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Costly delay in negotiations can induce the negotiating parties to be more forth-
coming with their information and improve the quality of the collective decision.
Imposing a deadline may result in stalling, in which players at some point stop
making concessions but switch back to conceding at the end, or a deadlock, in
which concessions end permanently. Extending the deadline hurts the players in
the first case, but is beneficial in the second. When the initial conflict between the
negotiating parties is intermediate, the optimal deadline is positive and finite, and
is characterized by the shortest time that allows efficient information aggregation
in equilibrium.

Keywords. Repeated proposals, war of attrition, interdependent values.

JEL classification. C72, C78, D74, D83.

1. Introduction

When disagreements are resolved through negotiations, the time horizon of the ne-
gotiation process may influence the final outcome. In the classical finite-horizon,
alternating-offer bargaining game of Ståhl (1972), deadlines affect the way players make
and accept bargaining demands through the logic of backward induction, even though
the deadlines are never reached in equilibrium. In war of attrition games (e.g., Hendricks
et al. 1988), conflicts are gradually resolved with the passage of time. The presence of a
deadline not only affects equilibrium behavior along the path, but can also determine
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the equilibrium outcome by imposing a default decision upon the arrival of the dead-
line. In both bargaining and war of attrition models, the negotiating parties disagree
because they have opposing preferences over the outcome. In such a situation of pure
conflict, negotiation may determine the distribution of payoffs between the parties, but
not their sum. Thus protracted negotiation is invariably wasteful, as it introduces costly
delay without any benefits. However, when disagreement is driven by different private
information and could be overcome after information-sharing, protracted negotiation
can have positive welfare consequences by facilitating information aggregation. This
paper studies the welfare effects of negotiation deadlines in an environment where the
negotiating parties disagree both because of diverging preferences and because of dif-
ferent information, and characterizes the deadline that optimally balances the cost of
strategic delay and the benefit of strategic information aggregation.

More specifically, our model of negotiation under a deadline has two central aspects.
First, the underlying collective decision problem involves two proposed alternatives that
have both a common value component and a private benefit component. Although the
two sides can in principle reach a Pareto-efficient decision when the common value
component dominates the private benefits, they each have private information about
the value of their own proposed alternative. The presence of private information makes
it difficult to separate the narrow self-interests from the common interest. Not being
sufficiently convinced that the opponent’s proposal has a high common value, each side
may want to push its own proposal for the private benefits despite knowing it has a low
common value. At the same time, a seemingly self-serving alternative may be proposed
by one side who knows that the alternative is good for both, but the question is how to
convince the opponent when such private knowledge is unverifiable. The second aspect
of our model is that the two sides commit to engaging each other repeatedly in reaching
an agreement. The collective decision-making procedure does not allow side transfers,
which might result in a failure to share private information if the decision needs to be
made without delay. But delaying the decision is costly to both sides. The cost of delay
can discourage them from exaggerating the value of their own proposals, and generate
endogenous information that in equilibrium helps improve the quality of the collective
decision.

The following examples illustrate a few negotiation problems that fit our theoretical
framework.

Standard adoption. In an emerging industry, two dominant firms try to establish
a common standard or protocol. Both firms have an interest in adopting the standard
that is technologically more versatile and efficient. At the same time, because of its head
start in development, each firm can obtain additional private benefits if its own stan-
dard is adopted as the common industry standard. Even though written documents of
the proposed standards are shared in the negotiating stage, tacit knowledge about the
strengths and weaknesses of a protocol obtained from the developmental stage is dif-
ficult to convey and easy to hide. Settling the issue through side transfers may not be
a practical solution in a fast-changing industry. At the same time, delay in adopting a
common standard is costly to both firms, regardless of the ultimate decision. Instead of
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an open-ended negotiation, the two firms may have an interests in imposing a binding
deadline.

Recruiting. When deciding on departmental hires, recruiting committee members
must often balance their personal research interests, which naturally biases them to-
ward hiring candidate in their own field, with the value added to the department as
a whole from hiring the candidate with the highest research potential. Each member
might be willing to go along with a candidate in a field other than his own if the can-
didate has a high research productivity potential, but prefers one in his own field given
two candidates with the same potential. The relative lack of expertise in other com-
mittee members’ fields may make each member suspicious of the others’ supposedly
more informed assessments. Repeated recruiting committee meetings are costly, not
just because they take valuable time from the members, but because delay in making a
decision may lead to lost hiring opportunities. However, it is precisely this cost that may
yield a better hiring decision than one made without delay.

Separation period before divorce. A period of separation between husband and wife
is commonly required before divorce is granted by the court. During this period, the
couple has the opportunity to settle any dispute over property division, child custody,
and other issues. Mutually advantageous decisions about property division or child cus-
tody may hinge on private information such as future plans for career or life, but self-
interests can prevent the two parties from sharing such information. Failure to settle all
disputes can potentially result in costly proceedings in the divorce court, and monetary
transfers may have limited use in resolving the disputes. To the extent that the separa-
tion period is mandated by the divorce law, the end of separation before divorce may
be viewed as a deadline for resolving marital disputes that is imposed for the potential
benefit of the divorcing couple. In this regard, it is interesting to note that in the state
of Virginia, the required separation is 1 year if the divorce involves a child whose cus-
tody, visitation, or financial support is contested, and only 6 months if there is no such
dispute.

Formally, we model negotiation under a deadline as a symmetric, continuous-time,
two-player war of attrition game. There are two alternatives: each consists of a com-
mon value component, which represents its quality and is shared by both players, and a
private value component, which benefits only one player. At any instant, each player si-
multaneously chooses to persist with his favorite alternative, from which he alone draws
the private benefit, or to concede to his rival for the latter’s favorite alternative. The two
players pay a flow cost of delay until they either agree, at which point the agreement is
implemented, or the deadline expires and a random decision is made. Each player is
privately informed of whether the quality of his favorite alternative is high or low, but
is unsure about the quality of his opponent’s favorite alternative. We assume that the
quality difference is greater than the private benefit, so that when a high-quality type
plays against a low-quality type, the two players would agree to adopt the high-quality
alternative if they could share their information. However, when two low-quality types
play against each other, they would disagree even if they knew the true state due to the
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private benefit of choosing their own favorite.1 The possibility of agreements is essen-
tial for deadlines to have interesting welfare effects, and the possibility of disagreements
makes information-sharing costly to achieve.

We show that generically there is a unique equilibrium in which the high-quality
types always persist with their favorite alternative throughout the game. The low-quality
type’s behavior depends on the time left before the expiration of the deadline and on his
belief that the rival’s favorite alternative also has low quality. If the time to deadline ex-
ceeds a certain critical horizon, which depends on the current belief, the low-quality
type concedes to the opponent’s favorite alternative at some probability flow rate. This
continuous-time version of randomization between conceding and persisting results
because the deadline is too long for the low-quality type to persist all the way, but at the
same time conceding with a strictly positive probability would give the opposing low-
quality type incentives to persist just a little longer and reap the private benefit. Since
the high-quality types always persist, in this concession phase of the game the Pareto-
efficient agreement is reached with a positive probability. As the negotiation game con-
tinues during the concession phase, the low-quality type becomes less sure that his op-
ponent also has a low-quality alternative because, given the equilibrium strategies, his
opponent’s failure to concede is taken as evidence to the opposite. When the time to
deadline reaches the critical horizon, the game enters a persistence phase in which the
low types stop randomizing and persist until the deadline is reached. Interestingly, at
the arrival of the deadline, the behavior of the low-quality types may change again. If
they enter the persistence phase with a relatively high belief that their opponent also
has a low-quality alternative, they will keep persisting to the very end. This case may
be interpreted as a deadlock. If their belief is low, however, they will switch to conced-
ing just before the deadline expires. In this case, one can interpret the behavior of the
players during the persistence phase as a stalling tactic.

Extending the deadline hurts both high-quality and low-quality types if the start-
ing point is shorter than the critical time horizon corresponding to the initial belief: it
increases the delay without changing the equilibrium play when the deadline arrives.
Alternatively, starting from any deadline beyond the critical time horizon, an extension
does not change the welfare of the low-quality types, whose equilibrium payoff is pinned
down by the payoff from concession and does not vary with the length of the deadline,
but generally affects the welfare of the high-quality types. It turns out that extending the
deadline is beneficial in the case of deadlock, but is harmful in the case of stalling. By
prolonging the concession phase of the negotiation, extending the deadline increases
the chances that the high-quality type gets his favored decision at the cost of longer
delay. In the case of a deadlock, such improvement in decision-making during the con-
cession phase is relatively important because players have no chance to reach an agree-
ment once the game enters the persistence phase. In the case of stalling, alternatively,
players eventually reach an agreement when the deadline expires. Therefore allowing
more time for concession at the beginning of the game is relatively less important. In

1There would also be disagreement when two high-quality types meet each other. This possibility is
assumed away in our model for simplicity.



Theoretical Economics 7 (2012) Optimal deadlines for agreements 361

addition to deadlock and stalling, there is a third possibility in which low-quality types
concede with a probability between 0 and 1 when the deadline expires. We show that
extending the deadline is also beneficial in this case. The contrasting marginal effects
of lengthening the deadline for these different cases allow us to pin down the optimal
deadline.

We provide a complete characterization of the optimal deadline that maximizes the
ex ante payoffs to the players before they know their types. Naturally, the optimal dead-
line is zero when the low-quality types initially hold a sufficiently low belief that the rival
also has a low-quality alternative, as the two players can reach the Pareto-efficient de-
cision without delay. For intermediate initial beliefs, the optimal deadline is such that
after the shortest concession phase, the low-quality types persist until the deadline and
then concede with probability 1. Thus, the optimal deadline is the shortest time length
that achieves efficient information aggregation in equilibrium. That is, it ensures an
efficient outcome in the shortest possible time. This deadline effectively balances the
trade-off between two conflicting goals—to avoid wasteful delay when disagreements
are of fundamental nature and to allow the players sufficient time to successfully recon-
cile disagreements driven by different information. When positive, the optimal deadline
is necessarily finite, because given that the low-quality types concede with probability 1
at the deadline, extending it further would only hurt the high-quality types by unnec-
essarily prolonging the concession phase. Further, it cannot be arbitrarily short. Oth-
erwise, the low-quality types simply persist until the deadline and waste the delay cost.
Finally, when positive, the optimal deadline is increasing in the low-quality types’ ini-
tial belief that their rival also has a low-quality alternative, because it takes longer to
drive their belief down to a level at which they are willing to concede upon the deadline.
When the low-quality types have a sufficiently high belief, the optimal deadline is again
zero. The positive welfare effects from information aggregation, obtained by extending
the deadline beyond the critical horizon, are not sufficient to compensate for the large
payoff loss associated with the long deadline play.

The idea that endogenous delay can help separate one type from another type in bar-
gaining with asymmetric information is not new (e.g., Admati and Perry 1987, Cramton
1992, Abreu and Gul 2000). We carry this idea further by studying how imposing ne-
gotiation deadlines may affect equilibrium behavior and outcome. Moreover, since the
decision to be made has a common value component, there is a nontrivial welfare anal-
ysis of the trade-off between longer delay and better information-sharing. This trade-off
is the basis of our analysis of optimal deadlines.

There is a sizable theoretical literature on war of attrition and bargaining games con-
cerning the “deadline effect,” the idea that players make no attempt to reach an agree-
ment just before the deadline, but when the deadline arrives there are sudden attempts
to resolve their differences.2 Hendricks et al. (1988) characterize mixed-strategy Nash
equilibria of a continuous-time, complete information war of attrition game in which
there is a mass point of concession at the deadline and no concession in a time interval

2See also Roth et al. (1988) for an experimental investigation of eleventh-hour agreements in bargaining.
In the auction literature, “sniping” refers to bidding just before the auction closes. This is analyzed by Roth
and Ockenfels (2002).
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preceding it. Spier (1992) shows that in pretrial negotiations with incomplete informa-
tion, the settlement probability is U-shaped. Ma and Manove (1993) find strategic delay
in bargaining games with complete information by assuming that there may be exoge-
nous, random delay in offer transmission. As early offers are rejected and the deadline
approaches, there is an increasing risk of missing the deadline and negotiation activ-
ities pick up. Also in a bargaining game with complete information, Fershtman and
Seidmann (1993) introduce the assumption that, by rejecting an offer, players commit
to not accept poorer offers in the future. They show that when players are sufficiently
patient, there is a unique subgame perfect equilibrium in which players wait until the
deadline to reach an agreement. Ponsati (1995) studies a war of attrition game in which
each player has private information about his payoff loss incurred by conceding to the
opponent and must choose the timing of concession. She shows that there is a unique
pure-strategy equilibrium in which both players never concede before the deadline is
reached if their payoff losses are sufficiently large. Sandholm and Vulkan (1999) consider
a bargaining game in which two players make offers continuously and an agreement is
reached as soon as the offers are compatible with each other. The only private informa-
tion a player has is the deadline he faces. They show that the only equilibrium is each
player persisting by demanding the whole pie until the deadline and then switching to
concede everything to his opponent. Finally, Yildiz (2004) shows that when players in a
bargaining game are overly optimistic about their bargaining power at the deadline, it
is an equilibrium to persist until close to the deadline to reach an agreement. However,
when there is uncertainty about when the deadline arrives, the deadline effect disap-
pears. Broadly consistent with the above papers, we offer a theory of the deadline effect
in which there may be an eleventh-hour attempt at concession to reach an agreement
before the deadline expires. But in addition to such stalling behavior, our model also
allows for the possibility that deadlines may induce deadlock, in which disagreements
persist through the end. More importantly, because our theory is based on asymmetric
information about common values, we are also able to provide a welfare analysis of the
optimal deadline.

2. A concession game

We consider a symmetric model in which two players have to make a joint choice be-
tween two alternatives. Each alternative has a common value component that produces
either a low value υL or a high value υH to both players. Regardless of its common value,
each alternative also has a private value component that yields a benefit β > 0 to only
one of the players.3 We refer to a player’s “favorite” alternative as the one that gives him
private benefit β. That is, the payoff to each player from implementing his favorite al-
ternative is equal to its common value plus β, and the payoff from implementing his
opponent’s favorite alternative is just the common value of that alternative. To make
our model interesting, we maintain the following assumption throughout this paper.

3In the more general case, the private benefit may take the value βL when the common value of the
alternative is low or βH when the common value of the alternative is high. In that case, Assumption 1
below restricts only the value of βL. All our results hold without change as long as βH is nonnegative.
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Assumption 1. We have υH − υL > β.

Each player is privately informed only about whether the common value of his own
favorite alternative is high or low, referred to as high type and low type, respectively. We
assume that at most one of the two alternatives can be of high common value. Thus
there are two symmetric “consensus states” and one “conflict state.” In each consensus
state, one player is high type and the other is low type, so by Assumption 1, the two
players would agree on the former’s favorite alternative if they knew the state; in the
conflict state, both players are low type, so they would disagree even if they knew the
state.4 That is, if a player is a high type, he knows that his opponent is a low type and it is
a consensus state in which his favorite alternative should be implemented; if he is a low
type, he is unsure whether it is a consensus state for his opponent’s favorite alternative
or it is a conflict state. Let γ0 < 1 be the common belief of the low types that it is the
conflict state; we assume that it is common knowledge.5

The “concession game” is modeled in continuous time, running from t = 0 to dead-
line T . We allow T to take any nonnegative value including zero and infinity. At each in-
stant t, the two players simultaneously decide whether to concede to their rival’s favorite
alternative, until the game ends. The game may end before the deadline if exactly one
player concedes, in which case the other player’s favorite alternative is implemented im-
mediately, or if both players concede simultaneously, in which case a decision is made
immediately by a fair coin flip.6 If the deadline T is reached, the game ends with the
decision made by a fair coin flip. Until the game ends, each player incurs an additive
payoff loss due to delay at a flow rate of κ.

The essential feature captured in the above configuration of preference and infor-
mation structures, together with Assumption 1, is that players in a negotiation disagree
over the joint decision based on their private information but might agree if their infor-
mation were public. In particular, based on his own initial private information, a low
type player strictly prefers his favorite alternative if

γ0 > γ∗ ≡ υH − υL −β

υH − υL
�

although it may be the consensus state for his opponent’s favorite alternative. Note that
by Assumption 1, γ∗ is strictly between 0 and 1. An initial belief γ0 higher than γ∗ that it
is the conflict state means that there is a great degree of conflict between the two players.
Another important feature of our model is that the high types have greater incentives to
insist on their favorite alternative than do the low types. This is because the payoff gain

4We assume that there is no fourth state in which both alternatives have high common value. Allowing
for such a possibility does not greatly change the equilibrium analysis of the model, but does lower the
advantages from using delay as a collective decision-making mechanism in the welfare analysis, because
delay is wasteful when two high types play against each another.

5This obtains if the prior probability of the conflict state is γ0/(2 − γ0) and the prior probability of each
consensus state is (1 − γ0)/(2 − γ0).

6Neither the assumption that the game ends after simultaneous concessions nor the outcome specifica-
tion affect the equilibrium outcome. Only the assumption that the continuation payoffs after simultaneous
concessions are feasible is required.
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for each player from implementing his favorite alternative over his opponent’s favorite is
greater in the corresponding consensus state (equal to υH −υL +β) than in the conflict
state (equal to β). This feature is helpful for equilibrium construction as it allows us to
focus on the incentives of the low types.

Our modeling of the deadline amounts to specifying state-contingent default pay-
offs if the last attempt at an agreement fails. To see this, note that when T = 0, our
model reduces to a static game in which each player decides whether to concede to his
rival’s favorite alternative, and the outcome is either implementation of the conceded
alternative when exactly one player concedes or a decision made by a coin flip other-
wise. When the belief γ of the low types that it is the conflict state is strictly higher than
γ∗, this game has a unique equilibrium, with each player proposing his favorite alter-
native. The equilibrium outcome is a coin flip, as the degree of conflict is too great to
allow any information-sharing.7 For any belief of the low types γ < γ∗, there is a unique
equilibrium in which the high types persist with their own favorite and the low types
concede to the favorite alternative of their opponent. At γ = γ∗, there is a continuum
of equilibria, in which the high types always persist while the low types concede with a
probability between 0 and 1. Denoting as U0

L(γ) and U0
H(γ) the equilibrium payoffs of

the low and high types, respectively, we have

U0
L(γ) =

{
γ(υL +β/2)+ (1 − γ)υH if γ ∈ [0�γ∗)
γ(υL +β/2)+ (1 − γ)(υH + υL +β)/2 if γ ∈ (γ∗�1], (1)

with U0
L(γ∗) ∈ [γ∗(υL +β/2)+ (1 −γ∗)(υH +υL +β)/2�γ∗(υL +β/2)+ (1 −γ∗)υH], and

U0
H(γ) =

{
υH +β if γ ∈ [0�γ∗)
(υH + υL +β)/2 if γ ∈ (γ∗�1],

with U0
H(γ∗) ∈ [(υH + υL + β)/2�υH + β]. Due to the symmetry of the model, any out-

come in the conflict state is Pareto-efficient. Thus, if γ ∈ [0�γ∗), both the high and the
low types receive their first best expected payoffs. In this case, we say that “efficient
information aggregation” is achieved. However, when γ ∈ (γ∗�1], the equilibrium out-
come is inefficient, as the expected payoffs for both types increase if the low type agrees
to his opponent’s favorite alternative instead of a coin flip.8

In our model of negotiation under a deadline, the deadline simply means deciding
by a coin flip at a fixed future date T if no agreement is reached. In practice, reaching
the negotiation deadline without an agreement may instead trigger a binding arbitration
process by an independent outside party that may involve activities such as presenta-
tions by each player or fact-finding by the arbitrator. We take a reduced-form approach

7There is no mechanism that Pareto-improves on this outcome. More precisely, for any γ > γ∗, in any
incentive compatible outcome of a direct mechanism without transfers the probability of implementing a
fixed alternative is constant across the three states. See Damiano et al. (2009) for a formal argument.

8The specification of the default decision as a coin flip when the deadline expires implies stark payoff
discontinuities in the no-delay game when the belief of the low types that it is the conflict state is exactly
γ∗. Our characterization of the optimal deadline turns out to be robust with respect to the payoff discon-
tinuities. Section 5.2 presents an extension of the model with an alternative specification of the deadline
default payoffs that eliminates the discontinuities. All our results are qualitatively unchanged.
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by abstracting from such details of deadline implementation. The essential feature of
the deadline we are trying to capture in this model is a two-part commitment: the nego-
tiating parties commit both to not terminating the negotiation process before the fixed
date T and to not extending it beyond T . Although in reality both parts of this commit-
ment are vulnerable to ex post renegotiation, we assume away the credibility issues so
as take the first step toward understanding the welfare implications of deadlines.

3. Preliminary analysis

We first construct a perfect Bayesian equilibrium in which after any nonterminal history
of the game at time t, with probability 0, the high types concede at the instant t or over
the time interval [t� t+dt), while the low types either concede with a nonnegative proba-
bility at t or concede at a strictly positive rate over the time interval [t� t+dt). Later in the
proof of our equilibrium uniqueness result in Section 4.2, we discuss these restrictions
on the strategies.9 Strategies can be described through two functions y : [0�T ] → [0�1]
and x : [0�T ] → [0�∞), with the convention that x(t) = 0 whenever y(t) > 0. At any in-
stant t ∈ [0�T ] reached by the game, y(t) is the probability that the low type concedes
upon reaching time t. When y is zero on a small time interval, x(t) denotes the flow
rate of concession at any t in the interval [t� t + dt). That is, upon reaching time t, the
probability of a low type proposing his rival’s alternative in the interval is x(t)dt.

3.1 Differential equations

In this section, we derive some useful properties that hold in any symmetric equilibrium
where the low types concede at flow rate x(t) > 0 for all t in some interval of time [t1� t2),
while the high types always persist. In any such equilibrium, by indifference the equilib-
rium expected payoff UL(t) of a low type upon reaching t ∈ [t1� t2) can be computed by
assuming that he concedes at t. Denoting as γ(t) his belief at time t that it is the conflict
state, we have

UL(t) = γ(t)υL + (1 − γ(t))υH� (2)

The above equality follows because, by assumption, y(t) = 0, and so even if his low type
opponent’s flow rate of concession is strictly positive, the probability that the latter con-
cedes at the given time t is zero. Since UL(t) depends on t only through γ(t) in (2), we
can define a payoff function

UL(γ) = γυL + (1 − γ)υH� (3)

which is valid whenever γ = γ(t) and x(t) > 0 for some t ∈ [t1� t2).

9Under the restriction that the high types always persist with their favorite alternatives, there is no loss
of generality in assuming that after any history, the low types concede either with an atom or at some flow
rate. This is formally established in the proof of Proposition 3, which is adapted from an argument used
by Abreu and Gul (2000) (in the proof of their Proposition 1). We also show in Section 4.2 that there is no
symmetric equilibrium in which the high types concede with a positive probability or at a positive flow rate
after any history.
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Given that the equilibrium continuation payoff of the low type is pinned down by
the belief γ(t) for any t in the interval of time [t1� t2), the indifference condition between
conceding and persisting on the same interval then gives an equation that relates the
rate of change of the belief γ to its current value γ(t) and to the equilibrium flow rate
of concession x(t). Furthermore, the Bayesian updating rule provides another equation
that relates the rate of change of γ(t) to x(t). These two equations can be combined to
obtain a differential equation for the evolution of the belief of the low type in [t1� t2). This
result is stated in Lemma 1 below and proved in Appendix A. An immediate implication
of Lemma 1 is that the equilibrium belief of the low type γ(t) and the equilibrium rate of
concession x(t) in the time interval (t1� t2) are functions of the starting belief γ(t1) only.

Lemma 1. Let (y(t)�x(t)) be the strategy and let γ(t) be the belief of the low types in a
symmetric equilibrium where the high types always persist. If y(t) = 0 and x(t) > 0 for all
t ∈ [t1� t2), then

− γ̇(t)

1 − γ(t)
= κ

β
(4)

and

x(t) = 1
γ(t)

κ

β
�

Equation (4) represents the belief evolution for a low type who continuously ran-
domizes and whose opponent has failed to concede so far. Since the high types persist
with probability 1, γ̇(t) is negative; that is, the low types attach a lower probability to the
conflict state as the negotiation game continues. The indifference condition between
persisting and conceding then implies that the low types concede at an increasing flow
rate as disagreement continues.

We can also use the equilibrium characterization of the flow rate of concession to
pin down the evolution of the equilibrium continuation payoff for the high types. For
any t ∈ [t1� t2), let UH(t) be their expected payoff at time t. Since the high types always
persist, their payoff function satisfies the Bellman equation

UH(t) = x(t)dt(υH +β)+ (1 − x(t)dt)(−κdt + UH(t + dt))�

This can be written as a differential equation by taking dt to 0:

U̇H(t) = κ− x(t)(υH +β− UH(t))� (5)

Further, since γ(t) is determined by an autonomous differential equation and x(t) de-
pends on t only through γ(t) as given in Lemma 1, we can also describe the equilibrium
continuation payoff of the high types as a function UH(γ). Using U̇H(t) = U ′

H(γ(t))γ̇(t),
we can show that it satisfies the differential equation

U ′
H(γ) = υH +β−UH(γ)

γ(1 − γ)
− β

1 − γ
� (6)

Note that the equilibrium payoff to the high types is a function of the belief of the low
types, even though the former know the state and always persist in equilibrium.



Theoretical Economics 7 (2012) Optimal deadlines for agreements 367

3.2 Equilibrium with no deadline

When there is no deadline to the negotiation process (i.e., T = ∞), the characterization
result of Lemma 1 is sufficient for us to construct an equilibrium where the low types
concede at a strictly positive flow rate until a time when they concede with probabil-
ity 1.10 The equilibrium strategy and the evolution of beliefs along the equilibrium path
are entirely pinned down by the initial belief, and the atom of concession occurs when
the low types become entirely convinced that it is a consensus state. Let g(t;γ0) be the
unique solution to the differential equation (4) with the initial condition g(0;γ0) = γ0,
given by

g(t;γ0) = 1 − (1 − γ0)e
κt/β� (7)

Define the “terminal date” D(γ0) such that g(D(γ0);γ0) = 0, given explicitly by

D(γ0)= −β ln(1 − γ0)

κ
� (8)

Proposition 1. Let T = ∞. There exists a symmetric equilibrium where the high types
always persist, and where the strategy (y(t)�x(t)) and the belief γ(t) of the low types are
such that

{
y(t) = 0�x(t) = κ/(βγ(t))� and γ(t) = g(t;γ0) if t < D(γ0)

y(t) = 1 and γ(t) = 0 if t ≥D(γ0).

By construction, the low types are indifferent between conceding and persisting at
any time t < D(γ0). Further, conceding is optimal for them at t = D(γ0) because their
belief that it is the conflict state becomes zero at that point.11 For the high types, from
the equilibrium strategies, their continuation payoff at the terminal date is the first best
payoff υH + β. In Appendix A, we use this boundary condition to explicitly solve the
differential equation (6) for the high types’ continuation payoff for any t < D(γ0) and to
verify that it is optimal for them to always persist.

In equilibrium, protracted negotiations make the low types increasingly convinced
that it is the consensus state supporting the rival’s favorite choice and motivate them
to concede at an increasing rate. This distinctive feature of “gradually increasing con-
cessions,” unique to our model of negotiation that combines preference-driven and
information-driven disagreements, has implications for the duration of the negotiation
process and its hazard rate function. Denote as τHL and τLL the random duration of the
game conditional on it being a consensus state and a conflict state, respectively. In the
former case, one of the player is a high type, while in the latter case, both are low types.
Since x(t)dt is the probability that the game ends in time interval (t� t + dt] conditional
on it having survived up to time t, the hazard function of τHL is simply x(t). When it

10The same is true if the deadline T is sufficiently long. The equilibrium constructed in Proposition 1
below is continuous at T = ∞.

11The game ends with probability 1 before t = D(γ0). We specify the strategy and the belief of the low
types after the terminal date to complete the equilibrium description after unilateral deviations.
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is the conflict state, independent and identical randomization by the two players im-
plies that the cumulative distribution function FHL(t;γ0) of τHL and the distribution
function FLL(t;γ0) of τLL satisfy

1 − FLL(t;γ0)= (1 − FHL(t;γ0))
2�

and thus the hazard function of τLL is 2x(t). The hazard rate is therefore increasing in
time in both cases. From an outside observer’s point of view, however, the more inter-
esting object is the unconditional duration of the negotiation game. Let τ represent this
random variable and let F(t;γ0) represent its distribution function. As the game contin-
ues, the conditional hazard rates for τHL and τLL both increase, but the probability that
τ = τHL, which is associated with a lower hazard rate, also increases, so it is not obvious
whether the unconditional hazard rate for τ increases over time.12 However, from the
relationship

1 − F(t;γ0) = γ0

2 − γ0
(1 − FLL(t;γ0))+ 2(1 − γ0)

2 − γ0
(1 − FHL(t;γ0))�

we can obtain the hazard function of τ as

2
g(t;γ0)(2 − g(t;γ0))

κ

β
�

which is decreasing in g(t;γ0).13 Since in equilibrium the belief of the low types that
it is the conflict state decreases as disagreements continue, the unconditional hazard
rate unambiguously increases in time. Combined with the fact that the belief g(t;γ0) is
increasing in γ0 for any t, an increase in the initial belief, representing a greater degree of
conflict, reduces the unconditional hazard rate, and hence increases the unconditional
expected duration of negotiation.

4. Finite deadlines

We use the analysis in the previous section to construct a symmetric equilibrium in
which the high types always persist, and the low types generally start by continuously

12This is similar to the classic problem of duration dependence versus heterogeneity in the econometric
analysis of duration data. See, for example, Heckman and Singer (1984).

13To derive the hazard function for τ, note that the conditional density functions fHL(t) and fLL(t), and
the unconditional density function f (t) satisfy

f (t)

1 − F(t)
= γ0fLL(t)+ 2(1 − γ0)fHL(t)

γ0(1 − FLL(t))+ 2(1 − γ0)(1 − FHL(t))
�

The final result is obtained by using

1 − FHL(t) = 1 − γ0

γ0

g(t;γ0)

1 − g(t;γ0)

and

fHL(t)= 1 − FHL(t;γ0)

g(t;γ0)

κ

β
�

and the corresponding expressions for FLL and fLL.
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randomizing between conceding and persisting when the time to the deadline is suffi-
ciently long, then stop and persist until just before the deadline is reached, and then play
an equilibrium of the no-delay game (T = 0) corresponding to the stopping belief. We
later argue that this equilibrium is unique subject to the restriction that the high types
always persist.

A remarkable feature of our construction is that the equilibrium randomization
strategy of the low types is identical to the no-deadline case (T = ∞). That is, when
the time to the deadline is sufficiently long, they behave as if there is no deadline. This
feature is the main analytical advantage of a continuous-time framework over a discrete
time model. It follows from (3) in our preliminary analysis, because there is a unique
equilibrium value function for a randomizing low type that depends on the time to dead-
line only through his belief.

4.1 Construction of an equilibrium

The necessity of having a persistence phase in equilibrium before the deadline is
reached can be easily understood as follows. At any time t when the belief of a low type
is γ(t) = γ and he is conceding at a positive flow rate, his payoff is pinned down by the
function UL(γ) given in (3). For any γ > 0, this payoff is strictly lower than the payoff
from the no-delay game U0

L(γ) as given in (1). If the time remaining to the deadline,
T − t, is sufficiently short, persisting until the end and playing a no-delay equilibrium
when the deadline arrives would constitute a profitable deviation for him. This dead-
line effect of having a persistence phase just before the deadline is robust with respect
to our game specification. Whenever the default payoff at the deadline of a negotiation
game yields an equilibrium payoff upon reaching the deadline that is larger than the
payoff from concession, then in any equilibrium, a period of inactivity always precedes
the arrival of the deadline.14

How long the persistence phase can last in equilibrium depends on the difference
between the payoff from immediate concession UL(γ) and the payoff in the no-delay
game U0

L(γ). To state our equilibrium characterization result in the next proposition, we
define B(γ) as the longest length of time from the deadline such that it is an equilibrium
for a low type with belief γ to persist until the deadline and then play an equilibrium
corresponding to the no-delay game associated with γ. In other words, the value of B(γ)
measures the maximum length of the persistence phase when the low types start with
belief γ. For any belief γ 	= γ∗, this is uniquely given by

U0
L(γ)− κB(γ) =UL(γ)� (9)

Since U0
L(γ∗) assumes a continuum of values, corresponding to the probability of con-

ceding ranging from 0 to 1, we choose the maximal value in (9) to define B(γ∗). Using

14A similar deadline effect is present in existing models of war of attrition (e.g., Hendricks et al. 1988).
The novel feature of our model as a war of attrition game is that endogenous information about the state
is generated as the game continues, so that the deadline effect depends on the initial belief through the
equilibrium belief evolution prior to stopping.
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the expressions for U0
L(γ) and UL(γ), we have

B(γ) =
{
βγ/(2κ) if γ ≤ γ∗
β(γ − γ∗)/(2κ(1 − γ∗)) if γ > γ∗.

(10)

Note that B(γ) jumps down at γ∗. Next, for an initial belief γ0, we describe how long it
takes, in equilibrium, before the persistence phase begins. To do so, we define S(T ;γ0)

as the earliest calendar time t such that the time to deadline is shorter than B(γ(t)) given
that the belief γ(t) of the low types evolves according to (7) starting with γ0. That is,

S(T ;γ0) = inf
t≥0

{
t :T − t ≤ B(g(t;γ0))

}
� (11)

The two functions S(T ;γ0) and T − S(T ;γ0) describe the length of the concession
and the persistence phases, respectively, in our equilibrium characterization. In other
words, S(T ;γ0) is the phase-switch time, or the time of stopping concessions, with the
corresponding stopping belief of the low types being g(S(T ;γ0);γ0) at that time and
thereafter until the deadline T arrives. Note that by definition, S(T ;γ0) = 0 if T ≤ B(γ0).

Proposition 2. Let T be finite. There exists a symmetric equilibrium in which the high
types always persist, and the strategy (y(t)�x(t)) and the belief γ(t) of the low types are
such that (where S = S(T ;γ0))
⎧⎨
⎩
y(t)= 0�x(t) = κ/(βγ(t))�γ(t) = g(t;γ0) if T − t > B(g(t;γ0)) and t < D(γ0)

y(t)= 0�x(t) = 0�γ(t) = g(S;γ0) if B(g(t;γ0)) ≥ T − t > 0 and t < D(γ0)

y(t)= 1�γ(t) = 0 if T > t ≥D(γ0)

⎧⎨
⎩
y(T) = 0�γ(T) = g(S;γ0) if g(S;γ0) > γ∗
y(T) = 2κ(T − S)/(βγ∗)�γ(T) = γ∗ if g(S;γ0) = γ∗
y(T) = 1�γ(T) = g(S;γ0) if g(S;γ0) < γ∗.

The logic of Proposition 2 is apparent from our construction of B(γ) and S(T ;γ0).
For each belief γ of the low types, the equilibrium payoff function U0

L(γ) in the no-delay
game gives a continuation equilibrium outcome at the instant when the deadline ar-
rives, providing the starting point for backward induction. This continuation equilib-
rium outcome is unique if γ 	= γ∗, so if the deadline T is short relative to the initial belief
γ0, i.e., if T ≤ B(γ0), the equilibrium is for the low types to persist until the deadline and
then play the continuation equilibrium that corresponds to γ0. By construction, when
T = B(γ0), the equilibrium payoff to the low types is precisely UL(γ0). If γ0 = γ∗ and
T ≤ B(γ∗), we choose a continuation equilibrium in the no-delay game, corresponding
to a probability of concession y(T) = 2κT/(βγ∗), such that the low types obtain payoff
UL(γ∗) from this deadline play.15 If the deadline T is sufficiently long relative to the ini-
tial belief γ0, the low types start by conceding at a flow rate x(t) given in Proposition 1 for

15Since any y(T) greater than 2κT/(βγ∗) preserves the incentives for the low types to persist, there is a
continuum of equilibria when γ0 = γ∗ and T < B(γ∗).
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Figure 1. Regions of equilibrium play.

the no-deadline game until t = S(T ;γ0), when the belief becomes g(S(T ;γ0);γ0) and the
payoff reaches UL(g(S(T ;γ0);γ0)), followed by the deadline play. Finally, if the deadline
T is too long, with T ≥ D(γ0), the equilibrium is identical to that constructed in the no-
deadline game.16 Details of the proof of Proposition 2 (including the argument that the
high types indeed persist throughout) are presented in Appendix A.

The equilibrium behavior of the low types is illustrated in Figure 1. The horizontal
axis represents both the deadline T and, for a fixed T , the time remaining before the
deadline is reached. The vertical axis is the belief of the low types. For ease of inter-
pretation, we show the discontinuous function B(γ) as the thick piecewise-linear graph.
It represents the boundary in the T–γ space between the persistence phase when the
low types persist until the deadline and their belief does not change, and the concession
phase when they concede at a positive and increasing flow rate and their belief contin-
uously drops. The dotted curves in Figure 1 trace the equilibrium evolution of the belief
γ(t) until the phase-switch time, if such time exists. The curve D is given by the terminal
date function in (8). For any deadline T and initial belief γ0 on D, the equilibrium belief
reaches zero at time T . For any deadline T and initial belief γ0 on the dotted curve D∗,
the equilibrium belief reaches γ∗ at time T −B(γ∗), that is,

g(D∗(γ0)−B(γ∗);γ0) = γ∗� (12)

Similarly, for any deadline T and initial belief γ0 on the curve D∗, the equilibrium belief
reaches γ∗ at time T , that is,

g(D∗(γ0);γ0) = γ∗�

Since the law of motion for equilibrium belief does not depend on the deadline T in the
concession phase, the three dotted curves in Figure 1 are horizontal displacements of

16In this case, (11) implies that the phase-switch time S(T ;γ0) is equal to D(γ0) and the corresponding
belief g(S(T ;γ0);γ0) is zero.
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one another. Moreover, for any (T�γ0) that lies above one of these curves, the trajec-
tory of equilibrium belief stays above the same curve throughout the concession phase.
Therefore, we can summarize the equilibrium play of the low types by partitioning the
T–γ space of Figure 1 into six regions.17

Region I. The low types concede at a flow rate κ/(βg(t;γ0)) for t < S(T ;γ0) and persist
for t larger.

Region II. The low types concede at a flow rate κ/(βg(t;γ0)) for t < S(T ;γ0), persist
for all t ∈ [S(T ;γ0)�T), and concede with probability 2κ(T − S(T ;γ0))/(βγ∗) at
t = T .

Region III. The low types concede at a flow rate κ/(βg(t;γ0)) for t < S(T ;γ0), persist
for all t ∈ [S(T ;γ0)�T), and concede with probability 1 at t = T .

Region IV. The low types concede at a flow rate κ/(βg(t;γ0)), with the game ending
with probability 1 by the terminal date D(γ0) before the deadline expires.

Region V. The low types persist for all t.

Region VI. The low types persist for all t < T and concede with probability 1 at t = T .

Each of the six regions has its own distinctive features. Together they provide a rich
set of negotiation dynamics that are possible in our model. In Region IV, the deadline is
not binding. Gradual concessions are made at an increasing rate until an agreement is
reached as if there is no deadline; the dynamics of endogenous information aggregation
is already described in the previous section. In all other regions, the deadline is binding,
with the effect of suspending the negotiations at some point of the process in antici-
pation of the arrival of the deadline. When the deadline is too short, in both Regions
V and VI, and on the boundary between Regions VI and II, this effect takes hold at the
very beginning, so there is no attempt to resolve the differences before the deadline. The
difference between the two regions is that V represents a deadlock with no hope of ever
reaching an agreement because the initial degree of conflict is too high, while the dead-
line effect in VI describes a stalling tactic before an eleventh-hour attempt at striking an
agreement. When the deadline is sufficiently long relative to the initial degree of con-
flict, in Regions I, II, and III, negotiations all start off with gradual and increasing con-
cessions as in Region IV. The difference among the three regions lies in how much time
and how much conflict remain when the deadline effect kicks in after the unsuccessful
initial attempts. In Region I, too little time is left to overcome the residual conflict, so the
negotiation becomes a deadlock. The opposite happens in Region III, as there is a com-
plete change of position in the final attempt to reconcile the difference after a stalling
period. In between, we have Region II, where more time left when the deadline effect
kicks in means a greater chance of reaching an agreement at the deadline.

17The boundary between Regions II and VI is formally part of Region II. On this boundary, S(T ;γ0)= 0
so there is no concession phase and the low types concede at t = T with probability 2κT/(βγ∗). The assign-
ment of other boundaries is immaterial.
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4.2 Uniqueness of the equilibrium

The equilibrium constructed in Proposition 2 is generically unique in the class of perfect
Bayesian equilibria with the high types always persisting. This is perhaps surprising,
because the amount of endogenous information generated in equilibrium during the
concession phase depends on the flow rate of concession of the low types, which in
turn is determined by how much they learn in equilibrium about the state. One may
wonder if it is possible to construct multiple equilibria by coordinating through calendar
time the flow rate of concession of the low types. For example, after trying but failing to
reach an agreement by conceding at a positive flow rate, the low types may persist for a
fixed length of time before resuming a new concession phase. However, this and other
possibilities for multiple equilibria are ruled out by the following proposition.

Proposition 3. Given any deadline T and initial belief γ0 of the low types, except for
T < B(γ∗) and γ0 = γ∗, there is a unique equilibrium in which the high types always
persist.

When T < B(γ∗) and γ0 = γ∗, there is a continuum of equilibria in which the high
types always persist and the low types persist for all t < T followed by any probability
of concession equal to or greater than 2κT/(βγ∗) at the deadline. This multiplicity of
equilibria is due to the multiplicity in the no-delay game (T = 0) when the initial belief
of the low types is γ∗. However, it is not generic, because for the same T < B(γ∗), the
equilibrium is unique when γ0 is different from γ∗, no matter how small the difference
is.18 Moreover, since at γ0 = γ∗ there is an equilibrium in the no-delay game with the
first best payoffs, we argue that the optimal deadline for γ0 = γ∗ is T = 0, and thus the
particular multiplicity at γ∗ does not affect our characterization of the optimal deadline.

The generic uniqueness of the equilibrium is important for our main objective in
this paper, which is to characterize the ex ante optimal deadline. Moreover, Proposi-
tion 3 holds even in the case of T = ∞. The equilibrium described in Proposition 1 for
the no-deadline case is a unique equilibrium in which the high types always persist.
This implies that the equilibrium strategies in the game with finite deadline T cannot
be supported as part of equilibrium in a no-deadline game, which means that deadlines
are more than a mere coordinating device to select among multiple equilibria.

In Appendix A, we formally prove Proposition 3 by establishing a series of claims
about the properties of any equilibrium. As in Hendricks et al. (1988), we can show that
in any equilibrium there cannot be concession with a strictly positive probability before
the deadline arrives, and thus the equilibrium play of a low type before the deadline
must either be in a persistence phase, where he persists with probability 1, or be in a
concession phase, where he concedes with a positive flow rate. Further, as in Abreu
and Gul (2000), in any equilibrium, the persistence and concession phases of the two
low types must be synchronized. That is, if the flow rate of concession x(t) for one low

18In addition, the multiplicity of equilibria for T < B(γ∗) and γ0 = γ∗ is not robust with respect to the
specification of the default payoffs in the no-delay game. In the model of Section 5.2, where we introduce
a penalty that the players incur if they fail to reach an agreement when the deadline expires, the same
argument for Proposition 3 can be used to establish that the equilibrium is unique for all T and γ0.
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type is positive in some interval period of time, then the same is true for his low type
opponent. The remainder of the argument then shows that in any equilibrium, there is
a unique phase-switch time between concession and persistence phase, and it coincides
with the phase-switch time S(T ;γ0) in our equilibrium construction of Section 4.1, thus
yielding our uniqueness result.

To conclude this subsection, we note that the only restriction on the equilibrium
strategies imposed in Proposition 3 is that the high types always persist. The next propo-
sition shows that, within the class of symmetric equilibria, there is no equilibrium in
which the high types concede either at a positive flow rate or with a positive atom fol-
lowing any history. This uniqueness claim cannot be further strengthened since con-
ceding by the high types cannot be ruled out in asymmetric equilibria. For example, in
the game without a deadline, it is an equilibrium for one player to always persist and
the other to concede, regardless of their types. This can be supported by any out-of-
equilibrium belief such that it is optimal for the two players to continue to persist and
concede, respectively, as long as the game continues. Asymmetric equilibria in our sym-
metric environment are less interesting as they require either coordination of actions or
out-of-equilibrium beliefs that seem arbitrary, and our focus on symmetric behavior by
the high types seems more natural.

Proposition 4. In every symmetric equilibrium, the high types always persist.

4.3 Optimal deadline

In this subsection we characterize the ex ante optimal deadline for the concession game.
We start by studying the effects of marginally extending the deadline T on the equi-
librium payoffs of the high and low types in the different regions of the T–γ0 space in
Figure 1.

In Regions V and VI of Figure 1, where T < B(γ0) and γ0 	= γ∗, the deadline is too
short relative to the initial belief to allow a concession phase. The welfare effect of the
deadline is clearly negative. Extending the deadline just makes the low types persist for
a longer period of time without changing their behavior at the deadline. Consequently,
both high and low types are hurt by a longer deadline.

In Region IV, where T ≥ D(γ0), the deadline is too long to allow a persistence phase.
There is no welfare effect. Since the negotiation ends before the deadline with probabil-
ity 1, extending it further does not affect the equilibrium behavior or payoffs.

In Region II, where T ∈ [D∗(γ0)�D∗(γ0)), the effect of lengthening the deadline is
to make the low types persist longer after the phase switch, but concede with a larger
probability when the deadline arrives. Since the behavior of the players during the con-
cession phase does not depend on T , the phase-switch time S(T ;γ0) is also independent
of T . Once the negotiation enters the persistence phase, the low types persist from time
S(T ;γ0) through T and then concede with probability 2κ(T − S(T ;γ0))/(βγ∗). Length-
ening the deadline increases the delay for the high types, but also increases their chance
of getting their favorite decision rather than a coin toss. The net effect on the welfare of
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the high types is

∂UH(γ0)

∂T
= −κ+ 2κ

βγ∗
υH − υL +β

2
� (13)

which is positive by Assumption 1. There is no effect on the welfare of the low types,
because their payoff is pinned down by UL(γ0), which is independent of T . In sum, a
longer deadline is beneficial for the ex ante welfare of the players in this region.19

Finally, let us consider Region I, where T ∈ [B(γ0)�D∗(γ0)), and Region III, where
T ∈ [B(γ0)�D(γ0)) for γ0 < γ∗ or T ∈ [D∗(γ0)�D(γ0)) for γ0 ≥ γ∗. As in Region II, the
equilibrium play of the low types in Region I or III consists of both a concession phase
and a persistence phase. However, unlike in Region II, increasing the deadline in Re-
gion I or III lengthens the concession phase while shortening the persistence phase,
with no change in equilibrium play at the deadline (y(T) = 0 in Region I or y(T) = 1 in
Region III). The welfare effect on the low types is again nil, since their payoff is fixed at
UL(γ0). The welfare effect on the high types can be studied by solving the differential
equation (5) (or, equivalently, (6)) with appropriate boundary conditions obtained from
the equilibrium deadline play of the low types.

Take Region I for example. The game enters the persistence phase from the conces-
sion phase at time S(T ;γ0). From the deadline play of the low types, the payoff to the
high types at t = S(T ;γ0) is

UH(S(T ;γ0)) = 1
2(υH + υL +β)− κ(T − S(T ;γ0))�

Their payoff at the beginning of the game is

UH(γ0) = UH(0) = UH(S(T ;γ0))−
∫ S(T ;γ0)

0
U̇H(t)dt�

where U̇H(t) is given by (5). Lengthening the deadline affects the welfare of the high
types by changing the boundary value UH(S(T ;γ0)) directly and by prolonging the con-
cession phase through increasing S(T ;γ0). The overall effect is

∂UH(γ0)

∂T
= −κ+ x(S(T ;γ0))

(
υH +β− UH(S(T ;γ0))

)∂S(T ;γ0)

∂T
� (14)

The loss from a longer deadline is κ, while the gain is the increased length of the conces-
sion phase times the flow rate of concession times the value of the resulting improve-
ment in the decision. The analysis for Region III is similar, except that the boundary
value becomes

UH(S(T ;γ0)) = υH +β− κ(T − S(T ;γ0))�

The welfare effect on the high type is given by the same expression (14).
Crucial to our characterization of the optimal deadline, we establish in the proof

of Proposition 5 below that the welfare effect (14) is positive in Region I but negative

19Under the selection of the continuation equilibrium given in Proposition 2, the same analysis and
conclusion hold on the horizontal segment of the boundary B, with γ0 = γ∗ and T ≤ B(γ∗).
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in Region III. The intuition behind this result is quite simple. In Region I, the game
results in a deadlock if it survives past the phase-switch time. Because the low types
persist at the deadline, the quality of the decision is bad for the high types. Therefore,
a longer concession phase that allows more information aggregation in the beginning
of the negotiation is highly valuable. In Region III, alternatively, the game only leads to
a stalling period past the phase-switch time. Since the low types ultimately concede at
the deadline, the high types eventually obtain their favorite decision. Therefore, a longer
concession phase in the beginning is of less value. This explains the contrasting welfare
effects for these two cases.

Figure 1 illustrates the welfare effects of a marginal extension of the deadline. A plus
sign indicates that a longer deadline improves the welfare of the high types, with no
effect on the low types; a minus sign indicates a negative welfare effect on the high types,
together with either a negative effect (in Regions V and VI) or no effect (in Region III) on
the low types; and an equals sign indicates that the welfare effect is nil for both types. For
γ0 ≥ γ∗, we can see that as the deadline T increases, the welfare effect is first negative
in Region V, then positive in Regions I and II, and finally turns negative in Region III.
Therefore, the optimal deadline must be either zero or D∗(γ0), which is the boundary
between Regions II and III. For γ0 < γ∗, we see that the welfare effect is negative as long
as the deadline is binding and is nil when the deadline is too long. Therefore, the optimal
deadline must be T = 0. To state our main result on the optimal deadline, let

UT (γ0) = 1
2 − γ0

UT
L (γ0)+ 1 − γ0

2 − γ0
UT
H(γ0) (15)

denote the ex ante welfare of a player before he knows his type from the equilibrium
under deadline T , where UT

H and UT
L are the corresponding payoffs for the high types

and the low types derived from Proposition 2.

Proposition 5. There exists a γ ∈ (γ∗�1) such that the length of the deadline T that
maximizes UT (γ0) is D∗(γ0) if γ0 ∈ (γ∗�γ) and is 0 otherwise.

The proof of this proposition involves showing that the welfare effect (14) is positive
in Region I and negative in Region III. Together with the result that the welfare effect
(13) is positive in Region II, we establish that the local maxima of UT(γ0) are at T = 0
and T = D∗(γ0) when γ > γ∗. The remainder of the proof consists of comparing the
values of UT (γ0) at the two local maxima. The details are in Appendix A.

Proposition 5 shows that the optimal deadline is zero when γ0 is either sufficiently
small or sufficiently large. When γ0 ≤ γ∗, the equilibrium in the no-delay game is ef-
ficient, so that allowing the players to negotiate in a continuous-time game only intro-
duces unnecessary delay. At the other end, when γ0 is sufficiently close to 1, under a suf-
ficiently long deadline the low types concede at a low rate and revise their belief slowly.
Although the welfare effect of the deadline is locally positive, making the decision im-
mediately by flipping a coin is even better from the ex ante perspective because the long
delay is avoided in the first place.



Theoretical Economics 7 (2012) Optimal deadlines for agreements 377

For intermediate levels of γ0, Proposition 5 shows that the optimal deadline is both
finite and not arbitrarily close to zero. These two properties follow from the characteri-
zation of the optimal deadline by the condition that the remaining time for negotiation
is B(γ∗) when the belief of the low types drops to γ∗ after an unsuccessful concession
phase. Alternatively, since the low types in equilibrium concede with probability 1 if
and only if the stopping belief is γ∗ and the time remaining to the deadline is B(γ∗), or
the stopping belief is strictly lower than γ∗, the optimal deadline for the intermediate
levels of initial belief γ0 is the shortest amount of time for there to be efficient informa-
tion aggregation at the deadline. Thus, the optimal deadline is finite for γ0 ∈ (γ∗�γ), not
because too long a deadline eventually becomes nonbinding with no welfare effect, but
because conditional on achieving efficient information aggregation at the deadline, the
optimal deadline minimizes the length of the concession phase. That it is not arbitrarily
close to zero implies that the optimal deadline as a function of the initial belief γ0 is dis-
continuous both at γ0 = γ∗ and at γ0 = γ. These discontinuities are not a consequence
of the equilibrium payoff discontinuity in the no-delay game.20 Rather, they are due to
the deadline effect: for sufficiently short deadlines, the low types simply persist from the
start all through the deadline, which means that the welfare effect is always negative for
short deadlines. Put differently, when it is positive, the optimal deadline cannot be too
short because it has to allow a sufficiently long delay to give incentives for the low types
to change their deadline behavior and achieve efficient information aggregation.

Using the definition of D∗ in (12), we can obtain an explicit formula for the optimal
deadline when it is positive:

D∗(γ0)= β

κ

(
γ∗
2

+ ln
1 − γ∗
1 − γ0

)
�

The preceding formula immediately reveals that the optimal deadline, when it is posi-
tive, is an increasing function of γ0. This makes sense, because starting from a higher
initial belief γ0, it takes a longer time for the revised belief to reach γ∗. It is also straight-
forward to verify using the formula that the optimal deadline is longer the lower is the
flow delay cost κ, the smaller is the common value difference υH − υL, or the greater
is the low type’s private benefit β. All these factors make the low types less willing to
concede, therefore requiring a longer negotiation to achieve efficient information ag-
gregation.

5. Extensions

In setting up the model, we abstracted from any detail in the deadline implementation
to focus on the welfare effect of the deadline. In this section, we briefly present three
extensions of the model, which add greater detail and some degree of realism. How-
ever, this is not the main objective of these extensions. Rather, we use them to gain
more insight about the source of the welfare effect of the deadline and to demonstrate
its robustness.

20In Section 5.2, where we modify the no-delay game to eliminate the payoff discontinuity, the optimal
deadline remains discontinuous.
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5.1 Stochastic deadlines

Our analysis so far is confined to the case of pre-committed deterministic deadlines. We
now study the concession game with exogenous but stochastic breakdowns, interpreted
as stochastic deadlines. Let ε > 0 be the constant rate of exogenous exit, so that upon
reaching time t, the probability that the game ends exogenously in the next time interval
dt is εdt. In this event, we assume that the decision is made by a fair coin flip. For
simplicity we assume that T = ∞. A smaller value of ε corresponds to a longer stochastic
deadline, with ε = ∞ corresponding to the no-delay game analyzed in Section 2 and
ε= 0 equivalent to the no-deadline game analyzed in Section 3.

Following the same steps in deriving the differential equation for γ(t) in the case of
ε= 0, we have

− γ̇(t)

1 − γ(t)
= κ

β

α− γ(t)

α− γ∗
� (16)

where we define

α ≡ γ∗ + (1 − γ∗)
2κ
βε

�

The derivation of the differential equation (16) is given in the proof of Proposition B1 in
Appendix B, available in a supplementary file on the journal website, http://econtheory.
org/supp/847/supplement.pdf. There are two cases to consider.

In the first case, γ0 < min{1�α}, and the differential equation (16) gives the belief
evolution of an equilibrium in which the high types always persist and the low types with
belief γ concede with a flow rate ε(α−γ)/(2(1 −γ∗)γ).21 In this case, the exogenous exit
rate ε is sufficiently small or, equivalently, the stochastic deadline is sufficiently long,
relative to the initial belief γ0 of the low types. Qualitatively, this case is similar to the
no-deadline game of Section 3 or the nonbinding deadline case of Section 4.

In the second case, with γ0 ∈ [min{1�α}�1), in equilibrium the low types persist with
probability 1 at any time t just as the high types, with the game ending by an exoge-
nous exit. This case occurs when the exit rate ε is great and the initial belief γ0 is high.
Since flipping a coin gives a higher payoff to the low types than UL(γ0), and since the
expected wait for the stochastic exit to occur is short when ε is large, they have no in-
centive to deviate to conceding. This case is qualitatively similar to the short deadline
case in Section 4.

We are interested in the effect of the stochastic exit rate ε on players’ welfare. The
question we want to answer is whether in a game with no deterministic deadline, ex-
ogenous stochastic exit can be used to improve the ex ante welfare of the players in a
manner similar to the optimal finite deadline analysis in Section 4. Since the equilib-
rium in the no-delay game (ε= ∞ or, equivalently, T = 0) is efficient for any initial belief
γ0 below γ∗, we are interested only in the question of the optimal exogenous exit rate for
γ0 > γ∗.

21If ε ≤ 2κ/β, this is the only possible case. Note that α approaches infinity as ε approaches 0, in which
case (16) reduces to (4) for the no-deadline case.

http://econtheory.org/supp/847/supplement.pdf
http://econtheory.org/supp/847/supplement.pdf
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For the first case of γ0 < min{1�α}, the payoff function for the low types UL(γ0) is
identical to UL(γ0) given in (3) and thus does not depend on ε. This is because a low
type conceding with a positive rate is indifferent between persisting and conceding, and
his payoff from conceding is computed with both the opposing low type conceding and
the exogenous exit occurring at the instant with probability 0. For the high types, we
can show that the payoff function UH(γ0) is decreasing in ε as long as γ0 > γ∗. Details
can be found in the proof of Proposition B2 in Appendix B, available in a supplementary
file on the journal website, http://econtheory.org/supp/847/supplement.pdf. The intu-
ition behind this result is that an increase in the exogenous exit rate directly reduces the
probability that the high types receive their first best payoffs, which occurs only when
the low types concede. Although an increase in ε generally has ambiguous effects on the
equilibrium belief evolution and hence the equilibrium flow rate of concession by the
low types, the negative direct effect dominates. The welfare effect of an increase in ε is
negative in this case.

In the second case of γ0 ∈ [min{1�α}�1), both UH(γ0) and UL(γ0) are increasing in
ε, because a greater exogenous rate of exit reduces the expected duration of the equi-
librium play without affecting the decision, which is always a coin flip. Therefore, the
welfare effect of an increase in ε is positive.

Thus, for any initial belief γ0 > γ∗, as the exogenous exit rate ε increases, starting
from ε = 0 and α arbitrarily large, the welfare effect is negative for all ε such that α > γ0
and then is positive for all greater ε. It follows that the optimal exogenous exit rate is
either zero, which makes the game equivalent to the no-deadline game of T = ∞, or
infinity, which is equivalent to ending the game by flipping a coin as in the equilibrium
of the no-delay game of T = 0. In either case, we conclude that stochastic deadlines
cannot be used to improve the ex ante welfare of the players.

The failure of stochastic deadlines illustrates the crucial role the deadline plays in
improving the ex ante welfare of the players. Since the exogenous exit motivates the
low types to either always concede at a positive flow rate or always persist, stochastic
deadlines cannot generate the kind of deadline effect under a finite deadline where the
equilibrium play of the low types transits from an unsuccessful concession phase to a
persistence phase when the time to deadline and the belief jointly reach some critical
time horizon. The absence of such a deadline effect under stochastic deadlines is the
reason for its ineffectiveness in improving the ex ante welfare of the players.

5.2 Deadline games

We assumed that the game played upon the arrival of the deadline is the same as the no-
delay game with T = 0. This need not be the case in applications of our framework. In
addition, a notable feature of the no-delay game is that the equilibrium behavior of the
low types, as well as the payoffs of both the low and high types, change discontinuously
as γ increases from below γ∗ to above. Corresponding to this discontinuity, there is a
continuum of equilibria at γ = γ∗ when T = 0. This particular feature is not critical for
our results. We show that the logic behind our results remains intact for general deadline
games and then we use a specific example to demonstrate the robustness of our optimal
deadline characterization with respect to the discontinuity in the deadline game.

http://econtheory.org/supp/847/supplement.pdf
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In a general deadline game, a failure to reach an agreement may not lead to an im-
mediate coin flip as in our main model. For example, there may be an additional payoff
penalty for the two players when they fail to reach an agreement by the end of the dead-
line. We can capture this and other examples by assuming that if the two players fail
to reach an agreement, the payoff to a low type player is θH(γ) in the consensus state
and θL(γ) in the conflict state, where γ is the belief of the low types when the dead-
line is reached.22 For simplicity we assume that θH(γ) and θL(γ) are differentiable for
all γ. Feasibility and symmetry of the payoffs require that θH(γ) < (υH + υL +β)/2 and
θL(γ) < υL + β/2. We further assume that θL(γ) > υL, so that if it is known to be the
conflict state, the low types still prefer the disagreement payoff θL(γ) to conceding.

The foregoing specification of the deadline game generally eliminates the payoff
discontinuity and the multiplicity of equilibria at γ∗. To see this, note that the payoff
difference for the low types between conceding and persisting when the probability of
concession of the opposing low type is y, given by

γ(yθL(γ)+ (1− y)υL)+ (1−γ)υH − (
γ(y(υL +β)+ (1− y)θL(γ))+ (1−γ)θH(γ)

)
� (17)

is strictly decreasing in y because θL(γ) < υL + β/2 by assumption. Thus, for any γ,
there is a unique equilibrium in the no-delay game. Setting (17) to zero, we obtain the
probability of the low types conceding as a function of their belief γ,

Y(γ) = γ(υL − θL)+ (1 − γ)(υH − θH)

γ(2υL +β− θL)
� (18)

with the derivative given by

Y ′(γ) = −(υH − θH(γ))+ γ2(2Y(γ)− 1)θ′
L(γ)− γ(1 − γ)θ′

H(γ)

γ2(2υL +β− θL)
�

It is straightforward to verify that if Y ′(γ) < 0, then there is a unique critical belief γ∗ of
the low types such that (17) is zero for y = 1 and, similarly, a unique belief γ∗ such that
(17) is zero for y = 0. Since θL(γ) > υL by assumption, we have 0 < γ∗ < γ∗ < 1. Then, in
the unique equilibrium of the deadline game, the low types concede with probability 1
for γ ≤ γ∗, with probability Y(γ) for γ ∈ (γ∗�γ∗), and with probability 0 for any γ ≥ γ∗,
while the high types always persist.

A general deadline game redefines the boundary in the T–γ space that separates the
concession and persistence phases. The new boundary B(γ) is defined as in Section 4,
by the indifference condition of the low types between the same immediate concession
payoff UL(γ) given by (3) and the now unique equilibrium payoff U0

L(γ) in the deadline
game, given by

U0
L(γ) =

⎧⎨
⎩
γθL(γ)+ (1 − γ)υH if γ ≤ γ∗
γ
(
Y(γ)θL(γ)+ (1 −Y(γ))υL

) + (1 − γ)υH if γ ∈ (γ∗�γ∗)
γθL(γ)+ (1 − γ)θH(γ) if γ ≥ γ∗.

(19)

22We are implicitly assuming that there is no distinction between disagreements caused by both players
persisting versus both players conceding at the deadline. Relaxing this assumption is straightforward but
brings no additional insight.
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Figure 2. Regions of equilibrium play.

For the deadline penalty example mentioned above, we have θL = υL+β/2−λ and θH =
(υH + υL + β)/2 − λ, where λ ∈ (0�β/2) represents the payoff loss paid by each player
if the players fail to reach an agreement when the deadline expires. In this example, the
new boundary is shown as the thick piecewise linear graph in Figure 2. One can readily
verify that in this example, Y ′(γ) < 0 and B′(γ) < 0 for γ ∈ (γ∗�γ∗). Thus, the main
difference is that the horizontal segment corresponding to γ∗ in Figure 1 is replaced by
the downward sloping segment between γ∗ and γ∗ in Figure 2.

Both the equilibrium characterization and the welfare analysis in the example of
deadline penalty are quite similar to those in Section 4. They are formally stated as
Propositions C1 and C2, and are proved in Appendix C, available in a supplementary
file on the journal website, http://econtheory.org/supp/847/supplement.pdf. Here, we
use the general deadline game to highlight the main difference that arises in this exten-
sion, which is the welfare analysis of the deadline in Region II in Figure 2, and the role
played by the specification of the deadline penalty example. The payoff UH(S(T ;γ0)) to
the high types at the phase-switch time S(T ;γ0), when the belief of the low types up-
dates according to (7) and hits the downward-sloping segment of the boundary B, is
given by:

−κ(T − g(S(T ;γ0);γ0))+Y(g(S(T ;γ0);γ0))(υH +β)+ (
1 −Y(g(S(T ;γ0);γ0))

)
θH�

This is the boundary condition that determines the equilibrium payoff to the high types
through the differential equation (5). Using the same argument as in the case without
deadline penalty, we can decompose the welfare effect of the deadline ∂UH(γ0)/∂T into
three terms as (where we write S instead of S(T ;γ0) for notational brevity),

−κ+U0
H

′
(g(S;γ0))ġ(S;γ0)

∂S

∂T
+ x(S)(υH +β− UH(S))

∂S

∂T
� (20)

http://econtheory.org/supp/847/supplement.pdf
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where U0
H(γ) = Y(γ)(υH +β)+ (1 −Y(γ))θH(γ) is the unique equilibrium payoff to the

high types in the deadline game when the belief is γ, with

U0
H

′
(γ) = Y ′(γ)(υH(γ)+β− θH(γ))+ (1 −Y(γ))θ′

H(γ)�

Lengthening the deadline prolongs the concession phase if ∂S(T ;γ0)/∂T > 0, which is
true by (11) if B′(γ) < 0 for γ ∈ (γ∗�γ∗). The loss is the additional delay, represented by
the first term above, but there are two gains, represented by the second and third terms.
The second term results because a prolonged concession phase means that the updated
belief is lower when it hits the boundary as ġ(t;γ0) < 0, and thus the low types concede
with a higher probability at the deadline if Y ′(γ) < 0 for γ between γ∗ and γ∗, poten-

tially increasing the deadline payoff of U0
H(g(S(T ;γ0);γ0)). This term generalizes the

second expression in (13) for Region II in Section 4. The third term is proportional to the
flow rate of concession x(S(T ;γ0)) by the low types times the relative gain to the high
types of reaching an agreement during the concession phase. This term takes the form
as in (14) for Regions I and III in Section 4, but is absent from (13) because the horizon-
tal segment in Figure 1 means that ∂S(T ;γ0)/∂T = 0 in Region II. The specification of
the deadline penalty example ensures that B′(γ) < 0 for γ ∈ (γ∗�γ∗), and Y ′(γ) < 0, and

hence U0′
H(γ) < 0 in the same interval, so that the second and the third terms indeed rep-

resent the gains from marginally extending the deadline in Region II in Figure 2. More-
over, in the proof of Proposition C2 in Appendix C, we show that the gains outweigh the
first term so that the overall effect (20) is positive, as in Region II of Figure 1.

As in Section 4, the optimal deadline in the deadline penalty example is 0 for γ0 ≤ γ∗
and is either 0 or D∗(γ0) for γ0 > γ∗, where D∗(γ0) is such that when the belief of the low
types as determined by g(t;γ0) reaches γ∗, the time remaining is B(γ∗). That is,

g(D∗(γ0)−B(γ∗);γ0) = γ∗�

In the proof of Proposition C2 in Appendix C, we compare the ex ante welfare at these
two local maxima and show that there exists an intermediate range of beliefs γ0 above γ∗
for which the optimal deadline is D∗(γ0). Thus, the optimal deadline, when positive, is
still characterized by the shortest concession phase that achieves efficient information
aggregation at the deadline. The main properties of the optimal deadline established
in Section 4—that it is finite, is not arbitrarily short, and is increasing in the degree of
conflict—are all robust to the deadline game modeled by the deadline penalty.

5.3 Discounting

In our model, the additive cost of delay in agreeing to a decision means that the pay-
off loss due to delay does not depend on the agreed decision. Furthermore, since the
two players cannot unilaterally quit the game without conceding to their opponent, the
expected payoff loss from delay in equilibrium may well exceed the expected value in
reaching a decision. In this subsection, we demonstrate that our main results about op-
timal deadlines are robust if we model the delay cost through exponential discounting.
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The only change to the model is replacing the additive flow cost κ with a positive
discount rate r. Thus, if the game ends at time t, the payoffs are discounted by the factor
e−rt . Analytically, the main difference between the discounting case and the additive
delay cost model arises from differences in the differential equations for the belief and
for the value functions. Following the same steps used to establish Lemma 1, we can
show that in a symmetric equilibrium where the high types always persist, if the strategy
(y(t)�x(t)) of the low types satisfies y(t) = 0 and x(t) > 0 for all t ∈ [t1� t2), then the belief
of the low types follows the differential equation for t ∈ [t1� t2):

− γ̇(t)

1 − γ(t)
= (

γ(t)υL + (1 − γ(t))υH

) r
β
�

with

x(t) = γ(t)υL + (1 − γ(t))υH

γ(t)

r

β
�

These expressions are more involved than their counterparts in Lemma 1, but it can be
verified that the same qualitative features of decreasing belief and increasing concession
remain. The solution g(t;γ0) to the differential equation for the belief of the low types,
with the initial condition of g(0;γ0) = γ0, is given by

g(t;γ0)= UL(γ0)− (1 − γ0)υHerυLt/β

UL(γ0)− (1 − γ0)(υH − υL)erυLt/β
�

This implies a terminal time D(γ0) such that g(D(γ0);γ0)= 0, given explicitly by

D(γ0) = β

rυL
ln

UL(γ0)

(1 − γ0)υH
� (21)

The value function UL(γ) for the low types is still given by (3); the value function UH(γ)

for the high types satisfies the differential equation

U ′
H(γ) = υH +β−UH(γ)

γ(1 − γ)
− βUH(γ)

(1 − γ)UL(γ)
� (22)

As in the additive delay cost model of Section 4, the equilibrium play for any initial
belief γ0 and deadline T is characterized by a gradual concession phase outside some
boundary B(γ) and a persistence phase inside the boundary, followed by equilibrium
play at the deadline corresponding to the belief g(S(T ;γ0);γ0) at some phase-switch
time t = S(T ;γ0). The boundary B(γ) is defined in the same way as the longest length
of time from the deadline such that it is an equilibrium for a low type with belief γ to
persist until the deadline and then play an equilibrium corresponding to the no-delay
game associated with γ, given by

e−rB(γ)U0
L(γ) =UL(γ) (23)

for any belief γ 	= γ∗, instead of (9). Using the expressions for U0
L(γ) (1) and UL(γ) (3), we

can easily show that, as in the additive case of Section 4, the boundary B(γ) is an increas-
ing function for both γ ≤ γ∗ and γ > γ∗, with a jump-down at γ∗. Moreover, comparing
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(21) and (23), we have that B(γ) ≤ D(γ), with equality if and only if γ = 0, implying that
for T and γ0 such that T <D(γ0), there is a unique phase-switch time S(T ;γ0) defined
by (11). In Appendix D, which is available in a supplementary file on the journal web-
site, http://econtheory.org/supp/847/supplement.pdf, we establish a symmetric equi-
librium for this discounting case that is qualitatively similar to the equilibrium in the
additive delay cost case (Proposition D1), and we show that the optimal deadline, when
it is positive, continues to be D∗(γ0) as given by (12) (Proposition D2). Our conclusions
are, therefore, robust to alternative specifications of delay costs.

6. Concluding remarks

Damiano et al. (2009) use a discrete time model with more restrictive preference as-
sumptions to show that costly delay with deadline cannot only improve strategic in-
formation aggregation and hence ex ante welfare, but is also optimal in a mechanism
design environment with limited commitment. However, the discrete time framework
is not suitable for studying the issue of optimal deadlines in strategic information aggre-
gation, because an explicit characterization of equilibrium play is difficult to obtain. In a
continuous-time framework, certain details of the concession game such as the contin-
uation after a reverse disagreement become irrelevant, much as continuous-time bar-
gaining games are robust because they are procedure-free.23 This allows us to obtain an
explicit equilibrium characterization for our welfare analysis of the deadline effect.

In our model, the positive welfare effects of extending the deadline are directly re-
lated to the deadline behavior of the low types, who stop the concessions at some point
and then concede with a positive probability on reaching the deadline. A longer dead-
line is beneficial for the high types even though the low types persist for a longer period
of time during the deadline play, because the latter concede with a greater probability
when the deadline is reached. We argue that the failure to induce this deadline behavior
is the reason that stochastic deadlines, or exogenous negotiation breakdowns, are inef-
fective in raising ex ante welfare. However, an implicit assumption we make in model-
ing stochastic deadlines is that exogenous breakdowns occur at a constant flow rate. We
have not investigated either time-varying flow rates or atoms in the flow rate. The latter
case is perhaps a more natural way to model stochastic deadlines, and is likely to gen-
erate some deadline behavior and positive welfare effects of increasing the breakdown
rate.

Our concession game is symmetric, and we show that there is a unique equilibrium
and it is symmetric. Games with asymmetric preferences and delay costs are worth fu-
ture research because asymmetry adds an interesting element to the equilibrium dy-
namics of information aggregation. Our Assumption 1, which implies that the payoff
loss from making the wrong choice is greater for the high types than the payoff loss from
conceding in the conflict state for the low types, is sufficient for us to focus on equilib-
rium play of the low types and turn to the high types only for welfare analysis. In a more

23See, for example, Abreu and Gul (2000) and Jarque et al. (2003). The latter paper contains a welfare anal-
ysis of the effect of allowing a passive mediator to strike a greater number of intermediate compromises.
Neither paper allows common value or deadline.

http://econtheory.org/supp/847/supplement.pdf
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general setup, one could allow more types or even a continuum of types.24 Without a
deadline, the equilibrium analysis of such a concession game with a continuous type
space is straightforward. Instead of a mixed-strategy equilibrium with gradual and in-
creasing concessions by a single low type, there would be a pure-strategy equilibrium
with lower types conceding earlier. Introducing a deadline would generally disrupt such
smooth screening of types. Further, it is not hard to imagine a kind of deadline behavior
similar to that identified in the present model for the single low type: low types gradually
concede as if there is no deadline, intermediate types concede with an atom at the dead-
line, and high types never concede (Farrell and Simcoe 2009). However, welfare analysis
of the deadline effect would becomes substantially more difficult and is not possible
without strong assumptions on the type distribution.

Our result that the optimal deadline is positive and increasing for intermediate levels
of initial conflicts hinges on two implicit assumptions about the game that may be ques-
tioned in practice. First, the two parties in the joint decision situation are assumed to
be able to commit to a precise deadline at the start of the negotiation process. Accord-
ing to our characterization of equilibrium play, before the process reaches the critical
point when the parties are supposed to become inactive until the deadline arrives, they
have no incentive to renegotiate the deadline. However, as soon as the critical point
is reached, they would want to jump to the end-game play immediately. Of course if
such renegotiation of the deadline is anticipated, the equilibrium play before this crit-
ical point changes. It is potentially interesting to formalize this commitment issue and
reexamine the optimal deadline. The other implicit assumption we make is that the ini-
tial belief of the low types is common knowledge between the two parties when setting
the deadline. We hasten to emphasize that our result that extending the deadline can
have positive welfare effects is robust to slight perturbations to the initial belief of the
low types. However, a perhaps more interesting issue is whether the two parties find
some way to communicate their knowledge about the initial degrees of conflict before
jointly setting the deadline for negotiation. Such communication raises strategic issues
that are worth further research.

Appendix A: Proofs

Proof of Lemma 1. For all time intervals [t� t + dt) in [t1� t2), a low type is indifferent
between conceding, with the payoff UL(t) given in (2), and persisting. Therefore,

UL(t) = γ(t)x(t)dt(υL +β)+ (
γ(t)(1 − x(t)dt)+ (1 − γ(t))

)
(−κdt + UL(t + dt))�

Subtracting UL(t + dt) from both sides of the equation, dividing by dt, and taking the
limit as dt goes to zero, we have a differential equation for the value function UL(t).

24See Farrell (1996) for a model of standard adoption with a continuous type space, where the type of
a firm is private information and represents the common quality of the adopted standard. He does not
consider deadlines. In a follow-up paper, Farrell and Simcoe (2009) analyze the welfare effect of imposing a
deadline by introducing the social planner as a neutral player who cares only about the discounted expected
quality. The planner can stop the game at any time and implement a random choice. However, Farrell and
Simcoe do not consider the optimal choice when the planner can commit to a deadline.
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Using (2) for the value function, we can transform this differential equation for UL(t)

into a differential equation for γ(t), given by

γ̇(t) = γ(t)x(t)

(
γ(t)− υH − υL −β

υH − υL

)
− κ

υH − υL
�

By Bayes’ rule, given that the low type opponent is using the strategy represented by x(t),
the updated belief after persisting for the time interval [t� t + dt) is

γ(t + dt)= γ(t)(1 − x(t)dt)

γ(t)(1 − x(t)dt)+ (1 − γ(t))
�

As dt goes to zero, the updating formula can be written as

γ̇(t) = −γ(t)(1 − γ(t))x(t)�

The two equations for γ̇(t) and x(t) reduce to (4). Using (4) and Bayes’ rule, we also get

x(t) = 1
γ(t)

κ

β
� �

Proof of Proposition 1. It suffices to show that it is optimal for the high types to
always persist. This is clearly the case for t ≥ D(γ0), as the continuation payoff for the
high types is υH + β when the belief of the low types becomes zero. Using UH(0) =
υH + β as the boundary condition for the differential equation (6) and solving it, we
have

UH(γ) = υH −β
1 − γ

γ
ln(1 − γ)�

This equality above gives the equilibrium payoff of the high types for any t < D(γ0).
Since γ > 0, it is immediate from the solution that this is greater than υH , which by
Assumption 1 is greater than υL. Thus it is optimal for the high types to persist for any
t < D(γ0). �

Proof of Proposition 2. Using expressions (8) and (10), we can easily verify that
B(γ) ≤ D(γ), with equality if and only if γ = 0. Thus, for T and γ0 such that T < D(γ0),
there is a unique phase-switch time S = S(T ;γ0) given by (11). Further, S > 0 if and only
if T > B(γ0). Finally, for T and γ0 such that T ∈ (B(γ0)�D(γ0)), by construction we have

UL(g(S;γ0)) =U0
L(g(S;γ0))− κB(g(S;γ0))�

so that the equilibrium payoff of the low types is continuous at t = S. We discuss three
cases separately.

Case (i): T ≤ B(γ0). The construction of B implies that it is optimal for the low types
to persist for all t < T and then concede with probability y at t = T , with y = 1 if γ0 < γ∗,
y = 2κT/(βγ∗) if γ0 = γ∗, and y = 0 if γ0 > γ∗. For the high types, at any t ≤ T , persisting
all through the deadline yields

y(υH +β)+ (1 − y)
υH + υL +β

2
− κ(T − t)�
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Conceding at any t < T yields υL, which by Assumption 1 is smaller than the preceding
term because

T − t < B(1) = β

2κ
�

Conceding at t = T cannot be optimal either, because it is not part of any equilibrium of
the no-delay game.

Case (ii): T ∈ (B(γ0)�D(γ0)). Case (i) already establishes that there is no incentive
for any player to deviate at any t ≥ S. Since the equilibrium payoff of the low types is
continuous at t = S, there is no incentive for them to deviate at any t < S either. For
the high types, at any t < S and corresponding belief γ = g(t;γ0) of the low types, the
equilibrium payoff UH(γ) is given by the solution to the differential equation (6),

UH(γ) = υH +β−β
1 − γ

γ
ln(1 − γ)+ 1

γ
((1 − γ)(C + υH +β)−β)�

where C is a constant determined by the boundary condition

UH(g(S;γ0)) = y(υH +β)+ (1 − y)
υH + υL +β

2
− κ(T − S)�

We already know from Case (i) that UH(g(S;γ0)) ≥ υL. For any γ > g(S;γ0), we have
UH(γ) ≥ υL if

υH − υL

1 − γ
−β ln(1 − γ)+C ≥ −υL�

which is true because the left-hand side is increasing in γ by Assumption 1. Thus, it is
optimal for the high types to persist for all t < S.

Case (iii): T ≥ D(γ0). The strategy and the belief given in Proposition 2 form an
equilibrium identical to that in Proposition 1. �

Proof of Proposition 3. Fix any initial common belief γ0. We establish the proposi-
tion without the restriction that the low types either concede with an atom or at some
flow rate. A general strategy of a low type is described by a right-continuous nondecreas-
ing function P : [0�T ] → [0�1], where P(t) is the probability that the player concedes be-
fore or at time t. Given P , define P(t−)≡ lims↑t P(s), with the convention that P(0−) = 0.
We show through a series of claims that in any equilibrium where the high types al-
ways persist, P is continuous for all t ∈ [0�T ) and is differentiable except at t = S(T ;γ0),
with P(0) = 0, the hazard rate dP(t)/(1 − P(t)) is equal to the rate of concession x(t)

for t ∈ (0� S(T ;γ0)), and P(t) is constant for t ∈ (S(T ;γ0)�T) with a jump at T equal to
y(T)/(1 − P(T−)), where x(t), S(T ;γ0), and y(T) are given in the equilibrium construc-
tion in Section 4.1. It follows that the equilibrium constructed in Section 4.1 is unique.

Claim 1. If P is the equilibrium strategy of a low type player, then it is continuous at all
t ∈ [0�T ).
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Proof. First we show that for any t < T , it cannot be the case that both low types con-
cede with strictly positive probabilities at t. If his low type opponent’s strategy is P , upon
reaching t the belief of a low type player that his opponent is also a low type is

γ(t) = γ0(1 − P(t−))
γ0(1 − P(t−))+ (1 − γ0)

and his expected payoff from conceding is

γ(t)
P(t)− P(t−)

1 − P(t−)
2υL +β

2
+ γ(t)

1 − P(t)

1 − P(t−)
υL + (1 − γ(t))υH�

Further, there exists an arbitrarily small and positive η such that the payoff to the player
from persisting in the interval [t� t +η) and then conceding at t +η, is at least as large as

γ(t)
P(t)− P(t−)

1 − P(t−)
(υL +β)+ γ(t)

1 − P(t)

1 − P(t−)
υL + (1 − γ(t))υH −ηκ�

and for η sufficiently small, this constitutes a profitable deviation.
Suppose now that one low type concedes with positive probability at some t ∈ (0�T ).

His expected equilibrium payoff on reaching t is UL(γ(t)). An argument similar to that
above can be used to establish that for all η sufficiently small, his low type opponent
must persist in the interval of time [t − η� t]. This implies that the player’s belief γ

does not change during the same interval. Then, conceding at any t ∈ (t − η� t) does
strictly better, because the player gets the same expected decision but with a smaller
delay cost. �

Claim 2. If P is an equilibrium strategy of a low type player and is constant on an in-
terval [t1� t2) ⊆ [0�T ], then both P and the opposing low type’s equilibrium strategy P̃ are
constant on [t1�T ).

Proof. Since P is constant on [t1� t2), the belief of the opposing low type remains un-
changed over the interval. For any t� t ′ ∈ (t1� t2) with t < t ′, the opposing low type strictly
prefers conceding at t to conceding at t ′; thus P̃ is constant on [t1� t2) by the optimality
of equilibrium strategies. Now suppose t ′ = inft≥t2{t :P(t) > P(t2)} < T . By Claim 1 , P
is continuous on interval [t ′�T ). Since the belief of a player is continuous at t when his
opponent’s strategy is continuous at t, for ε sufficiently small, the player strictly prefers
conceding at t1 to conceding at t ′ + ε. Optimality of P̃ requires that it is constant on
[t1� t ′ + ε) and by the argument above, the same must be true for P , a contradiction. �

Claim 3. If P and P̃ are equilibrium strategies of the two low types, then P(t) = P̃(t) for
all t ∈ [0�T ] and, further, P(0) = P̃(0) = 0.

Proof. By Claims 1 and 2, there exists a single S ∈ [0�T ] such that both P and P̃ are
strictly increasing for t ∈ (0� S) and constant for t ∈ (S�T ). There are two cases.

Consider first S = 0. In this case, the claim follows if we show that P(0) = P̃(0) = 0,
because we already know that as long γ0 	= γ∗, a unique equilibrium exists and is sym-
metric in the no-delay game. From the proof of Claim 1 we know that P(0) and P̃(0)
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cannot both be positive. If P(0) > 0, then the corresponding low type player prefers (at
least weakly) conceding immediately to waiting until the deadline and then playing the
equilibrium strategy in the no-delay game associated with the initial belief at γ0. But
then, because an instant after the game begins his low type opponent holds a belief
γ < γ0, it can be verified that he strictly prefers conceding to waiting until the dead-
line and then playing the equilibrium strategy in the no-delay game associated with his
lower belief. This contradiction establishes that we cannot have P(0) > P̃(0) = 0. The
opposite cannot be true either; the claim then follows.

Next, suppose S > 0. Since at S both low type players are indifferent between con-
ceding and persisting until the deadline and then obtaining the unique equilibrium pay-
off associated with their belief at S in the no-delay game, they must have the same belief
at S . It follows that P(t) = P̃(t) for all t ∈ [S�T ]. For t ∈ (0� S), the optimality of P̃(t) and
P(t) against each other implies that the set of t ∈ (0� S) at which conceding is optimal is
dense in the interval [0� S] for both low type players. Against P , the expected payoff to
the opposing low type player from conceding at time t ∈ (0� S) is

γ′
0

(∫
s<t

(υL +β− κs)dP(s)+ (1 − P(t))(υL − κt)

)
+ (1 − γ′

0)(υH − κt)�

where γ′
0 = γ0(1 − P(0))/(γ0(1 − P(0)) + 1 − γ0) is his belief that his opponent is also a

low type after possibly playing an atom of concession P(0) at time 0. By the optimality
of P̃ , the preceding term is a constant function of t and is thus differentiable. Taking the
derivative and setting it to zero, we have that P is also differentiable, with the hazard rate
function dP(t)/(1 − P(t)) given by

κ

β

γ′
0(1 − P(t))+ 1 − γ′

0
γ′

0(1 − P(t))
�

By an identical argument, the hazard rate function dP̃(t)/(1 − P̃(t)) also satisfies this
equation, with γ′

0 replaced by γ̃′
0 = γ0(1 − P̃(0))/(γ0(1 − P̃(0))+ 1 −γ0). Since the beliefs

of the low type players about their opponents are the same at S , we must have P(0) =
P̃(0). The claim then follows by recalling that the proof of Claim 1 implies that P(0) and
P̃(0) cannot be both positive. �

Claim 4. If P is the equilibrium strategy of the low types, then P(t) is strictly increasing
for t ∈ (0� S(T ;γ0)) and constant for t ∈ (S(T ;γ0)�T), with a jump at T .

Proof. By Claims 1, 2, and 3, if P is an equilibrium strategy of the low types, then there
exists a single S ∈ [0�T ] such that P is both strictly increasing for t ∈ (0� S) and con-
stant for t ∈ (S�T ). First, suppose that S < S(T ;γ0). We know from the proof of Claim 3
that the hazard rate function of P is identical to x(t) given by Lemma 1 and that the
evolution of the belief of the low types follows the same differential equation (4). Since

S < S(T ;γ0), the belief of the low type at S equals g(S;γ0) and is strictly greater than
g(S(T ;γ0);γ0). But then, by definition of S(T ;γ0), the low types strictly prefer conced-
ing at S to waiting until the deadline and then playing the equilibrium strategy in the
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no-delay game associated with the initial belief at g(S;γ0). This contradicts the equilib-
rium condition for P .

Next, suppose, instead, S > S(T ;γ0). Consider the following unilateral deviation
strategy starting at S(T ;γ0) for a low type: persist until the deadline, and then play
the unique equilibrium strategy in the no-delay game corresponding to g(S(T ;γ0);γ0)

if g(S(T ;γ0);γ0) 	= γ∗ and concede with probability 1 if g(S(T ;γ0);γ0) = γ∗. For
g(S(T ;γ0);γ0) 	= γ∗, since the payoff to the low type increases whenever the low type
opponent concedes, and in the no-delay game the equilibrium probability of conces-
sion is decreasing in the belief of the low types, the payoff from this deviation is at least
as large as when the opposing low type follows the same deviation strategy. The same
is true for g(S(T ;γ0);γ0) = γ∗, because if the low type opponent initially concedes at a
positive flow rate for any arbitrarily small interval of time, his belief falls below γ∗ in the
posited equilibrium. It follows then from the definition of S(T ;γ0) that this is a prof-
itable deviation—a contradiction. �

Finally, since there is a unique equilibrium in the no-delay game, the jump in P at T
is uniquely determined and given by y(T)(1 − P(T−)). �

Proof of Proposition 4. We first argue that there is no symmetric equilibrium in
which the high types concede at a positive flow rate. Fix some time interval (t1� t2) and
suppose that the concession rate of the high types is x̃(t) > 0 for t ∈ (t1� t2). Consider first
the case where the low types also concede at some rate x(t) > 0 in the interval. Equa-
tion (5) still holds for the high types, but since the high types are indifferent between
conceding and persisting, and since conceding yields payoff υL with U̇H(t) = 0, we have
x(t) = κ/(υH − υL + β). For the low types, the counterpart of (5) is (see the proof of
Lemma 1 in Appendix A)

U̇L(t) = κ− (
γ(t)x(t)+ (1 − γ(t))x̃(t)

)
(υL +β− UL(t))�

while (3) still holds with U̇L(t) = γ̇(t)(υL − υH). By Bayes’ rule, the belief of a low type
player about his opponent evolves according to

γ̇(t) = γ(t)(1 − γ(t))(x̃(t)− x(t))�

Combining the two preceding equations, we have

(1 − γ(t))x̃(t)(υH − υL −β) = γ(t)x(t)β− κ < 0�

where the inequality follows because x(t) = κ/(υH − υL + β). This is impossible, es-
tablishing that there is no symmetric equilibrium where the low types also concede at
a positive flow rate in (t1� t2). There is no symmetric equilibrium for the low types to
persist in (t1� t2) either, because the high types concede immediately at the start of the
interval instead of conceding at rate x̃(t).

The only remaining possibility is that after some nonterminal histories, the high
types concede with a positive atom. Suppose that τ is the last time at which the high
types concede with a positive atom ỹ(τ). Then the continuation payoff to the high types
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is determined in the unique equilibrium given in Proposition 2, which is strictly greater
than υL. But this implies that the high types strictly prefer persisting to conceding at
τ—a contradiction. �

Proof of Proposition 5. First, we show that the welfare effect (14) is positive in Re-
gion I of Figure 1. The phase-switch time S is defined by the indifference condition

κ(T − S) =U0
L(g(S;γ0))−UL(g(S;γ0)) = g(S;γ0)− γ∗

1 − γ∗
β

2
�

Taking the derivative with respect to T and using the fact that ġ = −(1−g)κ/β, we obtain

∂S

∂T
= 2(1 − γ∗)

1 − 2γ∗ + g(S;γ0)
�

Furthermore, by Assumption 1,

υH +β− UH(S)= υH − υL +β

2
+ κ(T − S) >

β

2

(
1 + g(S;γ0)− γ∗

1 − γ∗

)
�

Finally, since x(S)= κ/(βg(S;γ0)), we have

x(S)(υH +β− UH(S))
∂S

∂T
>

κ

g(S;γ0)
> κ�

Next, we show that the welfare effect (14) is negative in Region III. The phase-switch
time S is defined by

κ(T − S)= g(S;γ0)
β

2
�

Take the derivative with respect to T to get ∂S/∂T = 2/(1 + g(S;γ0)). Furthermore,

υH +β− UH(S) = κ(T − S) = g(S;γ0)
β

2
�

Therefore,

x(S)(υH +β− UH(S))
∂S

∂T
= κ

1 + g(S;γ0)
< κ�

The final part of the proof is to compare the value of UT (γ0) at the two local maxima
T = 0 and T = D∗(γ0) for γ0 > γ∗. The ex ante welfare U0(γ0) for T = 0 is given by (15).
Let U∗

L(γ0) and U∗
H(γ0) be the welfare of the low types and the high types when T =

D∗(γ0), and let U∗ be the weighted average of the two as in (15). We have U∗
L(γ0) =

γ0υL + (1 − γ0)υH as given by (3). Solving the differential equation (6) for the payoff to
the high types with the boundary condition UT

H(γ∗)= υH +β− κB(γ∗), we obtain

U∗
H(γ0) = υH +β− 1 − γ0

γ0

(
ln

(
1 − γ0

1 − γ∗

)
+ 1

1 − γ0
− 2 − γ2∗

2(1 − γ∗)

)
β�
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The difference in ex ante welfare U∗(γ0)−U0(γ0) is equal to �(γ0)/(2(2 − γ0)), where

�(γ0)= 2(1 − γ0)(υH − υL)− γ0β− 2(1 − γ0)
2

γ0

(
ln

(
1 − γ0

1 − γ∗

)
+ 1

1 − γ0
− 2 − γ2∗

2(1 − γ∗)

)
β�

Take the derivative of � with respect to γ0 to obtain

�′(γ0)= −2(υH − υL)− 3β+ 2(1 − γ2
0)

γ2
0

(
ln

(
1 − γ0

1 − γ∗

)
+ 1

1 − γ0
− 2 − γ2∗

2(1 − γ∗)

)
β�

The limit of the last term as γ0 goes to 1 is equal to 4β. Further, it is increasing for all
γ0 > γ∗: the derivative has the same sign as

−1 − (1 + γ0)
2 − 2 ln

(
1 − γ0

1 − γ∗

)
+ 2 − γ2∗

1 − γ∗
�

which is an increasing function of γ0; at γ0 = γ∗, this derivative is equal to γ3∗/(1 − γ∗),
which is positive. Thus, �′(γ0) ≤ −2(υH − υL) + β, which is negative by Assump-
tion 1. We have proved that �(γ0) = 0 implies �′(γ0) < 0 for all γ0 > γ∗. Note that
limγ0↓γ∗ �(γ∗) = (1 − γ∗)(υH − υL + β − γ∗β), which is positive by Assumption 1. Also,
limγ0↑1 �(γ0) = −β < 0. It follows from the intermediate value theorem that there exists
a γ ∈ (γ∗�1) such that �(γ)= 0. Moreover, the single-crossing property of � implies that
such γ is unique, with U∗(γ0) > U0(γ0) if and only if γ0 ∈ (γ∗�γ). �
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