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The age separating early deaths from late deaths

Zhen Zhang 1, 3

James W. Vaupel 2, 3

Abstract

Averting deaths may either increase or reduce life disparity, as measured by e†. The sign
of the effect depends on the age at which the deaths are averted. We show that there may,
depending on the entropy of the life table, be an age such that averting deaths before that
age reduces disparity, but averting deaths after that age increases disparity. We say that
this age separates “early” from “late” deaths (in terms of their effect on disparity) and
investigate the factors determining this threshold age. If life table entropy is less than
one, a unique threshold age separating early and late deaths always exists. If life table
entropy is greater than one, averting deaths at any age increases disparity. If entropy
equals one, averting deaths at age zero has no effect, but averting a death at any age after
zero increases disparity.

1. Relationship

We measure life disparity by life expectancy lost due to death, e† =
∫∞
0

e(a) d(a) da,
where e(a) =

(∫∞
a

`(x) dx
)
/`(a) is remaining life expectancy at age a and d(a) =

`(a) µ(a) is the life table distribution of deaths. Note that `(a) = exp(− ∫ a

0
µ(x) dx),

with `(0) = 1, gives the probability of survival to age a, that µ(a) denotes the age-
specific hazard of death, and that H(a) =

∫ a

0
µ(x) dx is the cumulative hazard function

with H(0) = 0.
Consider a perturbation that alters the cumulative hazard function by a step function

with a single negative step of size s. Let e†s be the corresponding value of life disparity
with the perturbation. To study the impact on e† of a concentrated decrease in mortality
at age a, it is useful to consider the function

(1) k(a) =
1

`(a)
de†s
ds

∣∣∣∣
s=0

= e†(a) + e(a)
(
H(a)− 1

)
,
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where e†(a) =
(∫∞

a
e(x) d(x) dx

)
/`(a) is life expectancy lost due to death among people

surviving to age a. Mortality reductions at ages with k < 0 decrease life disparity, while
those at ages with k > 0 increase life disparity.

We prove below that if e†/e(0) < 1, then there exists an age a† greater than zero
such that k > 0 for a greater than a† and k < 0 for values of a less than a†. We
also prove that if e†/e(0) = 1, then averting a death at age zero does not change life
disparity, but averting a death at any higher age increases disparity. Finally we prove that
if e†/e(0) > 1, then averting a death at any age increases life disparity. In the proof we
make use of the fact that k(0) = e†−e(0). Note that the “entropy of the life table” equals
e†/e(0) (Keyfitz 1977; Mitra 1978; Goldman and Lord 1986; Vaupel 1986), which differs
from the standard statistical definition by a term equal to ln e(0). If life table entropy is
less than one, then k(0) < 0; if entropy is one, then k(0) = 0; and if entropy is greater
than one, then k(0) > 0.

2. Proof

We consider three cases.

Case 1: k(0) < 0 (entropy < 1)

Because life spans are finite, `(a) approaches zero and H(a) approaches infinity.
Therefore at an old enough age x, H(x) > 1 and k(x) > 0. Since k(0) < 0 and
k(a) is continuous, the intermediate value theorem implies that there exists at least one
point, say z, in [0,∞] such that k(z) = 0. We prove that at any such root the derivative
of k is positive. This implies the root is unique, as shown in the Appendix.

The derivative of (1) is given by

dk(a)
da

=
de†(a)

da
+

(
H(a)− 1

)de(a)
da

+ e(a)
d
(
H(a)− 1

)

da

= −µ(a)e(a) + µ(a)e†(a) +
(
H(a)− 1)

)(
µ(a)e(a)− 1

)
+ e(a)µ(a)(2)

= µ(a)e†(a) +
(
H(a)− 1)

)(
µ(a)e(a)− 1

)
.

When k(a) = 0 it follows from (1) that H(a) − 1 = −e†/e(a). Substituting this
into (2) yields

dk(a)
da

∣∣∣∣
a=z

= µ(a)e†(a)− e†(a)
e(a)

(
µ(a)e(a)− 1

)
=

e†(a)
e(a)

> 0.(3)
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Case 2: k(0) = 0 (entropy = 1)

In this case, z = 0. We need to show that this is the only value of z, i.e., the only age
when k = 0. It follows from (2) that if k(0) = 0 then

dk(a)
da

∣∣∣∣
a=0

= 1.

Hence k becomes positive as age increases from zero. If there were an age above
zero when k(z) = 0, then the derivative of k at this age would have to be zero or neg-
ative. But as shown in (3), the derivative has to be positive at any age when k(z) = 0.
This contradiction implies that the value of a† equal to zero is unique in the case when
k(0) = 0.

Case 3: k(0) > 0 (entropy > 1)

As noted above in Case 2, if there were an age when k(a) = 0 then the derivative of
k at this age would have to be zero or negative. But as shown in (3), the derivative has
to be positive at any age when k(a) = 0. This contradiction implies that there is no age
that separates early from late deaths when k(0) > 0: averting a death at any age would
increase life disparity.

Q.E.D.

3. Numerical findings

In Case 1, when entropy is less than one, to calculate a† it is necessary to find the age
at which e†(a) = e(a)

(
1 − H(a)

)
. Using interpolation routines widely available in

statistical software, a† can be readily obtained, as illustrated in Figure 1. Changes in a†

over time are shown in Figure 2. The value of a† in Japan increased from 65 in 1950 to
84 in 2005. Note that a decline in mortality at age 75 before 1972 increased life disparity
while such a decline after 1972 decreased life disparity.

We have computed the value of k(0) for all 5830 life tables since 1840 in the (Human
Mortality Database 2009). We have also computed the value of k(0) for the 3404 life
tables in the (Human Life-Table Database 2009). In every case k(0) < 0. The closest
approach to zero was found for females in 1911-1921 in India: for this population e(0) =
23.33 and e† = 23.08, so that k(0) = −0.22 and life table entropy = 0.99. Goldman
and Lord (1986), however, provide two examples of life tables for which k(0) is positive
because entropy exceeds one. Both pertain to selected populations in rural areas of China
in the period 1929-31. One is for females (Barclay et al. 1976) and the other is for males
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(Coale, Demeny, and Vaughan 1983). For the Chinese women e(0) = 21.00, e† = 21.73,
and entropy = 1.03. For the Chinese males e(0) = 17.43, e† = 22.17, and entropy =
1.27. These cases may be artifacts of bad data.

It would be interesting to determine the conditions such that the life table entropy is
greater than, equal to, or less than one. Although life table entropy may rarely exceed one
for human populations, this may be common for some non-human species or for some
kind of machines or equipment.

Figure 1: A graphical depiction of the calculation of the threshold age (a†),
for US females, 2005
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Figure 2: The threshold age (a†) over time in four countries,
females 1950-2005
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4. History and related results

Based on the notion of life table entropy (Keyfitz 1977), Mitra (1978), Goldman and Lord
(1986) and Vaupel (1986) independently derived the mathematical expression for e† and
showed that life table entropy equals e†/e(0). Vaupel and Canudas-Romo (2003) later
showed that the derivative of life expectancy over time is given by the product of e† and
the rate of progress in reducing age-specific death rates.

Vaupel (1986) found that if the force of mortality follows a Gompertz curve,
µ(a) = µ(0)eba, then e† ≈ 1/b. The parameter b has traditionally been interpreted
as the rate of aging, but this result indicates that an alternative interpretation of b is that it
is an inverse function of life disparity.

In addition to e†, several other measures of lifespan variation in a life table have been
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proposed (Cheung et al. 2005). These include the variance of the age at death, the stan-
dard deviation, the standard deviation above age 10 (Edwards and Tuljapurkar 2005), the
inter-quartile range (Wilmoth and Horiuchi 1999), the Gini coefficient (Shkolnikov, An-
dreev, and Begun 2003), and the entropy of the life table (Keyfitz 1977). These measures
are highly correlated with each other. In particular, the correlation of e† with the other
measures is never less than 0.952, according to our calculations based on 5830 period
life tables from 1840 to 2007 available from the Human Mortality Database (2009) (See
table in Vaupel, Zhang, and van Raalte 2009). Hence e† can be viewed as a surrogate for
the other measures. Moreover, it turns out that the derivatives of some other measures
(e.g., standard deviation of age at death, standard statistical entropy of age at death) with
respect to the change in mortality have a similar form and all imply the existence of an
age separating early and late deaths (Caswell, personal communication). We prefer e†

because of its desirable mathematical properties, used above and below, and because it
can be readily explained and interpreted.

5. Applications

At the threshold age a†, the change in e† resulting from mortality decline can be decom-
posed into two components

ė†(t) =
de†(t)

dt
=

∫ a†(t)

0

k(a, t)d(a, t)ρ(a, t) da +
∫ ω

a†(t)
k(a, t)d(a, t)ρ(a, t) da,(4)

where ρ(a, t) is the rate of progress in reducing death rates. The first term on the right
side of (4) represents the compression of mortality at younger ages, and the second term
the expansion of mortality at older ages. The balance of the two components determines
whether the population experiences mortality compression or expansion (Zhang and Vau-
pel 2008).

Analogously, the increase in life expectancy at birth ė†(t) can be broken into two
parts,

ė(0, t) =
∫ a†(t)

0

e(a, t)d(a, t)ρ(a, t) da +
∫ ω

a†(t)
e(a, t)d(a, t)ρ(a, t) da,(5)

where the first term captures the contribution of averting early deaths to increases in e(0),
while the second that of decreasing mortality among the elderly or very elderly. In a
recent study, Vaupel, Zhang, and van Raalte (2009) showed that the countries benefiting
from the longest life expectancies are those that have succeeded in reducing disparities in
how long individuals live by averting early deaths.
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Appendix

A simple lemma in calculus 4

Let f be a real-valued differentiable function on [0,∞) with derivative f ′ and the property
that f ′(x) > 0 whenever f(x) = 0. Then f has at most one root.

Proof. Suppose to the contrary that there are at least two roots of f . First, we will show
that between any two distinct roots of f there is another root of f . Pick any two roots of
f , say a and b with a < b. Since f is differentiable at a,

lim
x→a,x>a

f(x)− f(a)
x− a

exists and equals f ′(a). Since f ′(a) > 0, there is an εa > 0 such that f(x) − f(a) > 0,
for all x ∈ (a, a + εa); that is, f is positive on the interval (a, a + εa). Analogously, there
is an εb > 0 such that f is negative on the interval (b − εb, b). Clearly, a + εa ≤ b − εb.
Thus a + εa/2 < b − εb/2, and f(a + εa/2) > 0 and f(b − εb/2) < 0. Note that, since
f ′ exists, f is continuous on [0,∞). By the intermediate value theorem applied to f on
[a + εa/2, b − εb/2], f vanishes at some c ∈ (a + εa/2, b − εb/2). Hence f(c) = 0, for
some c ∈ (a, b).

Having shown that between any two distinct roots of f there is another root of f , we
will use the above setup with a, b, εa and εb to derive a contradiction. Let
X = {x ∈ (a, b) : f(x) = 0} be the set of all roots of f between a and b. Clearly,
X 6= ∅ and X ⊂ [a + εa, b − εb]. So X has a supremum s with s ∈ [a + εa, b − εb].
Now s = limn→∞ xn, for some xn ∈ X . Since f is continuous at s, we have f(s) =
limn→∞ f(xn) = limn→∞ 0 = 0. Since s < b, f has a root t ∈ (s, b), so that t ∈ X .
This contradicts the fact that s is the supremum of X and finishes the proof. Q.E.D.

4 by Peter Wagner. E-mail: Wagner@demogr.mpg.de.
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