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Abstract 

 

This paper asks whether population growth is conducive to the sustainability of cooperation. 

A simple model is developed in which farmers who live around a circular lake engage in trade 

with their adjacent neighbors. The payoffs from this activity are governed by a prisoner’s 

dilemma “rule of engagement.” Every farmer has one son when the population is not growing, 

or two sons when it is growing. In the former case, the son takes over the farm when his 

father dies. In the latter case, one son stays on his father’s farm, whereas the other son settles 

around another lake, along with the “other” sons of the other farmers. During his childhood, 

each son observes the strategies and the payoffs of his father and of the trading partners of his 

father, and imitates the most successful strategy when starting farming on his own. Then 

mutant defectors are introduced into an all-cooperator community. The defector strategy may 

spread. A comparison is drawn between the impact in terms of the sustainability of 

cooperation of the appearance of the mutants in a population that is not growing, and in one 

that is growing. It is shown that the ex-ante probability of sustaining the cooperation strategy 

is higher for a community that is growing than for a stagnant community. 
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1 Introduction 

In this paper we link together two strands of the literature: that on the evolution and 

sustainability of cooperative behavior, and that which has long sought to demonstrate that 

population growth is conducive to the wellbeing of societies and nations (Simon, 1977, 1996). 

The purpose of this paper is to inquire whether and under what circumstances population 

growth is conducive, or detrimental, to the sustainability of cooperative behavior in a 

population. Obviously, these questions are so broad that it is virtually impossible to address 

them in general terms. We therefore resort to an example. We delineate a specific setting in 

which two cases - one without population growth, the other with - can be compared in a well 

defined manner. In the setting developed and presented in this paper, we find that it is more 

likely that cooperation will be sustained when a population is growing than when it is not. 

Under a standard one-shot prisoner’s dilemma payoff structure, cooperation is, on average, 

more conducive to survival than defection, as it confers a higher per capita payoff. Therefore, 

we are led to infer that in the specific setting studied by us, a growing population has some 

feature that better supports future population growth that a stagnant population does not have. 

In section 2 we delineate our basic model: farmers who are located around a lake trade 

with their neighbors in a setting in which the returns to trade are governed by a prisoner’s 

dilemma payoff structure, and where, to begin with, all the farmers are cooperators. In section 

3 we tinker with the model by assuming that one or two defectors appear in a constant 

population of nine cooperators. We use nine farmers as our “canonical” example because nine 

is the smallest settlement size for which, in terms of the sustainability of cooperation, 

qualitative differences appear between the no population growth and the population growth 

case. We calculate the probability of the spread of the defector strategy in the farmers’ 

community, and we show that the community has a significant chance of ending up as a pure 

defector community, which in turn has the lowest per capita payoff of all possible farmer-by-

type configurations. In section 4 we replicate the analysis of section 3 for a situation in which 

the population is growing. Once again, we allow for the appearance of one or two defectors in 

the initial, all-cooperator population. For a settlement of nine farmers we calculate the 

probability that the population will end up consisting entirely of defectors. We find that with 

two initial defectors, the probability is lower than it would be with a constant population. This 

leads us to conjecture that in our model, population growth is conducive to the sustainability 

of cooperation. In section 5 we provide a generalization: stepping beyond the case of a 

settlement of nine farmers, we study a settlement of cooperators of any size in which a 
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random number of mutant defectors appear. We find that qualitatively our findings carry 

through also to this general case: the ex-ante probability of the survival of cooperation is 

higher for a growing population than for a stagnant population. Section 6 explains how our 

approach relates to and differs from writings in evolutionary biology that study the impact of 

demographic processes on the prevalence of altruism. Section 7 concludes. In the appendix 

we present an extension of our model, postulating that progeny depends positively on payoffs. 

We show that such a constellation too can give rise to the main result reported in the body of 

the paper. 

 

2 The model 

We base our model on the perception that, typically, the success or failure of an individual 

who makes an economic decision is influenced by the choices made by others in his economic 

sphere. Following Bergstrom and Stark (1993) and more recently Stark and Behrens (2010, 

2011), we consider a population of n  farmers, where 3n ≥  and is a natural number, who 

cultivate their plots which are arranged around a lake. Thus, every farmer has exactly two 

neighbors. Each of the n farmers trades with his immediate neighbors, one to his right, and 

one to his left.
1
 We assume that trading is necessary for the proper functioning of a farm; 

every farmer thus has to engage in trade with his neighbors. 

The payoffs to a farmer from a trade are governed by a prisoner’s dilemma game in 

which he is either a cooperator, who plays C, or a defector, who plays D, with his two trading 

partners. The farmer’s overall payoff is the sum of the payoffs from playing with his two 

trading partners, where the payoff from the play with each partner is given by the following 

matrix: 

 

  Column player 

   C D 

Row 

player 

C R, R  S, T  

D T, S  P, P  

where 

 T R P S> > > . (1)  

                                                 
1
 Obviously, three is the minimal number of farmers that allows an individual to have two neighbors to trade 

with. 
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Additionally, we assume that 

 2R T P> + , (2) 

namely that a cooperator surrounded by cooperators (thereby receiving a payoff of 2R ) is 

more successful (enjoys a higher total payoff) than a defector trading with a cooperator and a 

defector (thereby receiving a payoff of T P+ ).  

Dynamics is introduced into the model in the form of learning and generational 

replacement. A farmer belongs to one generation t , 0,1,2,...t = . Life is divided into two 

periods or phases: childhood, and farming-cum-trading. At the beginning of the second 

period, each farmer has one or two sons, depending on the population growth setting. 

During childhood, a son learns from observing the effects of the practices pursued by 

his father and his father’s trading partners. He finds out which practice (strategy) is the most 

successful (in terms of the sum of the payoffs) in the parental generation. When a son takes 

over the farming operations, he adopts the strategy that has yielded the highest payoff.  

This highly stylized structure accords with evidence that farmers’ decisions respond to 

the actions and outcomes of other farmers in their “geographic proximity.” Conley and Udry 

(2010) present evidence that the intensity of fertilizer use by farmers in southern Ghana is 

strongly attributable to learning from their “information neighbors” and from their own 

experience.  

We start with a population of farmers who are all cooperators. This implies that each 

farmer receives from each trading relationship a payoff of R. 

To investigate the robustness or the sustainability of cooperation in the “ancestral” 

village community, we assume that in generation 0t = , there is a mutation of cooperators into 

defectors whose strategy could well spread into future generations. We track the 

consequences of the appearance of defector mutants in what otherwise is a pure cooperator 

population in two settings: one without population growth, the other with. We characterize 

population growth as a multiplication of farming settlements (ours is “a lake district”): when 

each farmer has two sons, one son takes over his father’s farm whereas the other son, along 

with the second sons of all the other farmers, settles around another lake, choosing his farm 

placement randomly. 
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3 The sustainability of cooperation without population growth 

In this section, we study the case in which there is no population growth: each farmer has only 

one son, who takes over his father’s farm when the father passes away. We track the “history” 

of the farming community as of time 0t =  when one or two cooperators mutate into 

defectors. 

One mutant defector 

In the ancestral village, let there be one random mutation into defection. In all the 

graphs that follow, farmers are represented by circles placed around the lake: a white circle 

stands for a cooperating farmer, a black circle - for a defector farmer. The letters P, R, S, T 

near the circles are the payoffs that a farmer gets from a trade with a neighbor. 

The generation 0t =  population is depicted in Figure 1. 

 

Figure 1. The strategies and the payoffs in a settlement of 9n =  farmers, in generation 0t = , 

and in the wake of one mutation. 

From condition (1) it follows that the mutant’s trait, which results in a total payoff of 

2T , will spread among the sons of the mutant’s two immediate neighbors, as his trait will be 

the most successful example in their neighborhood. Thus, at time 1t = , the configuration will 

be as in Figure 2. 
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Figure 2. Strategies and payoffs in a settlement of 9n =  farmers, in generation 1t = , and in 

the wake of one mutation. 

What happens in the next generation ( 2t = ) depends on the prevalence of a 

“cooperator island” of sufficient size (cf. Stark and Behrens, 2011), namely on whether the 

population size is large enough ( 6n ≥ ) to allow for at least one cooperator to be surrounded 

only by cooperators, resulting in him receiving a total payoff of 2R . According to (2), the 

cooperator in the middle of a batch of cooperators will be more successful than a defector on 

the border of a cluster of two or more defectors who receives ( )T P+ , and therefore, the D 

trait will spread no more. Clearly, had the population size been less than 6, no successful 

“example” of playing C strategy would have been left, and the entire community would have 

ended up as a community of defectors.  

It is worth noting that in the case of a single mutant defector, the community outcome 

does not depend on the defector’s random placement; the spatial configuration is the same no 

matter in which farm the mutant happens to appear. 

Two mutant defectors 

The situation is more intricate when at 0t =  there are two mutant defectors. To help 

us map the whereabouts of the defectors, we define a vector ( ) ( )1, ,..., ktD n k d d=  that traces 

the number of cooperators among the k  defectors in generation t .
2
 

                                                 
2
 For illustrative purposes, when presenting the configurations ( ) ( )

1
, , ...,

kt
D n k d d=  we start enumerating the 

separating cooperators from the defector who is the first after “the 12 o’clock position” and proceed clockwise. 

Since the spread of the defection strategy depends only on the numbers of cooperators separating the k defectors, 

the configurations ( ) ( )
1

, , ...,
kt

D n k d d=  are equivalent with respect to rotations and symmetric transformations. 

For example, the configuration (9, 4) (2, 3, 0, 0)
t

D =  is qualitatively equivalent to the configuration (0, 2, 3, 0)  

or to the configuration (0, 0, 3, 2) . We will use the term “probability of a configuration” synonymously with “the 
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There are 9 8 72× =  possible initial placements of the two mutant defectors among the 

nine farmers. These placements can be pooled into four representative configurations that 

differ in substance one from the other, and occur each with probability 1/ 4 : I

0(9, 2) (7,0)D = , 

II

0 (9, 2) (6,1)D = , III

0 (9,2) (5,2)D =  and IV

0 (9,2) (4,3)D = .  

The four parts of Figure 3 depict the evolution of the community structure in these 

four configurations. 

 

Figure 3. The evolution of strategies in a settlement of 9n =  farmers in the wake of two 

random mutations. 

The repercussions of the spread of the defector strategy differ across the four cases, 

but they follow a simple general rule: when a defector is introduced into the population, his 

“momentary” success among neighboring cooperators is mimicked in the next generation by 

the sons of his immediate neighbors who learn from his example during their childhood. The 

repercussions depend on the relative placement of the two defectors in the community. We 

                                                                                                                                                         
probability of all of a configuration’s qualitative/structural equivalents (with respect to rotations and 

symmetry).” 
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have two types of outcomes: 

(i) when the mutant defectors are separated by at least one cooperator, the defector 

strategy spreads among all the trading partners of the defectors (configurations II 

through IV in Figure 3); 

(ii) when the mutant defectors are placed one next to the other, condition (2) implies that 

their strategy will not be considered as successful by their neighbors if the size of the 

community is large enough for a successful cooperator to be left so as to serve as a 

good example (configuration I in Figure 3), and hence, the defector strategy does not 

spread among the defectors’ neighboring cooperators. 

In subsequent generations, the spread of the defector strategy stops in a manner akin to 

that of one mutant defector: when an “island of cooperation” of at least three cooperators is 

left, that is, when the configuration allows for at least one cooperator to trade with only 

cooperators, then the defector strategy does not appear as tempting to the sons of the 

cooperating farmers in the neighborhood of this successful cooperator. The spread of 

defection is halted. 

In sum: considering the question of the survival of cooperation in a population of nine 

farmers and two mutant defectors, only in one initial case - configuration IV

0D  - is the result 

starkly “negative;” after two generations, the community becomes a pure defector 

community; the two clusters of cooperators in generation 1t =  are too small for the C strategy 

to be successful in comparison with the D strategy in such a mixed population. Given this, we 

can state that in the current setup, the probability of sustaining cooperation in the wake of the 

mutation of two cooperators into defectors is 3 / 4 , since the probability of each of the three 

“positive” configurations that does not allow elimination of cooperators (configurations I

0D , 

II

0D , and III

0D ) is 1 / 4 . 

In the next section we study the same setup but with population growth. We show that 

as long as only one mutant defector appears in the population, there are no distinct 

repercussions of population growth - compared to the case of no population growth - for the 

sustainability of cooperation in the farming population. However, when there are two mutant 

defectors, the probability of the spread of the defector strategy among the entire population is 

muted; it is lower than in the absence of population growth. 
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4 The sustainability of cooperation with population growth 

In this section we inquire how the preceding results are affected when we allow the 

population to grow.  

We introduce population growth by assuming that at the beginning of the second 

period of his life, every farmer has two sons. At the end of the farmer’s life, one of the sons, 

the “stayer,” takes over his father’s farm, whereas the second son, the “settler,” along with his 

peers, begins farming around a new lake. Therefore, after each generation, the population of 

active farmers as well as the number of settlements doubles. 

We assume that when settling around the new lake, the settler sons are placed 

randomly, with uniform probabilities of each of the possible permutations.
3
 As in the setting 

without population growth, during their childhood both sons learn from the experience 

(payoffs) of their father and his two adjacent neighbors. Consequently, at the time of the 

generational shift, both sons (the stayer and the settler) choose the same strategy, yet they end 

up playing it in different locales. 

We could alternatively assume that the sons settle around the new lake not randomly, 

but rather by mimicking the neighborhood pattern that would have prevailed had they been 

the only sons taking over their fathers’ farms in the ancestral village. It is immediately 

obvious that in such a case, population growth will not yield an outcome different from that of 

no population growth because the evolution of strategies in the descendant villages will be the 

same as in the ancestral village leading, in terms of the sustainability of cooperation, to the 

same outcome across all the settlements. Therefore, in the population growth setting, we 

attend only to a random placement of the settlers. 

One mutant defector 

To begin with, let there be a randomly placed mutant defector in the population. There 

are two possibilities: if (3 ) 6n≤ < , then the batches of three next-generation defectors in each 

                                                 
3
 The possibility that on the way to the new lake some sort of a grouping of cooperators will be formed, aimed at 

forming a settlement pattern that is less random and more rewarding, does not align with our framework. This is 

so for two reasons. First, because the sons of a given father observe only the immediate neighbors of their father 

(they do not observe the payoffs of farmers farther away), they cannot foresee the strategies of the sons of 

neighbors of their father, because the information base for the choice of strategies of a neighbor’s sons is not 

available to the sons of a given farmer. (Stark and Behrens, 2010, developed a theory of an evolutionary edge of 

knowing less; more information could well be a curse, not a reward.) Second, because the true strategies of 

settlers are not common knowledge, and because deviators have no incentive to reveal their true type, any 

exchange of information between the settlers about the strategy that they will adhere to is bound to end with all 

of them presenting themselves as cooperators, making the exchange useless. (For an example of model that in a 

prisoner’s dilemma setting allows selection of counterparts by type, see Stark et al., 2009.) 
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of the communities are too “massive” to allow for an “island of cooperation” of a size of at 

least three to survive. Therefore, for such a low n, cooperation is doomed. If 6n ≥ , however, 

then at least in the ancestral village cooperation is not “endangered;” as revealed by the 

analysis in the preceding section, the appearance of one mutant defector does not suffice to 

“convert” the ancestral village into a pure defector community. Cooperation will survive at 

least in this village. So in general, we can state that in the case of one mutant defector, in 

terms of the sustainability of cooperation the outcome for a population growth setting is the 

same as the outcome for a no population growth setting. 

Two mutant defectors 

When, for 9n = , in the ancestral settlement in generation 0t =  two defectors are 

randomly placed amongst the remaining seven cooperators, the evolution of strategies in the 

ancestral village will be the same as the evolution depicted in the preceding section for the no 

population growth setting. Even when we allow now for doubling of the number of 

settlements as described above, if in the ancestral village the two mutant defectors are placed 

according to configurations I

0D , II

0D  or III

0D , cooperation will surely survive at least in that 

village, no matter what will be the outcome of the random placements of the settlers in the 

newly-settled villages. Therefore, the only situation when the overall population has a chance 

of ending up as a pure defector community is the appearance of mutant defectors as in 

configuration IV

0D  (cf. part IV of Figure 3). 

Because the mechanism of “learning” is the same for both settler sons and staying 

sons, we can infer that among the sons who in generation 1t =  look for a new place to settle, 

there will be six individuals who perceive defecting to be the more successful strategy - 

exactly the same number as that which we observed in 1t =  in the ancestral village (cf. the 

1t =  depiction in part IV of Figure 3). 

The question to address is whether the random placement of the individuals in the new 

village affects the fate of cooperation which in the ancestral settlement is “doomed.” 

As we know from the conditions discussed before, to “stop” the spread of the defector 

strategy we must have a cluster of at least three cooperators placed against possible clusters of 

defectors. For only three cooperators to be left in a population of nine individuals, this means 

that their placement must be of the form: 
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Figure 4. A configuration 1(9,6) (0,0,0,3,0,0)D =  allowing the survival of cooperation in the 

settlers’ village after an appearance of mutant defectors in the ancestral village according to 

configuration IV

0D . 

The probability of the configuration 1(9,6) (0,0,0,3,0,0)D =  among nine individuals 

out of which six are defectors and three are cooperators, is:
4
 

 ( )1(9,6) (0,0,0,3, 0
6! 3! 9 3

9! 2
)

8
,0P D

× ×
== = . (3)  

The remaining configurations with the complementary probability 25/28, lead to pure defector 

communities also in this new settlement (and in all of its descendant settlements). 

Therefore, if we assume that the various configurations of settling around the new lake 

are independent of the placement of the mutant defectors around the ancestral lake, the 

probability of sustaining cooperation in the (overall) population goes up from 3/4 in the no 

population growth model, to  

 ( )
3 1 3 3 3

4 4 28 4 112
P Cooperation = + × = + . (4)  

In the case of a community of nine farmers who engage in trading activities with their 

closest neighbors, population growth has a distinct beneficial influence on the survival of 

cooperation. We next assess the implications of population growth for the sustainability of 

cooperation when the ancestral population can be of any size 3n ≥ .  

 

                                                 
4
 We have 3! 6!×  possible arrangements of three cooperators and six defectors giving exactly the same 

configuration as in Figure 4, but this arrangement is equivalent with respect to nine possible permutations. 

Therefore 3! 6! 9× ×  arrangements out of a total 9!  yields the configuration 
1
(9, 6) (0, 0, 0, 3, 0, 0)D = . 
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5 A generalization  

Consider a probabilistic constellation of the size of the settlement, of the number of the initial 

mutant defectors, and of their placement among settlers; all for generation 0t = . That is, we 

assume that the initial settlement size ( 3n ≥ ) is first chosen according to a probability 

distribution ( )3 54, , ,...P p p p=  such that 0
i

p >  for 3,4,5,...i = . Next, the number of mutant 

defectors k , 1 k n≤ ≤ , is chosen according to a probability distribution ( )1,...,n nQ q q=  such 

that 0
i

q >  for 1, 2,...,i n= . And finally, for given n  and k , the configuration in which the 

defectors appear in the ancestral village, ( )0 ,D n k , is chosen over the set of all possible 

configurations according to a distribution that assigns to each possible configuration a non-

zero probability. Then, a village characterized by the triplet ( )( )0, , ,n k D n k  will be treated as 

the ancestral settlement. This settlement then experiences, or does not experience, population 

growth.
5
 In the population growth setting, the random placement of the farmers in the newly-

settled villages is governed by a uniform distribution over all possible configurations. 

Since we are interested in the likely survival of cooperation, we will denote by 

( )growthP Cooperation  the ex-ante (that is, before the choice of the settlement size n) 

probability of the event that cooperation will survive in the long run in at least one of the 2t  

villages in generation t  in the population growth setting,
6
 and by ( )staticP Cooperation  the ex-

ante probability of the event that cooperation will survive in the long run in the ancestral 

village in the static no population growth setting. 

We now state and prove the following claim. 

Claim 1: ( ) ( )growth staticP Cooperation P Cooperation> . 

Claim 1 tells us that the ex-ante probability of the survival of cooperation is strictly 

higher in the population growth setting than in the no population growth setting.  

Proof: First, we note that 

 ( ) ( )| , | ,growth static
n k n

P Cooperation n k P Cooperation n k
≤

≥∀ ∀ . (5) 

                                                 
5
 We assume that the (joint) distributions of n, k and ( )

0
,D n k  are the same for these two settings. 

6
 “Long run” means any generation t which is beyond the moment in time at which the evolution of strategies in 

the ancestral village has reached a stable state. 
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This inequality arises from the assumption that the distribution of 0 ( , )D n k  is the same in the 

population growth setting as in the no population growth setting, and from the fact that in a 

given configuration ( )( )0, , ,n k D n k , the occurrence of the Cooperation event in the no 

population growth setting implies occurrence of the Cooperation event also in the population 

growth setting, since in both settings the evolution of strategies in the ancestral villages is the 

same. 

Moreover, from the example presented in section 4 we already know that there exists 

at least one combination ( ),n k , namely 9n =  and 2k =  such that
7
 

 ( ) ( )| 9, 2 | 9, 2growth staticP Cooperation n k P Cooperation n k= = > = = . (6) 

Since it follows from our assumptions about distributions of n  and k  that 

( ) ( ), , 0growth sta
nk

c
n

tiP n k P n k
≤

= >∀ ∀ , we can infer from using the law of total probability that for 

the ex-ante probabilities we have 

 ( ) ( )growth staticP Cooperation P Cooperation> , (7) 

which concludes the proof. □ 

Furthermore, that the probability of the survival of cooperation is higher in the 

population growth setting than in the no population growth setting does not critically hinge on 

the configuration 9n =  and 2k = . To this end, we state and prove the following corollary.  

Corollary 1: ( ) ( )
12

| |
growth static

n
P Cooperation n P Cooperation n

≥
∀ > . 

Corollary 1 tells us that the ex-ante probability of the survival of cooperation is always 

strictly higher in the population growth setting than in the no population growth setting when 

the community is large enough.  

Proof: We have already noted (5). To prove the corollary, we only need to find for each 

12n ≥  a k  and an initial configuration 
0 ( , )D n k  such that defection spreads in the ancestral 

                                                 
7
 The calculation, reported in equation (4), of the difference between the probabilities of sustaining cooperation 

in the two settings was for a uniform probability distribution of the ( )
0

,D n k  configurations. This quantitative 

result may no longer apply in the more general setting discussed here. Nonetheless, as long as we assume that 

every possible configuration ( )
0

,D n k  can be chosen with a non-zero probability, the qualitative result that the 

probability of sustaining cooperation is higher in the population growth setting than in the stagnant population 

setting carries through.  
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village, whereas in the newly-settled village cooperation survives with a non-zero probability. 

Let k be a natural number satisfying 

 5k n≥ , (8) 

and 

 3 3n k− ≥ . (9) 

It is easy to check that such a k exists for any 12n ≥ .
8
 We note that from condition (9) we get 

that 

 3 2 2kk kn ≥ + ≥− . (10) 

 Conditions (8) and (9) ensure that there is a non-zero probability that in the ancestral 

village a configuration ( )0 ,D n k  will arise such that there are k  defectors, each surrounded 

by clusters of 2, 3, or 4 cooperators, since at least one in five individuals is a mutant defector 

(condition (8)), and at the same time there are more than 2k  cooperators to form clusters 

between the mutants (condition (9) looked at through the prism of (10)). Then, there is no 

cluster of cooperators of sufficient size, namely 5, to sustain the cooperation strategy, and all 

farmers in the ancestral village will exhibit the trait D in the second generation after the 

appearance of mutants. 

Additionally, in such a ( )0 ,D n k  configuration where each of k mutant defectors 

trades with two cooperators, there will be exactly ( ) 2 3n k k n k− − = −  cooperators among the 

settlers in the first generation after the mutation. Now, condition (9) ensures that there are at 

least three cooperators settling on the shores of the new lake. Since all possible configurations 

of farmers in the newly-settled village occur with a non-zero probability, it is possible that the 

settlers form two clusters, one of cooperators and one of defectors. And since the cluster of 

cooperators is at least of size 3, cooperation will survive in this descendant village. This 

concludes the proof. □  

Two words of clarification are in order. First, our criterion for the survival of 

                                                 

8
 This can be seen clearly upon rewriting conditions (8) and (9) as an interval 

3
,

5 3
n

n n
K

−
=
 
  

. A sufficient 

condition for the existence of a natural number k that jointly satisfies (8) and (9) is that the length of the interval 

n
K  is at least one, that is, 

3

3 5
1

n n−
− ≥ , which is equivalent to 15n ≥ . (Obviously, because 

3

3

n
n

−
< , such a 

k also satisfies the requirement k n≤ .) Additionally, for 12,13,14n =  conditions (8) and (9) are jointly satisfied 

for 3k = . 
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cooperation (defined as the occurrence of the Cooperation event) does not tell us the 

prevalence or fraction of cooperating farmers in the total population of the settlements in a 

given generation. It may well be the case that in the setting of population growth with a 

random placement of the new farms, the expected ratio of cooperators to defectors is lower 

than in the no population growth setting. In addition, even the expected number of pure-

defector settlements can be higher in the population growth setting than in the no population 

growth setting. Still, our interest is in the probability of survival of cooperation somewhere in 

the settlements and, as we have shown, this probability is higher in the population growth 

setting than in the no population growth setting. 

Second, we do not address the question how population pressure or environmental 

carrying capacity might impact on the link between population growth and cooperation. There 

are good reasons for this. In our setting, the “fate” of cooperation is decided in a relatively 

short span of time.
9
 Therefore, factors that may be associated with the depletion of resources 

and untenable farming space are unlikely to influence the rate of population growth or the 

payoffs from farming activities. Nor is it proven that population pressure depletes resources. 

Boserup (1981), Simon (1977, 1996), and others have persuasively argued that “necessity is 

the mother of invention,” and marshaled powerful evidence that refutes the Malthusian 

theory. We thus elected to refrain from considering this issue within the confines of the 

present paper. 

 

6 A link with evolutionary biology 

The study of the relationship between demographic processes and the prevalence of 

altruism or the incidence of cooperative behavior has a long tradition in evolutionary 

biology.
10

 However, in a number of respects our approach differs from that of evolutionary 

studies. 

In his pioneering work, Hamilton (1964) modeled the influence of cooperative 

behavior between relatives, acting through so called inclusive fitness (a measure of fitness 

accounting for the “external” effects of the altruistic acts of relatives), on the spread of the 

                                                 
9
 This time span is given by the number of generations during which the defector strategy spreads in the ancestral 

village. This number of generations is smaller than the number of farmers in the ancestral village. 
10

 For a comprehensive recent review see Lehmann and Rousset (2010). 
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gene that carries the predisposition of such behavior in the population.
11

 The prevalence of 

cooperative behavior was connected to viscosity, that is, to the tendency of relatives to live in 

close proximity. Consequently, the success of the “cooperative gene” depends on the balance 

between losses from the competition for limited resources in the occupied area and gains from 

the altruistic behavior of relatives who share a similar genetic endowment.  

Studies that followed the work of Hamilton (1964) looked more closely at viscosity 

and at different approaches to the spread of cooperating organisms (see, for example, Rogers, 

1990; Taylor, 1992; and Gardner and West, 2006). However, the models in these studies did 

not account directly for population growth but rather assumed a constant or an infinite number 

of organisms, placing emphasis on the fraction of the organisms in the population that possess 

the “altruistic” gene.  

More closely related to the population growth theme are the models of van Baalen and 

Rand (1998), Lehman et al. (2006), and Lion and Gandon (2009), who show that allowing a 

cluster of altruistic individuals to grow increases the probability of the spread of altruism. 

However, this positive effect on the prevalence of altruism is not brought about by growth of 

the overall population but is rather the result of the expansion of the local cooperating group; 

by dimming the competition between relatives the expansion unshackles the advantages of 

cooperative behavior. 

The choice of strategy in our model does not emanate from a genetic endowment nor 

from a predisposition of the individual; rather, it is an outcome of rational choice based on 

information garnered through observation of the environment: individuals optimize subject to 

an informational constraint. A strategy of a parent does not translate automatically into the 

strategy of the offspring.  

In our setting, although the procedure of settlement of the offspring might be 

reminiscent of the “budding dispersal” model of Gardner and West (2006), the payoff from 

cooperation and the choice of the cooperative strategy itself do not depend on a counterpart 

being a relative nor, for that matter, on any measure of family relatedness.  

In sum, our approach is more suitable to analyze traits among human populations 

where strategies are selected on the basis of decisions, rather than being implanted as a 

consequence of a genetic endowment. In a way, we could say that our model “takes over” 

                                                 
11

 For a derivation of “Hamilton’s rule” in a game-theory setting similar to the payoff structure used in the 

current paper, see Stark and Wang (2004). 
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altruistic individuals whose characteristics could have been formed in some evolutionary 

process, and studies the fate of cooperation in a growing population from a point in time at 

which the individuals’ development allows a conscious choice of behavior that may just as 

well constitute a break with genetic predisposition.  

 

7 Conclusions 

Drawing on a simple setting of a community of farmers who live around a lake and 

who trade each with his two adjacent neighbors, we studied the consequences for the 

sustainability of cooperation of two scenarios: no population growth, and population growth. 

We found that population growth that results in the formation of new settlements strictly 

increases the probability that a defector strategy, introduced initially by mutations, will not 

spread to the entire community. That population growth is positively correlated with the 

sustainability of the cooperative habit in a community provides a new explanation for the 

advantages enjoyed by a growing population over a stagnant population. And indeed, since 

under a standard one-shot prisoner’s dilemma payoff structure as employed by us a pure-

defector community has the lowest per-capita payoff of all cooperator-defector 

configurations, we infer that in the specific environment studied by us, a growing population 

has some feature that supports future population growth prospects which is missing in a 

stagnant population. 

We note that population growth will not impact differentially on the evolution of 

cooperation when the new settlements are mere replicas of the existing settlement, yet that it 

will be conducive to the evolution of cooperation when the pattern of settling “around the new 

lakes” is random. A fascinating topic of historical research would be a comparative study of 

the pattern of settlement of the first, “cloning” type, for example that of the medieval German 

settlements in Eastern Europe - the Ostsiedlung (Dickinson, 1945; Higounet, 1990) - 

replicating the structures of the towns of origin, and of the essentially second, random type, 

for example that of the British colonization of new lands in North America’s Great Plains and 

Australia.
12

 On a more abstract level, a study of the correlation between a measure of 

cooperation in societies and the rate of population growth of societies will be just as 

intriguing: is it the case that populations that were for some exogenous reason able to grow 

                                                 
12

 We thank Doris A. Behrens for drawing our attention to the German experience of settlement in Eastern 

Europe during medieval times. 
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faster developed norms of cooperation? What can be learned from a study of the historical 

developments of mankind? From anthropological accounts? 

 

 

Acknowledgements: We are indebted to Andy Gardner, to Gerard Roland, and to several 

anonymous referees for enlightening comments. 
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Appendix: Payoffs and progeny 

In this appendix, we attend to the possibility of a link between payoffs and reproductive 

outcomes; progeny could plausibly be increasing in payoffs, entailing a pattern of differential 

population growth rather than a uniform population growth.  

 Let m, the number of sons that a farmer has, be a function of the farmer’s payoff: 

)(m ω ∈ N  for ω ∈Ω , where {2 ,2 , , , 2 ,2 }S P S R T P R TΩ∈ + +  is the set of possible payoffs 

from farming-cum-trading for which assumptions (1) and (2) hold,
13

 and let 

 
1 22 1

( ) )  for (mm ω ω ω ω>≥ .  

We assume (i) that each farmer has at least one son, that is, (2 ) 1m S ≥ ; (ii) that if a farmer has 

exactly one son, this son takes over his father’s farm; and (iii) that a cooperator farmer 

surrounded by two cooperators has at least two sons, that is, (2 ) 2m R ≥ . 

Since the number of settler sons can be different from (or may not be a multiple of) the 

number of farms in the ancestral village, we need to specify further the process of settling 

around the new lake(s). Let then the number of farms in the ancestral village, n, also denote 

the maximal number of farms around a lake, namely n delineates the “carrying capacity” of a 

single lake. Then, a generation of sons from a single ancestral village settles around the 

minimal number of lakes that is sufficient to accommodate them all. The process of settlement 

around the new lake(s) takes place in a uniformly random fashion, namely, all the settlers 

have equal probability of occupying every available farm.
14

 

When a lake is settled by fewer farmers than the maximal “carrying capacity” of the 

lake, each farmer fences up the additional space for his farm, such that future generations of 

settlers cannot join an already-settled lake. Since farming-cum-trading requires contact 

between neighbors, larger farms imply also longer distances, on average, to be covered during 

the joint activities of neighbors. Since the advantage of larger farms is offset by the 

disadvantage of higher costs of communication/cooperation between the farmers, the payoffs 

can be held the same as in the preceding settings. 

                                                 
13

 We note that assumptions (1) and (2) do not yield a complete ordering of the Ω  set; only that 

2 2 2 2S P T P R T< < + < < , that 2S S R< + , and that S R T P+ < + . This incompleteness has no bearing, 

however, on the discussion that follows. 
14

 We do not specify in additional detail how the space around the newly-settled lakes is organized into farms 

because this is not crucial for our argument. For example, settlement could take place so as to fill all lakes but 

one to their “carrying capacity” or, alternatively, such that the number of farms around each settled lake is the 

same. 
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The remaining specification of the model (the choice of ( )( )0, , ,n k D n k , the 

independence of random distributions, and so on) is the same as in section 4. 

In this revamped setting, the results presented in section 4 continue to apply. To see 

this, note, first, that assumptions (i) and (ii) ensure that the evolution of strategies in the 

ancestral village is the same in the differential fertility setting as in the no population growth 

setting. Therefore, if cooperation is preserved in the no population growth setting, it will also 

be preserved in the population growth setting, at least in the ancestral village. Second, if 

9n = , 2k = , and the initial placement of mutant defectors is as per configuration IV

0
D  (cf. 

Figure 3), assumption (iii) ensures that there will be at least three settlers who will choose the 

cooperation strategy, and at least two settlers who will choose the defection strategy. Then, in 

the course of the settlement of the new village(s), there is a strictly positive probability that 

the settling arrangement will yield an “island” of at least three cooperators, surrounded by 

defectors who receive a payoff of T P+  from trading with a cooperator and with a defector, a 

configuration that serves to guarantee sustainability of the cooperation strategy in the new 

settlement, even if in the ancestral village cooperation is “doomed.” It follows then that in the 

differentiated population growth setting, the probability of occurrence of the Cooperation 

event (survival of cooperation) is higher than in the no population growth setting. 
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