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I. Introduction

The last thirty years have witnessed great changes in the field of finance associated with

the emergence of modern portfolio theory. A profession once populated with institutionally

oriented students has been transformed into one dominated by scholars with a more scien-

tific orientation. The Capital Asset Pricing Model (CAPM) was an outgrowth of this new

emphasis and has served as the basis of modern portfolio theory for much of this period.

The early tests of the CAPM (implemented with the equally-weighted index as a proxy

for the market portfolio) revealed few violations of the zero beta model which could not be

ascribed to statistical problems. In particular, the only reliably documented evidence con-

cerned the slope of the empirical security market line which appeared shallower than that

predicted by the theory. The tentative success of these initial investigations provided no

hint of the disastrous empirical failure which followed: a large body of persuasive evidence

which suggested that the dividend yields, market capitalizations, and price-earnings ratios

of common stocks were strongly related to expected returns after risk adjustments based

on the equally-weighted or value-weighted indices.

Not surprisingly, financial economists have responded to this surfeit of evidence re-

garding the inefficiency of the usual market proxies by considering aspects of the economic

environment omitted in the static CAPM. Chief among these are models which incorporate

intertemporal fluctuations in investment opportunities, a priori restrictions on the eovari-

ance structure of security returns, and institutional characteristics such as taxation. Em-

pirical investigations of these alternative approaches have resulted in few firm conclusions

regarding their comparative merits. In particular, none of these theories has yet proved

fully consistent with the collection of empirical regularities alluded to above.1 Moreover,

Roll(1977) questioned the scientific relevance of such findings for the CAPM which implies

The main reference on the impact of dividend taxation on asset pricing is Litzenberger
and Ramaswamy(1979) which has been criticized in Miller and Scholes(1978,1982). It
seems clear front the evidence presented in Blume(1979) and in Elton, Gruber, and Rent-
zler(1983) regarding the behavior of zero dividend stocks that the dividend effect is not
exclusively a tax-related phenomenon. There have been few tests of intertemporal asset
pricing theory. Those based on differences between equity and bond returns such as Hansen
and Singleton(1982,1983) and Mehra and Prescott(1085) sharply rejected the theory while
Marsh(1985) obtained more encouraging results in bond market data alone. The empirical
evidence on the APT has been both general]y supportive of and inconclusive regarding the
implications of the theory. This will be discussed further in Section IV.
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that the unobservable market portfolio is mean-variance efficient, a prediction with little

pertinence for the behavior of the equally-weighted and value-weighted CRSP indices.

The Arbitrage Pricing Theory (APT) developed by Ross(1976,1977) represents one of

the major attempts to overcome the problems with testability and the anomalous empirical

that have plagued other theories. The main assumption of the theory is that returns

can he decomposed into diversifiable and nondiversifiable components and that systematic

risk can be measured as exposure to a small number of common factors. These strong a

priori restrictions on the distribution of returns lead to an approximate theory of expected

returns through the observation that capital market equilibrium should be characterized

by the absence of riskless arbitrage opportunities.2 Moreover, the APT can be applied to

large snbsets of the universe of risky assets which largely mitigates the problems raised by

Roll(19?7) regarding the testability of the CAPM.3

The apparent simplicity of the APT conceals serious difficulties associated with its

empirical implementation. in particular, the theory cannot be tested on a given subset

of available secnrity returns without a strategy for measuring the common factors that

are presumed to underlie security returns; In the absence of a theoretical specification of

the components of systematic risk that can be related to observable economic data, most

investigators have turned to the statistical method of factor analysis in order to implicitly

2 There is considerable intellectual dissension concerning the extent to which the APT
and its assumption of a linear factor model for security returns differs substantively from
the one-period CAPM or intertemporal asset pricing models such as the one developed in
Merton(1973). Pfleiderer(1983) provides a useful discussion of the nature of the differences
between equilibrium based models such as the CAPM and the more statistically-based
APT. Not surprisingly, given sufficient assumptions the predictions of these theories can
intersect. For instance, if all asset returns follow a factor structure and there is a well-
diversified portfolio on the efficient frontier, then both the APT and the CAPM will be
true and the postulated factor model can aid in the measurement of the unobservablemarket
portfolio. Similarly, continuous-time intertemp oral asset pricing models can yield instan-
taneously linear factor pricing models that are observationally equivalent to the APT. Of
course, the APT can be valid in settings where these alternative asset pricing models are
false—that is the theories need not intersect.

This observation does not remove alt empirical ambiguities of the type discussed in
Roll(1977). In particular, Shanken(1982,1985) has emphasized that the absence of riskless
arbitrage opportunities coupled with the linear factor model for security returns places
insufficiently exact restrictions on expected returns to lead to valid tests of the theory.
Dybvig and Ross(1983) responded to this aspect of Shanken's criticism by noting that the
additional assumptions needed to sharpen the testable implications of the theory are both
mild and plentiful. Some of these assumptions are discussed in Section II.
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measure these unobservable common factors. This solution circumvents the problems con-

nected with the a priori stipulation of the sources of systematic risk by exchanging them

for severe computational problems since it is prohibitively expensive to perform maximum

likelihood factor analysis on large cross-sections. As a consequence, previous research has

taken one of two courses: (1) performing maximum likelihood factor analysis on subgroups

of thirty to sixty securities and then testing implications of the theory within and across

subgroups and (ii) employing a less efficient statistical procedure such as principal coin-

ponents or instniinental variables to estimate the linear factor model in order to test the

APT in large cross-sections. Since these procedures are not likely to yield portfolios which

mimic the common factors as well as those produced by maximum likelihood factor analy-
sis, this resolution of the problem of common factor measurement can lead to tests of the

APT that reject the theory when it is, in fact, true.

This would seem to be a moot point since most empirical investigations have generally

failed to reject various testable implications of the APT. Unfortunately, this observation

is not cause for optimism since previous tests of the theory have suffered from two main

defects. First, the practice of splitting the available collection of securities into small

subgroups leads to weak tests of the APT both within and across subgroups. Second, all

previous research has avoided confronting the APT with the full set of empirical regularities

which have proved inexplicable by other theories. It seems fair to conclude that the current

state of empirical knowledge regarding the APT is in an unsettled state.

In this paper, we propose to remove some of the empirical ambiguity surrouxiding the

APT by performing comprehensive powerful tests of its implications. We can transcend

some of the limitations of previous analyses through our ability to perform maximum

likelihood factor analysis in large cross-sections, thus avoiding the need to split the universe

of securities into subgroups or to resort to statistically inefficient estimation procedures.
Moreover, our tests are constructed to be more powerful than those employed in previous

research, both in their statistical formulation and in the choice of empirical regularities

with which to confront the theory. As a consequence, we think that our work will provide

incisive commentary on the validity of the APT.

The accomplishment of this ambitious task requires careful consideration of the theory
and its implications as well as the explication of a cogent strategy for its implementation
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and testing. The next section provides a brief review of the APT. The third section de-

scribes our approach to maximum likelihood factor analysis as well as our procedure for

forming portfolios which, in principle, constitute measurements of the components of sys-

tematic risk. The fourth section contains a detailed description of our tests for the validity

of the theory and its diverse implications as well as a characterization of the difficulties

associated with the determination of the number of common factors underlying security

returns. This discussion is marked by systematic consideration of the power of alternative

test procedures. The fifth section presents our empirical results while the final section is

devoted to concluding remarks.

Some caveats are in order concerning tile intended scope of this study. This paper

provides a detailed examination of the validity of the APT and systematically ignores a

number of interesting issues associated with its empirical implementation. We have ad-

dressed a number of these questions in other papers. In Lehmann and Modest(1985a), we

compared the efficacy of a number of strategies for forming portfolios to mimic the factors

postdated by the APT and determined that the method employed here performed best.

Further evidence on this point may be found in Lehmann and Modest(1985b) which applied

these same strategies as well as the usual CAPM benchmarks to the measurement of ab-

normal performance by mutual funds. That research verified that the statistical differences

in the performance of the alternative portfolio formation strategies considered in Lehmann

and Modest(1985a) translated into economically significant discrepancies in measured mu-

tual fund performance. Lehmann and Modest(1985c) analyzes the appropriate frequency

of observation for estimating factor models in order to construct portfolios to mimic the

common factors over weekly and monthly intervals. There are other interesting aspects

of the theory that have not yet been adequately dealt with. These questions include the

predictive power and stationarity of the factor model of systematic risk and the ability of

the comnnmon factors from one asset market to account for expected returns in other asset

markets. Also much work needs to be done to link the unobservable common factors to

observable economic data.4 The investigation of these issues is on our research agenda.

See Chen, Roll and Ross(1984) for one such preliminary investigation.
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H. The Arbitrage Pricing Theory

The arbitrage theory of capital asset pricing developed by floss (197C,1977), has
aroused considerable interest in both the academic and business comnumities as a practical

and testable alternative to t;he Capital Asset Pricing Model, In thosepapers, Ross per-
suasively argued that the key intuition underlying the CAPM was not the preference based

analysis of Sharpe(19G4), Lintner(1965), and Mossiu(1963), but rather was the distinction

between systematic and unsystematic risk inherent in the single index marketmodel, intro-
duced by Markowitz(1952) and developed and extended by Sharpe(1963,1967). Nowhere
is this interpretation of the theory more clearly manifested than in the early empirical
work on the CAPM performed by Fama and his students fsee, in particular, Blurne(1970)
and Jensen(thGD)1. In that literature it was conventional practice to justify the use of a
proxy for the unobservable market by appealing to the ability of a well-diversified portfoho

to mimic the market with negligible error when the market model provides an adequate
description of security returns. As a consequence, tests of the CAPM usingproxies for
the market portfolio such as the CRSP equally-weighted indexwere interpreted as joint
tests of the asset pricing theory and of the ability of the one factor model to characterize
security returns.

Ross noted that there was no particular economic justification for the presumption
that systematic risk can be adequately represented by a single common factor such as the

return on the market. Instead, he assumed that systematic risk can be aggregated into
K common factors and studied the implications of this assumption for expected returns.
Hence, the distributional basis of the APT is that security returns are generated by the
linear K factor model:

kt = E1 + bjköt + (1)

= E[iISkt] = 0

where:

Return on security i between time t — 1 and time t for i=I,..,N
E1 Expected return on security i
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Value taken by the kth common factor { i.e source of systematic risk } between

time t — 1 and

sensitivity of the return of security i to the kth common factor { called the factor

loading } and

the idiosyncratic or residual risk of the return on the 1°' security between time t— 1

and time t which has zero mean, finite variance, d;, and is sufficiently independent

across securities for a law of large numbers to apply.

The theory of asset pricing that naturally arises from the assumed return generating

process follows from three key aspects of this formulation: (I) the linear relationship between

individual security returns and factor and idiosyncratic risk; (ii) the number of securities

whose returns follow this linear factor model is large (tending toward infinity);and (iii) the

number of factors K is much smaller than the number of assets satisfying equation (1). The

first point pernnts the decomposition of the risk of both individual securitiesand portfolios

into the sum of systematic and idiosyncratic risk components. The second consideration

suggests that well-diversified portfolios (i.e. those with weights of order 1/N) will contain

negligible idiosyncratic risk.5 Finally, when the number of securities greatly exceeds the

number of factors, it is easy to form well diversified portfolios which have no factor risk as

well.

How do these features translate into an asset pricing theory? It follows from the

observations made above that there are many (in the limit infinitely many) portfolios which

have trivial (in the limit no) total risk so long as there are no taxes, transactions costs,

or restrictions on short sales. Consequently, there will also be many zero net investment

portfolios that have negligible total risk. As long as investors prefer more to less, these

portfolios should earn zero profits to preclude riskless arbitrage opportunities. Since the

munber of arbitrage portfolios that can he formed grows without bound as the the number

of securities satisfying the factor model (1) tends towards infinity, Ross and many others

proved that the absence of riskless arbitrage opportunities implies that expected returns

Note that this conclusion rests on the linearity of the return generating process as well
since diversification need not eliminate idiosyncratic risk when returns are, for example,
nonlinear in idiosyncratic risk.
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must satisfy (approzimately):

(2)

where:

the intercept in the pricing relation and

Ak the risk premium on the kM common factor,6 k = I, .. , K.

How are we to interpret the pricing intercept A0? Like the CAPM, the APT has
a zero beta and a riskless rate formulation. However, unlike the CAPM, the difference

between the two depends not on the availability of riskless borrowing and lending but on
whether or not it is possible to form portfolios that are riskiess from the cornitably infinite
subset of risky assets under consideration. If it is possible to construct a portfolio that
costs a dollar and has zero total risk then the intercept .A0 corresponds to the riskless rate.

The only way it will not be possible to form such a portfolio is if, under an appropriate
normalization of the factor space, the factor loadings of all securities on one of the factors

(the zero beta factor) are exactly the same. This would occur, for instance, if all security

returns are equally affected by unexpected changes in a macroeconomic variable such as

inflation or GNP.7 In this case, A0 should be zero since the zero beta return is implicit
in the linear factor model for security returns. In what follows, we will consider both the
riskless rate and zero beta formulations in our empirical tests.

It is clear that the pricing relation (2) should price most assets with negligible error
but need not price all assets arbitrarily well. If the pricing errors for most assets were not

trifling, it would be easy to construct zero net investment arbitrage portfolios whichwere
riskless and earned nonzero profits. Unfortunately, the same argument cannot be used to

guarantee that all assets will be priced correctly since zero net investment portfolios must

place appreciable weight on a small number of assets to exploit a few significant pricing

deviations. Consequently, these portfolios will not be well-diversified and need not have

negligible total risk. Similarly, these heuristic arguments can fail when applied to a large
but finite number of assets since the constructed arbitrage portfolios will not be entirely

Note that, if the return on a market index were the single common factor, then A1
would be the excess return on the market above A0.

Formally this condition occurs when one of the eigenvectors of the covariance matrix
of security returns contains identical elements.
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riskless and very risk averse investors may not take advantage of nearly riskiess arbitrage

opportunities

Not surprisingly, many investigators have examined the circumstances in which the

pricing errors for all assets under consideration are negligible Chamberlain and Roth-

sciiild( 1983) preyed that exact equality will obtain in an infinite economy setting if and

only if there is a well-diversified portfoljo on the mean-variance efficient frontier based on

the (count.ably infinite) subset of returns which are presumed to satisfy the linear factor

model Counor( 1984) and Shanken (1983) provide examples of equilibrium settings in which

this occurs. Grinblatt and Titman(1983) Chen and Ingersoil(1983), and Dybvig(1983) pro-

vide explicit assufl1ptiOlls under which the equilibrium pricing errors can be computed in

a finite economy setting The results in these papers suggest the equilibrium pricing de-

viations will be small wlieii the covariance between the marginal utility of wealth (or the

derived marginal utility ot wealth in an intertemporal asset pricing model) and residual

risk is negligible.8 This condition occurs if investors are not too risk averse and if the

idiosyncratic risk of the individual assets and the value of each asset as a proportion of

total wealth are not too large. in what follows, we assume siicient structure to ensure

that expec ted returns on the subset of risky securities we study (listed stocks on the New

York and American Stock Exchanges) exacdy satisfy the expected return condition (2).

III. Maximum Likelihood Factor Analysis and Basis Portfolio Formation

in this section we describe our approach to the estimation of the factor loadings,

and the idiosyncratic variances, d. We also detail our procedure for constructing basis

portfolios from these estimates which are, in principle, highly correlated with the common

factors that are presumed to he the dominant source of covariation among security returns.

Unfortunately, there is a bewildering variety of estimation methods and portfolio formation

proced ices that have been advocated and used in the literature. In order to sort through

the myriad of possibilities, we compared the efficacy of different combinations ofbasis

The requirement that idiosyncratic risk he uncorrelated with investors' marginal utility
of wealth is central to all utility-based asset pricing theories. In the CAPM framework,
for instance, the assumption that asset returns follow a niultivariate normal distribution
or that investors have quadratic utility is the basis of the uncorrelatedness condition. In
an intertemporal asset pricing context similar assumptions lead to a lack of correlation
between idiosyncratic risk and the derived utility of wealth
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portfolio formation procedures and estimation methods in Lehmann and Modest(1985a).

We begin with a brief report on the outcome of that investigation.

In Lehmami and Modest(1985a), we sought to provide a comprehensive examination of

different basis portfolio formation strategies. The estimation methods that we considered

include maximum likelihood factor analysis, restricted maximum likelihood factor analysis,9

principal components, and instrumental variables. We also examined four basis portfolio

formation procedures: two variants of tile Fama-Madileth procedure and two versions of a

quadratic programming method. Not surprisingly, we found that the maximum likelihood

estimation procedures outperformed the less efficient instrumental variables and principal

components methods. We also found that a simple variant of the Fama-MacBeth procedure

provided performance at least as good as the more complicated quadratic programming

methods and dominated the conventional Fama-MacBeth strategy. As a consequence, we

will confine our attention to maximum likelihood factor analysis and the variant of the

Faina-MacBeth procedure that produce what we refer to as minimum idiosyncratic risk

portfolios.

The basis of maximum likelihood factor analysis is an assumption about the joint

distribution of the factors and the security returns.10 Given the K factor linear return

generating process in (1), we can compactly write the demeaned returns of the N securities

in matrix form as:

(3)

where and R are N x 1 vectors of security returns, E and i are N x 1 vectors of expected

security returns and residual risk respectively, B is an N x K matrix of factor loadings, and

k is a K x 1 vector of the time t realizations of the common factors. Under the assumption

of joint normality of the returns and the factors S, the sample covariance matrix

(4)

By restricted maximum likelihood factor analysis, we mean maximum likelihood es-
timation of the factor analysis model for security returns subject to the restriction that
expected returns are spanned by the factor loadings. The method is analogous to the
maximum likelihood estimation of the zero beta CAPM employed, for example, by Gib-
bons(1982) and Stambaugh(1982).

10 The basic reference on maximum likelihood factor analysis is Lawley and Maxwell
(1971).
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follows a Wishart distribution which serves as the basis of the log likelihood function:

= ln(2ir) — inlEl — !trace(5r') (5)

where:

= E[f1 = BR' + D (6)

under the usual assumptions of the statistical factor analysis model.'' Maximum likelihood

estimates of the factor loadings and idiosyncratic variances can be obtained by setting the

derivatives equal to zero:

= —TE'[E — s]-'B = 0
(7)

— = —TDiag[E1(E — S)Fr'} = o

where Diag[XJ is a diagonal matrix formed from the diagonal elements of X.

Due to the large number of distinct parameters in B and D [N(K + 1) — K(K —
1)121,

iterative procedures for solving (7) are prohibitively costly. Conventional factor analysis

therefore proceeds using the results of Joreskog(1937) who noted that given an estimate

of D, it is possible to solve analytically for the maximum likelihood estimate of B under

the normalization that B'D'B is diagonal (which constitute the necessary K(K— 1)/2

identifying restrictions on B). Joreskog showed that given D, the maximum likelihood

estimate of B is:

a = D'In(e — 1)1/2 (8)

where 8 is a K dimensional diagonal matrix with the K largest eigenvalues of the matrix

S [S* = D_*2SD_h12] along the diagonal and 11 is an N x K matrix of the corresponding

eigenvectors.'2 Maximization of (5) then involves two steps : (i) given D, use the eigenvalue-

eigenvector decomposition of S* to arrive at new estimates of B and (ii) given B, solve

(0) for .0 using (7). On convergence, the estimates of B and D are the required maximum

likelihood estimates.

" By this, we mean the assumption that the covariance matrix of the idiosyncratic dis-
turbances is diagonal. It is not possible to proceed with maximum likelihood estimation of
the factor analysis model without the imposition of sonic such constraint.

12 Joreskog noted that maximum likelihood factor analysis reduces to principal com-
ponents when the idiosyncratic variances are identical. Consequently, conditional on the
current estimate of D. the idiosyncratic variances of S are all unity.
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A major shortcoming of standard maximum likelihood factor analysis is that it requires

the repeated computation of the eigenvalues and eigenvectors of the N x N matrix S—

a computationally infeasible procedure when the number of securities N is large. As an

alternative, we employ the EM algorithm due to Dempster, Laird, and Rubin(1977) which

was applied to factor analysis in Rubin and Thayer(1982). This procedure has the desirable

feature that it involves only simple least squares regression operations and that the largest

non-diagonal matrix inversion required is for a K x K matrix. Consequently, the EM

algorithm can be used to handle larger cross-sections of securities than has heretofore been

possible.

The EM algorithm follows from two simple observations. If the factors were observ-

able, maximum likelihood estimation of B and D could proceed by a simple multivariate

regression of the demeaned returns f, on the factors b. If instead B and D were observed,

the factors could be estimated by their conditional expectation given f• The key insight is

that since each step is a conditionally maximizing step, iterative repetition of these steps is

guaranteed to increase the log likelihood function (5)—a fact proven in Dempster, Laird,

and Rubin(1977). This fact leads to a simple proof that the algorithm is guaranteed to

converge to a local maximum of the likelihood function.

The reason that this procedure works is that the log likelihood function (5) can be

factored into two parts corresponding to the two step iterative procedure sketched above.

This occurs because the the density of is the expected value of the joint density of

and 5 which, in turn, is the expected value of the conditional distribution of given f:

Pr(fjB, D) = J Pr(ft,LIB, D) dS
(9)

=fPr(ñ f, B, D) Pr(IB, D) df

Under the assumption that 6 and F are jointly normally distributed, the conditional
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distribution of 1. is a function of the usual sufficient statistics:

-

n SA'
r (los)

=[I+B'Er'B]1+ EAE.EA'
= [I+B'D'Bj'+ASA'

where A = II+B'D'B11B'D' and the statistics given in (lOs) follow from noting that:

E[A1f4 =E[ñ,]+Cov(L,f)IVar(fjJhfj
=

=

Var(Ljfj = Var(L) — Cov(, i) [Var(f1)11 Cov(f..E) (lob)

=1- B'E'B
= I +

= Var( +E1jfjEL&IfJ'

Having computed the expected value of the likelihood function given B and D using the

sufficient statistics (ba), it is straightforward to maximize it with respect to B and D to

obtain: —1

E= E[;bti:If.1 E[EiJif.J5=1 5=1
(11)

b=Diag{5-B
E{EQlf.JB']

Each iteration consists of of the evaluation of the expected value of the usual sufficient

statistics for a multivariate linear regression utilizing (10) and employing those statistics

to perform the regression as in (11). Note that the iteration between (10) and (11) only

requires inversion of the K x K matrix [I + B'D1B] and the diagonal matrix I). On

convergence, the estimates of B ann D are the required maximum likelihood estiniites.'3

13 We define convergence as a stationary point such that the sum of the squared deriva-
tives given in (7) is less than 0.0001. We use as our starting estimates of B and V instru-
mental variables estimates based on a procedure outlined in Lehmann and Modest(1985a).
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The estimation of the factor loadings and idiosyncratic variances is only half of the

usual two-step procedure for testing the APT. Following estimation, it is conventional prac-

tice to construct portfolios whose returns are, in principle, highly correlated with the fac-

tors. For example, most studies perform a series of cross-sectional regressions byweighted

least squares at each date t of security returns on the estimated factor loadings using the

estimated idiosyncratic variances as weights. The time series of coefficients from these re-

gressions can be interpreted as the returns on portfolios which are highly correlated with

the unobservable common factors. The procedure that we have found to work best is a

variant of the usual Fania-Macfleth cross-sectional regression procedure. In the jargon of

optimal portfolio formation, our method, which produces what we call minimum idiosyn-

cratic risk portfolios, involves choosing the N portfolio weights w1 to mimic the 5th factor
so that they:

niinw1'Dw1 (12)

subject to:

!ttJkO V5k
(13)

where k is the ktk column of the factor loading matrix B, D is the diagonal matrix

consisting of the variances of the idiosyncratic disturbances, and & is a vector of ones.14

How do these portfolios differ from the more familiar Fama-Macfleth portfolios? The

answer lies in the scaling of the two portfolios. Fama-MacBeth portfolios are the sam-

ple minimum idiosyncratic risk portfolios which have a loading of one on one factor and

loadings of zero on the other factors (prior to rescaling to unit net investment). Minimum

idiosyncratic risk portfolios also are constructed to have sample loadings of zero on the

sante factors, but their only other requirement is that they cost a dollar. As a consequence,
minimum idiosyncratic risk portfolios need not have any particular loading on the factor
being mimicked.

hi Lehmann and Modest(1985a) we demonstrated that if the population values of
B and D are used to construct the basis portfolios then, under mild assumptions, the

14 This estimator can be computed as follows. Let B = (b162 . . . b,) and suppose we
are interested in minucking the 5th factor. The minimum idiosyncratic risk estimator
is D_lB*[BOD_lP*J_1e5 where B = (i2 - . ... .6k), is a vector of ones in the Jfk
column, and is a vector of zeros except for a one in the jLh position.
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Fania-Madlleth reference portfolios will do a better job of mimicking the factors than the

iniiiiniiin idiosyncratic risk portfolios in that the Fama-MacBeth portfolios will be more

highly correlated with the true unobservable factors, Of course, in actual practice we

must substitute estimates of B and D for the corresponding population values to form

basis portfolios. In this case, the Fama-MacBeth portfolios need not do a superior job of

mimicking the factors and, in fact, the minimum idiosyncratic risk portfolios may be more

highly correlated with the factors.

Why might this occur? The answer lies in the requirement that Fama-MacBeth port-

folios have a sample loading of one on the factor being mimicked. The Fama-MacBeth

procedure thus tends to place relatively large weight on securities with large factor load-

ing estimates and less weight on those with small sample factor loadings. If there is little

measurement error in the sample factor loadings, this procedure will yield good basis port-

folios since the returns of securities with large factor loadings are more informative about

fluctuations in the underlying common factors. Unfortunately, in the presence of Inca-

surement error, large factor loading estimates can reflect large measurement error while

small factor loading estimates can occur when measurement error offsets otherwise large

true factor loadings. ilence, the Fama-MacBeth procedure need not place the appropriate

weights on individual securities in the presence of measurement error. In contradistinction,

the minimum idiosyncratic risk procedure is unaffected by the presence of measurement

error in the factor loadings.'5 The comprehensive evidence presented in Lehmann and

Modest(1985a) suggests that measurement error in the loadings is sufficiently pernicious to

warrant employment of the minimum idiosyncratic risk procedure.1°

It nught appear that both methods would be quite sensitive to measurement error in the
factor loadings due to their common requirement that the portfolio weights be orthogonal to
the sample loadings of the other factors f i.e. = 0 Vj Ic]. Fortunately, this condition
imposes no real constraint; rather it merely helps to determine a particular a ample rotation
or normalization of the factor estimates. Both procedures can be sensitive to measurement
error in the idiosyncratic variances. We have ignored this problem because we surmise that
the application of weighted least squares when the weights are measured with error will still
typically yield good basis portfolios, an intuition that is based on conventional econometric
wisdom surroimding heteroskedastic regression models.

One other problem with the Fama-MacBeth procedure is worth noting. In factor model
estimation, it is conventional practice to normalize the factors so that they are uncorrelated
and have imit variances and to normalize the factor loadings so that B'D'B is diagonal.
This practice yields typical factor loading estimates that are much less than one—on the
order of .001 to .0001 in daily data. As a consequence, to ensure that wb5 = 1 and
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Finally, the implementation of the risk-less rate version of the APTrequires the ntea-
surement of portfolios that are orthogonal to the common factors. Suchportfolios should
earn the riskless rat.e if this version of the APT is true. Not surprisingly, we will choose

the N portfolio weights Wrj to mimic the approximately risk-less portfolio of risky assets
so that they:

minw,1tDw71 (14)rf
subject to:

= 0 Vk

(15)= I

where, again, k is the tI column of the factor loading matrix B, D is the diagonal matrix

consisting of the variances of the idiosyncratic disturbances, and is a vector of ones. This

is precisely the portfolio for the intercept that is produced by the Fama-Macfleth style
cross-sectional regression on a constant and the factor loadings.

IV. Hypothesis Testing Procedures

A. Previous Tests of the APT

Before outlining our procedures for testing the APT, it is certainly worth reflecting
on the procedures used in previous studies to assess the validity of the theory. The main

purpose of this review is to obtain some guidance regarding the power of different testing

strategies. As a consequence, we simply sketch some of the procedures employed by others
and suggest reference to the original sources for more detailed discussion.

Since the APT only requires that security returns satisfy an approximate rather than
an exact factor structure, all of the testable implications of the theory (in a finite sample
of securities) lie in the restriction given by equation (2) that expected returns are spanned

jk = o Vj k the Fama-MacBeth procedure must place large positive and negative
weights on at least some securities. For instance, we have found that the Fama-Macfleth
procedure frequently produces portfolio weights in excess of one hundred percent in absolute
value. Thus straightforward application of the Fama-Macfleth strategy under the conven-
tional normalization of the factor model can yield poorly diversified portfolios. Clearly
this problem can amplify the impact of even otherwise trivial measurement error in the
factor loadings. In Lehmann and Modest(1935a), we provide an alternative normalization
which mitigates this particular problem. Unfortunately, it does not resolve the difficulties
discussed in the text.
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by the factor loadings. Previous tests of this mean restriction have typically taken three

forms: (i) tests for the equality of intercepts across small subgroups of securities, (ii) tests

for the joint significance of the factor risk premia in each subgroup and (iii) tests for the

insignificance of nonfactor risk measures in explaining expected returns. The first two

types of tests involve cross-sectional weighted least squares regressions of the returns of

the securities in each subgroup on a constant and the estimated factor loadings using the

estimated idiosyncratic variances as weights. If the APT is true, then the time series means

of the iiitercepts from these regressions should, apart from sampling error, be identical

across groups and equal to the riskless rate if the riskless rate version of the theory is correct

or equal to zero when the zero beta formulation is appropriate. In addition, the factor risk

preinia in each group should be jointly significantly different from zero in large samples.'7

The third type of test usually takes the form of a sinnlar cross-sectional regression in which

the returns in each subgroup are regressed on the factor loading estimates and either the

estimated idiosyncratic or total standard deviation of individual security returns. If the

APT is true, then the time series mean of the coefficients on the nonfactor risk term should

be insignificantly different from zero.

Most of the existing empirical literature on the validity of the APT has failed to pro-

vide substantive evidence against the theory. Unfortunately, this body of work suffers in

large part from a serious problem: the tests often lack the power to reject the theory when

it is false. Some of the problems with earlier tests are a consequence of the technological

necessity of dividing the universe of securities into small groups to perform maximum like-

lihood factor analysis with conventional software packages.'8This forced reliance on small

cross-sections has two deleterious consequences. First, it results in imprecise estimates

of the pricing intercepts A and the factor risk premia A that render statistical tests in-

volving these quantities particularly susceptible to Type II errors. Second, the reliance

17 Since the factors are not observable, most studies begin by performing factor analysis
on each subgroup of securities. Unfortunately, the sample rotation of the factors may not
be the same across different factor analysis runs. Consequently,there is no prediction that
the factor risk preniia should be equal across groups and the only testable restriction across
groups is whether the intercepts are equal.

This is especially true of most of the studies which have performed factor analy-
sis on numerous subgroups of thirty to sixty securities, including Roll and Ross(198O),
Hughes(1982), Brown and Weinstein(1983), Dhrymes, Friend, and Gultekin(1984), and
Dhrymes,Friend, Cultekin, and Cultekin(1985).
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on small cross-sections prevents the implementation of tests that have proven powerful in

the CAPM contcxt—such as the examination of the risk-adjusted returns on portfolios

sorted on the basis of some characteristic such as dividend yield, price-earnings ratio, or

size.19 Finally, there are more substantive problems reflecting the difficulty inconstructing

powerful mean-variance efficiency tests given the large variability in equity returns.

In the first comprehensive empirical investigation of the APT, Itoh and Ross(1980)

performed all three types of tests. Like many subsequent authors, they tested for the equal-

ity of the intercepts across subgroups and failed to reject the null hypothesis of equality.

As noted by Jioll and Ross(1980), however, these tests have little power since the sampling

variation in the estimated intercepts is so large that it would be difficult to reject almost

any reasonable hypothesis about them. In their test for the significance of at! least one of the

factor risk preinia, Roll and Ross found 88.1% of the portfolios had at leastone significant

factor risk premium at the 5% significance level.20 This, however, is not really a test of the
APT in that it is an nplication that is consistent with many other asset pricing theories

as well. Roll and Ross also performed the third type of test and examined the impact of

unsystematic risk (represented by own variance) on the pricing of assets in addition to the

effect of systematic risk exposure captured by the APT factor loadings. In this test, they
also failed to reject the null hypothesis. Once again the problem is that we know this test

has little power. Fama and Macfleth(1973) studied whether idiosyncratic variance hadan
additional impact on expected returns over the explanatorypower of beta in their CAPM

tests. If the multi-factor APT is true as postulated by Roll and Ross(1980). Fama and

Macfleth(1973) should have rejected the adequacy of the single index market model since

the estimated idiosyncratic variances should have reflected, in part, the loadings on the
omitted factors. Of course, Fama and MacBeth(1073) failed to reject the mean-variance

efficiency of tile equally weighted index using just such a test.

Chen(1983) avoided the problems associated with splitting the universe of securities

into subgroups by employing an inexpensive instrumental variables estimator to obtain es-

See, for instance, Cannistraro(1973), Basu(1977), Litzenberger andRamaswamy(1979),
Banz(1981), and Reinganum(1981a).

20 These findings have been challenged by Dhrymes, Friend, Gultekin and Gultekin(1985)
who, using basically the same techniques and data set, found only three of forty-twoport-
folios with significant premia.
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tiniates of the factor loadings.2' His testing procedure was quite simple: divide the universe

of securities into two groups after ranking on some characteristic and form portfolios from

these groups with identical estimated factor loadings. If the APT is tnie, these pairs of

portfolios should have identical mean returns. Chen rejected the hypothesis that the factor

loading adjusted portfolios have identical mean returns in one of the four (four year) sub-

periods based on both firm size and previous period return and found no rejections based

on own variance. These results were interpreted to be largely supportive of the APT. The

problem with tins test is again one of power. Even when no adjustment was made for risk,

the differences in the mean returns on equally weighted portfolios from both the high and

low firm size and own variance groups are statistically significant in only two of four suhpe-

riods22 The insignificance of the mean return differences of these pairs of portfolios stands

in sharp contrast to the corresponding differences we found in mean returns of portfolios

constructed from the first and fifth size or variance quintiles. The mean return differences

based on these extreme quintiles are statistically significant in all subperiods perhaps due

to the nonlinearity of the own variance or size effects. Chen was aware of this potential

problem and reported that the results were similar when the significance tests were based

on the top and bottom deciles of firm size and own variance.23 Nevertheless, the possible

difficulties suggest considerable caution in the choice of a testing strategy.

B. Testing the APT

We employ conventional multivariate test statistics to test the APT. For reasons out-

lined above, care must be taken to insure that the tests have adequate power. Our maximum

likelihood factor analysis procedure permits us to estimate factor models for large cross-

sections of security returns. As a consequence, we can obtain efficient estimates of factor

loadings and idiosyncratic variances without suffering from the technological necessity of

splitting the cross-section into thirty to sixty security subgroups or resorting to inefficient

21 These estimates are less efficient than those obtained from maximum likelihood factor
analysis of the same cross-section but Chen presumed that the loss in efficiency was small
relative to the gain associated with working with substantially larger cross-sections than
had previously been possible.

22 The comparable information is not available for the previous period return results.
23 However, this claim stands in sharp contrast to our results discussed below where

the conclusions are quite sensitive to whether five, ten, or twenty portfolios are used. In
addition, we find significantly different risk adjusted returns between the top and bottom
firm size deciles in each of our five year periods.
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estimation procedures. This ability to perform maximum likelihood factor on large subsets

of securities then allows to perform relatively efficient tests of the APT mean restriction

using sorted portfolios based on characteristics that have proven to be effective in ana-

lyzing the mean-variance efficiency of the standard CAPM benchmarks and to avoid the

problems associated with testing for the equality of intercepts or the significance of factor

risk premia across small subgroups that have plagued previous studies. To guard against

the potential nonlinearity of the dividend yield, own variance and size effects and any pos-

sible adverse power consequences, we group securities into different numbers of portfolios

based on these characteristics. In addition, we provide further information concerning the

power of our tests by using similar procedures to test the mean-variance efficiency of the

equally-weighted and value-weighted CRSP indices. For example, the failure to reject

the APT and simultaneous rejection of the mean-variance efficiency of the usual market

proxies would suggest that our tests have good power against reasonable alternatives and

should be taken as serious evidence in favor of the APT.

We implement the tests in the following manner. First, we estimate a factor model

for security returns using the method of maximum likelihood and then employ the mini-

mum idiosyncratic risk procedure to form basis portfolios. Second, we form portfolios of

securities ranked on characteristics such as firm size, dividend yield, and own variance.

We consistently formed five, ten, and twenty such portfolios for testing purposes to guard

against potential power difficulties although we do not report the ten portfolio results to

conserve space. We then rim the regression of raw or excess portfolio returns on the corre-

sponding basis portfolio returns and a constant. The usual F test for the hypothesis that

the intercepts for each portfolio are jointly insignificantly different from zero provides a test

of either the riskless rate or zero beta version of the APT.

More formally, let be the vector of excess returns on the sorted characteristics

portfolios when the riskiess rate version of the APT is true and be the corresponding raw

returns when the zero beta version is appropriate. Similarly, let R,, be the corresponding

returns on the basis portfolios. Consider the fitted multivariate regression of on

and a constant term:

= + + (16)

where is the estimated constant term vector, E is the estimated factor loading matrix,
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and is the fitted residual vector. If the APT is true and the basis portfolios are measured

without error, then should he statistically insignificantly different from zero. On the

assumption that ft, and are both normally distributed random vectors, the usual F

statistic for testing this hypothesis is:

F(N,T-K-N) (17)

where 12 is the sample residual covariance matrix of pt R. is the vector of sample mean

returns on the basis portfolios, and Em is the sample covariance matrix of their returns.

This is our basic APT test—all variations we perform provide informal checks on the power

of the tests.24

Of course, a critical assumption is that the basis portfolios are measured without

error, an assumption that is only correct as the number of securities in the first stage factor

analysis tends toward infinity. Fortuiiately, the large number of securities in our cross-

sections suggests that the measurement error in our basis portfolios is likely to be small.25

Moreover, any measurement error causes these F statistics to be biased toward rejection

when the APT is true, although the magnitude of this bias is likely to be trivial relative

to the measurement error in

It is worth mentioning an alternative strategy which partially mitigates the effects of

24 The tests employed here for the mean-variance efficiency of the usual CAPM indices
differ somewhat from (17). We employ Shanken's(1984) multivariate test statistic which
is of the form of (17) with K = 1 and where N is replaced with N — 1. There is a more
substantive difference in the computation of . For the mean-variance efficiency tests, &,
is the vector of residuals from the cross-sectional regression of the portfolio market model
intercepts on one minus their estimated betas. See the discussion below for an indication
of a possible reduction in the power of the tests associated with the estimation of the zero
beta rate from the 8orted portfolios.

25 It is worth noting that we can provide large sample estimates of the measurement
error covariance matrix of our basis portfolios in order to get a feel for the likely severity
of this problem. From the solution to equation (14), the idiosyncratic risk component
in the 1th basis portfolio has the approximate variance: 4(h*'D_mBi_i!f where
B is the matrix with the estimated factor loadings in each column except for the Jth
column, which is a column of ones, D1 is the diagonal matrix of estimated idiosyncratic
variances, and the approximation arises because we are using estimates instead of the true
values of the relevant parameters. We have examined these approximate variances and the
associated covariances and have found that these numbers are uniformly trivial across both
time periods and factor models. Hence, it seems reasonable to conclude that measurement
error is not a particularly serious problem in our large cross-sections.
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measurement error that we have chosen to ignore due to its deleterious impact on the power

of our tests. We could estimate the basis portfolio returns by straightforward application

of tile Fama-MacBeth style generalized least squares cross-sectional regression of the sorted

portfolios' returns on a constant and their estimated factor loadings from the first stage

factor analysis at each date t. The analog-ne to &,, can then be computed from the time

series mean of tile residuals. This would tend to alleviate the measurement error problem

discussed above since the measurement error in the factor loadings of the sorted portfolios

should be much smaller than the typical error in the loadings of the individual securities,

given that the portfolios are well diversified and not formed on the basis of their sample

loadings. Following the analysis in Shanken(1984), we could then construct the large sample

F statistic just as in (17) above with two main modifications: (1) the sample mean vector

and covariance matrix of the cross-sectional regression coefficients replace those of R and

(ii) the degrees of freedom in the numerator of the F statistic are reduced by K + 1 due

to tile estimation of the factor risk premia.20

Why do we eschew this seemingly superior statistical procedure? The reason is once

again a matter of power. The problem with this procedure is that it involves estimation

of the factor risk preinia using the portfolios formed from well-known empirical anomalies.

Suppose that the APT is false and we construct the test statistics in this revised fashion.

The generalized least squares cross-sectional regressions will choose estimates of the factor

risk premia which minimize the weighted sum of squared residuals. This, in turn, will tend

to make the F statistic small and, hence, can cause a failure to reject the null hypothesis

when it is false.27 In our procedure, we estimate the factor risk premia from the whole

sample of securities underlying the factor analysis, a sample that is not biased with regard

to firm size, dividend yield, or own variance. These premia are then used to estimate

and to test its significance. If the APT is false, our procedure will not bias the estimates

of a,, toward acceptance of the null hypothesis.

20 The only modification to Shanken's analysis involves the fact that the factor loadings
are not coefficients from a linear regression as in the case of market model estimates but
rather are estimates of factor loadings from a nonlinear maximum likelihood procedure.
We doubt that this would affect the analysis appreciably, especially in large samples.
27 This reduction in power will not occur when the multiple correlation between the

sorting characteristics and the factor loadings and a vector ones is zero. This cannot occur
in our samples since our anomalies are non-negative and, hence, will at least be correlated
with the intercept.
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This would seem to be a trivial (lebating point except for the fact that we have en-

cotmtered precisely this problem in testing the mean-variance efficiency of the usual market

proxies. If, by analogy with Fama and MacBeth(1973), we estimate the zero beta CAPM

by regressing portfolio returns on portfolio betas plus an intercept, we often fail to re-

ject the mean-variance efficiency of either CRSP index using Shanken's multivariate test

statistic. If we follow Black, Jensen, and Scholes(1972) and perform a cross-sectional re-

gression of the portfolio intercepts from market model time series regressions on one minus

their corresponding sample betas, we typically sharply reject mean-variance efficiency at

extremely low marginal significance levels using the appropriate variant of Shanken's test

statistic. Similarly, we would never reject the APT in our samples if we estimated the

factor risk premia from cross-sectional regressions of the characteristics-based portfolios to

construct the relevant test statistics. Consequently, we have chosen to ignore the impact

of measurement error on our test statistics due to their greater power.

C. Comparing the Riskiess and Zero Beta Versions of the APT

If the riskless rate formulation of the APT is true, then security returns satisfy:

— Rft = — kR.n) + t (18)

where R11 is the return on the limiting riskless portfolio of risky assets whose mean return

is o- If the zero beta version of the APT is true, then security returns satisfy:

= BRmt + (19)

since the zero beta portfolio corresponds to one of the common factors underlying security

returns.

How can we distinguish the two versions of the APT? The simplest answer involves

asking tinder what circumstances the two equations for returns are identical. Evidently,

the riskless rate and zero beta models are the same when:

Bt=t (20)

that is, when the sum of the factor loadings for each security is one. This conclusion follows

from simple efficient set reasoning as well: since the basis portfolios Rmt span the efficient
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set when the zero beta formulation is correct, the sum of the factor loadings must be one

because, under appropriate rotation, the factor loading corresponding to a zero beta factor

is 1 — fi and the remainder sum to fi when appropriately weighted so that the remaining

factors add up to an efficient portfolio.

As a consequence, a first test of the zero beta APT is to see whether the sum of the

coefficients in either equation (18) or (19) is unity. This is difficult if we try to aggregate the

test statistics from individual security regressions due to the presence of industry effects

in the residual covariance matrix. While we could try to account for this problem in

constructing the aggregate test statistic, it is simpler to perform the test on portfolios

instead. There is a potential loss of power associated with moving from individual securities

to portfolios. Fortunately, there is a gain in precision in estimating portfolio loadings as

well as the sum of the portfolio loadings which should permit reasonably powerful tests.

On the assumption that Hmt and are both normally distributed random vectors, the

usual F statistic for testing this hypothesis is:

(b — YO;'(h — ) [T —

K—N1 F(N,T — K — N) (21)L N J

where B is the matrix of estimated portfolio factor loadings, O is the sample residual

covariance matrix of the regression residuals, and and ,, are vectors with K and N

unit elements respectively. We perform this test on both the excess return and raw return

regressions to guard against possible differences in the powers of the two test formulations.

This test does not exhaust the differing implications of the riskless rate and zero beta

models. Each version of the APT places different restrictions on A0—the intercept in the

pricing equation. The riskless rate formulation suggests that A0 is equal to the riskfree

rate while the zero beta version implies that A0 is zero. In this spirit, we report summary
statistics for the orthogonal portfolios with weights W7f defined in (14) and (15) above.

We simply test whether the mean return on this portfolio and whether the mean difference

in return between this portfolio and the riskfree asset are significantly different from zero

to compare the two models in this other dimension. Of course, previous examinations of

returns on these orthogonal portfolios have typically failed to reject both hypotheses but we

are confident that our large cross-sections will permit us to measure the mean returns on

these orthogonal portfolios with considerable precision. This test also provides another test
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of the APT: both versions of the theory will be rejected if mean returns on the orthogonal

portfolios are significantly larger than the riskless rate or significantly negative. The fact

that estnnatecl zero beta rates are typically significantly greater than the riskfree rate

in CAPM studies such as Black, Jensen, and Scholes(1972), Fama and MacBeth(1973),

Litsenherger and Ilamaswamy(1079), Gibbons(1982), and Stambaugh(1982) suggests that

this is not an unlikely possibility.

It is worth noting that measurement error has a greater effect on tests involving or-

thogonal portfolios than it does on the F tests for the APT itself. The problem is that the

basis portfolios will tend to mimic some rotation of the factor space even if it is not the

one that was assumed for the purposes of estimation. This occurs because idiosyncratic

risk is likely to be virtnally eliminated in well diversified portfolios of large numbers of

securities while sensitivity to all of the common factors is likely to remain in each basis

portfolio as long as the individual loadings contain some measurement error. In a similar

vein, the orthogonal portfolios are constructed to have weights orthogonal to estimated

factor loadings, hut they are not necessarily orthogonal to the true loadings. Thus to the

extent that measurement error is present in the factor loading estimates, some factor risk

is likely to remain in these orthogonal portfolios as well.

The one factor case provides a convenient setting for analyzing the potential impact

of measurement error. In this case, security returns satisfy:

= tRft + fl(I — R1) + i (22)

assuming the risk]ess rate version of the theory is appropriate. Unfortunately, we do not

know the betas and instead must estimate them. Let the measured betas be unbiased

estimates of the true betas so that:

(23)

where the elements of the measurement error vector v have zero mean and finite variances

and covariances. We assume that the factor loadings have been normalized so that kL' =/L'L.

For simplicity, we also assume that the sample mean of the measurement errors across beta

estimates is zero [i.e. = k 01.

What happens if we use the estimated betas in an attempt to mimic the approximately

riskless portfolio of risky assets? If we assume for simplicity that the idiosyncratic variances

24



are identical [i.e. D = 7?I], then the portfolio weights which solve (14) and (15) are:

(24)

where is the average sample beta. It is straightforward to verify that this portfolio contains

factor risk since its true loading is:28

_____________ r
(2o)

2 i Nwhere = jj —
/3) is the sample variance of the true betas. Given the ad-

ditional assumption that k'fl is approximately zero (a reasonable assumption in large

cross-sections), this approximately simplifies to:

— a2 a2—a2___ fib
(26)

which will he positive.29 As a consequence, the mean return on this portfolio will be biased

upward in periods when the sample market risk premium is positive and will be biased

downward in periods when the average market risk premium is negative.

This conclusion is not surprising: it is well known in a regression setting that, if the

independent variable is measured with error, the slope coefficient is biased downward and

the intercept is biased in the direction of the sign of the mean of the independent variable.

It is equally clear that, in this example, the magnitude of the bias can be quite serious,

depending on how close 1 is to one (i.e. how close the dispersion in the elements b1 are

to zero). Of course, the magnitude of the bias depends on additional considerations in a

nuiltifactor setting with nontrivial industry effects in the residual risks. Nevertheless, this

example suggests that we should interpret any rejections of this formulation of the APT

with considerable caution.

D. Determining the Number of Factors Underlying the APT

Surprisingly, the most difficult empirical problem in the APT is the determination of

the number of factors underlying security returns. The problem is insidious: the test which

28 This expression uses the assumption that 1 made above ( 0).
29 This expression is positive since 0 < b < 1 under the normalization h'& = b't to insure

that a > 0. and a > a when = 0.
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is powerful can reject the hypothesis that there are K pervasive sources of risk even when

it is true while the remaining tests have little power to reject the null hypothesis when it

is false. We will examine several possible tests for the number of factors and will catalogue

the weaknesses of the various approaches.

The most obvious approach is to use the likelihood ratio test statistic for the number

of factors that is widely employed in the psychometric literature. This test statistic was

studied by Bartlett(1950) and was the subject of a Monte Carlo investigation by Geweke and

Singleton(198O). The test is siinple—imder the assumption that the stationary statistical

factor analysis model describes security returns (i.e. that there is no correlation among the

idiosyncratic disturbances), the covariance matrix of security returns, D. can he written as

in (C) [S = BB' + D] where D is diagonal while under the alternative hypothesis has no

particular structure. The null hypothesis may be tested by miuus twice the logarithm of

the likelihood ratio for this hypothesis:

x2(q) = T[lnBB' + DI + trace[S(BB' + D)'] — lnISI — Nj (27)

which, in large samples, is approximately distributed as x2 with q degrees of freedom where

q = [(N — K)2 — (N + K)]/2. Bartlett(1950) showed that the distribution of the likelihood

ratio statistic was more nearly x2 when the test statistic is modified to be:

2 2 2N+5+4K
x (q)aaa = x (q)[1 —

CT (28)

which is the form of the test statistic produced by most software packages. Ceweke and

Singleton(1980) found that the chi-squared approximation (28) is quite good and that the

statistic has good power even in modest sample sizes. Most empirical examinations of the

APT have employed one of the forms of this test statistic.

The problem with the likelihood ratio statistic is that it tests the appropriateness of

the statistical factor analysis model and not that of the approximate factor structure:

(29)

where 11 need not be diagonal due to the presence of residual correlations such as industry

effects. The statistical factor analysis model with the diagonal covariance matrix for the
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idiosyncratic disturbances requires that any source of covariation among security returns

be classified as a factor while the APT counts as factors only those which are pervasive

and affect many security returns. The likelihood ratio statistic cannot distinguish between

correlated idiosyncratic risks which are irrelevant for pricing and common factors which

help explain expected returns.30

Formally, the difficulty with the likelihood ratio statistic is that the ratio:

1DB' -I- D — DjJI + B'D'BI
30)BD'+nI

—

flhII+B'II'BI
is not one. As a consequence, the noncentrality parameter of the test statistic (28) is not

equal to zero which causes the statistic to take on larger values than would be expected

from ax2 random variable. The following simple numerical example illustrates the potential

severity of the problem. Suppose that there are K common factors and that the economy

consists of many industries, each consisting of two firms. For simplicity, both firms within an

industry are assumed to have identical factor loadings, idiosyncratic variances of unity, and

correlation between their idiosyncratic disturbances of p. The idiosyncratic disturbances

are presumed to be uncorrelated across industries and the value of p is taken to be identical

for each. In this example, the ratio (30) takes on the value:31

IDB'+Dl fl1(1+>t1B?,.) 1

1DB' + e;
=

(1 — p2)N12 fl1(i +
N

(1 — p2)N/2(1Ln) (31)

If the number of firms in the sample is 750 (the cross-section sizes that we work with)

and the correlation between the idiosyncratic disturbances within industries is 0.9 the ratio

is virtually infinite (our computer reports that its inverse is zero in double precision),

suggesting that we would nearly always reject the null hypothesis that K common factors

underlie security returns. Even if the typical industry effect correlation were only 0.1,

the ratio would be 43.33 which is large enough to lead to frequent rejection of the null

hypothesis.

Of course, this discussion does not suggest that the number of factors cannot be de-

termined by statistical means but rather that this test cannot provide a reliable answer to

Tins is the essence of the exchange on this subject between Dhrymes, Friend, and
Gultekin(1984) and Roll and Ross(1984).
31 We have implicitly assumed the factor loadings have been normalized so that .B'D is

a diagonal matrix.
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this question. The number of factors can, in principle, be inferred from the tests of the

APT—these tests are joint tests of the ability of the theory to explain expected returns and

tile hypothesis that there are K common factors, If the model is rejected with K factors

but is not rejected based on K > 1C factors,32 it seenis reasonable to conclude that the

APT is true and that there are K common factors. Unfortunately, such a test may not be

powerful in reality but it suggests that the inability of the likelihood ratio test to correctly

detect the number of factors in the presence of residual correlations such as industry effects

is not fatal. We will find, in fact, that this joint test does not provide much information on

the number of factors underlying security returns.

The empirical content of the APT lies in the restriction that all securities and port-

folios expected returns are spanned by their factor loadings. This suggests a simple test

of the appropriateness of a K factor model of security returns as opposed to a K factor

model where Kt > K. Consider regressing the returns on the Kt basis portfolios R:,

on the K basis portfolios R and a constant term. If the APT is true and there are K

common factors, the intercepts should be insignificantly different from zero. If, on the other

hand, the APT is true and there are K factors, the returns on the K basis portfolios

will embody priced risk factors not contained in R,, and hence a joint test that all

the intercepts are zero should be rejected. Consequently, our final test will be this test on

the intercepts in the following multivariate regression:

C, = & + + (32)

where at is the vector of intercepts in this regression. B is the matrix of factor loadings

and c is the associated vector of idiosyncratic disturbances which have covariance matrix

11*. We will presume that ir is nonsingular, an assumption which may not be reasonable

in all circumstances. If R, and ' are jointly normally distributed, the null hypothesis

that the estimates &' are insignificantly different from zero can be tested by the usual F

statistic:

4*t*_1g T(T—K—K)1 FKT K—Kt 33
l+rmE;ILLK*T_K_1i

C
-

32 Assuming the appropriate in-sample and out-of.sample tests are conducted to guard
against overfitting.
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tinder the assumption that the returns R on the K basis portfolios are measured without

error.

What are the power characteristics of this test for the number of factors? Unfortu-

nately, they are not good when the basis portfolios contain some, but not much, idiosyn-

cratic risk, the case that is probably the most likely to occur in practice. The problem is

most easily seen in the case where the true number of factors is K' and the basis portfolios

are measured without error. In this case, the true relationship between R and 11mt
is given by:

= niRrnt + L (34)

where Bm is a matrix of factor loadings and c is the associated vector of idiosyncratic

disturbances which are assumed to have nonsing-ular covariance matrix 0m If this is the

correct model, then the intercepts a in (32) satisfy:

= [I— EBE;'Bm1 (35)

As a consequence, the quadratic form which is of central interest will satisfy:

= + (36)

What happens when the elements of fl,, are small as is likely to be the case when

the Rmt are the returns on well-diversified portfolios? in this circumstance, the inverse

of fl,, is- likely to be large relative to the other parameters. Hence, the quadratic form

(36) will tend to be small, rendering unlikely the rejection of the null hypothesis when it

is false. In consequence, this test, like the likelihood ratio test, is not likely to provide

reliable information regarding the number of factors underlying security returns. If there

is a superior procedure, however, for ascertaining the true number of factors, we have not

yet found it.

V. Empirical Results

A. Data Considerations

The following subsections detail our results regarding the validity of the APT, the

comparative merits of the zero beta and riskless rate formulations, and the evidence on the
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number of factors underlying security returns. However, first we briefly describe our choices

concernilig the appropriate data for estimation and testing purposes. In particular, we must

confront interesting tradeoffs in the choice of the appropriate observation frequency.

The CRSP files provide two sets of equity returns: daily returns on all stocks listed

on the New York and American Stock Exchanges since July 1962 and monthly returns on

all securities listed on the New York Stock Exchange since 1926. The potential benefit

associated with the use of daily data in the estimation of variances and covariances is

enormous since the precision with which these parameters are estimated hinges on the

frequency of observation. Of course, enthusiasm for daily data must be tempered by the

well-known problems of nontrading and thin trading which bias the estimates of these

moments. As shown by Blume and Stambaugh(1983} and Roll(1983), for instance, the

seemingly trivial bid-ask spreads in equity returns lead to serious biases in mean returns

and, sadly, this bias is directly related to the frequency of observation. Moreover, daily

data provides no such advantages when estimating mean returns whose precision depends

on the length of the estimation interval and not on the frequency of observation.

These observations have obvious relevance for estimating factor models for security

returns and for testing the APT. Greater precision in the estimates of variances and

covariances confers corresponding improvements in the precision of the estimated factor

loadings and idiosyncratic variances, the basic inputs into the subsequent analysis. Biases

in mean returns can lead to incorrect inferences regarding the validity of the theory. We

opted for a comprounse solution in the choice of an observation frequency. Following Roll

and Ross(1980) and most subsequent empirical investigators, we estimated our factor mod-

els for security returns with daily data since we surmised that the gain in precision offset

the thin trading biases in the estimation of covariance matrices.33 The estimated loadings

and idiosyncratic variances were then used to form the portfolio weights of the requisite

basis portfolios as described in Section III.

We test the theory and its various aspects using weekly returns data which we formed

by continuously compounding daily returns from Wednesday to Tuesday. Consequently, ba-

As a check, we also present results based on factor models estimated with weekly and
month!y returns. Currently, in Lehmann and Modest(1985c), we are performing a more
thorough examination of the appropriate periodicity for estimating factor models and the
issues associated with thin trading and temporal aggregation bias.
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sis portfolio returns were computed by multiplying the portfolio weights by the correspond-

ing weekly returns on individual securities. Similarly, our testing strategy required returns

on the usual market proxies and so we computed weekly returns on the CRSP equally-

weighted and value-weighted indices by continuously compounding their daily returns n

the same fashion. Note that this means that the market proxies that we use contains both

NYSE and AMEX securities unlike the versions which appear on the monthly returns

file1 which contain only NYSE stocks. All of the relevant test statistics were constructed

utilüing these weekly returns with one exception.34 The tests comparing the returns on

the orthogonal equity portfolios and the riskfree rate were performed in monthly data since

we were unable to obtain returns on one week Treasury bills on a Wednesday to Tuesday

basis.

Two other important choices involve the length of the estimation interval and which

finns to include in our sample. As noted above, increasing the estimation interval leads to

greater precision of the estimated mean returns. However, longer estimation intervals render

more unreasonable the assumption of constant factor loadings that is typically required for

testing. As a consequence, we assumed stationarity over five year subperiods and divided

the time interval covered by the CRSP daily returns file into four periods: 1963 — 1967,

1068 — 1972, 1973 — 1977, and 1978 — 1982. Within each period, we excluded securities

which were not continuously listed or which had missing returns and ignored the possible

selection bias inherent in this strategy. The remaining securities numbered 1001 in the first

period, 1359 in the second period, 1346 in the third period, and 1281 in the final five year

period. The number of daily observations in these samples totalled 1259, 1234, 1263, and

1264, respectively, while there were 260 weekly observations in each five year period. The

CRSP daily file (with few exceptions) lists securities in alphabetical order by their most

recent name. We randomly reordered the securities in each subperiod to guard against any

biases induced by the natural progressio of letters (IBM, International Paper, etc.). The

usual sample covariance or correlation matrix of these security returns provided the basic

input to our subsequent analysis. Each period we estimated five, ten, and fifteen factor

models using the first 750 securities in our randomly reordered data file.' We repeated many of our tests in monthly data and verified that the conclusions
reported here are robust with respect to this choice.
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B. Tests of the APT

Does the APT provide a comprehensive explanation of tile expected returns of se-

curities listed on the NYSE and the AMEX? This important question remains unset-

tied despite the empirical work of many investigators, including Gehr(1976), Roll and

Ross( 1080), Reinganum(1081b), Hughes(1982), Brown and Weinstein(1983), Chen(1983),

Gibbons(1983), Dhrymes, Friend, and Gultekin(1084) and Dhrymes, Friend, Cultekin and

Gultekin(1085). A reasonable characterization of the evidence in these papers is that they

are, in general, supportive of the APT although they are far from conclusive or uniform in

this regard. Some of the reasons for the remaining ambiguities were detailed in Section IV

along with our solutions to some of the problems with previous tests. As a consequence,

we surmise that our more powerful tests will resolve some of the outstanding disputes

concerning the validity of the theory.

As noted in the previous section, our strategy for testing the APT involves examina-

tion of the ability of the theory to account for well-documented empirical anomalies which

provide the basis for the rejection of the mean-variance efficiency of the usual market prox-

ies. Tables 1 through 6 provide tests based on three such anomalies: (i) firm size, (ii)

dividend yield, and (iii) own variance. Table 1 reports on tests using portfolios formed on

the basis of market capitalization. The portfolios were formed by ranking the stocks in our

sample by the magnitude of their equity market values at the end of the period preceding

the test period, splitting the ranked securities into either five or twenty groups consisting of

(approximately) equal numbers, and then constructing equally weighted portfolios from the

stocks in each group.35 Tables 2 and 3 provide the same information as Table 1, but serve

as checks that the results in Table 1 do not hinge on peculiarities involving thin trading

or January. The sole difference between Tables 1 and 2 is that Table 2 presents results

when the factor models were estimated using weekly and monthly data as inputs rather

than daily data. In a similar spirit, the tests in Table 3 are based on returns that exclude

those occurring in January to ensure that we are not convolving the turn of the year and

size effects. Table 4 is siniilar to the first three except that portfolios were formed on the

basis of dividend yield in the year preceding the test period. The ranking procedure was

We also performed tests based on ten such portfolios but the results were similar to
those obtained with either the five or twenty portfolios and so we omitted them in the
interest of space conservation.
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somewhat different, as well sinc.e we formed an equally weighted portfolio of the firms that.

paid zero dividends and then formed the remaining four or nineteen portfolios by ranking

the remaining dividend-paying stocks in the same fashion as described above.30 Table 5

reports on the test.s based on the variances of the returns in the year preceding the test

period (computed from daily data) with portfolios formed as outlined above. Recall that

all tests were based on weekly returns with our weeks running from Wednesday to Tuesday

in order to insure that. they did not begin and end on nontrading days too often and to

mitigate biases caused by the day-of-the week effect. This means that all tests are based

on 260 observations except for the size related tests which exclude January returns, which

involve 235 observations.

Table 6 merits separate comment. Their appears to be widespread concern that the

APT cannot be rejected given the freedom to extract an arbitrary number of factors. While

the statement is trivially true if we extract almost as many factors as the number of secu-

rities in the analysis, it is false when the number of factors is small since the APT predicts

that only covariance risk measures explain expected returns not other security character-

istics such as firm size, dividend yield, and own variance. Nevertheless, the reasonable

question implicit in the concern involves the potential problem of overfitting returns by

testing the APT with the same securities used to estimate the factor model for security

returns. In order to guard against this possibility, we conducted tests sintilar to those re-

ported above using only securities which were not used to estimate the factor models. This

means we formed portfolios based on firmsize, dividend yield, and own variance from 251

securities in the first period, 609 securities in the second period, 596 securities in the third

period, and 531 securities in the final period. Table 6 only reports results for five portfolios

formed from these securities and omits the results for the size tests which exclude January

returns as well in order to conserve space.

Each table reports the F statistics for both the riskless rate and zero beta formula-

tions.of the APT and for five, ten, and fifteen factor models. In addition, they present the

large sample F statistics for the mean-variance efficiency of the CRSP equally-weighted

and value-weighted indices of NYSE and AMEX stocks.37 The first half of each table
30 We also carried out tests by ranking on dividend yield without special treatment of

the zero dividend group. The results were very similar to those reported here.
Note that these statistics are formed from the sorted portfolios and are subject to
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reports tile results based on five sorted portfolios and the second half presents those based

on twenty such portfolios. The first four rows of each half of the table provide the relevant

F statistic for each of the four five year periods: 1063 — 1067, 1068 — 1072, 1073 — 1077,

and 1078 1082. The subsequent row of each table provides an approximate x2 statistic

testing the joint significance of the four F statistics. The aggregated statistics are obtained

by multiplying the individual F statistics by their numerator degrees of freedom and sum-

ming these quantities over the four periods. The resulting test statistic is approximately

distributed x2 with degrees of freedom equal to the sum of the numerator degrees of free-

doni of the individual period F statistics. The number reported under each test statistic

is the marginal significance level of the test statistic under the null hypothesis (i.e. the

probability of obtaining a test statistic at least as large as that obtained when the null

hypothesis is true).

The five size-related tests provide sharp evidence against the APT. The aggregate x2

statistic for the joint significance of their intercepts across sample periods have marginal

significance levels below ir3 across both APT formulations and the number of factors.

Examination of Tables 2 and 3 confirms that this phenomenon does not arise solely from

thin trading or .lanuary returns since the marginal significance levels are less than 5% in

all cases. Perusal of the suhperiod results reveals considerable uniformity in the results—

virtually all of the corresponding suhperiod F statistics which include January returns or

correct for thin trading are large enough to reject the APT at conventional significance

levels irrespective of the number of presumed factors or of the version of the theory and

many such statistics computed excluding January returns are large enough to reject in the

suhperiods as well.

It is also worth noting that these results are not just reflections of unusually large

intercepts for the smallest firm (i.e. fifth quintile) portfolio. To be sure, this portfolio has

large and positive alphas in all four periods. However, the size effect is not limited to the

smallest firms: the fourth quintile appears to plot above the security market hyperplane

and the largest firm portfolio consistently plots below the security market hyperplane. This

large firimi effect receives striking confirmation in regressions of the value-weighted index

the power difficulties discussed in the text. This does not seem to be a problem in this
application.
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on the basis portfolios which yield highly significant negative intercepts on the order of

2.5% and 4.5% per year for all but the first five year period. While some of this effect

may be attributable to nonstationarity associated with the changing weights of the value.

weighted index, the effect remains (albeit with lesser magnitude) when we use a ffxed weight

large firm portfolio. The nature of the small firm effect is further illununated by similar

regressions—the equally-weighted index composed of NYSE and AMEX stocks has large,

positive, and significant aiphas in all periods and, in monthly data, the equally-weighted

index comprising only NYSE securities has economically and statistically insignificant

intercepts in all but the second five year period. Not surprisingly, tile small firm effect is

concentrated in the small firms trading on the AMEX.

The five portfolio tests of the mean-variance efficiency of the equally-weighted and

value-weighted indices provide similarly striking documentation of the magnitude of the

size effect. The aggregate x2 statistic rejects the mean-variance efficiency of the equally-

weighted index at marginal significance levels below 10 while the same statistic con-

structed excluding January returns rejects at marginal significance levels below The

analogous aggregate marginal significance levels for the tests of the mean-variance efficiency

of the value-weighted index are below 10 for the whole sample and at the 6% level when

January returns are excluded. Once again, there is considerable uniformity in the subperiod

results since the mean-variance efficiency of both indices is rejected in all but the second

period in the whole sample and in the first and fourth periods when January returns are

excluded.

The size-related results based on twenty portfolios tell a somewhat different story. The

mean-variance efficiency of the usual market proxies is rejected in aggregate at marginal

significance levels below ir4 for the equally-weighted index and at the 5% level for the

value-weighted index in the whole sample while only the equally-weighted index is rejected

(at the 2% level) when January returns are excluded. In contradistinction, only the zero

beta version of the five factor model is rejected at the 5% level in the whole sample and

no version of the APT is rejected when January returns are excluded. Examination of the

individual period results suggests that the failure to reject the APT is no accident since in

all but the second five year period no F statistic attains a marginal significance level below

20%.
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Examination of the individual portfolio intercepts does reveal interesting patterns.

As would be expected from the regressions of the CUSP indices on the basis portfolios

suggests, tlit- size effect is concentrated in the extreme size portfolios in all five year periods.

Of course, the smallest firm portfolio has much larger positive intercepts in all periods

hut the small firm effect extends to between three and five other small firm portfolios.

Similarly, the large finn effect typically covers the three largest firm portfolios. The APT

is not rejected with twenty size portfolios because the size effect is concentrated in the

largest and smallest firms. This contrasts with the intercepts associated with the CUSP

indices for winch the size effect affects many of the twenty portfolios. This explains why

the mean-variance efficiency of both indices is rejected in the twenty portfolio case.38

It is also worth noting that our concern over the adverse power consequences associ-

ated with basing our tests on different numbers of characteristics-based portfolios seems

warranted. Our failure to reject the APT based on twenty size portfolios after we rejected

the theory based on five size portfolios is suggestive in this regard. Our examination of

the individual intercepts confirms the appropriateness of the rejections—there appear to

be both small and large firm effects that are not acccnmted for by our basis portfolios.

Moreover, we also experimented with similar tests to those reported for the CUSP indices

where we estimated the APT risk premia with cross-sectional regressions of the size port-

folios on the portfolio factor loadings and then employed a large sample F statistic to test

the joint significance of the time series intercepts of the size portfolios. In no case were

we able to reject the APT with this procedure with either ten or twenty size portfolios.

Considerable caution is clearly warranted in implementing mean-variance efficiency tests.

Our final observation on size-related tests involves the results reported in Table 6

which exclude the 750 securities which were used to construct the basis portfolios. The

mean-variance efficiency of both indices is rejected in this smaller sample of securities with

aggregate marginal significance levels less than io for the equally-weighted index and

less than 10—2 for the value-weighted index. By contrast, only two APT formulations are

38 As noted in Section IV, our results differ markedly from those obtained in Chen(1983).
It is possible that this is a consequence of the elastic programming algorithm Chen employed
to produce portfolios of small and large firms which had identical sample factor loadings. If
the algorithm produced portfolios which placed relatively small weight on the very smallest
and largest firms in his sample, the discussion in the text suggests that these portfolios
would not exhibit a very large size effect.
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rejected at conventional significance levels: the five factor zero beta model was rejected at

an aggregate marginal significance level near 2% while the five factor riskless rate version

was marginally rejected at just over the 9% level. The rejections of the CRSP indices

verify that the good performance of the basis portfolios is not due to the absence of power

to reject reasonable hypotheses in this sample. The results are probably more a consequence

of the 8i2c of this sample—there are fewer very large and very small market capitalization

firms in these subsamples with which to reject the theory.

The tests for the two CRSP indices based on dividend-sorted portfolios reject their

mean-variance efficiency as would be expected from the earlier work of Litzenberger and

ltamaswamy(1979), Blume(1979), and Elton, Gruber, and Rentzler(1983). The aggregate

x2 statistics based on five portfolios record rejections of the mean-variance efficiency of

the equally-weighted index at a marginal significance level below 10_b and of the value-

weighted index at just below the 2% level. The corresponding individual period results

confirm the aptness of these rejections since the large sample F statistics reject the null

hypothesis for both indices at conventional significance levels for all but the second five year

period. The mean-variance efficiency of the equally-weighted index is also sharply rejected

in the twenty portfolio tests and in the subsample tests reported in Table 6. The tests fail

to reject the mean-variance efficiency of the value-weighted index in the twenty portfolio

case and marginally reject in the subsample results reported in Table 6. Our examination of

the individual portfolio intercepts reveals a well-known pattern: significant positive alphas

for the zero dividend and high dividend groups and negative intercepts for the remaining

portfolios.

The dividend-related tests lead to very different conclusions regarding the validity

of the APT. There is very little evidence in Table 4 against the theory. Only the ten

and fifteen factor zero beta models ace nearly rejected at the 5.5% and 7.6% marginal

significance levels, respectively, using five dividend-related portfolios. The only evidence

against the theory in the individual subperiods occurs in the first subperiod: both versions

of the ten and fifteen factor models are rejected at marginal significance levels between 2%

and 4% with five dividend-sorted portfolios. There is no evidence against the APT in the

remaining five portfolio results and no evidence at all in the twenty portfolio test statistics

or those in Table 6 which exclude the 750 securities used to create the basis portfolios.
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Moreover exaniuntion of the portfolio intercepts provides little suggestion that the test

statistics are nhissillg an unportant dividend effect.39

The results for portfolios based on own variance mirror those obtained in the dividend

yield case. The mean-variance efficiency of the CRSP indices is rejected at almost identical

marginal significance levels in most cases and more sharply for some of the remaining

statistics, particularly those relating to the value-weighted index. The APT basis portfolios

do not yield intercepts that are significant over the whole sample with the exception of the

five factor zero beta model which receives a marginal rejection at the 9% level. In addition,

many of the F statistics are marginally significant (between the 6% and 10% level) in the

first five year period although the remaining test statistics are typically grossly insignificant

(many at. the oo% level and larger). Once again, the information in the test statistics is a

reliable guide to the behavior of the individual portfolio intercepts. The basic message is

sinular: the rejections of the mean-variance efficiency of both CRSP indices suggests that

the own variance portfolios have power against reasonable alternatives and the failure to

reject the APT suggests that the theory provides an adequate account of their risk and

return.

C. Comparison of the Riskiess Rate and Zero Beta Models

In this section we compare the riskless rate and zero beta formulations of the APT.

As noted in Section IV, our tests examine two dimensions along which these models differ:

(i) the riskless rate interpretation predicts that the orthogonal portfolios constructed from

the factor models should earn the riskfree rate while the zero beta model implies that these

portfolios should have zero returns and (ii) the sum of the loadings of both individual

securities and portfolios should be one if the zero beta formulation is appropriate. The first

implication also provides a test of the APT itself since these orthogonal portfolios could

earn significant negative returns or returns significantly greater than the riskfree rate in

violation of the theory. It is certainly true that estimated zero beta rates in a CAPM

setting are usually significantly greater than the riskfree rate.

In particular, there is some evidence of positive (but usually insignificant) intercepts
for the zero dividend and high dividend portfolios. In contrast to the CAPM results, the
intercepts for the remaining portfolios sometimes have mixed signs and are typically eco-
nomically and statistically insignificant. We plan to investigate this further insubsequent
research.
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Table 7 reports summary statistics regarding the sample behavior of the orthogonal
portfolios constructed from five, ten, and fifteen factor models as well as those pertaining
to fluctuations in the one month Treasury bill rate. Recall that the data underlying this
Table are monthly in contrast to the remaining results in this paper. For each orthogonal
portfolio, we report the mean return, the standard deviation ofits return, and the t-statistic
for the hypothesis that the mean return is significantly different from zero as well as the
difference in mean return between this portfolio and the one month Treasury bill rate and
the t-statistic for this mean return difference. The marginal significance levels of the two
t-statistics are reported as well. These statistics are presented for each of the four five year
periods in the first four rows. The final row presents two approximate x2 statistics along
with their marginal significance levels$ The first such statistic is for the joint hypothesis
that the mean returns on the orthogonal portfolio were jointly significantly different from
zero across the four periods while the second x2 statistic provides the analogous test for
the difference in mean returns between the orthogonal portfolios and one month Treasury
bills. Finally, we report summary statistics describing the behavior of the riskiess rate. For
each of the four subperiods, Table 7 gives the mean, standard deviation, and 2 statistic
(along with its marginal significance level) of returns on one month Treasury bills while the
final row provides the approximate x2 statistic for the hypothesis that the mean returns
are jointly significantly different from zero.

The results in Table 7 suggest considerable uniformity in the behavior of the orthogonal
portfolios from the five, ten, and fifteen factor models. The t-statistics for the mean returns
on the orthogonal portfolios of all three factor models are highly significant in the final three
subperiods although they are insignificant in the first period. The x2 statistics for the joint
significance of the mean returns for each orthogonal portfolio across the four sample periods
have marginal significance levels below 1O for each factor model. In contradistinction,
the corresponding t-statistics for the differences in mean returns between these portfolios
and the one month Treasury bill are insignificant in each subperiod with two exceptions:
in the second subperiod, the mean return difference for the orthogonal portfolio from the
ten factor model is marginally significant at the 7.5% level while that from the fifteen

40 It proved to be convenient with our software to produce these approximate x2 statisticsinstead of the usual F statistics. Fortunately, with these sample sizes the difference in
marginal significance levels would only show up in inconsequential decimal places.
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factor model is significant at the 2.7% level. In addition, these mean return differences

have mixed signs, negative in the first and fourth periods and positive in the middle two

periods. Moreover, the aggregate x2 statistics for the joint significance of the mean return

differences have marginal significance levels of 0.19 for the five factor model, 0.17 for the

ten factor model, and 0.092 for the fifteen factor model. Only the fifteen factor results

reflect a marginal rejection of the riskless rate model, a rejection attributable solely to the

results from the second subperiod.

The statistics reported in Table 7 provide support for the riskless rate interpretation

of the APT. The zero beta model receives no such support—the mean returns on the

orthogonal portfolios are jointly and, in three of four periods, individually significantly

different from zero at low marginal significance levels. The riskiess rate interpretation

seems to be quite consistent with the data since the only evidence against the model is

from the second period for the orthogonal portfolios from the tenand fifteen factor models.

Of course, these results may only reflect power problems with these t-statistics although

this interpretation appears to be difficult to sustain due to the apparent precision of the

estimated nieans for the final three periods. Similarly, one might be tempted to reject the

APT since these orthogonal portfolios are not riakleso, their sample standard deviations

are typically ten to twenty times those of returns on one month Treasury bills. This could

occur because the APT is false or because 750 securities is insufficient to eliminate both

factor risk and idiosyncratic risk as discussed in Section IV. In addition, note that our tests

are considerably more powerful and more consistent with the riskless rate version of the

APT than the mixed results obtained by previous authors. Moreover, these results stand

in sharp contrast to those obtained in studies of the zero beta CAPM,where the estimated

zero beta rates are typically significantly greater than the riskless rate.

Of course, there is a second test for the validity of the zero beta APT—tests of the

hypothesis that the loadings of individual securities or portfolios sum to one. This test could

lead to different conclusions than those that follow from Table 7 so that it can shed light on

the validity of the APT as well. Table S reports the relevant test statistics for the hypothesis

that the portfolios formed on the basis of firm size, dividend yield, and ownvariance have

loadings that sum to unity. Attention is restricted to the results based on five such portfolios

in order to conserve space which involves little sacrifice since the results for ten and twenty.
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portfolios were much less favorable to the zero beta formulation. As noted in Section 4,

we present F statistics based on both raw return and excess return regressions. The first

four columns present the relevant F statistics for the four subperiods and their marginal

significance levels. The final column presents the approximate x2 statistic, constnicted

along the lines of the analogous statistic in Section V.B above, for the joint significance of

the four subperiod F statistics along with its marginal significance level.

The results in Table S suggest overwhelming rejection of the zero beta formulation of

the APT. The aggregate test statistics based on excess return regressions reject the null

hypothesis at marginal significance levels below ].0_27 and the least significant subperiod

F statistic has a marginal significance level of 2.3%. The hypothesis fares only slightly

better in the raw return regressions—the aggregate test. statistics for the loadings of the

five size portfolios have marginal significance levels of 0.11 and 0.13 for the ten and fifteen

factor models, respectively, while that associated with own variance and fifteen factors is

significant at the 11% level as well, Of course, the remaining marginal significance levels

of the aggregate test statistics indicate overwhelming rejection at conventional significance

levels as do many of the subperiod results. Moreover, these results are the most favorable

to the zero beta niodet—we would have made no such caveats had we chosen to report the

twenty portfolio results. It is certainly hard to imagine a more complete rejection of the

zero beta version of the APT.

D. Assessing the Number of Factors

The final question we consider involves the number of factors underlying security re-

turns. Our evidence on this question is presented in Tables 9 and 10. As expected, the

results are inconclusive. Panel A of Table 9 contains summary x2 statistics for the joint

significance of the mean returns of the basis portfolios constructed from different factor

models. These x2 statistics are of potential interest for at least two reasons: one having

to do with the validity of the APT and the other with the number of factors. First, it is

an implication of the APT that at least one of the factor risk premia should be different

from zero. As is readily apparent, our large cross-sections yielded basis portfolios which

had highly significant mean returns in aggregate and in most of the individual subperiods

as well. This is in sharp contrast to the frequently insignificant mean returns of basis port-

folios constructed from smaller cross-sections in other studies. The second reason these

41



statistics may be of interest is that the marginal significance levels of the x2 statistics have

some potential for shedding light on the number of factors that embody priced risk.

Why should tins be true? Suppose that we estimate two factor models for security

returns with K and K' factors with associated returns mt and R. Assume K' is the

true number of factors. The key insight is that the noncentrality parameter associated the

usual x2 statistic for testing that the mean returns on the K basis portfolios are jointly

zero is less than the noncentrality parameter associated with testing that the mean returns

on the K' basis portfolios are significantly different from zero.41 Since the noncentrality

parameter of the true basis portfolios is larger, the x2 test statistic of the K' portfolios

should typically be farther out in the tails of its distribution than that of the K portfolios.

In consequence, the marginal probabilities of the test statistic for the hypothesis that the

mean returns on are zero ought to be smaller than the corresponding numbers for the

mean returns on Of course, more precise statements are not possible in this setting

in the absence of a more detailed characterization of the joint distribution of the two sets

of basis portfolios. Moreover, the ranking of the marginal probabilities need not obtain in

any period due to sampling error. Nevertheless, aggregation of the relevant test statistics

might mitigate some of the harmful effects of sampling error and might yield insights into

the number of factors underlying security returns.

Unfortunately, the x2 statistics for the hypothesis that basis portfolio mean returns are

jointly significantly different from zero are inconclusive. While the aggregate x2 statistics

suggest that the ten factor model yields the basis portfolios with the most significant mean

returns, examination ofthe subperiod results shows that the basis portfolios constructed

from the five factor model had the most significant mean returns in the first two subperiods

and those associated with the ten factor model had the lowest marginal significance levels

in the latter two five year periods. This may be interpreted as very weak evidence in favor

of a ten factor model.

The remaining results are equally uninformative. Panel B of Table 9 displays the' in terms of the notation of Section IV.C, RE;1R,,. is the noncentrality parameter
of the K basis portfolios which can be rewritten as ZABTh[BmE,&B,. +

= + (B ;'B,ij']R'm. The noncentrality parameter of the K' basis portfolios
is
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usual likelihood ratio statistics for the number of factors. As anticipated, the likelihood

ratio statistics for the number of factors overwhelmingly reject the hypothesis that five,

ten, or fifteen factors are sufficient to explain covariation among security returns when the

idiosyncratic disturbances are presumed to be uncorrelated across securities. Finally, our

tests in Table 10 for the joint significance of the intercepts from the regression of one set

of basis portfolios on another provides no evidence against the riskless rate version of the

APT coupled with any number of factors from five to fifteen. Only the joint hypothesis

that the five factor zero beta model is correct is rejected at the 3.7% level by the basis

portfolios from the ten factor model.

Tables 9 and 10 are, in some respects, the least satisfying in the paper. They provide

very little information regarding the number of factors which underlie the APT. As the

analysis in Section IV.D suggests, our tests have little power to discriminate among models

with different numbers of factors. The likelihood ratio cannot tell the difference between

pervasive common factors and nonpriced industry effects and so the sharp rejections may

reflect the inadequacy of these models or the inappropriateness of the assumption that the

idiosyncratic disturbances of different firms are uncorrelated. The marginal differences in

the marginal significance levels of basis portfolio mean returns seem to be equally uninfor-

mative. The regression tests provide no evidence against any of the factor models but the

analysis in Section IV suggests that the tests have little power.

As a consequence, there are two plausible readings of the evidence we have examined.

•One is that there is no real evidence against a five factor model providing an adequate

empirical basis for the APT. The other interpretation is that there is no adequate basis

for choosing among factor models and we instead must rely on intuitions regarding the

comparative performance of different factor models. Our hunch is that, if a five factor

model is not appropriate, a ten factor model is sufficient and that there is no need to move

to fifteen factors.

VI. Conclusion

This paper has been devoted to the accumulation of facts and the sifting of evidence

regarding the validity of the APT in its various incarnations. In this pursuit, we have

reached several firm conclusions and have left some issues largely unresolved, In particu-
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lar, our empirical implementation of the theory proved incapable of explaining expected

returns on portfolios composed of securities with different market capitalizations although

it provided an adequate account of the expected returns of portfolios formed on the basis

of dividend yield and own variance. In addition, it appears that the zero beta version of

the APT is sharply rejected in favor of the riskless rate model and that! there is little basis

for discriminating among five and ten factor versions of the theory.

The sharpest evidence we obtained concerns the comparative merits of the zero beta

and riskless rate versions of the APT. The implications of the two models differ in two

dimensions: (i) the zero beta model requires the factor loadings of both securities and

portfolios sum to one and (ii) the riskless rate formulation predicts that the intercept in the

APT pricing relation is the riskless rate while the zero beta version implies that it iszero.

Our tests of the first implication sharply reject the hypothesis that the loadings of portfolios

based on firm size, dividend yield, and own variance sum to unity at arbitrarily low marginal

significance levels. Moreover our examination of the intercept A0 in the pricing relation

confirmed the appropriateness of these rejections as they proved to be significantly different

from zero at low marginal significance levels in three of four periods and inaggregate. The

APT and, in particular, the riskless rate version of the model received additional support
in these tests in that these intercepts proved to be insignificantly different from the riskfree

rate in aggregate and in all but one subperiod. This is somewhat surprising given that zero

beta rates in CAPM studies are typically significantly greater than riskfree rates.

Considerable ambiguity remains regarding the number of common factors underlying

security returns. This is not surprising in that the analysis in Section IV failed to turn

up a test which could reliably discriminate among alternative factor models. The evidence

presented in Section V is consistent with either the five, ten or fifteen factor model. In

light of the similar performance of the ten and fifteen factor models in most instances, we

conjecture that five or ten factors is sufficient if the APT is true. -

By far the most interesting results in the paper concern the validity of the APT
itself. The APT fared well when confronted with the strong relationship betweenaverage
returns and dividend yield and own variance. The APT provides an adequate account

of their risk and return where risk adjustment with the CAPM with the usual market
42 Of course, this does not constitute evidence against the zero beta CAPM.
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proxies fails. This is noteworthy since the APT provides a risk based explanation of these

phenomena in contrast to the usual tax related explanation of the dividend effect and the

transactions cost account of the relationship between own variance and average returns.43

In contradistinction, the tests based on market capitalization provide sharp evidence against

the APT, although the form of the size effect appears different from that documented iii

CAPM studies.

How should we interpret this failure to account for the size effect? One possibility is

that despite our cautious attentiveness to the statistical underpinnings of this analysis, our

procedures proved incapable of overcoming measurement error caused by our inadequate

sample size, asynchronous trading, or any of the other problems discussed in Section IV.

We are persuaded, though, that the large cross-sections that we employ largely mitigate

the impact of measurement error. Similarly, the thin trading corrections made in Section V

yield no suggestion that the size-related results are attributable to this problem. Moreover,

the sharpness of the rejections reported in Tables 1 — 3 suggests that they cannot be

attributed to peculiar small sample properties of the test statistics such as those that might

result, for example, from non-normality. These considerations suggest that the failure of

the APT to account for the size effect is credible.

The most obvious interpretation is that we have sharply rejected the APT. The ability

of a measure of unsystematic risk to successfully explain risk-adjusted returns violates the

theory. The analysis above suggests that the rejections are both sharp and believable. This

represents a clear failure of our empirical implementation of the APT.

The concentration of the size effect in the very smallest and largest firms, however,

suggests an alternative explanation of these results. Suppose that there is a small firm

factor in that the business cycle risk of small capitalization firms is much greater than that

of better capitalized firms. In addition, suppose that the exposure to this source of risk is

small for listed equities but that the risk premium for this factor is large. In particular,

suppose that the firms which suffer front significant exposure to this source of systematic

risk are primarily traded over the counter or are closely held. In these circumstances, our

It is possible that the absence of a measured dividend effect in our APT results is
consistent with the tax story. This could occur, for example, if one of the risk factors
reflected random marginal tax rates impinging on asset pricing and the corresponding
factor loadings are the dividend yields of the individual securities.
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factor analysis would fail to measure this factor well since few finns in our cross-section

would be materially affected by it. Similarly, our rejections of the APT are consonant with

the smallest market capitalization firms having small positive loadings and the large firms

having small negative loadings coupled with a large risk premium for the factor. Hence,
this account of the size effect involves measurement. error in the factors, measurementerror

that follows from the assets selected for the analysis rather than as aconsequence of our

statistical procedures.

The size and the turn-of-the-year effect. have thus far evaded a satisfactory risk based

explanation. It is worth emphasizing that our size effect is largely concentrated in the

firms with the largest and smallest market capitalizations which suggests that the APT

is pricing most listed equities with little error. To paraphrase Henry IV of France to the

ambassador Don Pedro of Spain, "Do you mean to say your theory hasn't enough virtues
to afford some faults?"

It is suggestive to note that business failure rates rise sharply during recessions and
that few of these failures occur among firms listed on the NYSE and AMEX. This could
occur if, for example, credit rationing occurs during recessions and the capitalization of
listed equities and their access to credit is sufficient to ride out most recessions. We would
expect very large firms to have negative loadings in these circumstances since they could
potentially profit from acquisitions obtained during recessions.
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