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Introduction 

There is a long history of research comparing the profitability of conventional and 

organic farm management systems in the midwestern United States. While some research has 

found that organic cropping systems are less profitable than conventional systems (e.g. Dobbs 

and Smolik, 1996), most studies have shown that returns to organic farm management are equal 

to or exceed those to conventional management. An early study by Lockeretz et al. (1981) 

compared diversified organic farms to similarly sized conventional farms from the same 

geographic area. Five years of management and yield data were collected and analyzed. The 

authors concluded that organic farms earned roughly the same per-acre returns as conventional 

farms, with lower production costs offsetting lower yields on the organic farms. Other studies 

have used long-term trial data, rather than case-studies, to examine the profitability of organic 

systems. Helmers et al. (1986) evaluated eight years of yield data from an experimental trial and 

concluded that organic rotations were neither less profitable nor more risky than the same 

rotations managed with synthetic pesticides and fertilizers. Similarly, based on three years of 

trial data in Iowa, Delate et al. (2003) found that a 4-year organic rotation earned greater net 

returns than a conventional corn-soybean rotation when organic price premiums were taken into 

account. More recently, data from a long term agricultural experiment in Wisconsin found that 

with organic premiums, an organic grain rotation outperformed conventional and no-till cropping 

systems. Furthermore, when measures of risk exposure were taken into account, the results were 

largely unchanged (Chavas et al., 2009). In Minnesota, 18 years of experimental trial data was 

used to find that returns to a 4-year organic grain and forage rotation exceeded the net returns to 

both an equivalent rotation and a 2-year corn-soybean rotation that were managed conventionally, 

but only when organic price premiums were considered (Delbridge et al., 2011). 
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The results of the previous research are supported by newly available empirical data on 

the financial performance of organic farms. The University of Minnesota Center for Farm 

Financial Management’s FINBIN database, which collects data on both conventional and organic 

farm financial outcomes in Minnesota, shows that several major organic crop enterprises have 

outperformed their conventional counterparts in terms of per acre returns over direct expenses. In 

fact, FINBIN data show that from 2006 to 2009, growers of organic corn earned an average of 

$442 per acre over direct expenses compared to $200 per acre for conventional corn. Over this 

same period organic soybean returned an average of $166 per acre, while conventional soybean 

returned $157 (Center for Farm Financial Management, 2010). Though these data cannot be used 

to directly compare specific cropping systems, as they are averages drawing on a diverse set of 

farms and rotation designs, they are largely consistent with the findings of the previously 

mentioned studies. 

Machinery ownership costs are an important factor when considering the profitability of 

alternative cropping systems. Unfortunately, much of the research on the comparative 

profitability of organic and conventional cropping systems has either ignored the overhead 

expenses that are associated with owning and housing farm machinery or has assumed that both 

organic and conventional crop management systems face the same machinery ownership costs. 

This assumption, though convenient for making comparisons of the profitability of cropping 

systems based on experimental trial data, may lead to an understatement of the true costs of 

organic farm management. Organic cropping systems in the midwestern United States include 

rotations of three or more crops and require machinery that conventional farms in the region 

often do not own (e.g. forage harvest equipment). Though additional machinery requirements on 

organic farms do not necessarily increase operating expenses (i.e. labor, fuel) relative to 
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conventional farms, they may increase overhead costs associated with the financing, 

maintenance, and depreciation of the additional equipment.  

Furthermore, organic and conventional crop farms may have different optimum farm 

sizes, as management requirements differ between the two systems. To the authors’ knowledge, 

there have not been any economic studies that have carefully considered the differences in farm 

size between organic and conventional farms and the effect that such size differences would have 

on machinery costs and overall farm profitability. Empirical data show that among contributors 

to the FINBIN farm financial database, the average Minnesota organic crop farm is smaller than 

the average conventional crop farm (664 acres and 1095 acres respectively) (Center for Farm 

Financial Management, 2010). If this size difference is the result of the differences in 

management requirements between the two systems, it should be considered in an analysis of 

whole-farm profitability. Not only could differences in farm size significantly impact the per-

acre machinery ownership costs on organic and conventional farms, but farm-level profits could 

actually be smaller for organic crop farms even when the per-acre returns are considerably higher 

than those generated under conventional management. The objective of this study is to provide 

an analysis of the profitability of organic and conventional cropping systems at the whole-farm 

level that carefully considers the effects of farm size and machinery complement on total farm 

costs.  

 

Methods 

 This study extends the analysis of per-acre net returns presented in Delbridge et al. (2011) 

to account for differences in farm size and machinery costs that result from differing 

management requirements of conventional and organic cropping systems. Much of the 

methodology used in Delbridge et al. (2011) with respect to the analysis of the VICMS trial data, 
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as well as the prices of inputs and commodities, is repeated here in order to present a whole-farm 

analysis that is easily compared to the previous per-acre results. Additionally, a similar stochastic 

dominance analysis is employed to compare the net return distributions from each of the crop 

rotation and farm size scenarios.  

 

Data 

As described in Porter et al. (2003) and Coulter et al. (2011), the Variable Input Crop 

Management Systems (VICMS) trial was initiated in 1989 in southwestern Minnesota (44º15´ N, 

95º19´ W). Two crop rotations and four management strategies were included in the trial in each 

crop year resulting in eight distinct rotation-strategy treatments. Each of the 8 treatments was 

replicated in 3 plots each year. The crop rotations were a two-year corn-soybean rotation, and a 

four-year corn-soybean-oat/alfalfa-alfalfa rotation. The management strategies were zero-input, 

low-purchased-input, high-purchased-input (HI), and organic-input (OI). For the purposes of this 

study, only the OI 4-yr rotation and the HI 2-yr rotation are analyzed, as these rotations are 

considered to be the closest to representing the predominant organic and conventional crop 

rotations in the region.  

In the HI strategy, weeds and insect pests were controlled with broadcast pesticides, 

synthetic fertilizers were applied at rates appropriate for aggressive yield goals, and insect and 

herbicide resistant seed was planted in later years of the trial. In the OI strategy, weeds were 

managed mechanically, beef manure was used for fertilization, and organically produced seed 

was used when available (Coulter et al., 2011). Records were kept of each field operation carried 

out in each treatment, as well as the formulations and rates of all input applications. Additionally, 

days suitable for fieldwork were recorded throughout the duration of the VICMS trial.   
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As explained in detail in Delbridge et al. (2011), costs of purchased inputs for all years of 

the trial were calculated using input prices from 2010. Nutrients applied through synthetic 

fertilizer and beef manure were priced using market rates for synthetic fertilizers. Costs of 

chemical pesticide applications were calculated using 2010 prices when possible. In some cases 

herbicides that were applied in early years of the trial were no longer available, in which case the 

last available price for the product was inflation-adjusted to 2010 rates (Delbridge et al., 2011). 

Although 2010 prices were attributed to all seed used in the trial, different prices were applied 

depending on whether the planted seed was conventional, organic, or contained insect or 

herbicide resistant traits. A constant per-acre land rent charge was attributed to the production 

costs of both rotations that was equal to the average land rent paid by corn producers in 

southwest Minnesota in 2010 (Center for Farm Financial Management, 2011). Additionally, 

direct government payments were considered for both the OI and HI cropping systems. A total of 

$21 per acre, meant to represent the direct payments likely to be received by crop farms in 

southwest Minnesota, was added to the revenues derived from each cropping system. This 

payment level is based on the assumption that half of each system’s total crop acres would be 

registered as corn base-acres and half would be registered as soybean base-acres. Though the 

organic rotation currently being considered also includes crop acres planted in alfalfa or oat, 

which would not be eligible for direct payments, all acres are assumed to have been registered as 

corn or soybean base-acres prior to organic certification (USDA- Farm Service Agency, 2008).  

As in Delbridge et al. (2011), prices for both organic and conventional corn, soybean, and 

oat were the average prices received by growers contributing to the FINBIN database for each 

year from 2006 to 2010. Conventional alfalfa prices were taken from the Southwest Minnesota 

Farm Business Management Association Annual Reports from 1993 to 2010. No organic price 
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premiums were considered for alfalfa in order to reflect the inconsistency of organic alfalfa 

prices in southwestern Minnesota.  

 

Optimal Farm Size Determination 

Researchers have previously used linear programming models to find optimal farm 

machinery complements for a given farm size and crop rotation (Pfeiffer and Peterson, 1980; 

Edwards and Boehlje, 1980). Others have considered the impact of weather variability, in the 

form of suitable field days, on the timeliness of field operations and subsequent farm size 

decisions (Apland, 1993). In this study, farm size was maximized by grid search using a 

spreadsheet tool developed for the scheduling of field operations on crop farms. Maximum crop 

acreage was determined for three different machinery size groupings and each of the two 

relevant crop rotations, subject to timeliness penalties for delayed planting, harvest, and weed 

control. Days with suitable conditions for field operations were included in the model to account 

for historical weather variability. The final results of this procedure were estimates of the largest 

farms, in total crop acres, that could be managed within a corn-soybean-oat/alfalfa-alfalfa 

rotation managed organically and a corn-soybean rotation managed conventionally, without 

suffering unacceptable yield loss, given “small”, “medium”, or “large” machinery.  

The three machinery complements were chosen based on discussions with local crop 

growers and university extension researchers, and by consulting empirical data on farm 

machinery sizes in Minnesota (Table 1)(Gorman, 2010). The machinery complements were not 

meant to represent the machinery that would likely be present on a farm of any particular size, 

but rather the different machinery that would likely be used together. For example, it is not likely 

that any grower would use both a 16-row corn planter (large) and a 4-row corn head for 
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harvesting (small) on the same farm, so these pieces of equipment were not grouped together. Of 

course, one would expect the larger equipment to be found on a larger farm, but it is the 

comparison of the constraints of organic and conventional management that are of interest here 

rather than the maximum crop acres that could be farmed with each machinery complement.  

Yield penalties are assumed for delays in planting and weed control based on agronomic 

research relevant to the region. Based on the guidelines provided by Nafziger (2009), penalties 

attributed to a delay in corn planting range from 0.5 bu/day to 2 bu/day as planting is delayed 

from the beginning to the end of May. Similarly, based on a study of soybean yield response to 

planting date, which was conducted on the same site as the VICMS trial, a penalty of 0.3% to 

1.3% of yield per day is assumed for each day that planting is delayed by weather or 

unavailability of labor (Severson, 2011). A penalty of 0.5 bu/day is applied for each day that the 

planting of oat is delayed between April 18 and May 14, and a penalty of 1.0 bu/day for each day 

of planting delay after May 14 (Rankin, 2011). No late planting penalty is assumed for alfalfa, as 

alfalfa is planted with oat and no alfalfa harvest is carried out until the second year. For both 

corn and soybean, penalties for delayed mechanical weed control are assumed to be 2.0% for 

each crop stage that weeds are not removed after the beginning of the critical time for weed 

removal (Knezevic, 2003). Total yield losses from all delays (planting and weed control) are 

deemed unacceptable if greater than 5.0% of the actual recorded yield of corn, soybean, or oat. It 

is also considered unacceptable if poor weather or the lack of available labor precludes alfalfa 

harvest past the 15th of October. This date, which is earlier than the latest possible cutting date 

when over-wintering is not of concern (Undersander et al., 1994), reflects the importance of 

alfalfa biomass in meeting the following corn crop’s nitrogen requirement.  
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Daily available labor is set at a maximum of 16 hours to reflect two full-time farm 

workers working 8 hours each day. Although 8 hours is surely shorter than the typical work day 

during critical planting, harvest and weed control periods, this accounts only for time spent 

actually operating machinery. No other farm management tasks are considered in the model. 

Machinery availability is considered separately from labor availability so that even though two 

workers are available on any given day, two field operations cannot be performed using the same 

machinery on different fields. No additional part-time or “peak-time” hired labor is allowed in 

this model, though this technique has been used in other studies. The initial farm size is set to 80 

acres for each crop rotation and farm machinery complement, and the size is increased in 80 acre 

increments until unacceptable yield losses occur in more than one of the 18 years of trial data.  

 

Machinery Costs 

Once optimal farm sizes for both the HI 2-yr and the OI 4-yr rotations are established for 

each of three possible machinery complements, machinery costs are estimated for each scenario 

based on the field operations records from the VICMS trial. Machinery operating costs, which 

include operator labor, fuel, oil, and operation related repairs, are calculated using the University 

of Minnesota Extension Farm Machinery Economic Cost Estimation Spreadsheet (Lazarus and 

Smale, 2010). The size of each implement is entered, along with farm size and the average 

number of annual machinery passes required each year to arrive at a per-acre operating cost. The 

cost of operating both the implement and the associated power unit is included in this estimate. 

Whereas Delbridge et al. (2011) used the use-related costs averaged over several machinery sizes 

provided in Lazarus (2009), the current study calculates operating costs separately for each 

implement’s width, appropriate power unit, and annual hours per use at each farm size scenario.  
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Ownership costs of farm machinery consist of interest, insurance, machinery housing, 

and depreciation. These costs, unlike operating costs, depend critically on the value, age, and 

annual hours of use of each piece of equipment. Although the annual hours of use is determined 

by the model depending on the machinery widths and farm size scenarios, a challenge in 

calculating ownership expenses is making reasonable assumptions with respect to the 

equipment’s value and age. Of course, one possible approach would be to assume that farms 

operating within both the HI 2-yr and the OI 4-yr rotation have purchased all equipment new in 

the current year, in which case current machinery list prices can be assumed and costs can be 

easily estimated using the previously mentioned machinery cost tools. When this approach is 

taken, total machinery costs for the smaller farms are very high. For the OI 4-yr rotation, total 

machinery costs for the small, medium, and large machinery and farm size scenarios were 

$1,120, $823, and $829 respectively. For the HI 2-yr rotation, total machinery costs for the small, 

medium and large scenarios were $243, $202, and $172, respectively. Although this method can 

be consistently repeated for all rotations, farm sizes, and machinery complements, it does not 

accurately reflect the actual conditions and machinery replacement strategies being practiced on 

crop farms in Minnesota.  

Many farms, especially smaller crop farms, use implements and power units that are well 

beyond the 12-year useful life often assumed in machinery cost estimate tools. To estimate the 

total machinery costs that would be faced by each cropping system when using older machinery, 

the same machinery and farm sizes were entered into the cost estimation tool, but rather than 

assume new machinery, all equipment was assumed to be 20 years old. The machinery cost 

estimation tool used in this study calculates machinery depreciation based on the methodology 

described in Wu and Perry (2004) and machinery value decreases with years since original 
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purchase. Thus, under this machinery age assumption, the current value of all equipment is much 

less than when new equipment is assumed, and yearly depreciation expense declines accordingly. 

In fact, when considering machinery that is 20 years old, the estimated machinery depreciation 

costs are comparable to, though still slightly higher than, the depreciation levels that are reported 

for organic crop farms in empirical farm financial data. However, conventional crop farms report 

machinery depreciation costs that are greater than those estimated under the assumption of 20 

year old equipment (Center for Farm Financial Management, 2011). This suggests that organic 

farms, which tend to be smaller than conventional farms, may rely on older machinery to keep 

total costs at manageable levels. Another approach to estimating total machinery costs would be 

to use the machinery cost estimation tools in conjunction with empirical data on average 

machinery age, type and size currently being used on conventional and organic farms. 

Unfortunately, little data of this nature exist. (Lazarus, 2010).  

Rather than rely on tenuous assumptions regarding machinery age and market value to 

estimate total machinery costs, this study uses average machinery ownership costs taken from the 

“Detailed Farm Income Statements” available in the FINBIN database for 2010 (Center for Farm 

Financial Management, 2011). This technique allows for differing machinery repair and 

replacement strategies that are likely practiced on conventional and organic crop farms.  The cost 

categories within the FINBIN report that are used to calculate machinery ownership costs 

include “repairs”, “machinery and equipment depreciation”, “interest” and “machinery leases”. 

Though the “repairs” category may include repairs to buildings and other non-machinery related 

repairs, no attempt is made to separate these costs here. Additionally, because the FINBIN 

database does not distinguish between interest on machinery purchases and other interest paid, 
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interest expense related to machinery is estimated based on the proportion of machinery assets to 

total assets from the FINBIN “Balance Sheet- Market Values” for crop farms.  

The FINBIN database allows queries to distinguish between organic and conventional 

farms, as well as by farm size. Though there are not enough organic crop farms in the database to 

calculate separate costs for each farm size used in this study, separate ownership costs are 

calculated for conventional crop farms between 500 and 1,000 crop acres, 1,000 and 1,500 crop 

acres, and 1,500 and 2,000 crop acres to reflect the optimal farm sizes found for each machinery 

complement. A single machinery ownership cost is calculated for the organic system based on 

the FINBIN data for organic farms that are between 250 and 1,000 crop acres. 

 

Net Return Distributions and Stochastic Dominance Analysis 

 Machinery operating cost, machinery ownership cost, land rent, and input purchase cost 

are added together to achieve a total per-acre production cost for each of the 6 cropping system 

and farm size scenarios for each of the 18 years of the VICMS trial. This total production cost is 

combined with crop yields from the corresponding year and matched with each of the five sets of 

commodity prices. This per-acre net revenue, along with estimated government payments, is then 

simply multiplied by the total crop acres found in the optimal farm size model for each 

machinery size grouping to arrive at a distribution of whole-farm net returns. The distribution for 

each of the six scenarios includes 5 x 18 = 90 states of nature that account for the variability in 

crop yield and commodity prices over time. 

 Distributions of net returns are compared by both first-degree (FSD) and second-degree 

(SSD) stochastic dominance (Hardaker et al., 1997; Stanger et al., 2008; Delbridge et al., 2011). 

Distribution A dominates distribution B by FSD if A is less than or equal to B for all levels of X. 
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Distribution A dominates distribution B by SSD if the area under the cumulative distribution of 

A is less than the area under distribution B at all values of X. FSD is the least restrictive of the 

stochastic efficiency criterion so if a distribution dominates by FSD then it also dominates by 

SSD. 

 For this methodology to be valid, two assumptions must be made. First, for 2006 – 2010 

commodity prices to be applied to crop yields from 1993 – 2010, independence must be 

established between these state level price averages and farm level crop yields. To test for this 

independence, correlation coefficients were calculated for crop yields from the VICMS trial from 

1993 – 2010 and conventional corn, soybean, oat, and alfalfa prices from the FINBIN database 

for the same years. The only significant negative correlation was found to be that between alfalfa 

hay production and the state average of alfalfa hay price received. As a result, corn, soybean, and 

oat prices from recent years are matched with historical trial yields, while trial alfalfa yields are 

matched with local prices from the production year (Nordquist et al., 2011).  The second 

necessary assumption is that prices, yields, and production cost estimates can be adjusted to 

current terms. To satisfy this condition, input prices are taken from 2010 and yields are 

detrended to 2010 levels for corn and soybean, which exhibit yield trends over time (Delbridge et 

al., 2011). 

 

Results 

Crop Yields 

 Detrended corn yields within the VICMS trial are not significantly different between the 

OI 4-yr and the HI 2-yr rotations, though soybean yield is significantly less in the OI 4-yr 

rotation (Table 5). Oat and alfalfa crops are not included in the HI 2-yr rotation and are therefore 
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not directly compared with yields from the OI 4-yr, although Delbridge et al. (2011) shows that 

yields of oat and alfalfa within the OI system are equal to or greater than those from the same 

rotation managed conventionally.  Coulter et al. (2011) presents a complete discussion of trial 

yields for all systems and rotations.  

 

Farm Size  

 Estimated maximum farm sizes differ dramatically for the HI 2-yr and OI 4-yr rotations. 

For machinery complement #1 (the smallest grouping) the maximum size is 320 total farm acres 

for the OI 4-yr rotation whereas the maximum size is 560 total farm acres for the HI 2-yr rotation. 

Machinery complement #2 allows for larger operations for both rotations, though the increase in 

acreage is larger for the HI system. Under machinery complement #2 the OI 4-yr rotation reaches 

a maximum of 560 acres while the maximum acreage for the HI 2-yr rotation is 1,020 acres. For 

machinery complement #3 (the largest machinery complement), the OI 4-yr cropping system can 

be managed on up to 800 total acres and the HI 2-yr system can be managed on up to 1,520 total 

crop acres before the model returns unacceptable yield losses. An increase in farm machinery 

size from complement #1 to complement #3 allows an increase in acreage of 960 acres for the HI 

system but only 480 acres for the OI 4-yr rotation.   

 In the case of the OI 4-yr rotation, yield penalties related to corn planting delay and 

alfalfa harvest delays are the most frequently binding constraints in the farm size model. Yield 

penalties due to soybean planting delay and delays in mechanical weed are less frequently 

binding with these machinery size groupings. In the HI 2-yr rotation, there are fewer field 

operations than in the OI 4-yr rotation and therefore there is less competition for limited labor 

and machinery time. Furthermore, because both corn and soybean are planted early in the spring 
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in the HI system relative to the OI system, and because the associated yield penalties are 

quadratic in nature, when there are planting delays, daily penalties are usually smaller in the HI 

system than in the OI system. Thus in most years planting can be delayed longer in the HI 

system without triggering the unacceptable 5% yield loss level. Late planting in organic 

management systems for the purpose of weed control may not only affect yield of late planted 

corn and soybean, but may also increase the probability of significant additional yield loss if 

weather precludes field work during this critical time.  

 

Production Costs  
 In both the HI 2-yr and the OI 4-yr rotations, per-acre machinery operating costs decrease 

as machinery size increases. Larger implements, able to complete field operations in less time 

than smaller implements, have lower per-acre labor. Machinery operating costs and purchased 

inputs for the OI 4-yr rotation averaged across all years and crops are $137, $127, and $123 per-

acre for machinery complements #1, #2, and #3, respectively. Similarly, average production 

costs for the HI 2-yr rotation are $183, $170, and $165 per-acre for the same machinery 

complements. Though the organic system has requires more machinery passes per year than the 

conventional system when averaged over all crops in the rotations (Table 3), higher average 

weed control costs in the HI 2-yr rotation contribute to higher productions costs compared to the 

OI 4-yr rotation (Delbridge et al., 2011).  

 When machinery ownership costs, in the form of averages from the FINBIN database, are 

added to operating costs and input purchases, the difference in total production costs between the 

two rotations increases. The average cost of repairs, machinery depreciation and machinery 

leases on organic crop farms between 250 and 1000 acres in 2010 was $59 per acre. This is 

compared to $75, $71 and $77 per acre for conventional farms from 500 to 1000 acres, 1000 to 
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1500 acres, and 1500 to 2000 acres, respectively. This group of relatively small organic farms 

reported slightly lower per-acre costs for all three cost categories that make up the machinery 

ownership costs considered in this study than either of the three conventional farm size 

groupings. 

 

Net Returns 

 When full organic price premiums are considered, average whole-farm net returns to the 

OI 4-yr rotation are greater than the returns to the HI 2-yr rotation for each of the three 

machinery complements, despite the fact that the HI system has more crop acres in each scenario 

(Table 4). Returns to the HI system are also more variable than those to the OI system, as more 

crop acres result in larger swings in profits between years with strong yields and high prices and 

those without. When only half of the recorded organic price premiums from recent years are 

considered, the mean net revenue is higher for each of the machinery complement sizes under the 

HI 2-yr rotation than under the OI 4-yr rotation.  

 Stochastic dominance analysis of the six whole-farm scenarios shows that when full price 

premiums are taken into account, neither cropping system dominates by FSD when compared to 

the other system within machinery groups. However, when the analysis is extended to SSD, each 

of the OI 4-yr rotations dominates the HI 2-yr rotation within the same machinery group, despite 

having fewer crop acres. Perhaps more interesting is the comparison between farms of equal or 

similar size. The maximum farm size found for the OI rotation with machinery complement #2 is 

560 acres, as is the maximum farm size for the HI rotation with machinery complement #1. 

Under these scenarios, the OI 4-yr rotation dominates by FSD under full organic premiums as 

well as under 50% of organic price premiums. Similarly, the largest farm within the OI system 
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(800 acres with machinery group #3) dominates the mid-size farm within the HI system (1120 

acres with machinery group #2) by FSD with full organic premiums and by SSD with half of the 

organic premiums.  

 

Conclusions 

While previous studies have used agricultural trial data to analyze the profitability of 

conventional and organic cropping systems in the Midwest, this study extends this line of 

research to account for likely differences in farm size between the two systems. Maximum farm 

sizes have been estimated for different machinery complements using historical data on suitable 

days for field work and data on field operations for an organically managed 4-yr crop rotation 

and a conventionally managed 2-yr rotation. These farm sizes have been used in the calculation 

of more accurate machinery operating costs than are possible without assumptions regarding 

farm and machinery sizes. Machinery operating costs, empirical machinery ownership cost 

averages, and trial production data have been joined to create distributions of possible whole-

farm net return distributions for each cropping system. 

 Results of stochastic dominance analysis indicate that an organically managed crop farm 

in the Upper Midwest would be preferred by risk averse individuals to a conventionally managed 

crop farm (i.e. SSD), even when fewer total crop acres are available. When comparing these 

cropping systems for farms of the same size, results indicate that the organic rotation, at least on 

smaller farms, dominates the conventional rotation by FSD, which holds for all individuals that 

prefer more to less. This result does not appear to hold when only half of the recent organic price 

premiums are applied to crops produced in the organic system.  

 An interesting implication of these results is that small conventionally managed farms 

may be able to earn greater net returns if transitioned to organic production. Higher prices for 
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organic crops and lower production costs in an organic system allow for higher per-acre net 

returns on organic crop farms than on conventional corn-soybean operations. However, increased 

management requirements, such as mechanical rather than chemical weed control, allow 

conventional rotations to be managed on larger areas with the same labor and machinery 

resources. Therefore, in cases in which crop land is limited, organic crop management may be 

more attractive.  

 There are a few issues that must be kept in mind when considering these results. It should 

be noted that the organic crop yields used in this study are derived from long-term agricultural 

trial yields that are somewhat higher than state average organic crop yields (Delbridge et al., 

2010). While organic farmers in Minnesota can and do achieve yields comparable to those 

produced in the VICMS trial, organic systems are complex and a great deal of experience and 

expertise in managing organic rotations was present among trial managers. Additionally, the 

machinery required for corn-soybean-oat/alfalfa-alfalfa rotation is significantly different from 

that required to manage a corn-soybean rotation, in both size and machinery type. It would be 

inaccurate to suggest that growers using one system could simply “switch” to the other system 

without significant changes to their machinery fleet, in addition to the changes to management 

practices. Both of these aspects of transition impose a cost on the transitioning grower that is not 

considered in this study.  



  19 

 

References 
 
Apland, J. 1993. The use of field days in economic models of crop farms. J. Prod. Agric. 6:437-

444. 
 
Center for Farm Financial Management. 2010. FINBIN farm financial database.  Available at 

www.finbin.umn.edu (posted 25 May 2010; cited 28 May 2010;  verified 3 Jul. 2010). 
Univ. of Minnesota, St. Paul, MN. 

 
Chavas, J-P., J.L. Posner, and J.L. Hedtcke. 2009. Organic and conventional production systems 

in the Wisconsin integrated cropping systems trial: II. Economic and risk analysis 1993-
2006. Agron. J. 101:288-295. 

 
Coulter, J.A., C.C. Sheaffer, D.L. Wyse, M.J. Haar, P.M. Porter, S.R. Quiring, and L.D. Klossner. 

2011. Agronomic performance of cropping systems with contrasting crop rotations and 
external inputs. Agron. J. 103:182-192.    

 
Delate, K., M. Duffy, C. Chase, A. Holste, H. Friedrich, and N. Wantate. 2003. An  

economic comparison of organic and conventional grain crops in a long-term 
agroecological research (LTAR) site in Iowa. Am. J. of Altern. Agric. 18:59-69.  
 

Delbridge, T.A., J.A. Coulter, R.P. King, C.C. Sheaffer, and D.L. Wyse. 2011. Economic  
performance of long-term organic and conventional cropping systems in Minnesota. 
Agronomy Journal. In Review.    
 

Dobbs, T.L. and J.D. Smolik. 1996. Productivity and profitability of conventional and alternative  
 farming systems: a long-term on-farm paired comparisons. J. of Sustainable Agric. 9:63-
 79. 
 
Edwards, W. and M. Boehlje. 1980. Machinery selection considering timeliness losses. 

Trans. of the ASAE. 23(4): 810-815 & 821. 
 
Gorman, P. 2010. Direct fuel use in Minnesota Soybean Production. Minnesota Soybean  

Growers Association.  
 
Helmers, G.A., M.R. Langemeier, and J. Atwood. 1986. An economic analysis of alternative  
 cropping systems for east-central Nebraska. Am. J. of Altern. Agric. 1:153-158. 
 
Knezevic, S.Z., S.P. Evans, and M. Mainz. 2003. Yield penalty due to delayed weed control in  
 corn and soybean. Online. Crop Management doi:10.1094/CM-2003-0219-01-RS.  
 
Lazarus, W. 2010. Comparison of farm machinery cost information in Minnesota farm financial 
 summaries and economic-engineering estimates. 
 



  20 

Lockeretz, W., G. Shearer, and D.H. Kohl. 1981. Organic Farming in the Corn Belt. Science.  
 211:540-547. 
 
Nafziger, E. 2009. Corn. p. 13–26. In Illinois agronomy handbook. 24rd ed. Cooperative  
 Extension Service, College of Agric., Consumer and Environ., Univ. of Illinois, Urbana. 
 
Pfeiffer, G.H., and M.H. Peterson. 1980. Optimum machinery complements for northern Red 
 River Valley grain farms. N. Cent. J. Agric. Econ. 2:55-60. 
 
Porter, P.M., D.R. Huggins, C.A. Perillo, S.R. Quiring and R.K. Crookston. 2003. Organic and 

other management strategies with two- and four-yr crop rotations in Minnesota. Agron. J. 
95:233-244. 

 
Rankin, Plant Oats Early for Best Yields, http://www.uwex.edu/ces/crops/oatdate.htm (verified 1 
 May, 2011).  
 
Severson, R. 2011. Answering the soybean planting date question in northwest Minnesota.  

Available at http://blog.lib.umn.edu/umnext/news/2011/03/answering-the-soybean-
planting-date-question-in-northwest-minnesota.php (verified 1 May, 2011). University of 
Minnesota Extension.   

 
Siemens, J., K. Hamburg and T. Tyrrell.1990. A machinery selection and management 

programme. J. Prod. Agric, 3(2): 212-219. 
 

Stanger, T.F., J.G. Lauer, and J.P. Chavas. 2008. The profitability and risk of long-term cropping 
 systems featuring different rotations and nitrogen rates. Agron. J. 100: 105-113.  
 
Undersander, D., et al., 1994. Alfalfa management guide. American Society of Agronomy, Inc. 
 
USDA- Farm Service Agency. 2008. Direct and counter-cyclical payment (DCP) Program Fact  

Sheet.  Available at http://www.fsa.usda.gov/Internet/FSA_File/dcp2008.pdf (cited 20 
May. 2011, verified 20 May 2011). USDA-FSA, Washington, DC. 

 
Wu, J., and G.M. Perry. 2004. Estimating farm equipment depreciation: which functional form is  

best? Amer. J. Agr. Econ. 86(2): 483-491. 
 



  21 

 

Table 1. Sizes assumed for each of 3 machinery  

complements 

Implement Size #1 Size #2 Size #3 
 ----------ft.---------- 
Chisel plow 15 23 57 
Moldboard plow 9 12 12 
Field cultivator 18 23 47 
Row planter 15 40 60 
Grain drill 16 20 30 
Rotary hoe 21 40 40 
Row cultivator  30 40 40 
Manure spreader    
Corn head 15 20 30 
Soybean head 18 30 35 
Mower conditioner 9 12 12 
Hay rake 20 25 32 
Baler 12 20 20 
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Table 2. Maximum farm for each of 3  
machinery complements. 
 
Crop 
rotation Machinery Implement Group 

 Size #1 Size #2 Size #3 
OI 4-yr 320 560 800 
HI 2-yr 560 1,120 1,520 
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Table 3. Average number of field passes per  
acre 
 

Implement HI 2-yr OI 4-yr 
Chisel plow 0.5 0.25 
Moldboard plow 0.5 0.25 
Field cultivator 2.09 1.68 
Row planter 1 0.5 
Grain drill 0 0.25 
Rotary hoe 0.09 0.65 
Row cultivator 0.68 1.16 
Combine: corn head 0.5 0.25 
Combine: soybean head 0.5 0.5 
Mower-conditioner 0 0.75 
Hay Rake 0 0.75 
Hay Baler 0 0.75 
Total 5.86 7.74 
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Table 4. Average net return to the high input (HI) 2-yr and organic input (OI) 4-yr crop rotation 
from 1993 to 2010 for each farm-size and pricing scenario.  

Conventional Prices Half Premiums Full Premiums 
Crop 
rotation 

Farm 
size 

Net 
return SD 

Net 
return SD 

Net 
return SD 

  --------------------US $-------------------- 
HI 2-yr 560 71,874 61,645 - - - - 
 1120 165,281 123,344 - - - - 
 1560 220,434 167,450 - - - - 
        
OI 4-yr 320 27,211 21,200 70,565 28,852 113,919 38,914 
 560 53,293 37,117 129,163 50,514 205,032 68,124 
 800 79,391 53,069 187,776 72,203 296,160 97,355 
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Table 5. Detrended crop yields from the Variable Input Crop Management  

Systems (VICMS) trial for the high input (HI) 2-yr and organic input (OI) 4-yr  

crop 

rotations 

from 1993 

to 2010. 

 CI 2-yr crop rotation  OI 4-yr crop rotation 
Year Corn Soybean   Corn Soybean Oat Alfalfa 

 Bu/A Bu/A  Bu/A Bu/A Bu/A Tons/A 
1993 117.4 45.4  116.6 39.6 33.5 5.4 
1994 220.7 49.0  189.1 53.0 88.2 4.9 
1995 138.9 48.8  138.6 52.1 38.0 4.5 
1996 194.9 56.0  168.1 53.1 62.2 4.9 
1997 150.1 47.8  131.2 23.7 47.2 4.6 
1998 216.4 49.7  204.4 29.8 48.6 5.0 
1999 197.4 52.1  190.2 44.8 80.9 5.0 
2000 185.8 47.3  181.8 27.4 74.2 5.5 
2001 171.9 46.7  177.0 45.4 75.6 6.7 
2002 147.3 44.1  179.1 46.9 42.7 4.5 
2003 160.4 25.9  144.6 22.6 63.6 4.2 
2004 178.8 56.0  174.0 22.8 50.2 4.6 
2005 184.5 45.1  190.4 32.0 44.7 5.4 
2006 198.2 52.5  188.8 28.4 113.6 5.5 
2007 153.2 49.4  159.9 37.5 129.5 6.4 
2008 133.6 42.7  124.1 24.3 136.7 5.3 
2009 175.4 44.7  165.0 20.2 123.9 4.7 
2010 196.8 59.2   185.0 40.5 84.3 4.6 
Mean  173.4 47.9  167.1 35.8 74.3 5.1 
SD† 29.0 7.1   25.8 11.5 32.9 0.6 

† SD, standard deviation. 
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Figure 1. Cumulative distribution function for the high input (HI) 2-yr and organic input (OI) 4-
yr crop rotations, considering 100% of organic price premiums and each farm-size scenario. 
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Figure 2. Cumulative distribution function for the high input (HI) 2-yr and organic input (OI) 4-
yr crop rotations, considering 50% of organic price premiums and each farm-size scenario. 
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