses at three points including the boundary point x3 = 1.

Moreover, the locally D-optimal design in the EMAX model (1.2) on the interval [0, T ] with
parameters (b, 1)) is obtained from the locally D-optimal design ξD

b/T on the interval [0, 1] with

parameters (b/T, 1)) by multiplying the corresponding support points by T.

Theorems 2.1 and 3.1 simplify the determination of locally D-optimal designs for the EMAX
model substantially. If a locally D-optimal design on the interval [0, T ] with parameters (b, h) is
sought, we determine the locally D-optimal design ξD

b/T h on the interval [0, 1] for the parameters

(b/T h, 1). By Theorem 3.1 the design ξD
b defined by the transformation

ξD
b ({x}) = ξD

b/T h({
x

T h
})

is locally D-optimal for the EMAX model on the interval [0, T h] for the parameters (b, 1) and
Theorem 2.1 shows that the design ξD

b,h obtained by the transformation

ξD
b,h({x}) = ξD

b ({xh}) = ξD
b/T h((

x

T
)h)(3.1)

is locally D-optimal for the EMAX model on the interval [0, T ] for the parameters (b, h). Therefore
it is sufficient to calculate locally D-optimal designs on the interval [0, 1] for the parameters (b, 1).
The first part of Theorem 3.1 shows that we can restrict ourselves to designs of the form

ξD
b =

(

x1 x2 1
1
3

1
3

1
3

)

; 0 < x1 < x2 < 1.(3.2)

For this type of design the determinant of the information matrix in the EMAX model reduces to
|M(ξD

b , b)| = c Φ2(x1, x2, b), where the constant c does not depend on x1, x2 and the function Φ is
defined by

Φ(x1, x2, b) =
b[(x2 − 1) log x1 − (x1 − 1) log x2]

27(1 + b)2(b+ x1)2(b+ x2)2
.(3.3)

This function can easily be maximized numerically. In Table 3.1 we present some locallyD-optimal
designs obtained by the Nelder-Mead method. The optimality of the designs over the set of all
designs defined on [0, 1] was verified using an equivalence theorem which is widely discussed in
design monographs, see Silvey (1980) for example. We observe from the table that the locally
D-optimal designs depend sensitively on the choice of the parameter b.

In order to illustrate the application of Theorem 2.1 and 3.1 consider the locally D-optimal design
problem for the EMAX model on the interval [0, 2] when h = 2, b = 2. The locally D-optimal
design on the interval [0, 1] for the parameters h̃ = 1 and b̃ = b/T h = 0.05 is obtained from
Table 3.1 and has equal masses at the points 0.073, 0.388 and 1. From equation (3.1) it follows
that the locally D-optimal design problem for the EMAX model on the interval [0, 2] with h = 2,
b = 2 advices the experimenter to take the same proportion of total observations at the points
2 · 0.0730.5 = 0.540, 2 · 0.3880.5 = 1.246 and 2.
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b x1 x2 b x1 x2

0.1 0.026 0.171 1.1 0.100 0.482

0.2 0.042 0.260 1.2 0.103 0.491

0.3 0.055 0.317 1.3 0.106 0.498

0.4 0.065 0.358 1.4 0.108 0.505

0.5 0.073 0.388 1.5 0.110 0.511

0.6 0.079 0.412 1.6 0.112 0.516

0.7 0.085 0.431 1.7 0.114 0.521

0.8 0.089 0.447 1.8 0.116 0.525

0.9 0.094 0.461 1.9 0.117 0.529

1.0 0.097 0.473 2.0 0.118 0.533

Table 3.1. Interior support points (x1, x2) of the equally weighted locally D-optimal designs ξD

for the EMAX model (1.2) on the interval [0, 1] with h = 1 and different values of b. The equally
weighted locally D-optimal designs for the EMAX model (1.2) on the interval [0, T ] are obtained
by the transformation (3.1).

The locally D1-optimal designs can be obtained by similar methods. More precisely, we show in
the appendix that the functions

x

(x+ b)2
,

x2

(x+ b)2
,
x log x

(x+ b)2
(3.4)

generate a Chebyshev system on the interval (0, T ] [see Karlin and Studden (1966)]. As a conse-
quence, there exists constants α1, α2, α3 ∈ R such that the function

ψ(x) = (x+ b)−2{α1x+ α2x
2 + α3x log x}(3.5)

oscillates on the interval [0, 1] at three points, say 0 < x∗1 < x∗2 < x∗3 = T, which means

|ψ(x)| ≤ 1 for all x ∈ [0, 1]

|ψ(x∗i )| = (−1)i i = 1, 2, 3.(3.6)

These points are uniquely determined and are called Chebyshev points in the literature. The
corresponding function ψ is called a Chebyshev polynomial. The Chebyshev points depend on the
values of b and T and it is sometimes helpful to make this dependence explicit by writing x∗i as
x∗i (b, T ). It is easy to see that

x∗i (b, T ) = Tx∗i (
b

T
, 1) i = 1, 2, 3,(3.7)

and consequently it is sufficient to present these points for the interval [0, 1] for which the corre-
sponding Chebyshev points are denoted by x∗i (b)[i = 1, 2, 3]. We are now in a position to state an
analogue of Theorem 3.1.
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Theorem 3.2. For b > 0 let x∗1(b), x
∗

2(b), x
∗

3(b) = 1 denote the points determined by (3.6). The
locally D1-optimal design ξD1

b for the EMAX model (1.2) with parameters (b, 1)) on the interval
[0, T ] is uniquely given by

ξ∗D1
=

(

Tx∗1(
b
T
) Tx∗2(

b
T
) T

w∗

1(
b
T
) w∗

2(
b
T
) w∗

3(
b
T
)

)

,(3.8)

where the weights w1, w2, w3 are given by

w∗

i (β) =
Ai(β)

A1(β) + A2(β) + A3(β)
i = 1, 2, 3(3.9)

with

A1(β) = x∗a(β)(1 − x∗1(β))(β + x∗2(β))2

A2(β) = x∗1(β)(1 − x∗1(β))(β + x∗1(β))2(3.10)

A3(β) = x∗1(β)x∗2(β)(β + 1)2

It follows from Theorem 3.2 that it is sufficient to consider the case T = 1, for which theD1-optimal
design is of the form

ξ =

(

x1 x2 1

w1 w2 1 − w1 − w2

)

.

Moreover, we have from the proof of Theorem 3.2 in the appendix that

min
w1,w2∈(0,1)

eT
3M

−1(ξ, b)e3 = ρ2(x1, x2, b),(3.11)

where the function ρ is defined by

ρ(x1, x2, b) = −
x2(1 − x2)(b+ x1)

2 + x1(1 − x1)(b+ x2)
2 + x1x2(x2 − x1)(1 + b)2

x1x2[(1 − x2) log x1 − (1 − x1) log x2]
.(3.12)

It follows that for a given value of b, the support points of the locally D1-optimal design can easily
be found numerically by minimizing the function ρ2 with respect to 0 ≤ x1 < x2 ≤ 1. In Table
3.2, we show numerical locally D1-optimal designs for the EMAX model (1.2), where h = 1 and
selected values of b in the interval [0.1, 2]. We observe again that the locally D1-optimal design
EMAX model (1.2) depends sensitively on the value of the parameter b.
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b x1 x2 w1 w2 w3

0.1 0.014 0.179 0.553 0.305 0.142

0.2 0.023 0.270 0.576 0.293 0.130

0.3 0.030 0.328 0.591 0.286 0.123

0.4 0.036 0.370 0.601 0.280 0.119

0.5 0.041 0.401 0.609 0.276 0.115

0.6 0.045 0.425 0.615 0.273 0.112

0.7 0.048 0.444 0.620 0.270 0.110

0.8 0.051 0.460 0.624 0.268 0.108

0.9 0.054 0.474 0.627 0.266 0.107

1 0.056 0.485 0.630 0.264 0.106

1.1 0.058 0.495 0.633 0.263 0.105

1.2 0.060 0.503 0.635 0.262 0.104

1.3 0.062 0.511 0.637 0.260 0.103

1.4 0.063 0.517 0.639 0.259 0.102

1.5 0.064 0.523 0.640 0.258 0.101

1.6 0.066 0.529 0.642 0.258 0.101

1.7 0.067 0.533 0.643 0.257 0.100

1.8 0.068 0.538 0.644 0.256 0.100

1.9 0.069 0.542 0.645 0.256 0.099

2 0.070 0.545 0.646 0.255 0.099

Table 3.2. Locally D1-optimal designs for the EMAX model (1.2) on the interval [0, 1] with h = 1
and different values of the parameter b. The third support is given by x3 = 1.

4 Robust and efficient designs

The numerical results of the previous sections show that the locally D- and D1-optimal designs
are not necessarily robust with respect to the choice of the initial parameters. In order to obtain
designs that are efficient and robust over a certain range of the parameters for the EMAX model,
we study a maximin approach proposed by Müller (1995) and Dette (1997). To be precise we
define

ID(ξ) = min
b∈[b,b̄]

|M(ξ, b|)

maxη |M(η, b)|
(4.1)

as the minimal efficiency of the design ξ if b varies in the interval [b, b̄], and call a design ξD

standardized maximin D-optimal for the EMAX model, if it maximizes the optimality criterion
in (4.1). Similarly, a design ξD1 is called standardized maximin D1-optimal, if it maximizes

ID1
(ξ) = min

b∈[b,b̄]

(eT
3M

−1(ξ, b)e3)
−1

maxη(e
T
3M

−1(η, b)e3)−1
.(4.2)
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Our first result shows that when we calculate the standardized maximin optimal designs, it is
again sufficient to consider the interval [0, 1] as our design space. The justification is given in the
appendix.

Lemma 4.1. If ξ is the standardized maximin D-(D1)-optimal design for the EMAX model on the
interval [0, 1] with respect to the interval [b, b̄], then the design ξT induced by the transformation
ξT ({x}) = ξ({ x

T
}) is standardized maximin D-(D1)-optimal on the interval [0, T ] with respect to

the interval [b/T, b̄/T ].

In general the determination of standardized maximin optimal designs has to be done numerically.
In our study we determined the optimal designs on the interval [0, 1] within the class of all designs
with three support points numerically and verified the optimality within the class of all designs
by an application of the following equivalence theorem [see Dette, Haines and Imhof (2003)].

Theorem 4.2.

(a) A design is ξD standardized maximin D-optimal if and only if there exists a prior distribution
π on the set

{

b ∈ [b, b̄]
∣

∣

∣
ID(ξD) =

|M(ξD, b)|

maxη |M(η, b)|

}

,

such that the inequality

∫ b̄

b

f(t, b)M−1(ξD, b)f(t, b)π(db) ≤ 3(4.3)

holds for all t ∈ [0, T ]. Moreover, there is equality in (4.3) for all support points of the
standardized maximin D-optimal design ξD.

(b) A design ξD is standardized maximin D1-optimal if and only if there exists a prior on the
set

{

b ∈ [b, b̄]
∣

∣

∣
ID1

(ξ) =
(eT

3M
−1(ξD, b)e3)

−1

supη(e
T
3M

−1(η, b)e3)−1

}

such that the inequality

∫ b̄

b

(fT (t, b)M−1(ξD1, b)e3)
2π(db) ≤ ID1

(ξ∗)(4.4)

holds for all t ∈ [0, T ]. Moreover, there is equality in (4.4) for all support points of the
standardized maximin D1-optimal design ξD1.

In Tables 4.1 and 4.2 we display selected numerical standardized maximin D- and D1-optimal
designs on different intervals [b, b̄]. Again we restrict ourselves to the case T = 1 [see Lemma 4.1]
and h = 1, which is most important for the discrimination between the EMAX and Michaelis-
Menten model. In all cases we started with the calculation of standardized maximin optimal
designs in the class of all three point designs. The optimality was checked by an application of
Theorem 4.2. If the optimal three point design was not optimal within the class of all designs a
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fourth support point was added and the calculation was repeated in order to obtain a better design
with four support points . In all cases considered in our study the standardized maximin optimal
designs have at most four support points. For example, only in the cases b = 0.1, b̄ ∈ {1, 2} the
standardized maximin D-optimal design is supported on four points including the right endpoint,
while in all other cases a three point design is sufficient [see Table 4.1].

b b x0 x1 x2 x3 ω0 ω1 ω2 ω3 ID(ξ)

0.1 2 .0325 .1496 .5111 1 .2100 .2604 .2250 .3046 .875

0.1 1 .0330 .1394 .4427 1 .2291 .2312 .2277 .3120 .885

0.3 1 .0722 .3945 1 1/3 1/3 1/3 .969

0.3 2 0.789 .4260 1 1/3 1/3 1/3 .944

1 2 .1071 .5030 1 1/3 1/3 1/3 .995

1 5 .1149 .5272 1 1/3 1/3 1/3 .987

1 10 .1179 .5367 1 1/3 1/3 1/3 .982

1 20 .1195 .5418 1 1/3 1/3 1/3 .979

1 50 .1205 .5449 1 1/3 1/3 1/3 .978

Table 4.1. Standardized maximin D-optimal designs for the EMAX model (1.2) on the interval
[0, 1] with respect to the interval [b, b̄]. The table shows the support points, weights and the minimal
efficiency of the standardized maximin D-optimal design over the range [b, b̄].

b b x0 x1 x2 x3 ω0 ω1 ω2 ω3 ID(ξ)

0.1 2 .0239 .1319 .4881 1 .4733 .2419 .1758 .1090 .658

0.1 1 .0214 .1188 .4487 1 .4754 .2319 .1816 .1111 .669

0.3 1 .0426 .3908 1 .6069 .2721 .1209 .868

0.3 2 0.483 .4091 1 .6121 .2659 .1220 .779

1 2 .0627 .5128 1 .6378 .2591 .1031 .981

1 5 .0684 .5314 1 .6436 .2540 .1024 .942

1 10 .0708 .5380 1 .6450 .2527 .1023 .923

1 20 ..0721 .5413 1 .6461 .2517 .1022 .912

1 50 .0729 .5434 1 .6467 .2510 .1023 .905

Table 4.2. Standardized maximin D1-optimal designs for the EMAX model (1.2) on the interval
[0, 1] with respect to the interval [b, b̄]. The table shows the support points, weights and the minimal
efficiency of the standardized maximin D1-optimal design over the range [b, b̄].

We observe that this property depends on the size of the ratio b/b̄ [see also Dette and Biedermann
(2003) who made a similar observation for the Michaelis-Menten model]. Moreover, the standard-
ized maximin D-optimal design yields rather high D-efficiencies for a broad range of b values. For

11



example, if b varies in the interval [1, 50] the minimal efficiency of the standardized maximin D-
optimal design is 97.8% and even in the case where the ratio b̄/b is 200 the standardized maximin
D-optimal design has at least efficiency 87.5%.

The situation for the standardized D1-optimal design is very similar and illustrated in Table
4.2. Only in the case b̄/b ≥ 100 four point designs are required for the standardized maximin D1-
optimal design and for b̄/b ≤ 50 the minimalD1-efficiency of the standardized maximin D1-optimal
design calculated over the interval [b, b̄] is at least 90.5%.

b = b b = b̄ b = 1
2(b + b̄)

b b κ1 κ2 κ3 κ1 κ2 κ3 κ1 κ2 κ3

1 2 1.18 1.07 0.68 0.99 0.94 0.67 1.05 0.98 0.67

1 5 1.22 1.11 0.69 0.91 0.90 0.67 0.96 0.93 0.67

1 10 1.23 1.12 0.69 0.89 0.88 0.67 0.92 0.91 0.67

1 20 1.23 1.13 0.69 0.88 0.88 0.67 0.89 0.89 0.67

1 50 1.24 1.13 0.69 0.87 0.87 0.67 0.88 0.88 0.67

.5 1 1.29 1.09 0.70 1.02 0.94 0.69 1.12 0.99 0.69

.3 1 1.41 1.12 0.72 0.97 0.91 0.73 1.09 0.96 0.71

Table 4.3. Efficiencies of the D1-optimal standardized maximin optimal design for estimating the
individual coefficients in the EMAX model (1.2). The efficiency is calculated with respect to the
standardized maximin D-optimal design and defined in (4.5).

We also compare the performance of the standardized maximin D- and D1-optimal design ξD and
ξD1 by calculating the efficiency of the design ξD1 with respect to the design ξD for estimating the
individual coefficients a, b, h. Specifically, we compute the ratio

κi(b) =
eT

i M
−1(ξD1, b)ei

eT
i M

−1(ξD, b)ei

i = 1, 2, 3,(4.5)

where ei denotes the ith unit vector in R
3 (i = 1, 2, 3). The results are listed in Table 4.3. Note a

value smaller than 1 for κi(b) indicates that for the specific value of b the standardized maximin
D1-optimal design ξD1 is more efficient for estimating the corresponding parameter than the
standardized maximin D-optimal design ξD, where i = 1, 2, 3 correspond to the parameters a, b
and h, respectively. As expected the standardized maximin D1-optimal design is substantially
more efficient for estimating the parameter h. On the other hand the situation for the parameters
a and b is not so clear any more. Here we observe that for the lower boundary b = b the
standardized maximin D-optimal design ξD yields smaller variances for least squares estimates of
the parameters a and b. This improvement can be substantial. For example, if b = 0.3 and b̄ = 1,
the standardized maximin D-optimal design is 40% more efficient for estimating the parameter
a in the EMAX model if b = 0.3 would be the “true” parameter. This superiority decreases if b
moves to right boundary b̄. Here the efficiencies vary between 87% and 102%, but the standardized
maximin D-optimal design still yields reasonable efficiencies.
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These results suggest that the standardized maximin D-optimal designs for the EMAX model are
more efficient for inference in the Michaelis-Menten model, if the null-hypothesis in (1.3) cannot be
rejected. In order to study the loss of efficiency if the standardized maximin optimal designs from
the EMAX model are used in the Michaelis-Menten model (1.1) we investigate the D-efficiency

effD(ξ, b) =
( |M̄(ξ, b)|

supη |M̄(η, b)|

)1/2

,(4.6)

where

M̄(ξ, b) =

∫ T

0

x2

(b+ x)2

(

1 − a
b+x

− a
b+x

a2

(b+x)2

)

dξ(x)(4.7)

is the information matrix of the design ξ in the Michaelis-Menten model. Note that this efficiency
does not depend on the parameter a. In Figure 4.1 we present these efficiencies for the standardized
maximin D- and D1-optimal design for the EMAX model and for the standardized maximin D-
optimal design for the Michaelis-Menten model, which was recently determined by Dette and
Biedermann (2003). We considered the cases, where the interval for the parameter b is given by
[0.3, 1], [0.3, 2], [1, 5] and [1, 10] and the picture is very similar for all situations. The standardized
maximin D1-optimal design for the EMAX model yields only efficiencies about 40 % for the
estimation of the parameters in the Michaelis-Menten model and cannot be recommended if the
experimenter is mainly interested in a design for the Michaelis-Menten model which allows the
possibility of checking the goodness-of-fit of the EMAX model. The standardized maximin D-
optimal designs for the Michaelis-Menten model are two point designs, robust and very efficient for
inference in the Michaelis-Menten model. However, these designs cannot be used for testing the
hypothesis (1.3). On the other hand the standardized maximin D-optimal designs from the EMAX
model have at least three support points and therefore allow to check the model assumptions of the
Michaelis-Menten enzyme kinetic function. If the hypothesis (1.3) of the EMAX model cannot be
rejected these designs have about 75 % D-efficiency for inference in the Michaelis-Menten model.
For this reason these designs are recommended for inference with the Michaelis-Menten enzyme
kinetic function, because they are quite robust with respect to a misspecification of the range for
the nonlinear parameter b and additionally allow to check the model assumptions by testing the
hypothesis (1.3).
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Figure 1: D-efficiencies (4.6) in the Michaelis-Menten model (1.1) of the standardized maximin
D-optimal (solid line) and standardized maximin D1-optimal design (dotted line) for the EMAX
model (1.2). The figures also contain the efficiencies of the standardized maximin D-optimal
designs for the Michaelis-Menten model (dashed line). The range for the parameter b in the
standardized maximin criteria is given by [b, b̄] = [0.3, 1] (left upper panel), [b, b̄] = [0.3, 2] (right
upper panel), [b, b̄] = [1, 5] (left lower panel), [b, b̄] = [1, 10] (right lower panel).
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5 Appendix: proofs

We begin with an auxiliary result, which was used in Section 3 and is also required for several
steps in the proofs of our main results.

Lemma A.1. For any fixed T > 0 and b > 0 the functions

f1(x, b) =
x

(x+ b)2
, f2(x, b) =

x2

(x+ b)2
, f3(x, b) =

x log x

(x+ b)2

form a Chebyshev system on the interval (0, T ].

Proof of Lemma A1. It follows from Karlin and Studden (1966) that the functions g1(x), . . . , gm(x)
generate a Chebyshev system on the interval (c, d] if and only if for any α1, . . . , αm not all equal
to zero the function

m
∑

i=1

αigi(x)

vanishes in the interval (c, d] no more than m− 1 times. To prove the Lemma, we suppose on the
contrary that there exists a function

g(x) =
α1x

(x+ b)2
+

α2x
2

(x+ b)2
+
α3x ln x

(x+ b)2
,

3
∑

i=1

α2
i 6= 0,

which vanishes 3 or more times on the interval (0, T ]. If we let v(x) = x2/(x+ b)2, ψ1(x) = 1/x,
ψ2(x) = 1, ψ3(x) = (ln x)/x, the supposition is the same as asserting the function

g(x) = v(x)[α1ψ1(x) + α2ψ2(x) + α3ψ3(x)]

vanishes 3 or more times on the interval (0, T ]. Let 0 < x1 < x2 < x3 ≤ T denote the three
distinct points with g(xi) = 0 (i = 1, 2, 3) and note that g(x) → 0 as x → 0. It follows from here
that there exists three points x̃1 ∈ (0, x1), x̃2 ∈ (x1, x2) and x̃3 ∈ (x2, x3) such that g′(x̃i) = 0,
i = 1, 2, 3. It is easy to check that v(x) > 0, v′(x) > 0 whenever x ∈ (0, T ]. Since

g′(x) = v′(x)
3
∑

i=1

αiψi(x) + v(x)
3
∑

i=1

αiψ
′

i(x),

we have

sign

3
∑

i=1

αiψ
′

i(x̃j) = (−1)jε, j = 1, 2, 3,

where ε is either 1 or −1. Consequently, there exists two points x̄1, x̄2 with x̄1 ∈ (x̃1, x̃2),
x̄2 ∈ (x̃2, x̃3) such that

ḡ(x) :=
∑

αiψ
′

i(x̄j) = 0 j = 1, 2.

However,

ḡ(x) = −
α1

x2
−
α3 lnx

x2
+
α3

x2
=

=
1

x2
(β1 − α3 lnx) , β1 = α3 − α1.
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Due to the monotonicity of the logarithm the function ḡ(x) can vanish at two distinct points
0 < x̄1 < x̄2 if and only if α3 = α1 = 0. But in this case we had g(x) = α2x

2/(x+ b)2, α2 6= 0 and,
therefore, g(x) 6= 0 whenever x ∈ (0, T ]. The obtained contradiction proves that the functions f1,
f2, f3 generate a Chebyshev system on (0, T ].

2

5.1 Proof of Theorem 2.1

Recalling the definition of the vector f(x, a, b, h) in (1.2) and the definition ξ̃({x}) = ξ({x1/h}), it
follows from a straightforward calculation that

f(x1/h, a, b, h) = S · f(x, a, b, 1),

where the matrix S is defined by

S =







1 0 0

0 1 0

0 0 1/h






.

If ξ puts mass wi at xi, then the design ξ̃ puts mass wi at xh
i , which implies

M(ξ̃, a, b, 1) =
n
∑

i=1

wif(xh
i , a, b, 1)fT (xh

i , a, b, 1)

=

n
∑

i=1

wiS
−1f(x, a, b, h)fT (x, a, b, h)S−1

= S−1M(ξ, a, b, h)S−1,

and the assertion of Theorem 2.1 follows because the D- and D1-criterion are based on the deter-
minants of the information matrices M(ξ, a, b, h) and M̃(ξ, a, b, h) (recall that M̃ is obtained from
M by deleting the last row and column).

2

5.2 Proof of Theorem 3.1

From the definition of the vector f(x, b) = f(x, 1, b, 1) in (2.3), the matrix M(ξ, b) = M(ξD, 1, b, 1)
in (2.2) and the equivalence theorem of Kiefer and Wolfowitz (1960), it follows that a design ξb is
locally D-optimal on the interval [0, 1] if and only if the inequality

d(x, ξD
b ) = fT (x, b)M−1(ξD

b , b)f(x, b) ≤ 3(5.1)

holds for all x ∈ [0, 1] with equality at the support points of ξD
b . From the equation f(0, b) = 0 it

follows that 0 is not a support point of the locally D-optimal design. Let 0 < x∗1 < . . . < x∗n ≤ 1
be the support points of the locally D-optimal design

ξD
b =

(

x∗1 . . . x∗n
w∗

1 . . . w∗

n

)
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and let g(x) = (x+b)4{d(x, ξD
b )−3}. We observe that (5.1) is equivalent to the inequality g(x) ≤ 0

with equality at the support points and so

g(x∗i ) = 0, i = 1, . . . , n

g′(x∗i ) = 0, i = 1, . . . , n− 1(5.2)

g′(x∗n) = 0, ifx∗n < 1.

Note that n ≥ 3 because otherwise M(ξD
b , b) is singular. A simple calculation shows that

ψ(x) := (x2g(4)(x))′ = α0 + α1x+
α2

x

for some constants α0 < 0, α1 > 0, α2 ∈ R which shows that the function xψ(x) has at most two
roots in the interval [0, 1]. Consequently, the function g(x) has at most 7 roots on the interval [0, 1]
counted with their multiplicities. A careful counting of the multiplicities yields n = 3. If α2 > 0
the same argument shows for the largest support point x∗3 = 1. On the other hand, if α2 ≤ 0, the
function xψ(x) has one root in the interval [0,∞) and the proof of the property x∗3 = 1 follows by
similar arguments as given in Dette, Melas, Pepelyshev and Strigul (2003). A standard argument
[see Silvey (1980), Lemma 5.1.3] shows that ξD

b must have equal weights at its support points.

Secondly, if there would exist two D-optimal designs, say ξ
(1)
b and ξ

(2)
b , then these arguments show

that ξ
(1)
b and ξ

(2)
b have equal weights at three support points. Consequently, the log-concavity of

the determinant criterion implies that the design 1
2
(ξ

(1)
b + ξ

(2)
b ) is also D-optimal with at least four

support points. This contradicts the fact that any locally D-optimal design has three support
points. Finally, the existence of the D-optimal design on the interval [0, 1] follows from the
continuity of the vector f(x, b) and the compactness of the design space.
In the general case, where the design space is given by the interval [0, T ] we consider for each
design ξ on the interval [0, 1] the design ξT on [0, T ] induced by the transfomation x → Tx, that
is ξT ({x}) = ξ({ x

T
}). In this case we have by a simple calculation

|M(ξT , T b)| = c · |M(ξ, b)|,(5.3)

where the constant c does not depend on the design. Consequently, the locally D-optimal design
on the interval [0, T ] is obtained from the local D-optimal design ξD

b/T on the interval [0, 1] by
multiplying the support points with the parameter T.

2

5.3 Proof of Theorem 3.2

We first consider the design problem on the interval [0, 1]. Let 0 < x∗1 < x∗2 < x∗3 ≤ 1 denote the
corresponding Chebyshev points and recall the definition of the weights w∗

i in (3.9) and (3.11).
With the notation

F̄ = (fi(x
∗

j , b))
3
i,j=1(5.4)

it follows from Dette, Melas and Pepelyshev (2003) that the design ξD1 with weights w∗

i at the
points x∗i is locally D1-optimal (in other words e3-optimal) for the EMAX model (1.2) with respect
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to the parameter (b, 1) if and only if F̄w∗ = e3 = (0, 0, 1)T and α3 6= 0, where α3 is the coefficient
of x log x/(x + b)2 in the Chebyshev polynomial (3.5). Here w∗ = (w∗

1, w
∗

2, w
∗

3) is the vector of
weights of the design ξD1. A direct calculation shows that the equation F̄w∗ = e3 is satisfied.
Assume that α3 = 0, then it follows from (3.5) and (3.6) that

ψ(x∗j ) =
x∗j

(b+ x∗j )
2
{α1 + α2x

∗

j} = (−1)j, j = 1, 2, 3,(5.5)

which is impossible, because the function ψ has only one root, if α3 = 0. This shows that the design
with weights w∗

1, w
∗

2 and w∗

3 at the Chebyshev points x∗1, x
∗

2 and x∗3 is in fact locally D1-optimal
for the EMAX model (for h = 1). We now prove that x∗3 = 1. For this we assume the contrary,
i.e. 0 < x∗1 < x∗2 < x∗3 and note that the Chebyshev polynomial (3.5) can be written as

ψ(x) = z(x)

3
∑

i=1

αif̄i(x)

where z(x) = x2/(x+b)2, f̄1(x) = 1, f̄2(x) = 1/x, f̄3(x) = (log x)/x.We have ψ(x∗i ) = (−1)i, ψ′(x∗i ) =
0 (i = 1, 2, 3), z(x) > 0, z′(x) > 0 for x ∈ (0,∞). Consequently, the function

ψ̃(x) =
∂

∂x

3
∑

i=1

αif̄i(x) = (α3 − α2)
1

x2
− α3

log x

x2

is positive at x∗1 and x∗3 and negative at x∗2, which means that ψ̃(x) vanishes at (at least) two
points t1 ∈ (x∗1, x

∗

2) and t2 ∈ (x∗2, x
∗

3). However,

x2ψ̃(x) = (α3 − α2) − α3 log x

vanishes at at most one point contradicting to the assumption x∗3 < 1.
For the proof of the proof of the corresponding statement on the interval [0, T ] we define

G(x1, x2, x3, b) = max
w

(eT
3M

−1(ξ, b)e3)
−1(5.6)

(in other words: for fixed support points, say x1, x2, x3, we determine the weights of theD1-optimal
design). It follows from Pukelsheim and Torsney (1993) and a straightforward calculation that

G(x1, x2, x3, b) =

(

x3x2(x3 − x2)(b+ x1)
2 + x1x3(x3 − x1)(b+ x2) + x1x2(x2 − x1)(b+ x3)

bx1x2x3[(x3 − x2) log x1 − (x3 − x1) log x2 + (x2 − x1) log x1

)2

,

and it is easy to see that for any T 6= 0,

G(Tx1, Tx2, Tx3, T b) = G(x1, x2, x3, b).(5.7)

The assertion regarding the D1-optimal design on the interval [0, T ] is now obvious.
2
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5.4 Proof of Lemma 4.1

Let ΞT denote the class of all designs on the interval [0, T ]. If ξ1 ∈ Ξ1 and ξT ∈ ΞT is related to
ξ1 by the transformation ξT ({x}) = ξ({ x

T
}), then it follows from (5.3)

min
b∈[b,b̄]

|M(ξT , b)|

max
ηT ∈ΞT

|M(ηT , b)|
= min

b∈[b,b̄]

|M(ξ1,
b
T
)|

max
η1∈Ξ1

|M(η1,
b
T
)|

= min
b∈[b/T,b̄/T ]

|M(ξ1, b)|

max
η1∈Ξ1

|M(η1, b)|
,

which proves the assertion. The justification for the corresponding assertion for the D1-optimality
criterion of the Lemma is similar and is omitted.

2
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