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1. Introduction

Are children better off if they start school at an earlier or later
age? Although this question has long concerned researchers in a variety of
disciplines (see Proctor, Black, and Feldhusen (1986) for a survey),
insufficient attention has been paid to the relationship between compulsory
school attendance laws and the age at school entry. This paper tests the
hypothesis that compulsory school attendance laws, which typically require
students to attend school until they reach their sixteenth birthday, induce
a relationship between years of schooling and age at school entry. We
present evidence that educational attainment is related to age at school
entry because children who enter school at an older age are permitted to
drop out after having completed less schooling than children who enter
school at a younger age.

A simple model is outlined that shows the mechanical relationship
between educational attainment and age at school entry when compulsory
schooling laws are binding. The model leads to a linear relationship
between age at school entry and years of completed education. If age at
school entry were randomly assigned, the parameter identified by a
regression of education on age at school entry would be the proportion of
students who are constrained to stay in school by compulsory schooling
laws. But because a nonrandom sample of children are likely to be enrolled
in school at an earlier age by their parents, Ordinary Least Squares (OLS)
estimation may give a biased estimate of the effect of age at school entry
on educational achievement. To control for the possible endogeneity of age
at entry to school, we use the fact that children born in different months

of the year start school at different ages. If, as seems plausible, season



of birth is uncorrelated with other determinants of education, it provides
a valid instrumental variable for age at school entry.

Because a large data set that contains information on both age at
school entry and educational attainment does not exist, we use an
Instrumental Variables (IV) estimator that combines data derived from two
independent samples. Instrumental variables estimators are a function of
two sample covariance matrices. In the typical application, both sets of
moments in the IV formula are estimated from the same sample of data. We
discuss theoretical properties of IV estimators in which the moments
underlying the estimates are derived from two independent samples. In
general, Two-Sample Instrumental Variables estimators may be used whenever
a set of instruments is common to two data sets but endogenous regressors
and the dependent variable are included in only one or the other data sets.

We estimate the impact of compulsory schooling by combining
information from the 1960 Census on the age upon entry to school of
children born 1946-52 with information from the 1980 Census on the ultimate
educational attainment of these same birth cohorts. Children born earlier
in the year are found to enter school at an older age, and to attain less
schooling. The coefficient estimates suggest that from 7 to 12 percent of
students are constrained to stay in school by compulsory attendance laws.
These results provide evidence on the efficacy of compulsory attendance

laws, and are relevant for discussions of school start age policy.

2.1 Age at School Entry and Educational Attainment
Suppose that all children born in the same year enter school in the

Fall of the year in which they turn six, and that they are required by law



to stay in school until their sixteenth birthday. Suppose also that a
fixed fraction, x, would like to drop out of school as soon as possible,
and that this fraction is independent of quarter of birth. If students are
compared on their sixteenth birthday, those who were born earlier in the
year will have spent less time in school than students who were born later
in the year. Therefore, assuming that a fixed fraction of students drop
out of school upon attaining the legal dropout age, students born earlier
in the year will, on average, have less education than students born later
in the year.

Elsewhere (Angrist and Krueger 1990), we present evidence from the
1960, 1970, and 1980 Censuses showing that substantial numbers of students
drop out of school around the birthday when they become eligible to leave
school. Students who have just turned sixteen in states where there is an
age sixteen minimum schooling requirement have a larger decline in
enrollment than students who have just turned sixteen in states where there
is an age seventeen or eighteen schooling requirement. Micklewright (1989)
also finds evidence of excessive drop out rates around the school leaving
age (16) in the United Kingdom.

Our model of the effects of age at school entry and compulsory
schooling is depicted in Figure 1, which shows events related to schooling
on a time line for children born in a given year. In the figure time is
measured in quarters of years, and children are born in periods 1-4,
indexing their quarter of birth. Children may enter school at either time
to or be held back to enter at tl' Students are allowed to drop out of

* *
school at age a , which i{s reached in period dq - g + a for students born

in q. Students who do not drop out go on to complete e quarters of



schooling. Students who complete school finish in period ty + eor in

period t. + e, depending on when they started school.

1

The probability of entering school at t. is assumed to be hq for

0
children born in q, with the remaining fraction (l-hq) entering in -

The possibility for delayed entry to school is introduced because students
born in different quarters of the year may be more or less likely to be
held back for an additional year before starting school.

A relationship between educational attainment and quarter of birth
arises because a fixed fraction (x) of students are assumed to drop out of
school as soon as they are legally permitted, and because start age varies
by quarter of birth. Moreover, the relationship between start age and
years of schooling is linear in this framework. To show this formally,

denote students’ age at entry to school (measured in quarters of years) by

a. Then age at entry to school conditional on quarter of birth is:
1) Elala] = hy(ty - @) + (1-h)(t) = @) = € - (q + 4h),

where we have made use of the fact tl-to -4,

Now, define y as completed quarters of schooling. Then

(2) E[ylq] = (1-m)e + x{ hldg - g1+ bl d -t )

1]
- [(1-m)e + w(a*-tl)] + n[ q + Ahq ].

Because students are held back with a different probability (hq) in each
quarter, equation (2) shows that (like age at school entry) educational

attainment does not necessarily increase or decrease linearly with quarter



of birth. 1In fact, the relationship between education and quarter of birth
need not be monotonic.

Although the relationship between education and quarter of birth is
not restricted by the compulsory schooling-dropout model, the relationship
between education and age at entry to school 1s linear. To see this note

that substituting (1) into (2) gives:

(3) Elylq) = [(1-m)e + xa"] - =E{a|q].

Thus, a regression of the average years of education attained by each
quarter-of-birth cohort on a constant and the average age of the cohort
when it entered school identifies the fraction of students constrained by
compulsory schooling laws (x).

It should be stressed that the conventional view in the educational
psychology literature is that students who are older when they start school
have higher academic achievement because of their Increased maturity (e.g.,
DiPasquale, Moule, and Flewelling 1980). In contrast, the age at
entry/compulsory schooling model predicts the opposite -- students who
start school at an older age should, on average, attain less schooling
because they are permitted to drop out earlier in their academic careers.

Lastly, note that estimation of (3) can be interpreted as an
application of instrumental variables where the underlying micro regression
equation is

(4) yi -a - nai + ai,

where i indexes individuals, and a is the intercept in (3). The



instruments are dummy variables denoting quarter of birth. Use of a full
set of mutually exclusive dummy variables as instruments is the same as
grouped estimation, where the groups correspond to each cell indicated by
the instruments (Friedman 1957, Angrist 1991).

Given & single data set with information on both age at school entry
and educational attainment, it would be possible to tabulate OLS and IV
estimates of (4). However, we are not aware of any large data set
containing information on both age at school entry and completed schooling.
Moreover, it seems likely that OLS estimates would be inconsistent; on
average, children who start school at a younger age may do so because they
show signs of above average learning potential., Estimation of (4) by IV
using quarter of birth as an instrumental variable is a way to overcome
bias from possible correlation between age at entry and the error term in

(4). Below, we discuss IV techniques with moments from two samples.

3.1 Review of Instrumental Variables Estimation

In IV estimation, the model of interest is:

y; = xis teg, 1= 1, . . .,n

where Xi and €y may be correlated and § is the gx1 vector of coefficients
to be estimated. The data usually consist of a single sample of size n,

assumed here to be {.n.i.d., containing observations on Yy Xi and a set of

r instrumental variables, Z In the compulsory schooling model, Yy is

i
years of education, X

is age at school entry, and Z, is a set of dummy

i
variables indicating quarter of birth.

i



Let y, X and Z denote the data matrices of dimensions nxl, nxq and

nxr, respectively. Z is assumed to have the following properties:
Z'c//n ~ N(O, ) and plim(Z'X/n) = z

where O is non-singular, and sz is bounded and of full column rank.
The asymptotically efficient IV estimator is also the estimator that
minimizes the sample analog of the moment condition E(Zi'ci) = 0 in an

optimally weighted quadratic form. The sample analog of this condition is
£(8) = 2'(y - Xé6)/n,

and ﬁn(é) - nfn(E)'Q'lfn(J) is the quadratic form minimized by the

estimator. The estimator is

5 - (x'zn'lz'X)'lx'zn'lz'y
with limiting distribution
Jo(§ - §) -~ N(O, (= o ly ]'1)
! zZX zZX ’

A

In practice, I is replaced by a consistent estimate, fi. A consistent
estimator for the covariance matrix of § is given by (X'Z[na]-lz'x)-l.

Note that the IV estimator may be written as a function of two sets of
sample moments . The first set consists of Z'X/n, the cross-product matrix
of instruments and regressors. The second set consists of Z’y/n, the

cross-product or covariance matrix for instruments and the dependent

variable. In fact, the IV estimator may be thought of as arising from



Generalized Least Squares (GLS) estimation of the equation

Z'y/n = {2Z'X/n)§ + Z'¢/n.

The next subsection discusses the theory of IV estimation and presents an
over-identification test for the situation when Z'y/n is estimated from one
sample and 2'X/n is estimated from another sample -- a situation we call

Two-Sample Instrumental Variables (TSIV).

3.2 Two-Sample Instrumental Variables
The two-sample approach to instrumental variables requires that in

principle observations on y, X and Z could have been drawn from each of the

populations sampled in the two data sets. The two samples are denoted by

Sh-((nd,ﬁﬁ,aﬁn i=-1, .. .Wﬂ;h-l,z.

The data sets that the researcher has access to, however, contain only Y1

and Z1 on the one hand, and X2 and Z2 on the other. Note that the

instruments (Z) must be available in each data set.

A set of assumptions sufficient for two-sample estimation may be

formally stated as:

Assumption Al. (i) Lim E(Zh'Xh/nh) = plim (Zh'Xh/nh) - sz and

‘/nh(z.h'x,na/nh - Z,.6) =N, w) for h =1, 2.

Now, let



gn(S) - Zl'yl/n1 - 22'X26/n2.
' _ ) - I} ] - ‘
and note that Z1 ¥y 22 X26 Z1 9 + (Z1 Xl 22 X2)8. Assumption Al
therefore implies the moment restrictions motivating two sample estimation:
gn(S) has a probability limit of zero as ny and n, + «.
Assumption Al is sufficient for two-sample estimation and testing.

Description and application of the two-sample estimator, however, is

simplified by restricting the two samples as follows:

Assumption A2. (i) Moments estimated from sample 1 are independent of
moments estimated from sample 2.
{(1i) Write nz[nll to indicate that n, is to be viewed as a

function of 0. Then, lim (nl/nz[nll) = k for some

n,-~e
constant, k.

These assumptions lead to a simple, computationally feasible form for
the optimal weighting matrix, and allow use of a Jnl normalization instead
of the somewhat more cumbersome normalization of moments from Sh by Jnh.
In particular, given A2, /nlgn(6) has limiting covariance ¢ = ¢1 + sz,
where ¢1 is the limiting covariance matrix of ([Zlyl//nl] - ZZXS). To see

this, note that

B, (6) = (Z)'y/n) - 2, 8) - (Un //n) U2, X8/ n Iy - ((Iny/dn))E, 8])

so that as n e



Jnlgn(E) - /nllzl'yl/nl - zzx51 - Jk Jn2[22'X25/n2 - zzxs] }
~ N(O, ¢, + ko).

The optimal TSIV estimator, &, minimizes a Generalized Method of

Moments (GMM) quadratic form ﬁn(6) - nlgn(S)'Q'lgn(S). This quadratic form

is minimized by
3 ([X,'2 1¢'1[z ‘X, /n 1)'1[x 'Z./n 1¢'1[z ‘y,/n, ]
= ([X,'2y/my 2 X/™y 2 2/ 1Y/ )

Note that & in the formula for § may be replaced by ;/n1 - &1/111 + Gz/nz,
where 61 and &2 denote sample estimates. Thus, restricting the limit of
nl/n2 in A2(ii) does not affect the estimator that is actually used.
Distribution theory for the TSIV estimator and an over-identification
test statistic are presented in Lemmas 1 and 2. The proofs are
straightforward and are relegated to the Appendix. We note that Arellano
and Meghir (1988) have independently derived the limiting distribution of a

two sample estimator using the optimal minimum distance framework outlined

by Chamberlain (1982).

1 -1

Lemma 1. Jnl(s - §) ~ N(O, ¥) where ¥ = (£__'® = )
ZX ZX

Dividing ¥ by ny. it can be shown that the varlance of 8 is consistently
estimated by

([X,"Z,/n, ) [ (By/n )+ (b, /n)) ) H 2y Xy /m) )

Notice that in two-sample IV estimation, each of the cross-product

10



matrices must be divided by the appropriate sample size. Failure to divide
by sample sizes leads to an inconsistent estimate unless

lim(nl/nz[nl]) = 1. To see this observe that

nl"“’
* -1 -1 ’ -1 ’ -
X, 22¢ Z,X,) "X, 224> Z'y,
2 -1 ' -1 ' -1 .
( 1Ry 2, /0871 (2, X,y /0,01 (X, 2, /087 M (2, X 6 /m)) (m /) )

+ Uy 20087 Ry 2, /m) ) TRy 2, /00)87 M2 e /m ) (ny my) )

The second term has a probability limit of zero because Zl'cl/./n1 has a
mean-zero limiting distribution, but the first term has probability limit
equal to 6k.

The GMM over-identification test statistic measures the correlation
between Z and ¢ when there are more instruments than endogenous regressors,
and is a specification test for the assumptiéns underlying IV estimation.
The over-identification test statistic for TSIV is the GMM minimand

evaluated at §. This result is presented in Lemma 2.
- 2
Lemma 2. mn(S) ~ x (r-q).

Observe that ﬁn(S) is simply the GLS quadratic form for a regression
of yl'Zl/n1 on 22’X2/n2 using [4>/nl]-1 as the GLS weighting matrix. Again,

in practice [sﬁ/nl].1 may be replaced by $l/n1 + Gz/nz.

4.1 Empirical Analysis

To estimate equation (4), we use data from two censuses. The sample
containing age at school entry is drawn from the 1960 Census, 1% Public-Use
Sample. The sample containing years of education is drawn from the 1980

11



Census, 5% Public-Use Sample. We try to ensure that the TSIV assumption of
comparability, A2(i), is satisfied by restricting both samples to males
born 1946-52 in the United States. The youngest child in the sample is 7,
which is above the minimum legal age for school attendance in most states
in 1960. The samples are described in more detail in the data appendix.
Age at entry to first grade can be computed from the 1960 census if it
is assumed that children are not held back or advanced a grade after they

enter school. Under this assumption, the formula for age at entry is

(5) a; = (A;-2) - [(6;-1)%4.0]

where Ai is age measured in quarters of years on Census Day (April 1,

1960), and Gi is the grade in which the student is currently enrolled.

Years of completed educational attainment are available in the 1980

census. A limitation of the census data is that information on completed
quarters of schooling is not available -- the highest grade completed by

the individual is reported instead. The implications of using years of
completed schooling instead of quarters of completed schooling as the
dependent variable in equation (3) can be examined by substituting the
reduced form, E[a|q}, for a in the underlying latent variable model

(Newey (1986). Write the unobserved completed quarters of education for

individual i with birthday in q as
1q

(6) yf = {(l-m)e + xa*] - xE[ajq] + v = a - ”;q -y

* .
vhere yiq is the latent unobserved quarters of schooling, aq is the sample

12



estimate of E(a|q}, and v = x(E[a|q}-a) + ¢. The error term, u, includes
the difference between E[a|q] and iq, as well as the terms in v. Now
suppose that everyone completes at least k quarters (equal to k/4 years) of
education. Individuals who complete k+4 quarters of schooling complete an

additional year. In this "threshold" model, completed years of schooling

measured in quarters is:

*
7 k if -k<4
(7) _ yiq
yiq 5
+ 4 otherwise.
Therefore,
*
8 E - k + 4Pr -k -4>0
(8) [y;qlal [¥iq ]

- k + 4F[a - «5q].

where @ = a - k - 4 and F is the distribution function for u.

From (8), it is apparent that the relationship between completed years
of schooling and completed quarters of schooling depends partly on the
shape of the distribution function, F. For example, if u is distributed
uniformly on the interval {-2, +2] then equation (8) and equation (3)
differ only by a constant. That is, (3) applies directly to completed
years of schooling as well as to completed quarters. In other examples,
the relationship between completed years of schooling and age at entry to
school need not be linear. In the empirical work, we proceed on the
assumption that (3) gives a good approximation to (8). 1In principle, if
the linear model is inappropriate, the IV over-identification test
statistic should provide evidence of misspecification.

The sample moments for each quarter of birth from 1946 through 1952

are reported in Table 1. The estimates of average age at entry show a saw-
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tooth pattern, with boys born in later quarters entering the first grade at
a younger age. The estimates of average educational attendance are also
shown in the table and are plotted in Figure 2. Apart from trend, the
graph of average educational attainment also shows a jagged pattern, with
first quarter births generally having less education than the preceding
fourth quarter births. We have verified this pattern in samples of men
born between 1920 and 1959 in both the 1970 and 1980 censuses (Angrist and
Krueger 1990). We restrict our attention here to the cohort of men born
1946-1952 because members of this cohort were in elementary school at the
time of the 1960 Census.

Age at school entry is not known exactly for enrolled students in the
1960 sample, and must be estimated from information on age and grade using
equation (5). Evidence that these estimates of age at school entry are a
reasonable measure of true age at school entry is presented in Table 2.
This table reports the pattern of age at entry in two sets of states. Most
states establish a minimum age at which school entry is permitted, and
there is variation in the birthday cutoff used to admit students to first
grade across states. Table 2 compares the pattern of age at entry by
quarter of birth between states that admit children to first grade if they
have turned six by September 30 or October 1 (third quarter states), and
the pattern in states that admit children to first grade if they have
turned six by December 31 or January 1 (fourth quarter states). The data
on perwissive age of school entry was collected from state laws for 1950-
58, and is reported in Appendix Table Al. We were able to classify 16
states unambiguously as third or fourth quarter cutoff states,

In states with a fourth quarter cutoff, children born in the fourth

14



quarter will tend to be youngest among children entering the first year
they are eligible to start school. In contrast, in states with a third
quarter cutoff, children born in the third quarter will be youngest among
children entering the first year they are eligible for school. In third
quarter cutoff states, children born in the fourth quarter must wait an
additional year before becoming eligible for school.

The results in Table 2 reflect the effect of school birthday cutoff
policy. The F-test for the difference in the pattern of age at entry by
quarter of birth shows that the two regimes lead to significantly different
patterns. In states with a third quarter cutoff, children born in the
third quarter are youngest when they enter school. In contrast, age at
entry declines monotonically in the fourth quarter cutoff states. We
interpret this difference as evidence that our proxy for age at school
entry is a plausible measure of true age at entry. It should be noted,
however, that in both sets of states, children born in the first quarter
are oldest at school entry. The fact that students born in the fourth
quarter are not actually oldest in the fourth quarter cutoff states may be
due to a higher propensity of parents to enroll children born in the first
through third quarters one year later than permitted. Additionally, some

local school boards may deviate from the state-wide minimum entry age.

4.2 Instrumental Variables Estimates

Table 3 reports Generalized Least Squares (GLS) estimates of equation
(3) for models that include different parameterizations of a cohort trend
in education. The GLS weighting matrix is diagonal with diagonal elements

equal to [&2/n1] + (.01)[&2/n2], where $2 is the cell variance of education
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in the 1980 census, 02 is the cell variance of age at school entry in the
1960 census, and ny and n, are the corresponding sample sizes. This is the
optimal weighting matrix for efficient TSIV estimation, assuming x = 0.10 .

Rows 1-4 of the table show results for models with an MA(+2,-2) trend
in schooling. The MA(+2,-2) trend equals (m_2 + m_y + oLy + m+2) / &,
where mq is the mean years of education of the cohort born q quarters
before or after the current quarter. We estimate models with the MA(+2,-2)
trend by including the trend term as a regressor without constraining its
coefficient. We note, however, that in every specification reported in
Tables 3-5, the MA(+2,-2) term enters with a coefficient that is not
statistically different from one. In alternative specifications, we report
results including a quadratic function of age in quarters (YOBQ, YOBQZ),
linear age in quarters (YOBQ), and 6 year dummies (YOB).

The remaining rows show results for models fit to cell means for year
of birth/quarter of birth (YOB*QOB) interactions for each state of birth
(SOB). These models all include 50 state-of-birth dummies and are
equivalent to instrumental variables estimation of a model with SOB dummies
and trend terms, where the instrument list includes the full set of
YOB*QOB*SOB interactions. The chi-square statistics in the table are over-
identification test statistics for the exclugion restrictions imposed by
the TSIV estimator. Because the instruments are dummy variables, the TSIV
over-identification tests measure the goodness-of-fit of the model to the
cell means.

All estimates of the effect of age at entry (-n) in the table are
negative. Except for those with year dummies and a linear trend, the

estimates are all significant, ranging from -.06 to -.14 . Estimates based
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on interacting year and quarter with place of birth are more precise.
Goodness-of-fit tests based on the difference in the chi-square statistics
indicate that the year dummy and linear trend specifications fit the data
less well than the moving average specification. But the test statistics
also lead to rejection of each model in an omnibus specification test. The
best fitting model, on line 5 of the table, has a chi-square value of 1467
in a distribution with 1168 degrees-of-freedom. With this number of
degrees-of -freedom, classical critical values are unforgiving -- the 1%
critical value in this case is around 1,275.

A problem with goodness of fit testing in this context is that there
are over 400,000 observations used to calculate the sample moments. With
this large a sample, even slight deviations from the null are bound to be
rejected. For example, with only 200,000 observations, any of the models
reported in lines 5-8 of the table would be likely to pass the omnibus
goodness-of-fit test. The problem of "too many observations" in hypothesis
testing has been extensively discussed in the literature (e.g., Berkson,
1938), and numerous alternatives to classical tests have been proposed.

For example, in a Bayesian testing procedure such as that of Schwarz
(1978), critical values are given by degrees-of-freedom times the log of
the sample size. Using this criterion, each of the models in Table 3 would
be found acceptable.

On the basis of the over-identification tests one might reject our
assumption that season of birth is a valid instrument for start age in an
education equation. Moreover, some studies claim to have uncovered a
correlation between season of birth and a number of behavioral and

biological outcomes. The seminal study on this topic is Huntington (1938),
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which argues that a genetic season of birth effect exists because
genetically inferior individuals are less able to contain their sexual
passions in the summer. On the other hand, Lam and Miron (1987) find
evidence that the seasonal pattern of children’s births is unrelated to the
wealth and marital status of thelr parents, which suggests that quarter of
birth is an exogenous variable for our purposes.

In light of the potential importance of arguments for additional
season of birth effects due to psychological and other factors, results
from additional specifications are reported in Table 4. The omnibus
goodness-of-fit statistic for an over-identified model is asymptotically
equivalent to a Wald test for the equality of alternative estimates of the
same parameter (Newey and West 1987). With enough data, small differences
in the estimates will lead to rejection in the omnibus specification test.
But small, statistically significant differences may be of little practical
importance. Table 4 therefore explores the robustness of estimates
calculated under alternative exclusion restrictions. Each of the
specifications reported in Table 4 includes the MA(+2, -2) term to control
for cohort trends.

For reference, line 1 of Table 4 reports the results from line 5 of
Table 3. The estimates in line 2 of Table 4 are from a specification that
includes as regressors dummy variables for second and third quarter of
birth (each interacted with place of birth), so that the excluded
instruments used to identify = are only interactions with a dummy for
first quarter birth. The difference between the chi-square statistics in
lines 1 and 2 is 147, while the difference in degrees-of-freedom is only

102. Line 2 therefore represents a statistically significant improvement
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over line 1 (critical x?01(147) = 135), although the difference in the
estimates is small relative to sampling variance.

Line 3 of Table 4 reports results where the effect of age at entry is
allowed to vary with year of birth. The estimated effect of age at entry
is negative for each year of birth, but the individual coefficients are not
estimated precisely enough for comparison with previous estimates to be
meaningful. The last set of estimates in Table 4 allows the effect of age
at entry to vary with year of birth as in line 3, and includes dummies for
second and third quarter births in the equation. Here, the effect of age
at entry is well determined for each year of birth. The estimate of =«
ranges from 0.08 for men born in 1946, to 0.124 for men born in 1952. The
increase in estimated = with year of birth may reflect changing behavior,

or an improvement in the quality of the measure of age at entry for younger

children.

The chi-square for line 4 takes on a value of 1,285 with 1,060 degrees
of freedom. This represents a substantial improvement in fit over line 1,
but still exceeds classical critical values for the omnibus specification
test. However, the estimates in Tables 3 and 4 appear remarkably
insensitive to the details of model specification. We interpret this as
providing some support for the age at entry/compulsory schooling model, and
as evidence that other possible effects of age at school entry on

educational attainment are small.

5. Age at Entry and Compulsory Schooling for Men with Some College
As a final test of the compulsory schooling model, we consider the

impact of age at school entry on education for men with at least one year
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of post high school education. If students have satisfied the compulsory
schooling law, our simple model predicts that age at school entry will have
no effect on their educational attainment. On the other hand, if genetic
or psychological factors cause a relationship between age at entry and
educational achievement, one would expect to continue to find a
relationship between age at entry and years of education for exempt
students. Because all compulsory attendance laws in the U.S. exclude
students who have graduated from high school, estimating the models in
Table 3 for a sample of men who attended college is one way to remove the
effect of compulsory attendance laws. In the notation of the previous
section, we assume that for the sub-sample with some college education, «x
equals zero.

Restricting the sample to men with at least one year of post high
school education may appear problematic because this conditions on the
dependent variable. However, this selection rule does not invalidate our
test because, under the null hypothesis that age at school entry is
unrelated to academic achievement (x = 0) for this sample, the mean of
schooling by quarter of birth should be constant even after conditioning on
college attendance.

Table 5 presents results of a test of this implication of the age at
entry-compulsory schooling model. 1In five of the eight specifications
reported in Table 5, age at entry now has a positive effect on educational
attainment, and in three of the eight specifications there is a negative
relationship between school start age and educational attainment. The
relationship between post high school education and age at entry is less

significant than that estimated in Table 3 even though the standard errors
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are roughly the same magnitude. Nevertheless, the results are ambiguous
because of the contrasting and statistically significant estimates on lines
4-7. But it seems clear that age at entry has a smaller effect on the

education of men who attended college than in the unrestricted sample.

6. Summary and Conclusions

Some studies of academic performance have argued that students have an
advantage if they start school at an older age, while others have argued
that students are better off if they start at an earlier age. The outcome
variable that this literature typically examines is children’s achievement
test scores in the primary grades. Although these studies are primarily
based on small samples of observations, they have generally concluded that
older school entrants fare better (DiPasquale, Moule, and Flewelling 1980;
Warren, Levin and Tyler 1986). An important shortcoming of this work is
that the age that children enter school is treated as an exogenous
variable. Furthermore, as Lewis and Griffen (1981) point out, few of the
past studies of the effect of season of birth on behavioral and blological
outcomes control for age (i.e., cohort effects in a cross-section).

Our paper differs from the previous literature in that we examine the
effect of children's age when they start school on their eventual years of
completed schooling. The number of years of education that children attain
may be a better measure of their academic success than thelr performance on
an apt%tude test at an early age. In addition, we use the exogenous
variation in start age that stems from the quarter of the year a child is
born, as well as school admittance age requirements, to identify the effect

of start age on students’' eventual years of education. Finally, we adjust
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for cohort trends in schooling by including a variety of trend terms.

A simple model is presented that shows that if start age affects
educational attainment only because of compulsory school attendance laws,
then the relationship between start age and education is linear. We
present a framework for Two-Sample IV estimation, and use data from twe
independent samples to estimate the effect of start age on educational
attainment. In contrast to most of the past literature on students’ test
performance, we find that older entrants tend to obtain slightly less
education. The estimates indicate that roughly 10 percent of all the high
school students in our sample were constrained to stay in school by
compulsory schooling laws.

We find only weak evidence that start age has any effect on years of
post-high school education, which leads us to conclude that the case for a
an effect of school start age on academic achievement beyond the effects of
compulsory schooling is modest at best. Of course, this conclusion applies
only to differences in school start age that are associated with season of
birth. Nonetheless, this finding should be relevant for school districts
that are considering changes in school entrance policies. Finally, and
perhaps most importantly, our results suggest that compulsory schooling

laws are an effective means of raising educational attainment.
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Appendix
Proof of lemma 1.
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by Al(1). The result then follows from Al.

Proof of lemma 2.
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where the last equality is also consequence of the fact that PnZ 0.
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result follows that in Newey (1985, Proof of Proposition 2), and is

therefore omitted. Finally, substituting for Pn'(Pnﬁfll’n')-[{n gives
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The degrees of freedom of the chi-square statistic are given by the rank of
[P¢-1P']. Assuming that ¢ is of full rank, [Pné-an’] converges to a
matrix with rank equal to the rank of P, which is equal to the number of

over-identifying exclusion restrictions, v - q.
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Data Appendix

The samples used from the 1960 and 1980 Censuses are described below.

1960 Census

The 1960 census data set is ICPSR (1989-90) Study number 7756;
1960 Census of Population and Housing, 1960 Public Use Sample, One-In-One
Hundred File.

The sample used in our analysis includes black and white boys born in the
US between 1946 and 1952, who were enrolled in school in 1960.

For comparability with the 1980 sample of black and white men described
below, the sample excludes boys of "Puerto Rican stock”, boys with Spanish
surnames in five southwestern states, and boys for whom date of birth
information or school enrollment variables were allocated.

1980 Census

The 1980 census data set is ICPSR (1989-90) Study number 8101:
1980 Census of Population and Housing Public Use 5 percent Micro Data
Public Use Sample (A Sample).

The sample used in our analysis includes black and white men born in the US
between 1946 and 1952, who had at least 1 year of school completed in 1980.
White men in the 1980 census are non-hispanic, which is why we excluded

hispanic boys from the 1960 sample. The sample also excludes men for whom

sex, age, quarter of birth, race, years of schooling, weeks worked in 1979
or salary in 1979 were allocated.



Table Al

State Laws Regarding Permissive Age at School Entry in 1955

1st Grade Birthday
State Adm. Age Cutoff Statute
Alabama 6 01-0ct S:16-28-4
Arizona 6 01-0Oct S:15-821
Arkansas 6 01-0Oct $:6-18-202
California 6 0l-Dec $:480000-2
Colorado 6 01-Sep $:22-33-104
Connecticut 6 01-Jan $:10-15¢c
Delaware 6 0l-Sep $:14-203-204
Florida 6 0l-Jan §:232.01
Georgla 6 NA -
Idaho 6 16-0Oct S$:33-201
Illinois 6 01-Dec $:10-20.12
Indiana 6 NA §:20-8.1-3
Iowa 6 15-Sep $:282.1-282.3
Kansas 6 01-Sep §:72-1107
Kentucky 6 01-0Oct $:159.010
Louisiana 6 01-Dec §:17.221.3
Maine 6 15-0ct S:859
Maryland 6 0l-Sep $:7-101
Massachusetts 6 NA S:76-1
Michigan 6 0l1-Sep $:380.1561
Minnesota 5 NA $:120.06
Mississippi 6 0l-Jan S$:37-15-9
Missouri 6 0l1-0Oct S$:160.051
Montana 6 10-Sep $:20-5-101
Nebraska 6 15-0Oct S:79-444
Nevada 6 31-Dec $:392.040
New Hampshire 6 13-Sep §:193:1
New Jersey 6 01-Oct S:18A:38-5
New Mexico 6 0l-Jan $:28-8-2
New York 6 01-Dec §:1712
North Carolina 6 01-0Oct S$:115C-364
North Dakota 6 31-0Oct $:15-47-02
Ohio 6 13-Sep S$:3-321.01
Oklahoma 6 01-Nov S$:1-114
Oregon 6 01-Sep $:339.115
Pennsylvania 6 0l-Feb $:13-1304
Rhode Island 6 31-Dec S$:16-2-27,28
South Carolina 6 01-Sep §:21-752
South Dakota 6 01-Sep $:13-28-2
Tennessee 6 31-Dec $:49-6-3001
Texas 6 01-Sep $:21.031
Utah 6 02-Sep S$:53A-3-402
Vermont 6 01-Sep T.16-5:1121
Virginia 6 30-Sep 22.1-254
Washington 6 NA §:28A.58.190
West Virginia 6 01-Nov $:18-2-5,18
Wisconsin 6 31-Dec $:112,118
Wyoming 6 15-Sep S$:55 & 57
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TABLE 1

ON D_AGE SCHOO N

Year Quarter Education Age at Entry
1946 1 13.63 6.63
2 13.71 6.60
3 13.80 6.38
4 13.87 6.37
1947 1 13.81 6.64
2 13.90 6.53
3 13.81 6.33
4 13.79 6.34
1948 1 13.76 6.62
2 13.82 6.49
3 13.77 6.33
4 13.79 6.29
1949 1 13.80 6.61
2 13.76 6.46
3 13.77 6.28
4 13.76 6.29
1950 1 13.65 6.62
2 13.71 6.44
3 13.68 6.24
4 13.68 6.23
1951 1 13.66 6.54
2 13.64 6.35
3 13.60 6.18
4 13.65 6.17
1952 1 13.50 6.45
2 13.56 6.28
3 13.52 6.08
4 13.46 6.07
Sample:

Boys born 1946-52 in 1980 Census, 5% Public-Use Sample; US-born with at
least 1 year of schooling. Sample size is 409,782.

Boys born 1946-52 in 1960 Census, 1% Public-Use Sample; US-born, enrolled
in 1960. Sample for whom age at entry can be estimated has 112,033
observations.



TABLE 2

AGE AT SCHOOL ENTRY BY CUTOFF DATE

Cutoff Date End of,

Quarter
of Birth Third Quarter Fourth Quarter
1 0.319 0.474
(0.017) (0.021)
2 0.173 0.277
(0.017) (0.021)
3 -0.044 0.087
(0.016) (0.020)
4 - -
Sample Size 18,865 11,598

Notes:

Estimates are coefficients on quarter dummies in regressions of years of
schooling on 3 quarter of the year born dummies and 6 year of birth
dummies.

For a list of states by school entry birthday cutoff date, see Table Al.
The third quarter cutoff states are: Alabama, Arizona, Arkansas, Kentucky,
Missouri, New Jersey, North Carolina, and Virginia. The fourth quarter
cutoff states are: Connecticut, Florida, Mississippl, Nevada, New Mexico,
Rhode Island, Tennessee, and Wisconsin.

F-statistic for a test of the difference in quarter patterns by state
(conditional on state main effects) is 12.6 (df = 3, prob. < .0001).



TABLE 3

EDUCATIONAL ATTAINMENT AND AGE AT ENTRY TO SCHOOL

Instruments® Regressorsb -x€ X2 (dof)

1. QOB * YOB MA(+2, -2) -0.117 78.6 (21)
(0.070)

2. Q0B * YOB YOBQ, YOBQ2 -0.123 91.5 (24)
(0.064)

3. QOB * YOB YOBQ -0.041 223.6 (25)
(0.095)

4. QOB * YOB YOB -0.010 93.1 (20)
(0.064)

5. QOB * YOB * SOB MA(+2, -2) -0.114 1467 (1168)
SOB (0.030)

6. QOB * YOB * SOB YOBQ, YOBQ2 -0.138 1887 (1368)
SOB (0.028)

7. QOB * YOB * SOB YOBQ, SOB -0.092 2033 (1369)
(0.029)

8. QOB * YOB * SOB YOB, SOB -0.064 1895 (1364)
(0.027)

Notes:

a. QOB denotes 3 quarter of birth dummies; YOB denotes 6 year of birth
dummies; and SOB denotes 50 state of birth dummies. When denoted by an
asterisk, interactions and levels of these variables are used as
instruments.

b. MA(+2, -2) denotes a moving average trend term, YOBQ and YOBQ2 denote a
quadratic year of birth trend with year of birth measured in quarters of
years; YOBQ denctes linear year of birth; YOB denotes 6 year of birth
dummies; and SOB denotes 50 state of birth dummies.

c. -m is the coefficient on the age at school entry variable.

d. Sample Information:

Boys born 1946-52 in 1980 Census, 5% Public-Use Sample; US-born with at
least 1 year of schooling. Sample size is 409,782,

Boys born 1946-52 in 1960 Census, 1% Public-Use Sample; US-born, enrolled
in 1960. Sample size is 112,033.



TABLE 4

EDUCATIONAL ATTAINMENT AND AGE AT ENTRY TO SCHOOL:
ALTERNATIVE EXCLUSION RESTRICTIONS

Inscrumentsa Regressorsb -x© x2 (dof)
QOB * YOB * SOB MA(+2, -2) -0.117 1467 (1168)
SOB (0.030)
QOB * YOB * SOB MA(+2, -2) -0.165 1320 (1066)
SOB (0.034)
QTR2*S0B
QTR3*S0B
QOB * YOB * SOB 1946 ENTRYAGE -0.029
(0.036)
1947 ENTRYAGE -0.031
(0.036)
1948 ENTRYAGE -0.036
(0.03s)
1949 ENTRYAGE -0.037
(0.035)
1950 ENTRYAGE -0.051
(0.033)
1951 ENTRYAGE -0.055
(0.032)
1952 ENTRYAGE -0.070
(0.031)
MA(+2, -2)
SOB 1434 (1162)
QOB * YOB * SOB 1946 ENTRYAGE -0.080
(0.039)
1947 ENTRYAGE -0.084
(0.040)
1948 ENTRYAGE -0.090
(0.039)
1949 ENTRYAGE -0.087
(0.038)
1950 ENTRYAGE -0.103
(0.037)
1951 ENTRYAGE -0.108
(0.036)
1952 ENTRYAGE -0.124
(0.035)
MA(+2, -2)
SOB
QTR2*S0B
QTR3*SOB 1285 (1060)

Continued



Notes to Table 4:

a. QOB denotes 3 quarter of birth dummies; YOB denotes 6 year of birth
dummies; and SOB denotes 50 state of birth dummies. Interactions of these
variables are used as instruments.

b. MA(+2, -2) denotes a moving average trend term, SOB denotes 50 state of
birth dummies. QTR2 and QTR3 denote dummies for second and third quarter
of birth. 1946 ENTRYAGE denotes the age at school entry of men born in
1946,

c. -n is the coefficient on the age at school entry variable.
d. Sample Information:

Boys born 1946-52 in 1980 Census, 5% Public-Use Sample; US-born with at
least 1 year of schooling. Sample size is 409,782.

Boys born 1946-52 in 1960 Census, 1% Public-Use Sample; US-born, enrolled
in 1960. Sample size is 112,033,



TABLE 5

EDUCATIONAL ATTAINMENT AND AGE AT ENTRY TO SCHOOL FOR THOSE WITH SOME
POST-HIGH SCHOOL EDUCATION

Insttumentsa Regressorsb -xc x2 (dof)
1. QOB * YOB MA(+2, -2) 0.052 50.1 (21)
(0.050)
2. QOB * YOB YOBQ, YOBQ® 0.028 37.0 (24)
(0.038)
3. QOB * YOB YOBQ 0.005 49.8 (25)
(0.042)
4, QOB * YOB YOB 0.153 37.0 (20)
(0.038)
5. QOB * YOB * SOB MA(+2, -2) -0.050 1402 (1166)
SOB (0.027)
6. QOB * YOB * SOB YORQ, YOBQ2 -0.055 1638 (1366)
SOB (0.025)
7. QOB * YOB * SOB YOBQ, SOB -0.064 1646 (1367)
(0.025)
8. QOB * YOB * SOB YOB, SOB 0.026 1664 (1362)
(0.024)

Notes:

a. QOB denotes 3 quarter of birth dummies; YOB denotes 6 year of birth
dummies; and SOB denotes 50 state of birth dummies. Interactions of these
variables are used as instruments.

b. MA(+2, -2) denotes a moving average trend term, YOBQ and YOBQ2 denote a
quadratic year of birth trend with year of birth measured in quarters of
Years; SOB denotes 50 state of birth dummies.

€. -w is the coefficient on the age at school entry variable.

d. Sample Information:

Boys born 1946-52 in 1980 Census, 5% Public-Use Sample; US-born with at
least 13 years of schooling. Sample size is 228,400.

Boys born 1946-52 in 1960 Census, 1% Public-Use Sample; US-born, enrolled
in 1960. Sample size is 112,033.
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